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The genome-wide dynamics of purging during
selfing in maize

Kyria Roessler'®, Aline Muyle'?, Concepcion M. Diez?, Garren R. J. Gaut?, Alexandros Bousios?,
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Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant
genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless
these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were
selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferen-
tially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high
recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall,
heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected
50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size
due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes
with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes,

an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations.

reduced vigour and fertility—that is, inbreeding depres-

sion'. His work supported the hypothesis that self-fertiliza-
tion is strongly disadvantageous and provided a rationale for the
prevalence of outcrossing in nature’. He did not, however, know
the genetic basis of inbreeding depression. It is now thought to be
caused by increased homozygosity, which increases the genetic
load by uncovering recessive deleterious alleles and/or eliminat-
ing heterozygosity at loci with an overdominant advantage®. The
decrease of heterozygosity (H) is expected to occur at a regular
rate; in a selfed lineage, H is expected to be halved each genera-
tion. However, the actual rate of H decline is likely to be slowed
by various factors, such as interference due to linkage, epistatic
interactions® and selective pressure to retain heterozygosity at
overdominant and associative-overdominant loci*®. These factors
presumably contribute to the fact that inbred lines of maize and
Caenorhabditis species retain heterozygosity even after many gen-
erations of selfing’~"°.

One way to combat the increased load caused by inbreeding
is the removal, or ‘purging, of recessive deleterious alleles. When
purging is effective, there may be no inbreeding depression''.
Purging is expected to occur rapidly when recessive alleles have
lethal effects'", but should be less efficient for non-lethal reces-
sive alleles®. The existence of purging is supported by experiments,
theory and forward simulations>'*'*, but it is expected to vary across
species on the basis of features such as population history, mating
system and the distribution of fitness effects. Given this variation,
one meta-analysis has concluded that purging is an ‘inconsistent
force’ in the evolution of inbreeding plant populations®.

Recently, researchers have argued that genomic data pro-
vide more precise insights into inbreeding effects than previous

D arwin showed that the self-fertilization of plants leads to

approaches*'®. Here we extend this argument to the phenomenon
of purging, beginning with three simple predictions. The first is
that selfed offspring will exhibit a bias against the retention of puta-
tively deleterious single-nucleotide polymorphism (SNP) variants,
because these SNPs become uncovered in a homozygous state. The
second is that purging of SNP variants will be inconsistent across
genomic regions, on the basis of the amount of recombination. All
else being equal, regions of high recombination should purge del-
eterious variants more efficiently, because recombination reduces
interference among selected sites'”'. The third prediction is that
purging reduces genome size (GS). We make this prediction because
GS correlates strongly with transposable element (TE) content'*-*
and because plant TE insertions are thought to be predominantly
deleterious™. As a consequence, inbreeding should purge TE inser-
tions by favouring the retention of haplotypes with fewer TEs. This
may be especially true for TE insertions near genes, which may be
deleterious through their effects on gene expression*-*. Consistent
with these predictions, selfing species tend to have smaller genomes
than outcrossers in both plants””* and animals®.

In this study, we use an experimental evolution approach to
investigate the dynamics of purging on a genome-wide scale. The
experiment mimics an immediate transition to selfing, because it
consists of 11 outcrossed maize parental lines that were self-fer-
tilized for six or more generations. Given these selfed lineages, we
gathered flow cytometric and whole-genome-resequencing data
from a subset of the lines to address three sets of questions. First,
does GS decrease rapidly in selfed lineages? If so, are TEs the pri-
mary component of loss? Second, are putatively deleterious alleles
purged more rapidly than putatively neutral alleles, and if so, does
purging vary with recombination rate? Finally, does H decline at
expected rates over time?
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Fig. 1] Study design and estimates of genome size. a, Schematic of the study design. An outcrossing parent was selfed to make the S1 generation and
then subsequently selfed until S6 or higher. The selfed, single-seed descent lineages are represented by black arrows. Our study used sibling seed sampled
from each generation, represented by red arrows. b, Estimates of genome size, in pg per 2C content, across generations of selfing. Each of the 11 lines is
represented. Dark lines represent significant decreases of GS. Dotted lines show no detectable changes in GS over time. Sample size varied between one
and three for each line and generation (see Supplementary Table 1 for details) with a total of n=96 plants sampled. See Supplementary Table 2 for raw
values, Supplementary Tables 3 and 4 for statistics, and Supplementary Fig. 3 for a detailed plot of the raw data per line.

