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Darwin showed that the self-fertilization of plants leads to 
reduced vigour and fertility—that is, inbreeding depres-
sion1. His work supported the hypothesis that self-fertiliza-

tion is strongly disadvantageous and provided a rationale for the 
prevalence of outcrossing in nature2. He did not, however, know 
the genetic basis of inbreeding depression. It is now thought to be 
caused by increased homozygosity, which increases the genetic 
load by uncovering recessive deleterious alleles and/or eliminat-
ing heterozygosity at loci with an overdominant advantage3. The 
decrease of heterozygosity (H) is expected to occur at a regular 
rate; in a selfed lineage, H is expected to be halved each genera-
tion. However, the actual rate of H decline is likely to be slowed 
by various factors, such as interference due to linkage, epistatic 
interactions4 and selective pressure to retain heterozygosity at 
overdominant and associative-overdominant loci5,6. These factors 
presumably contribute to the fact that inbred lines of maize and 
Caenorhabditis species retain heterozygosity even after many gen-
erations of selfing7–10.

One way to combat the increased load caused by inbreeding 
is the removal, or ‘purging’, of recessive deleterious alleles. When 
purging is effective, there may be no inbreeding depression11. 
Purging is expected to occur rapidly when recessive alleles have 
lethal effects12,13, but should be less efficient for non-lethal reces-
sive alleles6. The existence of purging is supported by experiments, 
theory and forward simulations3,14,15, but it is expected to vary across 
species on the basis of features such as population history, mating 
system and the distribution of fitness effects. Given this variation, 
one meta-analysis has concluded that purging is an ‘inconsistent 
force’ in the evolution of inbreeding plant populations6.

Recently, researchers have argued that genomic data pro-
vide more precise insights into inbreeding effects than previous 

approaches4,16. Here we extend this argument to the phenomenon 
of purging, beginning with three simple predictions. The first is 
that selfed offspring will exhibit a bias against the retention of puta-
tively deleterious single-nucleotide polymorphism (SNP) variants, 
because these SNPs become uncovered in a homozygous state. The 
second is that purging of SNP variants will be inconsistent across 
genomic regions, on the basis of the amount of recombination. All 
else being equal, regions of high recombination should purge del-
eterious variants more efficiently, because recombination reduces 
interference among selected sites17,18. The third prediction is that 
purging reduces genome size (GS). We make this prediction because 
GS correlates strongly with transposable element (TE) content19–22 
and because plant TE insertions are thought to be predominantly 
deleterious23. As a consequence, inbreeding should purge TE inser-
tions by favouring the retention of haplotypes with fewer TEs. This 
may be especially true for TE insertions near genes, which may be 
deleterious through their effects on gene expression24–26. Consistent 
with these predictions, selfing species tend to have smaller genomes 
than outcrossers in both plants27,28 and animals29.

In this study, we use an experimental evolution approach to 
investigate the dynamics of purging on a genome-wide scale. The 
experiment mimics an immediate transition to selfing, because it 
consists of 11 outcrossed maize parental lines that were self-fer-
tilized for six or more generations. Given these selfed lineages, we 
gathered flow cytometric and whole-genome-resequencing data 
from a subset of the lines to address three sets of questions. First, 
does GS decrease rapidly in selfed lineages? If so, are TEs the pri-
mary component of loss? Second, are putatively deleterious alleles 
purged more rapidly than putatively neutral alleles, and if so, does 
purging vary with recombination rate? Finally, does H decline at 
expected rates over time?
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Results
Plants, phenotypes and genome sizes. The plant material came 
from a previous experiment in which 11 heterozygous maize land-
races were self-fertilized to create homozygous lines30. For each 
landrace, the experiment began with a single, outcrossed parent of 
unknown genotype, and selfing was continued for at least six gen-
erations by single-seed descent. For this study, we germinated seeds 
from intervening generations—that is, from S1 to at least S6. Each 
of our seeds was a sibling to the seed that was used to propagate 
the ensuing generation (Fig. 1a). Following germination, we sowed 
three plants per line per generation. The plants did not flower under 
our growth conditions, but we measured growth rate and mortality 
(proxies for fitness) over a 45d period. Growth rate and mortality 
varied among the eleven lines (Supplementary Figs. 1 and 2).

To test for GS change, we gathered flow cytometry estimates 
for 96 plants and five B73 controls. Plant choice was restricted by 
mortality, but the 96 plants were chosen to represent a time series 
for each of the 11 lines, with more than one plant per generation 
where possible (Supplementary Table 1). We included three tech-
nical replicates per plant, for a total of 303 assays (Supplementary 
Table 2). We then investigated our prediction of GS loss in two ways. 
First, we contrasted GS between the S1 generation and the latest (at 
least S4) generation with at least two siblings. By this measure, three 
lines (MR01, MR08 and MR18) exhibited significant decreases in 
GS (Wilcoxon rank-sum test; P < 0.05), with no detectable GS shifts 
for the remaining eight lines (Wilcoxon rank-sum test; P > 0.5; 
Supplementary Table 3). Second, we plotted flow cytometry data as 
a function of time, including data from intermediate generations  
(Fig. 1b and Supplementary Fig. 3). The results again indicated that 
MR01, MR08 and MR18 exhibited significant decreases in GS and that 
the other lines showed no detectable loss (Supplementary Table 4).  

For MR01 and MR18, a model of exponential decay fit the data bet-
ter than a linear model, suggesting that GS loss occurred more rap-
idly in the early generations (Supplementary Table 4).

We made three further observations on the basis of flow cyto-
metric data. First, GS loss occurred in three of the four lines with 
the largest S1 genomes (Fig. 1b). These rankings were non-random 
by permutation test (P = 0.006), illustrating an increased tendency 
for lines with larger genomes to lose size. Second, because none 
of the lines exhibited a significant GS increase, the probability of 
GS loss was significantly higher than GS gain (two-sided binomial 
test; P = 0.04). Finally, we estimated the number of bases lost by 
each line, assuming a reference value of 5.64 pg per 2C (where 2C 
is twice the amount of DNA in an unreplicated haploid nucleus) for 
maize B7331 and a conversion rate of 1 pg = 978 Mb32. Line MR01, 
for example, had an average GS estimate of 7.26 pg per 2C in S1 
and a corresponding average of 6.75 pg per 2C in S4. The differ-
ence between generations was therefore 0.51 pg, which corresponds 
to a loss of 7.0%, or 499 Mb. Similarly, lines MR08 and MR18 lost  
2.8% (or 186 Mb) and 7.9% (or 508 Mb), respectively, between gen-
erations 1 and 6.