Results

Plants, phenotypes and genome sizes. The plant material came
from a previous experiment in which 11 heterozygous maize land-
races were self-fertilized to create homozygous lines. For each
landrace, the experiment began with a single, outcrossed parent of
unknown genotype, and selfing was continued for at least six gen-
erations by single-seed descent. For this study, we germinated seeds
from intervening generations—that is, from S1 to at least S6. Each
of our seeds was a sibling to the seed that was used to propagate
the ensuing generation (Fig. 1a). Following germination, we sowed
three plants per line per generation. The plants did not flower under
our growth conditions, but we measured growth rate and mortality
(proxies for fitness) over a 45d period. Growth rate and mortality
varied among the eleven lines (Supplementary Figs. 1 and 2).

To test for GS change, we gathered flow cytometry estimates
for 96 plants and five B73 controls. Plant choice was restricted by
mortality, but the 96 plants were chosen to represent a time series
for each of the 11 lines, with more than one plant per generation
where possible (Supplementary Table 1). We included three tech-
nical replicates per plant, for a total of 303 assays (Supplementary
Table 2). We then investigated our prediction of GS loss in two ways.
First, we contrasted GS between the S1 generation and the latest (at
least S4) generation with at least two siblings. By this measure, three
lines (MRO1, MR08 and MR18) exhibited significant decreases in
GS (Wilcoxon rank-sum test; P < 0.05), with no detectable GS shifts
for the remaining eight lines (Wilcoxon rank-sum test; P>0.5;
Supplementary Table 3). Second, we plotted flow cytometry data as
a function of time, including data from intermediate generations
(Fig. 1b and Supplementary Fig. 3). The results again indicated that
MRO1,MR08and MR18 exhibited significantdecreasesin GSand that
the other lines showed no detectable loss (Supplementary Table 4).
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For MRO1 and MR18, a model of exponential decay fit the data bet-
ter than a linear model, suggesting that GS loss occurred more rap-
idly in the early generations (Supplementary Table 4).

We made three further observations on the basis of flow cyto-
metric data. First, GS loss occurred in three of the four lines with
the largest S1 genomes (Fig. 1b). These rankings were non-random
by permutation test (P=0.006), illustrating an increased tendency
for lines with larger genomes to lose size. Second, because none
of the lines exhibited a significant GS increase, the probability of
GS loss was significantly higher than GS gain (two-sided binomial
test; P=0.04). Finally, we estimated the number of bases lost by
each line, assuming a reference value of 5.64 pgper2C (where 2C
is twice the amount of DNA in an unreplicated haploid nucleus) for
maize B73°' and a conversion rate of 1 pg=978 Mb*’. Line MR01,
for example, had an average GS estimate of 7.26 pgper2C in Sl
and a corresponding average of 6.75pgper2C in S4. The differ-
ence between generations was therefore 0.51 pg, which corresponds
to a loss of 7.0%, or 499 Mb. Similarly, lines MR08 and MR18 lost
2.8% (or 186 Mb) and 7.9% (or 508 Mb), respectively, between gen-
erations 1 and 6.

Genomic components correlate with GS variation across sam-
ples. We predicted that purging would lead to GS loss, which was
true for 3 of the 11 lines. We also predicted that loss would be domi-
nated by TEs, but TEs are not the only potential genomic compo-
nent that may contribute to rapid GS reduction. GS loss could also
be attributed to: (1) the loss of genes, (2) variation in ribosomal
DNA (rDNA) copy number®**, (3) fluctuations in the number of
chromosomal knob and CentC satellite repeats*>** or (4) the loss
of supernumerary B chromosomes, which are small** but can be
multicopy’” and vary among accessions™.
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Table 1| Estimates of the variance components based on ANOVA applied to read-count data

Group Landrace Generation Group X generation Line X generation
TEs 14.72 *** 70.65*** 2.82* 5.41* 0.65
Genes 1.46 21.49 4.85 0.017 18.51
Knobs 35.60 *** 56.21** 044 0.50 2.54
B-chromosomes 7.02 25.80* 7.27 6.76 25.53*
rDNA 2.00 40.49* 2.27 1.53 13.47

Each of the five genomic components (TEs, genes, knob repeats, B-chromosome specific repeats and rDNA) was tested individually. Sample sizes were n=2 for groups, n=6 for landraces and n=2 for

generations. *P< 0.05; 0.05>**P> 0.001 and ***P< 0.001. P-values were FDR-corrected on the basis of all tests in Table 1. Exact P-values are provided in Supplementary Table 5.

To investigate the genomic regions responsible for GS change,
we resequenced genomes of 33 plants, including data from S1 and
at least S5 for the three lines that exhibited GS loss (MR0O1, MRO08
and MR18; the GSA group) and from three control lines (MR09,
MR19 and MR22; the GS, group) (Supplementary Table 1). The
data were mapped to the maize B73 AGPv4 genome with four anno-
tated genomic components—genes, rDNA, TEs and knob-specific
repeats—and to B-chromosome repeats (see Methods). Total read
counts varied among individuals; thus comparison across indi-
viduals and generations required normalization. Similar to previ-
ous studies?"*, we normalized across libraries on the basis of the
ratio of read counts to genes, but in this case we focused on bench-
marking universal single-copy orthologues (BUSCO?*; Methods).
Our reasoning was that BUSCO genes were unlikely to contribute
to short-term GS change, because they are conserved across the
kingdom Plantae. Simulations demonstrated that this normaliza-
tion approach leads to accurate inferences of relative read counts
in genomic components (such as TEs) that may vary across genera-
tions, even with low (2X) coverage (Supplementary Fig. 4).

Given normalized read-count data, we examined the relation-
ship between GS (as measured by flow cytometry) and sequence
counts across the entire sample of 33 plants. Regressing each
component separately, there was no significant relationship to
GS for genic content (linear regression, r*=—0.027, P=0.63) or
B-chromosome content (r?=-0.015, P=0.45). There was bor-
derline significance for rDNA (r*=0.079, P=0.07), but strongly
positive relationships between GS and both knob-repeat content
(r’=0.662, P=4.5%x10"%) and TE content (r*=0.901, P<10~'5;
Supplementary Fig. 5). When all of the components were combined
into a single linear model, only TE counts remained significant (lin-
ear model, t=9.18, P=2.55%10"’), but knobs were again signifi-
cant after TE counts were removed from the model (linear model,
t=5.78, P=5.02%X107%). Hence, GS correlates most strongly with
TE content, but there is a suggestion that knobs also contribute to
GS variation.

Genomic components that contribute to temporal loss. TEs
and knobs contribute to GS variation, but which among the five
components varied over time and contributed to GS change? To
address this question, we applied analysis of variance (ANOVA)
to read-count data from each of the five genomic components
separately. The ANOVA tested for significant differences between
groups (GSA versus GS,,,), among landraces (for example, MRO1
to MR22) and between generations (S1 to S6). It also tested for
group X generation and landrace X generation interactions. We
were particularly interested in group X generation interactions,
because they identify components that differentiate the GSA versus
GS,,, groups over time.