Genomic components correlate with GS variation across sam-
ples. We predicted that purging would lead to GS loss, which was 
true for 3 of the 11 lines. We also predicted that loss would be domi-
nated by TEs, but TEs are not the only potential genomic compo-
nent that may contribute to rapid GS reduction. GS loss could also 
be attributed to: (1) the loss of genes, (2) variation in ribosomal 
DNA (rDNA) copy number33,34, (3) fluctuations in the number of 
chromosomal knob and CentC satellite repeats22,35 or (4) the loss 
of supernumerary B chromosomes, which are small36 but can be  
multicopy37 and vary among accessions38.
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Fig. 1 | Study design and estimates of genome size. a, Schematic of the study design. An outcrossing parent was selfed to make the S1 generation and 
then subsequently selfed until S6 or higher. The selfed, single-seed descent lineages are represented by black arrows. Our study used sibling seed sampled 
from each generation, represented by red arrows. b, Estimates of genome size, in pg per 2C content, across generations of selfing. Each of the 11 lines is 
represented. Dark lines represent significant decreases of GS. Dotted lines show no detectable changes in GS over time. Sample size varied between one 
and three for each line and generation (see Supplementary Table 1 for details) with a total of n = 96 plants sampled. See Supplementary Table 2 for raw 
values, Supplementary Tables 3 and 4 for statistics, and Supplementary Fig. 3 for a detailed plot of the raw data per line.
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To investigate the genomic regions responsible for GS change, 
we resequenced genomes of 33 plants, including data from S1 and 
at least S5 for the three lines that exhibited GS loss (MR01, MR08 
and MR18; the GSΔ group) and from three control lines (MR09, 
MR19 and MR22; the GScon group) (Supplementary Table 1). The 
data were mapped to the maize B73 AGPv4 genome with four anno-
tated genomic components—genes, rDNA, TEs and knob-specific 
repeats—and to B-chromosome repeats (see Methods). Total read 
counts varied among individuals; thus comparison across indi-
viduals and generations required normalization. Similar to previ-
ous studies21,22, we normalized across libraries on the basis of the 
ratio of read counts to genes, but in this case we focused on bench-
marking universal single-copy orthologues (BUSCO39; Methods). 
Our reasoning was that BUSCO genes were unlikely to contribute 
to short-term GS change, because they are conserved across the 
kingdom Plantae. Simulations demonstrated that this normaliza-
tion approach leads to accurate inferences of relative read counts 
in genomic components (such as TEs) that may vary across genera-
tions, even with low (2×) coverage (Supplementary Fig. 4).

Given normalized read-count data, we examined the relation-
ship between GS (as measured by flow cytometry) and sequence 
counts across the entire sample of 33 plants. Regressing each 
component separately, there was no significant relationship to 
GS for genic content (linear regression, r2 = −0.027, P = 0.63) or 
B-chromosome content (r2 = −0.015, P = 0.45). There was bor-
derline significance for rDNA (r2 = 0.079, P = 0.07), but strongly 
positive relationships between GS and both knob-repeat content 
(r2 = 0.662, P = 4.5 × 10−8) and TE content (r2 = 0.901, P < 10−15; 
Supplementary Fig. 5). When all of the components were combined 
into a single linear model, only TE counts remained significant (lin-
ear model, t = 9.18, P = 2.55 × 10−9), but knobs were again signifi-
cant after TE counts were removed from the model (linear model, 
t = 5.78, P = 5.02 × 10−6). Hence, GS correlates most strongly with 
TE content, but there is a suggestion that knobs also contribute to 
GS variation.

Genomic components that contribute to temporal loss. TEs 
and knobs contribute to GS variation, but which among the five 
components varied over time and contributed to GS change? To 
address this question, we applied analysis of variance (ANOVA) 
to read-count data from each of the five genomic components 
separately. The ANOVA tested for significant differences between 
groups (GSΔ versus GScon), among landraces (for example, MR01 
to MR22) and between generations (S1 to S6). It also tested for 
group × generation and landrace × generation interactions. We 
were particularly interested in group × generation interactions, 
because they identify components that differentiate the GSΔ versus 
GScon groups over time.

We applied ANOVA to each of the six genomic components sep-
arately (Table 1 and Supplementary Table 5) and plotted normalized 
counts for groups (Fig. 2) and landraces (Supplementary Fig. 6).  
Focusing first on genes, the ANOVA had no significant terms 

(F-tests; P > 0.05; all P-values corrected for false discovery rate 
(FDR) for all of the tests in Table 1). The lack of significance was 
reflected in plots of read counts, because there were only moder-
ate differences between groups and among landraces, with no con-
sistent trend over time (Fig. 2). For rDNA, the ANOVA detected 
differences among landraces (F = 5.28, P = 0.004), with 41% of the 
variance explained but with no other significant terms. By compar-
ing GS estimates to read counts (see Methods), we estimated the 
average amount of DNA loss in Mb attributable to rDNA repeats 
in each line and each generation. No line had more than 8 Mb of 
estimated rDNA, and the temporal difference between S1 and S6 
was less than 0.7 Mb for most lines (Supplementary Table 6). A 
third component was B chromosomes. Only one line (M18) had 
substantial hits (number of mapping reads) to B-chromosome 
repeats, representing an average of 10.7 Mb of DNA content across 
S1 individuals. By S6, counts were at background levels, indicating 
B-chromosome loss. Given these patterns, the ANOVA detected 
significant landrace (F = 5.90, P = 0.021) and landrace × generation 
terms (F = 4.85, P < 0.022), but no group effects.

We next turned to the two genomic components that cor-
related strongly with GS across the entire dataset: TE counts and 
knob repeats. TE counts exhibited significant terms across groups 
(F = 53.94, P = 2.38 × 10−7; 14% variance explained), landraces 
(F = 64.71, P = 2.91 × 10−11; 70% variance explained), generations 
(F = 10.35, P = 0.018; 2.8% variance explained) and group × genera-
tion interactions (F = 19.84, P = 0.0013; 5.4% variance explained) 
(Table 1). The plots of TE counts were consistent with these statisti-
cal results, because they show that: (1) the GSΔ group had higher 
overall TE counts than the GScon group; (2) landraces within GSΔ 
exhibited reductions in TE counts from generation S1 to S6, but 
(3) landraces within GScon did not (Fig. 2). By equating GS to read 
counts, we estimated that the Mb loss due to TEs was 481 Mb for 
MR01, 199 Mb for MR08 and 465 Mb for MR18, representing more 
than 90% of the estimated shift in GS over time for each line. By 
contrast, the GScon lines exhibited temporal TE changes of about 
10 Mb each (Supplementary Table 6).

Finally, knob counts differed between groups (F = 158.99, 
P = 2.91 × 10−10; 56% variance explained) and among landraces 
(F = 62.75, P = 2.91 × 10−10; 35% variance explained), with the GSΔ 
group having generally higher counts. However, knob counts did 
not exhibit significant interaction terms or variation between gen-
erations, which was surprising given the correlation between knob 
counts and GS across all samples (Supplementary Fig. 5). We there-
fore investigated the possibility that the lack of significance reflected 
reference bias by repeating analyses with the W22 reference40. 
The results largely corroborated the B73 results but did produce 
a significant group × generation interaction for knobs (F = 10.88, 
P = 0.0128) (Supplementary Table 7). Based on the W22 reference, 
the average Mb loss over generations due to knobs was 136 Mb in 
MR01, 59.4 Mb in MR08 and 77.0 in MR189, but TEs explained 
more temporal variation in every case (341 Mb, 130 Mb and 413 Mb, 
respectively; Supplementary Table 8).

Table 1 | Estimates of the variance components based on ANOVA applied to read-count data

Group Landrace Generation Group × generation Line × generation

TEs 14.72 *** 70.65*** 2.82* 5.41* 0.65

Genes 1.46 21.49 4.85 0.017 18.51

Knobs 35.60 *** 56.21*** 0.44 0.50 2.54

B-chromosomes 7.02 25.80* 7.27 6.76 25.53*

rDNA 2.00 40.49* 2.27 1.53 13.47

Each of the five genomic components (TEs, genes, knob repeats, B-chromosome specific repeats and rDNA) was tested individually. Sample sizes were n = 2 for groups, n = 6 for landraces and n = 2 for 
generations. *P < 0.05; 0.05 > **P > 0.001 and ***P < 0.001. P-values were FDR-corrected on the basis of all tests in Table 1. Exact P-values are provided in Supplementary Table 5.
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TE locations, types and mechanism. We predicted that GS loss 
could reflect purging of TEs near genes due to their deleterious 
effects on gene expression24,25. To address this prediction, we sepa-
rated TEs from B73 into three bins: non-genic TEs, which mapped 
to TEs more than 5 kb away from genes; near-genic TEs that were 
within 5 kb of a gene; and the subset of near-genic genes that over-
lapped with annotated genes—that is, they fell within introns or 
UTRs. Both non-genic and overlapping TEs exhibited significant 
group × generation interactions (F = 18.46 and 13.97, P ≤ 0.001; all 
P-values FDR-corrected; Supplementary Table 9), explaining 9.1% 
and 12.4% of the total variance for non-genic and overlapping TEs, 
respectively. Despite our prediction, none of the ANOVA terms were 
significant for TEs near (within 5 kb) genes, but three components 
were borderline significant (F = 3.34, P < 0.10; Supplementary Table 
10), including both the generation and landrace × generation terms. 
Of note, the latter reflects the fact that five of the six lines lost near-
genic TEs through the course of the experiment (Supplementary 
Fig. 6), suggesting that the loss of TEs near genes was a general phe-
nomenon across all lines. We repeated these analyses for the W22 
reference, finding that all three TE locations exhibited group × gen-
eration effects (Supplementary Table 10 and Supplementary Fig. 7). 
Overall, then, these data suggest that TEs were lost throughout the 
genome, but it is unclear whether near-genic TEs were lost across all 
lines or only from the GSΔ group.

We also investigated potential biases by TE order, focusing on 
six TE types in the B73 reference: helitrons, long terminal repeats 
(LTR) retrotransposons, solo LTRs, terminal inverted repeats, short 
interspersed nuclear elements and long interspersed nuclear ele-
ments. All but solo LTRs exhibited significant variation between 
the GSΔ and GScon groups (F > 39.10, P < 1.2 × 10−5). Four of the six 
also exhibited a significant group × generation interaction, which 

explained > 5% of the variance for LTRs, solo LTRs and helitrons 
(Supplementary Fig. 8 and Supplementary Table 11). Thus, GS loss 
encompassed an array of TE types.

Finally, we addressed a question related to a potential mecha-
nism of TE loss. In some plant species, TE loss is driven by unequal 
recombination between LTR elements41. These recombination 
events are expected to increase the ratio of solo LTR elements to 
intact LTR elements. If this mechanism operated during our experi-
ment, the ratio of reads mapping to LTRs versus the internal regions 
of elements should increase over time, especially in the GSΔ lines. 
To test this idea, we independently annotated 22,530 full-length 
LTR elements of the Sirevirus genus, based on the B73 reference. We 
focused on Sirevirus for three reasons: (1) they represent a substan-
tial proportion (around 20%) of the maize genome42, (2) they can 
be accurately annotated on the basis of numerous internal features, 
including the boundary between LTRs and internal regions43, and 
(3) they provide a set of LTR elements that were annotated inde-
pendently of the existing B73 v4 genome annotation. We found that 
both solo and intact Sirevirus exhibited losses over time in the GSΔ 
group (Supplementary Table 12 and Supplementary Fig. 9), consis-
tent with our LTR analyses based on the v4 annotations. However, 
the ratio of mapping to LTRs versus internal regions did not 
exhibit an obviously increasing trend through time or a significant 
group × generation effect (F = 0.27, P = 0.73), as would be predicted 
if TE loss were driven by numerous unequal recombination events.

The fate of deleterious variants. We now turn to a second pre-
diction about purging: over time, there should be a bias against 
the retention of deleterious SNP variants. We tested this predic-
tion by first calling SNPs for each of the six lines from the GSΔ 
and GScon groups and then by focusing only on biallelic SNPs that 
were inferred to be heterozygous (H = 1) in the resynthesized parent 
(see Methods). For each of these heterozygous sites, we predicted 
derived deleterious variants using SIFT44 and noted the fate of vari-
ants in four functional classes (non-coding, synonymous, tolerated 
nonsynonymous and putatively deleterious nonsynonymous vari-
ants). In total, we examined 1,914,845 SNPs across the six lines 
(Supplementary Table 13).

As a signal of purging, we expected deleterious, derived SNP 
variants to exhibit biased rates of loss over time. To characterize 
this potential bias, we identified derived alleles by comparison to 
a Sorghum outgroup and estimated the proportion of derived allele 
(Pd) across sites. We expected Pd to be 50% in the parent and to 
remain 50% in the absence of perturbing factors like selection. To 
test this prediction, we combined results across the six lines and 
plotted Pd for each functional class in S1 and S6 (Fig. 3a). In S1, for 
example, average Pd estimates for non-coding and synonymous sites 
were below 0.5, potentially reflecting biases in ancestral inference 
and/or selection against a subset of these putatively neutral derived 
alleles between parents and S1. Consistent with the latter interpreta-
tion, Pd declined slightly from S1 to S6 for both site classes (linear 
model contrast Z = 14.92, P < 0.001).

These effects were greatly amplified for nonsynonymous muta-
tions (Fig. 3a). For example, putatively deleterious, derived nonsyn-
onymous SNPs had a Pd of 0.384 in S1, representing a significant 
decrease relative to that of synonymous and non-coding variants 
(linear model contrast Z = 44.89, P < 0.001; Supplementary Table 14).  
Between S1 and S6, Pd fell even further, from an average of 0.384 
to 0.334 (linear model contrast Z = 20.83, P < 0.001). Overall, puta-
tively deleterious SNPs demonstrated accelerated rates of loss over 
time relative to other variant classes.

Recombination is expected to mediate the effects of selec-
tion, because it uncouples interference between linked variants. 
Therefore, deleterious variants should be purged more rapidly in 
regions of high recombination. To explore this prediction, we con-
trasted genomic regions that encompass the highest and lowest 
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quartiles of recombination rates, as defined by crossover events (r) 
(ref. 7). The results showed the expected pattern: in S6, Pd was lower 
in high- compared with low-recombining regions for both classes 
of nonsynonymous variants (tolerated: Z = −3.37, P = 0.006; delete-
rious: Z = −4.95, P = 5.98 × 10−6 based on linear model contrasts; 
Supplementary Table 15). Recombination did not have an effect on 
Pd for nonsynonymous SNPs in S1, consistent with the fact that time 
is required for recombination to break down linkage between loci.