We applied ANOVA to each of the six genomic components sep-
arately (Table 1 and Supplementary Table 5) and plotted normalized
counts for groups (Fig. 2) and landraces (Supplementary Fig. 6).
Focusing first on genes, the ANOVA had no significant terms
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(F-tests; P>0.05; all P-values corrected for false discovery rate
(FDR) for all of the tests in Table 1). The lack of significance was
reflected in plots of read counts, because there were only moder-
ate differences between groups and among landraces, with no con-
sistent trend over time (Fig. 2). For rDNA, the ANOVA detected
differences among landraces (F=5.28, P=0.004), with 41% of the
variance explained but with no other significant terms. By compar-
ing GS estimates to read counts (see Methods), we estimated the
average amount of DNA loss in Mb attributable to rDNA repeats
in each line and each generation. No line had more than 8 Mb of
estimated rDNA, and the temporal difference between S1 and S6
was less than 0.7Mb for most lines (Supplementary Table 6). A
third component was B chromosomes. Only one line (M18) had
substantial hits (number of mapping reads) to B-chromosome
repeats, representing an average of 10.7 Mb of DNA content across
S1 individuals. By S6, counts were at background levels, indicating
B-chromosome loss. Given these patterns, the ANOVA detected
significant landrace (F=5.90, P=0.021) and landrace X generation
terms (F=4.85, P <0.022), but no group effects.

We next turned to the two genomic components that cor-
related strongly with GS across the entire dataset: TE counts and
knob repeats. TE counts exhibited significant terms across groups
(F=53.94, P=2.38%x107; 14% variance explained), landraces
(F=64.71, P=2.91x10""; 70% variance explained), generations
(F=10.35, P=0.018; 2.8% variance explained) and group X genera-
tion interactions (F=19.84, P=0.0013; 5.4% variance explained)
(Table 1). The plots of TE counts were consistent with these statisti-
cal results, because they show that: (1) the GSA group had higher
overall TE counts than the GS,,, group; (2) landraces within GSA
exhibited reductions in TE counts from generation S1 to S6, but
(3) landraces within GS_,, did not (Fig. 2). By equating GS to read
counts, we estimated that the Mb loss due to TEs was 481 Mb for
MROI, 199 Mb for MR08 and 465 Mb for MR18, representing more
than 90% of the estimated shift in GS over time for each line. By
contrast, the GS,,, lines exhibited temporal TE changes of about
10 Mb each (Supplementary Table 6).

Finally, knob counts differed between groups (F=158.99,
P=2.91X107"% 56% variance explained) and among landraces
(F=62.75, P=2.91x 107" 35% variance explained), with the GSA
group having generally higher counts. However, knob counts did
not exhibit significant interaction terms or variation between gen-
erations, which was surprising given the correlation between knob
counts and GS across all samples (Supplementary Fig. 5). We there-
fore investigated the possibility that the lack of significance reflected
reference bias by repeating analyses with the W22 reference®.
The results largely corroborated the B73 results but did produce
a significant group X generation interaction for knobs (F=10.88,
P=0.0128) (Supplementary Table 7). Based on the W22 reference,
the average Mb loss over generations due to knobs was 136 Mb in
MROI, 59.4Mb in MR08 and 77.0 in MR189, but TEs explained
more temporal variation in every case (341 Mb, 130 Mb and 413 Mb,
respectively; Supplementary Table 8).
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Fig. 2 | Various components of the genome compared between GSA
and GS_,, groups and between S1and S6. Sample sizes are shown in
Supplementary Table 1, P-values are provided in Supplementary Table
5 and Supplementary Fig. 6 reports this information for each of the
lines separately. The box shows the median, lower and upper quartiles.
The whiskers extend to the largest or lowest value no further than
1.5 xinterquartile range from the hinge. Outliers are plotted as dots
above the whiskers.

TE locations, types and mechanism. We predicted that GS loss
could reflect purging of TEs near genes due to their deleterious
effects on gene expression”*”. To address this prediction, we sepa-
rated TEs from B73 into three bins: non-genic TEs, which mapped
to TEs more than 5kb away from genes; near-genic TEs that were
within 5kb of a gene; and the subset of near-genic genes that over-
lapped with annotated genes—that is, they fell within introns or
UTRs. Both non-genic and overlapping TEs exhibited significant
group X generation interactions (F=18.46 and 13.97, P<0.001; all
P-values FDR-corrected; Supplementary Table 9), explaining 9.1%
and 12.4% of the total variance for non-genic and overlapping TEs,
respectively. Despite our prediction, none of the ANOVA terms were
significant for TEs near (within 5kb) genes, but three components
were borderline significant (F=3.34, P <0.10; Supplementary Table
10), including both the generation and landrace X generation terms.
Of note, the latter reflects the fact that five of the six lines lost near-
genic TEs through the course of the experiment (Supplementary
Fig. 6), suggesting that the loss of TEs near genes was a general phe-
nomenon across all lines. We repeated these analyses for the W22
reference, finding that all three TE locations exhibited group X gen-
eration effects (Supplementary Table 10 and Supplementary Fig. 7).
Overall, then, these data suggest that TEs were lost throughout the
genome, but it is unclear whether near-genic TEs were lost across all
lines or only from the GSA group.

We also investigated potential biases by TE order, focusing on
six TE types in the B73 reference: helitrons, long terminal repeats
(LTR) retrotransposons, solo LTRs, terminal inverted repeats, short
interspersed nuclear elements and long interspersed nuclear ele-
ments. All but solo LTRs exhibited significant variation between
the GSA and GS,,, groups (F>39.10, P<1.2X 107°). Four of the six
also exhibited a significant group X generation interaction, which
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explained > 5% of the variance for LTRs, solo LTRs and helitrons
(Supplementary Fig. 8 and Supplementary Table 11). Thus, GS loss
encompassed an array of TE types.

Finally, we addressed a question related to a potential mecha-
nism of TE loss. In some plant species, TE loss is driven by unequal
recombination between LTR elements’. These recombination
events are expected to increase the ratio of solo LTR elements to
intact LTR elements. If this mechanism operated during our experi-
ment, the ratio of reads mapping to LTRs versus the internal regions
of elements should increase over time, especially in the GSA lines.
To test this idea, we independently annotated 22,530 full-length
LTR elements of the Sirevirus genus, based on the B73 reference. We
focused on Sirevirus for three reasons: (1) they represent a substan-
tial proportion (around 20%) of the maize genome®, (2) they can
be accurately annotated on the basis of numerous internal features,
including the boundary between LTRs and internal regions®, and
(3) they provide a set of LTR elements that were annotated inde-
pendently of the existing B73 v4 genome annotation. We found that
both solo and intact Sirevirus exhibited losses over time in the GSA
group (Supplementary Table 12 and Supplementary Fig. 9), consis-
tent with our LTR analyses based on the v4 annotations. However,
the ratio of mapping to LTRs versus internal regions did not
exhibit an obviously increasing trend through time or a significant
group X generation effect (F=0.27, P=0.73), as would be predicted
if TE loss were driven by numerous unequal recombination events.

The fate of deleterious variants. We now turn to a second pre-
diction about purging: over time, there should be a bias against
the retention of deleterious SNP variants. We tested this predic-
tion by first calling SNPs for each of the six lines from the GSA
and GS,,, groups and then by focusing only on biallelic SNPs that
were inferred to be heterozygous (H=1) in the resynthesized parent
(see Methods). For each of these heterozygous sites, we predicted
derived deleterious variants using SIFT** and noted the fate of vari-
ants in four functional classes (non-coding, synonymous, tolerated
nonsynonymous and putatively deleterious nonsynonymous vari-
ants). In total, we examined 1,914,845 SNPs across the six lines
(Supplementary Table 13).

As a signal of purging, we expected deleterious, derived SNP
variants to exhibit biased rates of loss over time. To characterize
this potential bias, we identified derived alleles by comparison to
a Sorghum outgroup and estimated the proportion of derived allele
(P;) across sites. We expected P, to be 50% in the parent and to
remain 50% in the absence of perturbing factors like selection. To
test this prediction, we combined results across the six lines and
plotted P, for each functional class in S1 and S6 (Fig. 3a). In S1, for
example, average P, estimates for non-coding and synonymous sites
were below 0.5, potentially reflecting biases in ancestral inference
and/or selection against a subset of these putatively neutral derived
alleles between parents and S1. Consistent with the latter interpreta-
tion, P, declined slightly from S1 to S6 for both site classes (linear
model contrast Z=14.92, P<0.001).