Declining heterozygosity. Finally, we measured a phenomenon of 
empirical interest, which is the rate of loss of heterozygosity over 
generations. This is a difficult task, given our low coverage data, but 
we took advantage of the fact that SNPs inferred to be heterozygous 
in the parental generation can be in only one of two states within 
S1 and S6: heterozygous or homozygous. Moreover, these two 
states are expected to fall into blocks, with the transition between 
blocks defined by recombination events. To identify these blocks, 
we examined windows of 100 SNPs in size, focusing on genic SNPs, 
and used a Bayesian clustering method to assign windows as either 
heterozygous or homozygous for each individual (see Methods). 
The proportion of heterozygous blocks across the genome (Hb) can 
be compared directly to the null expectation that H = 0.50 in S1 and 
0.015 in S6.

We applied this approach successfully to the two lines with high-
est coverage (MR09 and MR22) (Fig. 4) and offer five observa-
tions about heterozygosity. First, Hb exceeded 60% in both MR09 
(65.7%) and MR22 (63.7%) for generation S1, representing a sig-
nificant deviation from the null expectation (one-sided Wilcoxon 
test, P = 0.0019 and P = 0.019, respectively). Second, Hb significantly 
exceeded the expected value of 1.5% in S6, at 14.2% for MR22 and 
4.8% for MR09 (one-sided Wilcoxon test, P = 0.00098 and P = 0.019, 
respectively). Third, for reasons that are not immediately apparent, 
the difference between the two lines in S6 was also significant (one-
sided Wilcoxon test, P = 0.00036). Fourth, heterozygous blocks had 
a significantly higher proportion of nonsynonymous SNPs (7.19%) 
compared to homozygous blocks (6.14%, one-sided χ2 = 27.72, 
P = 1.4 × 10−7); the same was true for putatively deleterious SNPs 
(one-sided χ2 = 4.2969, df = 1, P = 0.038). Finally, heterozygosity was 
also related to recombination, because heterozygosity and r were 

modestly but significantly correlated across windows in S6 (linear 
regression adjusted r2 = 0.016; P = 1.5 × 10−4).

Discussion
In this study, we took an experimental approach to assess the 
genomic effects of selfing, with a focus on the dynamics of purging. 
Previous studies have investigated the effects of selfing by, for exam-
ple, contrasting selfing and outcrossing plants in flowering phenol-
ogy, population structure, genomic diversity23 and evolutionary 
fate45. Yet, most of these effects probably accrue after, not during, 
the transition to selfing. A smaller number of studies have found 
evidence of purging by comparing inbreeding depression between 
naturally inbreeding and naturally outcrossing species3,11,46. By con-
trast, the immediate genomic effects of purging have gone largely 
undocumented.

Rapid genome flux. Our experiment has documented rapid GS loss 
in 3 of 11 selfed lineages (Fig. 1). These observations add to a grow-
ing consensus that GS can change rapidly in plant species. Other 
examples include GS changes in flax over a single generation34, GS 
shifts on experimental time-scales in Festuca47 and GS reductions in 
maize after six generations of selection for early flowering48. To our 
knowledge, however, the magnitude of GS loss that we observed in 
this study is unprecedented. On the basis of estimates using flow 
cytometry, the three lines lost about 6% of their genome or 398 Mb, 
on average, from S1 to S6. To put these changes in context, the GS 
of two fully sequenced maize inbred lines (Mo17 and B73) differ by 
only ~25 Mb49.

Following precedence20–22,50,51, we used read counts to infer the 
size of genomic components, focusing on genes, TEs, knob repeats, 
rDNA and B chromosomes. Among these five components, it is 
clear that TEs are the major source of loss, which is not surpris-
ing given that DNA derived from TEs constitutes more than 85% 
of the maize genome52, and that previous studies have shown that 
TEs contribute to plant GS variation20–22,50,51. GS shifts are not always 
caused by TE content, however. In flax and A. thaliana, GS shifts are 
fuelled primarily by variation in rDNA repeats33,34, and GS differ-
ences between selfing and outcrossing Caenorhabditis species are 
roughly equally apportioned among genes and TEs29,53.
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Given that TEs are the major source of GS loss, we examined 
loss according to both TE type and location. Within the GSΔ group, 
loss occurred for all six TE orders we tested (Supplementary Fig. 8 
and Supplementary Table 6). This finding mirrors previous stud-
ies that have compared TE content among Zea genomes20,21. For 
example, Tenaillon et al.20 estimated that 70% of the GS difference 
between two species (Zea luxurians and maize) was due to TE losses 
and gains, but the relative abundance of TE families was conserved 
between species20. We predicted that GS loss should be especially 
evident for TEs that are near genes, because they may have deleteri-
ous effects on gene expression24,25. The results varied depending on 
the reference. With B73, the landrace × generation effect for near-
genic TEs was borderline significant (P = 0.058) because five of the 
six resequenced lines lost these TEs over time, irrespective of their 
inclusion in the GSΔ or GScon group (Supplementary Fig. 5). This 
result implies that the loss of near-genic TEs may be a general prop-
erty of selfing. However, the W22 results do not fully support this 
claim, because they suggest that the pattern of loss in near-genic 
TEs varied between groups. Given these results, we cannot yet con-
clude that the loss of near-genic TEs is a general outcome of self-
ing. As the resolution of genome assemblies improves, we advocate 
further investigation of this question while also recognizing that TE 
families vary in both their tendency to insert near genes and their 
epigenetic profiles.

In this context, it is important to emphasize the limitations of 
the read-count approach for estimating genomic components. The 
approach is better suited for broad-scale inferences about genome 
content than for inferences about the fate of specific genes, TE 
insertions or chromosomal regions. Here our inferences about loca-
tion are based on the reference genome and may not accurately 
reflect the genome of our sample. We investigated reference biases 

by applying our read-count approach to two references (B73 and 
W22). With either reference, there was little evidence that genes, 
rDNA and B chromosomes contributed substantively to GS loss, 
but the magnitude of the TE and knob effects did vary by reference 
sequence. With B73, TEs explained more than 90% of loss from 
S1 to S6 and as much as 481 Mb. With W22, the estimated TE loss 
was more modest, explaining around 75% of GS shift on average, 
with the remainder of loss assigned to knob repeats. The difference 
in results probably reflects annotation and assembly differences 
between references, because we disregarded counts from regions 
where annotated features overlapped. In B73, TEs often overlapped 
with putative knob regions, but overlaps occurred less frequently in 
W22. Our results therefore contain a cautionary tale about annota-
tion biases, but we also suspect that the implication of knobs as a 
component of GS loss is reasonable, given our own (Supplementary 
Fig. 5) and previous evidence that knobs contribute to maize GS 
variation22,50. Notably, the total Mb loss explained by TEs and knobs 
was consistent, regardless of the reference used.