These effects were greatly amplified for nonsynonymous muta-
tions (Fig. 3a). For example, putatively deleterious, derived nonsyn-
onymous SNPs had a P, of 0.384 in S1, representing a significant
decrease relative to that of synonymous and non-coding variants
(linear model contrast Z=44.89, P < 0.001; Supplementary Table 14).
Between S1 and S6, P, fell even further, from an average of 0.384
to 0.334 (linear model contrast Z=20.83, P<0.001). Overall, puta-
tively deleterious SNPs demonstrated accelerated rates of loss over
time relative to other variant classes.

Recombination is expected to mediate the effects of selec-
tion, because it uncouples interference between linked variants.
Therefore, deleterious variants should be purged more rapidly in
regions of high recombination. To explore this prediction, we con-
trasted genomic regions that encompass the highest and lowest
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Fig. 3 | Proportion of derived allele across SNP types, generations and recombination categories. a, The proportion of the derived allele for the four
mutational classes predicted by SIFT—that is, non-coding, synonymous, nonsynonymous tolerated and nonsynonymous deleterious. The graph reports the
proportion for generations STand S6 across six lines (MRO1, MRO8, MR0O9, MR18, MR19 and MR22). P, was averaged across individuals for each of the ten
chromosomes and six lines separately (n= 60 biologically independent chromosomes for each bar of the plot, n=480 total samples across generations
and categories). b, As in a, except the genome was separated into high- and low-recombination quartiles, illustrating that purging occurs more rapidly in
high-recombination regions. As in a, n=60 for each bar of the plot. Box plot as described in Fig. 2.

quartiles of recombination rates, as defined by crossover events (r)
(ref. 7). The results showed the expected pattern: in S6, P, was lower
in high- compared with low-recombining regions for both classes
of nonsynonymous variants (tolerated: Z=—3.37, P=0.006; delete-
rious: Z=—-4.95, P=5.98x107¢ based on linear model contrasts;
Supplementary Table 15). Recombination did not have an effect on
P, for nonsynonymous SNPs in S1, consistent with the fact that time
is required for recombination to break down linkage between loci.

Declining heterozygosity. Finally, we measured a phenomenon of
empirical interest, which is the rate of loss of heterozygosity over
generations. This is a difficult task, given our low coverage data, but
we took advantage of the fact that SNPs inferred to be heterozygous
in the parental generation can be in only one of two states within
S1 and S6: heterozygous or homozygous. Moreover, these two
states are expected to fall into blocks, with the transition between
blocks defined by recombination events. To identify these blocks,
we examined windows of 100 SNPs in size, focusing on genic SNPs,
and used a Bayesian clustering method to assign windows as either
heterozygous or homozygous for each individual (see Methods).
The proportion of heterozygous blocks across the genome (H,) can
be compared directly to the null expectation that H=0.50 in S1 and
0.015 in S6.

We applied this approach successfully to the two lines with high-
est coverage (MR09 and MR22) (Fig. 4) and offer five observa-
tions about heterozygosity. First, H, exceeded 60% in both MR09
(65.7%) and MR22 (63.7%) for generation S1, representing a sig-
nificant deviation from the null expectation (one-sided Wilcoxon
test, P=0.0019 and P=0.019, respectively). Second, H, significantly
exceeded the expected value of 1.5% in S6, at 14.2% for MR22 and
4.8% for MR09 (one-sided Wilcoxon test, P=0.00098 and P=0.019,
respectively). Third, for reasons that are not immediately apparent,
the difference between the two lines in S6 was also significant (one-
sided Wilcoxon test, P=0.00036). Fourth, heterozygous blocks had
a significantly higher proportion of nonsynonymous SNPs (7.19%)
compared to homozygous blocks (6.14%, one-sided y*=27.72,
P=1.4%107); the same was true for putatively deleterious SNPs
(one-sided y?=4.2969, df =1, P=0.038). Finally, heterozygosity was
also related to recombination, because heterozygosity and r were

984

modestly but significantly correlated across windows in S6 (linear
regression adjusted r*=0.016; P=1.5X107).