Altogether, our results support the hypothesis that GS loss is a 
potential outcome of selfing. This hypothesis is based on the obser-
vations that genomes are smaller in selfers compared to their out-
crossing sister taxa in Caenorhabditis29,53 and across plant taxa28, 
where it is likely that other factors, such as the reduced spread of 
transposable elements, also contribute to differences. Assuming that 
GS loss is common during selfing, one must ask why 8 of our 11 
lines exhibited no detectable loss. The lack of loss is probably not 
a question of statistical power, because five lines were estimated to 
have slightly larger GS, on average, in S6 relative to S1 (Fig. 1). Here 
our lack of the parental genome could be misleading, because our 
experimental design could not monitor loss from the parent to S1. 
The greatest loss is expected to occur within this first generation, 
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given that two of three GSΔ lines lost GS exponentially over time. 
We can nevertheless provide some predictive insights by contrasting 
data between GSΔ and GScon groups. Neither group exhibited par-
ticularly low growth rates or high mortality (Supplementary Figs. 1 
and 2), so GS loss did not obviously relate to these fitness proxies. 
However, the three lines with GS loss did have larger S1 genomes 
(Fig. 1b), with significantly more TEs and knobs than the GScon 
group (Fig. 2 and Table 1). Hence, to a first approximation, genomes 
with high TE and knob content are more prone to loss.

Heterozygosity, recombination and the fate of deleterious SNPs. 
Several previous studies have shown that H declines at lower rates 
than expected under selfing4,9. In S1 eucalyptus trees, for example, 
average H was 65.5%, compared with the expectation of 50% (ref. 4).  
We also found elevated heterozygosity in our lines. In S1, Hb was 
~65% for MR09 and MR22 (Fig. 4). By S6, both lines retained sig-
nificantly more heterozygosity than the expected value of 1.5%. 
Observed values of Hb in S6 imply that, assuming constancy across 
generations, the rate of heterozygosity retention was 0.60 per gener-
ation (= e(log(0.048)/6)) for MR09 and 0.72 per generation (= e(log(0.142)/6)) 
for MR22.

What can account for this retention of heterozygosity? One 
explanation is genotyping error. Such errors are not only possible 
but are likely to be prevalent at individual sites with our low cover-
age data. For this reason, we focused on a window-based method 
that assigned blocks of 100 SNP sites into one of two states— 
heterozygous or homozygous. This approach should mitigate the 
effect of miscalls at individual sites, and we also employed the method  
using conservative assumptions; for example, blocks with uncer-
tain assignments were not counted as heterozygous (see Methods). 
Nevertheless, there is a region on chromosome 8 of MR22 that has 
higher heterozygosity in S6 than S1 (Fig. 4); such a pattern could 
be real, given our sampling strategy (Fig. 1a), or may hint to some 
underlying error in assignments. Towards that end, we also exam-
ined obvious potential sources of error by, for example, testing 
for correlations between the location of heterozygous windows in 
MR09 and MR22. No correlation was found (r2 = 0.03846, linear 
regression, P = 0.5871), suggesting that underlying genomic features  
(for example, sets of paralogs that can cause SNP miscalls10) did not 
consistently inflate heterozygosity across lines. Altogether, we believe 
our heterozygosity estimates to be reasonable and probably conser-
vative; together with previous work4,9, they suggest that heterozygos-
ity generally declines more slowly than expected. Nevertheless, more 
studies are needed to characterize this important dynamic, perhaps 
by incorporating more intervening generations.

Biological explanations for slower-than-expected rates of hetero-
zygosity decline usually invoke either overdominance or associative 
overdominance, with the latter thought to be the prevailing force 
maintaining heterozygosity in selfed lineages3,4,9,54. If higher-than-
expected levels of heterozygosity are caused in part by linkage to 
deleterious variants, then heterozygosity should be higher in regions 
of low recombination, where selection against deleterious variants 
is inefficient because loci are coupled. Consistent with this predic-
tion, heterozygosity is elevated in regions of low recombination in 
the maize nested association mapping population8,55. Here, over the 
short-term timescale of our experiment, we find that heterozygosity 
is lower in regions of low recombination, probably reflecting linked 
selection56 against strongly deleterious variants.

Another feature of recombination is that it has the capacity 
to uncouple linked variants, making selection more efficacious. 
Putatively deleterious variants are purged from our lines more 
rapidly than presumably neutral variants (Fig. 3a), and they are 
purged more rapidly from high versus low recombination regions 
in S6 (Fig. 3b). We infer that recombination separates deleterious 
variants from linked variation, permitting the independent loss of 
the deleterious variant and allowing neutral diversity to remain57. A 

similar relationship between heterozygosity and recombination was 
discovered recently within hybrid genomes of swordtail fish58. In 
these hybrids, high recombination regions retained heterozygosity 
because recombination breaks up incompatibilities that otherwise 
contribute to hybrid load.

Outstanding questions. At least three questions remain. First, what 
is the mechanism of TE (and knob) removal? One potential expla-
nation is ectopic and/or unequal recombination, which can leave 
a signature of an increased ratio of solo to intact LTR elements41, 
but we found no evidence for this effect. It is possible, of course, 
that unequal recombination caused a small number of large dele-
tion events, with only minor effects on the ratio of solo:intact ele-
ments. We nonetheless favour a non-exclusive mechanism for GS 
loss in this experiment, which is that selection tends to act against 
the larger haplotype when there is a size difference in a heterozy-
gote. Under this scenario, selfed plants with the best collection of 
small(er) haplotypes are favoured by the selfing process, leading 
to GS reductions. If true, we expect the resolution of selfing to be 
a contest between haplotypes, with recombination occasionally 
reducing interference and combining linked structural variants 
from different haplotypes onto a single chromosome. Under this 
model, we can make two predictions: (1) parental plants of higher 
heterozygosity and larger differences in size between haplotypes 
are more likely to lose GS, and (2) regions of higher recombination 
will tend to lose more Mb, due to more efficient selection against 
large(r) haplotypes. These predictions remain to be tested, under-
scoring how little we know about selfing, purging and its effects on 
genomic variants.

Second, what is the proximal cause of GS loss? Our results sug-
gest that the primary effect of selfing is to uncover deleterious reces-
sive mutations, leading to selection against homozygous recessives. 
But is there a phenotype that drives this selection? GS is known to 
correlate with several traits, including reproductive rates, growth 
rates, flowering time, cell sizes and other factors22,48,59–62. Selection 
on one or several of these diverse characteristics may have occurred 
during the formation of the inbred lines. However, we cannot find 
any pattern among our lines that suggest selection was more pro-
nounced on the GSΔ versus GScon groups. For example, each of the 
members of GSΔ group (MR01, MR08 and MR18) originated from 
landraces in the tropical lowlands and were bred in lowland tropical 
nurseries, but the same is true of MR05, MR09, MR11, M22 and 
MR23, none of which exhibited obvious GS loss.