Discussion

In this study, we took an experimental approach to assess the
genomic effects of selfing, with a focus on the dynamics of purging.
Previous studies have investigated the effects of selfing by, for exam-
ple, contrasting selfing and outcrossing plants in flowering phenol-
ogy, population structure, genomic diversity”’ and evolutionary
fate®. Yet, most of these effects probably accrue after, not during,
the transition to selfing. A smaller number of studies have found
evidence of purging by comparing inbreeding depression between
naturally inbreeding and naturally outcrossing species™'*°. By con-
trast, the immediate genomic effects of purging have gone largely
undocumented.

Rapid genome flux. Our experiment has documented rapid GS loss
in 3 of 11 selfed lineages (Fig. 1). These observations add to a grow-
ing consensus that GS can change rapidly in plant species. Other
examples include GS changes in flax over a single generation™, GS
shifts on experimental time-scales in Festuca' and GS reductions in
maize after six generations of selection for early flowering*. To our
knowledge, however, the magnitude of GS loss that we observed in
this study is unprecedented. On the basis of estimates using flow
cytometry, the three lines lost about 6% of their genome or 398 Mb,
on average, from S1 to S6. To put these changes in context, the GS
of two fully sequenced maize inbred lines (Mo17 and B73) differ by
only ~25Mb*.

Following precedence , we used read counts to infer the
size of genomic components, focusing on genes, TEs, knob repeats,
rDNA and B chromosomes. Among these five components, it is
clear that TEs are the major source of loss, which is not surpris-
ing given that DNA derived from TEs constitutes more than 85%
of the maize genome™, and that previous studies have shown that
TEs contribute to plant GS variation®*-*»***'. GS shifts are not always
caused by TE content, however. In flax and A. thaliana, GS shifts are
fuelled primarily by variation in rDNA repeats**, and GS differ-
ences between selfing and outcrossing Caenorhabditis species are
roughly equally apportioned among genes and TEs*>*.

20-22,50,51
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Fig. 4 | Inference of heterozygous and homozygous genomic regions, based on SNPs inferred to be heterozygous in the parent. Each of the ten
chromosomes for two lines (MR22 and MR19). Heterozygosity was averaged across individuals for each line and generation separately. For each
chromosome, the x axis represents length along the chromosome and the y axis is the proportion of heterozygous sites within 100-SNP sliding windows.
Red and blue lines represent the S1and S6 generations. Both lines have more regions of heterozygosity than expected (see text for statistics). Sample sizes
are shown in Supplementary Table 1 (n=2 or 3 plants depending on the line and generation).

Given that TEs are the major source of GS loss, we examined
loss according to both TE type and location. Within the GSA group,
loss occurred for all six TE orders we tested (Supplementary Fig. 8
and Supplementary Table 6). This finding mirrors previous stud-
ies that have compared TE content among Zea genomes”>”'. For
example, Tenaillon et al.”* estimated that 70% of the GS difference
between two species (Zea luxurians and maize) was due to TE losses
and gains, but the relative abundance of TE families was conserved
between species”. We predicted that GS loss should be especially
evident for TEs that are near genes, because they may have deleteri-
ous effects on gene expression”**. The results varied depending on
the reference. With B73, the landrace X generation effect for near-
genic TEs was borderline significant (P=0.058) because five of the
six resequenced lines lost these TEs over time, irrespective of their
inclusion in the GSA or GS_, group (Supplementary Fig. 5). This
result implies that the loss of near-genic TEs may be a general prop-
erty of selfing. However, the W22 results do not fully support this
claim, because they suggest that the pattern of loss in near-genic
TEs varied between groups. Given these results, we cannot yet con-
clude that the loss of near-genic TEs is a general outcome of self-
ing. As the resolution of genome assemblies improves, we advocate
further investigation of this question while also recognizing that TE
families vary in both their tendency to insert near genes and their
epigenetic profiles.