Finally, what bearing do these results have on broader questions 
about plant evolution? First, they inform on processes of genome 
evolution and show that selection can have several effects even 
over the very-short term. This includes purging deleterious alleles 
in higher recombination regions more efficaciously and removing 
linked variation in regions of low recombination. The data also hint 
that interference between deleterious variants contributes to the 
retention of heterozygosity, because regions of high heterozygosity 
are enriched for deleterious variants in S6. Second, this work relates 
to the finding that indirect selection for recombination modifiers 
is favoured under selfing63,64. Our results demonstrate that high 
recombination rates are advantageous for quickly purging genetic 
load, which in theory could drive the observed trend toward higher 
chiasmata frequencies in selfing plants compared to outcrossers.

Methods
Plant materials and phenotypic analyses. Our experiment was based on 11 maize 
landraces (Supplementary Table 1) that were inbred by J. Doebley (University of 
Wisconsin) and maintained through single-seed descent for several generations30. 
The parents represented outcrossed landraces of unknown genotype. For each 
line and generation, one seed was grown and selfed, and the remaining sibling 
seeds were stored. We grew the sibling seeds in the UC Irvine greenhouses after 
germination on Petri dishes. Ten seeds per cultivar were sown in individual pots on 
22 July 2014 and grown in a growth chamber under controlled conditions of 12 h 

Nature Plants | VOL 5 | SEPTEMBER 2019 | 980–990 | www.nature.com/natureplants986

http://www.nature.com/natureplants


ArticlesNature Plants

light at 26 °C, 12 h dark at 20 °C, a relative humidity of 70% and 500–600 cal cm−2 
of radiation per d. The third and fourth leaves of each plant were harvested when 
12–13 cm long and then frozen in liquid nitrogen and stored at −80 °C. The 11 
cultivars, with a subset of 6 plants per cultivar per generation, were grown in 4 
completely randomized blocks, with B73 as the control across blocks. Measures 
for height were taken 9, 17, 30 and 45 d after sowing; mortality was also noted 
throughout the duration. Mortality and growth rates were compared among lines. 
We estimated the exponential growth rate for each individual and used a one-way 
ANOVA to test whether the estimated growth rates differed between lines. A 
logistic regression model was applied to mortality, and a likelihood-ratio test was 
used to compare mortality between lines. We did not measure fitness via fecundity, 
because none of the lines produced seed under our experimental conditions.

Flow cytometric data and analyses. To estimate GS, leaf samples were sent 
to Plant Cytometry Services. Following a previous study31, flow cytometry 
used 4′,6-diamindino-2-phenylindole (DAPI) staining. Ilex crenata Fastigiata 
(2C = 2.2 pg) and maize B73 (2C = 5.64 pg)31 were used as internal standards. Three 
technical replicates were performed for each plant (Supplementary Table 2).  
To assess whether GS changed as a consequence of selfing, we performed linear 
regressions, exponential decay analyses and Wilcoxon rank-sum tests in R, 
combining biological and technical replicates for rank-sum tests. Flow cytometeric 
data were converted to picograms assuming that the maize B73 reference had 
a value of 5.64 pg per 2C (ref. 31); picograms were translated to Mb assuming 
1 pg = 978 Mb32. To infer a significant trend toward genome loss, we estimated that 
the probability of loss was 3 lines out of 11 trials (P = 0.273) and calculated the 
probability of observing zero GS increases over 11 trials with a two-sided binomial.

Whole-genome sequencing and genomic composition. We selected 6 landraces 
and 33 individuals for whole-genome sequencing (Supplementary Table 1), 
focusing on the S1 and S6 generations. DNA was extracted from frozen leaf 
tissue using the QIAGEN DNeasy Plant Mini kit. DNA was multiplexed into 
libraries with Illumina TruSeq PCR Free kit. The libraries were sequenced on 
the HiSeq2500 (100 bp read length, paired-end, two lanes) in the UCI High-
Throughput Genomics Facility in 2015 (landraces MR01, MR08, MR18 and MR19) 
and on the HiSeq3000 (150 bp read length, paired-end, one lane) in the UC Davis 
DNA Technologies Core in 2016 (landraces MR09 and MR22). Individuals were 
sequenced to an average coverage of ~2.5× per individual (Supplementary  
Table 16). Note, however, that we had > 6× coverage for each generation for each of 
the lines investigated given the inclusion of siblings.

Sequencing reads were processed by Trimmomatic (v.0.35) to remove  
barcodes and low quality reads (< 20), with a minimum read length of 36. 
Processed reads were mapped simultaneously onto maize genome AGP version 
4.37 (AGPv4)65 and B-specific chromosomal repeats using BWA-MEM (v.0.7.12)66. 
To prevent double counts of a feature, only one of the paired reads was mapped 
and only the primary alignment was kept for each multi-mapping read, based on 
Samtools v.1.367.

We counted mapped reads for five annotated genomic components: genes, 
B-chromosome specific repeats, chromosomal knobs, rDNA and TEs. The 
annotation features for protein coding genes and for TEs were obtained from the 
Gramene database on 1 May 2017 for B73 AGPv4 (Supplementary Table 17). To 
annotate regions containing knob (plus CentC) regions and rDNA (plus transfer 
DNA) sequences, a series of fasta files (Supplementary Table 17) representing 
both features were mapped to the v4 genome using blat (v.36). The regions of B73 
that mapped to either knobs or rDNA were then added to gff files (blattogff v.3) 
for read-count analyses. To count reads, all features were merged (bedtools merge 
v.2.25.0) to avoid double counting68. Bedtools coverage was used to count reads 
that overlapped at least 90% with each feature. An identical approach was used for 
W22 annotations (Supplementary Table 17).

We used BUSCO genes to normalize between libraries, on the expectation that 
these highly conserved genes represent an invariant component of the genome. To 
identify a conserved set of BUSCO genes, we ran BUSCO (v.3)39 on AGPv4. From 
the resulting set of 1,309 BUSCO genes, we eliminated any that appeared to be 
multicopy or that overlapped with TE annotations in B73 AGPv4, leaving a final 
set of 761 genes. A similar procedure in W22 yielded 918 BUSCO genes. In both 
references, any gene, knob or rDNA annotation that overlapped with a TE was not 
considered further. Within any sequencing run, normalized counts for a genomic 
feature were calculated as the observed number of sequence counts to that feature 
divided by the total number of counts that mapped to BUSCO genes. To verify 
that our use of BUSCO genes was accurate, we simulated datasets with BUSCO 
normalizations based on Chromosome 10 (see below).

Further analyses considered different families and types of TEs. These analyses 
were performed only in B73. For these, we first identified TEs from the AGPv4 gff 
file and employed their TE family designations for additional analyses. To examine 
the ratio of solo LTRs to complete LTRs, we de novo annotated Sirevirus  
sequences on the basis of the MASiVE algorithm43. The application of MASiVE 
produced 22,530 full-length elements with defined boundaries between LTRs and 
internal regions.

To assess relationships between GS and genomic components, we used both 
linear regression and ANOVA, using the lm and aov modules in R (v.3.34). 

ANOVA P-values were FDR-corrected. To estimate the Mb of the genome 
explained by various component, we:(1) translated the GS of each plant from 
pg per 2C to Mb using the conversion rate of 1 pg = 978 Mb32, (2) equated Mb 
for each individual to the total number of reads mapped to the five genomic 
components, and (3) calculated the number of Mb explained per sequencing 
read. Finally, note that in addition to mapping to our W22 and B73 databases, for 
completeness we also mapped to a database consisting only of knob repeats, which 
avoided the complication of reference TE annotations. These analyses also detected 
a moderate group × generation effect (F-test; P = 0.015) (Supplementary Table 18), 
suggesting again that knob repeats contribute to GS shifts.

Testing BUSCO normalization via simulation. To compare counts among 
individuals, it is important to assess the accuracy of our normalization approach. 
We tested BUSCO normalization via simulations of TE loss and gain. For 
the simulations, we used the smallest chromosome—chromosome 10—for 
computational efficiency. We randomly removed either 10% or 20% of TEs from 
the chromosome, duplicated 10% of TEs, or did not change the chromosome. 
Each treatment was repeated five times with different random TEs removed or 
gained. The short-read simulator wgsim (https://github.com/lh3/wgsim) was 
used to simulate datasets with 2× and 10× coverage, mimicking the potential for 
different coverages among our libraries. For each simulation, reads were mapped 
to chromosome 10, counted across annotation features (non-BUSCO genes, TEs, 
knobs and rDNA) and then normalized by dividing by the total counts for BUSCO 
genes on chromosome 10. We simulated each set of parameters 1,000 times. On 
the basis of these simulations, we were able to recover the expected decrease in 
genomic components (Supplementary Fig. 1), but it did not recapitulate genome 
gain in TEs as accurately. It is likely that the inability to estimate TE gains is a 
feature of our simulations, because we duplicated TEs as exact, tandem copies 
of chromosomal TEs, which would lead to systematic undercounting of the 
duplicated TEs. Nevertheless, our simulations indicate that our normalization 
approach is sufficient to compare TE loss among datasets with different coverages 
and different degrees of TE loss.

Identification of SNPs and deleterious variants. To identify SNPs, paired-
end sequencing reads were evaluated for quality using FastQC v.0.11.2, and 
were further processed to remove adapter contamination and low quality bases 
using Trimmomatic v.0.3569, with the parameters LEADING:3, TRAILING:3, 
SLIDINGWINDOW:4:20 and MINLEN:50. Trimmed reads were then mapped 
to the B73 reference genome (AGPv4.3765; ftp://ftp.ensemblgenomes.org/pub/
plants/release-37/fasta/zea_mays) using the MEM algorithm implemented in 
Burrows–Wheeler Aligner (BWA) v.0.7.1266 with the parameters “-M -k 9 -T 
25”. Mapping alignments from one individual were merged using Picard tools 
v.1.96 (http://broadinstitute.github.io/picard/) MergeSamFiles, and potential 
PCR duplicates were filtered from alignments using SAMtools v.1.167 rmdup. To 
minimize the number of mismatched bases, local realignment of reads around 
indels were performed using the Genome Analysis Toolkit (GATK) v.3.770 
RealignerTargetCreator and IndelRealigner. Only uniquely mapped reads were 
kept for downstream SNP calling.

To detect SNPs, we used HaplotypeCaller, CombineGVCFs and 
GenotypeGVCFs from GATK v.3.770 separately on each of the six resequenced 
lines. Variant sites having a minimum phred-scaled confidence threshold 30 and 
a minimum base quality 20 were considered as SNP candidates. For the SNP set 
in all samples: (1) only biallelic SNPs were retained, (2) genotypes with genotype 
quality score < 5 were assigned as missing, and (3) the filtration “QUAL < 30.0, 
QD < 2.0, MQ < 10.0, DP < 3.0, ReadPosRankSum < −8.0, FS > 30.0” were set to 
further reduce false positives. A Python program parseVCF.py (https://github.com/
simonhmartin/genomics_general) was adopted to extract the genotypes of every 
sample at each SNP site.

We identified putative deleterious SNPs (dSNPs) using SIFT71, which annotated 
SNPs as non-coding, synonymous and nonsynonymous, on the basis of the 
gene annotation information in Ensembl (https://plants.ensembl.org). The SIFT 
database of maize (AGPv3.22) was downloaded from SIFT 4 G (http://sift.bii.a-star.
edu.sg/sift4g/public/Zea_mays/). Our SNP coordinates were converted to AGPv3 
using CrossMap v.0.2.772, and then SIFT 4 G73 was launched to compute scores 
for all converted SNPs. Nonsynonymous SNPs were then predicted as deleterious 
or tolerated according to their computed SIFT scores. Nonsynonymous SNPs 
having SIFT score < 0.05 were predicted as deleterious; they were considered to 
be tolerated if they had a normalized probability value ≥ 0.05. For SNPs annotated 
by SIFT, the derived SNP was inferred using the Sorghum genome, on the basis 
of mapping the raw data from six sorghum varieties from the NCBI Short Read 
Archive (accession numbers DRR045087, DRR045074, DRR045075, DRR045082, 
DRR045083 and DRR045081) to the B73 reference. For our analyses, the derived 
allele was assumed to be the deleterious variant.

Recombination data. Crossover data for maize US-NAM population were 
retrieved from ref. 7. The start and end positions of crossover intervals were 
translated from Z. mays B73 AGPv2 to the AGPv4 reference, using CrossMap 
0.2.772. The number of crossover events in each non-overlapping, 5 Mb window 
was computed as in ref. 7; if a given crossover interval fell over > 1 window, the 
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proportion of the interval present in each window was added to the window 
crossover counts. Genomic windows were then classified into highly and lowly 
recombining using the crossover counts quartiles.

Examining SNP frequencies. We focused only on those SNPs for which the parent 
could be inferred to be heterozygous—that is, H = 1 in the parent. Operationally, 
this implied that at least one heterozygote was detected in S1 or that there were 
two S1 homozygotes with alternative alleles. The derived allele was inferred by 
comparing SNPs to the Sorghum genome and making the hypothesis that the 
Sorghum allele is ancestral. SNPs were annotated using SIFT and classified into 
four categories (see main text). The proportion of the derived allele was computed 
for each SNP type in each chromosome separately for every line.

A generalized linear model with mixed effects was applied to the proportion 
of derived allele in each chromosome of every line using the R function glmer 
in the lme4 package, using the binomial family of tests. Two fixed effects with 
interaction were considered in the model: the type of SNP as defined by SIFT 
and the inbreeding generation, see equation (1) below. The line was considered a 
random effect.

number of derived alleles; number of ancestral allelesð Þ
 SNP type*Generation þ 1jLineð Þ

ð1Þ

Both fixed effects and their interaction were significant (all P < 2.2.10−16) using 
comparison of the fit of equation (1) to simpler nested models (removing one effect at 
a time in equation (1)). To statistically test whether there was a significant difference 
between different types of SNPs and/or generations, we computed contrasts with the 
R package multcomp, which automatically corrects for multiple tests.

To study the effect of recombination on the proportion of the derived allele, 
the number of derived and ancestral alleles were summed for each chromosome of 
every line when considering only highly or lowly recombining genomic windows 
as previously defined. A similar linear model was then applied, with an additional 
fixed effect for recombination which interacts with the other two previous  
fixed effects:

number of derived alleles; number of ancestral allelesð Þ
 SNP type*Generation*Recombination þ 1jLineð Þ

ð2Þ

As previously, all three fixed effects and their interactions were significant when 
comparing model (2) to simpler nested models (all P < 0.007).

Heterozygosity analyses. For each individual, we used sliding windows of 100 SNPs 
to infer heterozygosity for genomic regions, focusing only on SNPs within genes 
to avoid potential misalignments due to repetitive elements. Using the set of SNPs 
inferred to be heterozygous in the parents, the proportion of the major allele P was 
calculated as follows: if a position was homozygous, then the proportion of the major 
allele was 1. If a position was heterozygous, then one of the two alleles was arbitrarily 
assigned to be the major allele and given a proportion of 0.5. The proportion P was 
then averaged across the 100 SNPs of each window for each individual separately to 
calculate P′. We assumed that the limited number of recombination events in each 
line over the time course of the experiment did not fully homogenize chromosomes, 
so that most genomic regions were either heterozygous or homozygous. Based on 
this approach, the genomic regions that are heterozygous should exhibit a P′ close 
to 0.5 while genomic regions that are homozygous should have P′ close to 1. Note, 
however, that real heterozygous loci can be misgenotyped as homozygous to make 
the P′ > 0.5. Also, the maize genome contains a high number of duplicated genes, 
and erroneous mapping of reads from duplicated genes can cause false heterozygous 
SNPs in homozygous regions10, making P′ < 1 in homozygous regions. Nevertheless, 
when coverage is high enough to genotype heterozygotes correctly, two peaks of 
P′ = 0.5 and P′ = 1.0 should be observed.

The distribution of P′ for each line across all individuals and generations 
is presented in Supplementary Fig. 11. Only MR09 and MR22 exhibited the 
expected two peaks. These two lines have the highest coverage among the set of 
lines (Supplementary Table 16), and they were therefore the only lines we studied 
hereafter. Given the distribution of P′ across genomic regions, the R package 
Mclust was used to classify each window of each individual as homozygous or 
heterozygous74 by forcing the number of components to be 2 (G = 2). Windows that 
fell between the two peaks of the P′ distribution were classified as ‘uncertain’ if the 
Mclust classification uncertainty was > 0.1 (Supplementary Figs. 12 and 13).

For each individual, the heterozygosity status of a region was inferred from 
the clustering of overlapping sliding windows. The start and end of a heterozygous 
region were defined by (1) the start of the first window that had the given 
heterozygosity state and (2) the start of the closest next ‘uncertain’ window. 
All SNPs inside the region were afterwards considered to be of the inferred 
heterozygosity type, regardless of genotyping errors. A similar procedure was 
applied to homozygous regions. Although in principle the categorical status of 
uncertain regions could be inferred by parsimony arguments, we adopted the 
conservative approach to discard these blocks of uncertainty from heterozygosity 
calculations. Heterozygosity levels could then be averaged across individuals of the 
same line and generation in sliding windows containing 100 SNPs as follows:

Heterozygosity = number of inferred heterozygous SNPs/(number of inferred 
heterozygous SNPs + number of inferred homozygous SNPs)

Average heterozygosity levels across individuals were plotted along 
chromosomes for sliding windows of 100 SNPs that fall within genes (Fig. 4). 
For statistical tests, chromosomes were considered as biologically independent 
units, owing to the small number of individuals (n = 2 or 3). The non-parametric 
Wilcoxon signed-rank test was used to compare the expected heterozygosity with 
the observed heterozygosity of the ten chromosomes averaged across individuals 
for each line and generation separately. As a conservative control, this analysis 
was repeated when considering windows with uncertain heterozygosity in the 
clustering method as homozygous, instead of discarding them. A similar approach 
with non-overlapping windows of 100 SNPs falling within genes was used to 
correlate heterozygosity with crossover number using the R lm function. The 
same non-overlapping windows were used to study the effect of the proportion of 
nonsynonymous SNPs on heterozygosity using a χ2 contingency table test with the 
R function chisq.test.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study have been deposited in NCBI 
Short Read Archive under project code SRP158803. The gff files used in this 
study, the GS flow cytometry data and the raw mapping count data are available 
on figshare.com (https://doi.org/10.6084/m9.figshare.783825.v2) or from the 
corresponding author. The SNP VCF files and dataset are available from the 
corresponding authors upon request.
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Study description This study evaluates the genome effects of inbreeding, based initially on 11 lines that were selfed for up to seven generations.  The 
lines are described below and also in Chia et al. Nature Genetics (2012) and Wills et al. Plos Genetics (2009).  With these materials, 
we studied genome size from the S1 to later generations (e.g., S6) in each of the 11 lines.  We then focused on 3 lines that lost 
genome size and 3 that apparently did not lose genome size to assess genomic components that were lost and to assess purging of 
putatively deleterious SNPs. 

Research sample The research sample utilized a set of 11 inbred lines that had been generated by J. Doebley at the University of Wisconsin.  These 
lines were chosen to represent diverse landraces of maize.  Each began with a parent that was selfed for up to 7 generations.  The 
lines were promulgated by single seed descent, and sibling seed were retained from each generation.  Plants grown from the sibling 
seed were utilized in this study. 

Sampling strategy No preliminary analyses on sample size were performed.  For the first analyses (genome size) we first identified lines that appeared 
to change genome size by utilizing materials available to us in early (S1) and late (S6) generations.  For sequencing data, we chose the 
beginning and end point of the experiment, choosing 3 replicates of the two groups - lines that lost genome size and lines that 
apparently did not - for contrasts.   

Data collection Plants were grown in a randomized plot design. Samples from available plants were outsourced to get flow cytometric estimates of 
genome size.  The sequencing data were generated by making libraries and sequencing at UC Irvine.  

Timing and spatial scale Plants were germinated and sown in Spring 2014, with plant height and mortality measured 9, 17, 30 and 45 days after sowing.  

Data exclusions We excluded sequence data from generations 2 and 4 from the analysis.  These data were generated from only two lines and hence 
did not follow the broader study design.  The data were pre-excluded because of their failure to conform to the study design.

Reproducibility For flow cytometry, we included both technical and biological replicates.  For sequence data, we used biological replicates, 
sequencing different sets of plants based on the their line and their number of generations of inbreeding.  

Randomization Plant growth was in a randomized block design. 

Blinding For phenotyping, plant growth and genome size assays, blinding was inherent in the randomized block design. The generation of 
sequencing data was blind to control vs. genome-loss groups. Sequence analysis was performed as if blinded, but members of the 
two groups were known. 

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Source tissue was leaves.  Leaf punches were sent to Plant Cytometry Services (Schijndel, the Netherlands) where relative DNA 
measurements were performed by flow cytometry using internal standards for DAPI and PI analysis. 

Instrument DAPI: Partec CyFlow Space  PI: partec cube

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Samples were analysed using Ilex crenata and maize B73 as internal standards, as stated in the manuscript. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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