In this context, it is important to emphasize the limitations of
the read-count approach for estimating genomic components. The
approach is better suited for broad-scale inferences about genome
content than for inferences about the fate of specific genes, TE
insertions or chromosomal regions. Here our inferences about loca-
tion are based on the reference genome and may not accurately
reflect the genome of our sample. We investigated reference biases
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by applying our read-count approach to two references (B73 and
W22). With either reference, there was little evidence that genes,
rDNA and B chromosomes contributed substantively to GS loss,
but the magnitude of the TE and knob effects did vary by reference
sequence. With B73, TEs explained more than 90% of loss from
S1 to S6 and as much as 481 Mb. With W22, the estimated TE loss
was more modest, explaining around 75% of GS shift on average,
with the remainder of loss assigned to knob repeats. The difference
in results probably reflects annotation and assembly differences
between references, because we disregarded counts from regions
where annotated features overlapped. In B73, TEs often overlapped
with putative knob regions, but overlaps occurred less frequently in
W22. Our results therefore contain a cautionary tale about annota-
tion biases, but we also suspect that the implication of knobs as a
component of GS loss is reasonable, given our own (Supplementary
Fig. 5) and previous evidence that knobs contribute to maize GS
variation’>"". Notably, the total Mb loss explained by TEs and knobs
was consistent, regardless of the reference used.

Altogether, our results support the hypothesis that GS loss is a
potential outcome of selfing. This hypothesis is based on the obser-
vations that genomes are smaller in selfers compared to their out-
crossing sister taxa in Caenorhabditis*** and across plant taxa®,
where it is likely that other factors, such as the reduced spread of
transposable elements, also contribute to differences. Assuming that
GS loss is common during selfing, one must ask why 8 of our 11
lines exhibited no detectable loss. The lack of loss is probably not
a question of statistical power, because five lines were estimated to
have slightly larger GS, on average, in S6 relative to S1 (Fig. 1). Here
our lack of the parental genome could be misleading, because our
experimental design could not monitor loss from the parent to S1.
The greatest loss is expected to occur within this first generation,
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given that two of three GSA lines lost GS exponentially over time.
We can nevertheless provide some predictive insights by contrasting
data between GSA and GS,,, groups. Neither group exhibited par-
ticularly low growth rates or high mortality (Supplementary Figs. 1
and 2), so GS loss did not obviously relate to these fitness proxies.
However, the three lines with GS loss did have larger S1 genomes
(Fig. 1b), with significantly more TEs and knobs than the GS_,
group (Fig. 2 and Table 1). Hence, to a first approximation, genomes
with high TE and knob content are more prone to loss.

Heterozygosity, recombination and the fate of deleterious SNPs.
Several previous studies have shown that H declines at lower rates
than expected under selfing®’. In S1 eucalyptus trees, for example,
average H was 65.5%, compared with the expectation of 50% (ref. *).
We also found elevated heterozygosity in our lines. In S1, H, was
~65% for MR09 and MR22 (Fig. 4). By S6, both lines retained sig-
nificantly more heterozygosity than the expected value of 1.5%.
Observed values of H,, in S6 imply that, assuming constancy across
generations, the rate of heterozygosity retention was 0.60 per gener-
ation (= els®1/9) for MR09 and 0.72 per generation (= e(°s©142/0)
for MR22.

What can account for this retention of heterozygosity? One
explanation is genotyping error. Such errors are not only possible
but are likely to be prevalent at individual sites with our low cover-
age data. For this reason, we focused on a window-based method
that assigned blocks of 100 SNP sites into one of two states—
heterozygous or homozygous. This approach should mitigate the
effect of miscalls at individual sites, and we also employed the method
using conservative assumptions; for example, blocks with uncer-
tain assignments were not counted as heterozygous (see Methods).
Nevertheless, there is a region on chromosome 8 of MR22 that has
higher heterozygosity in S6 than S1 (Fig. 4); such a pattern could
be real, given our sampling strategy (Fig. 1a), or may hint to some
underlying error in assignments. Towards that end, we also exam-
ined obvious potential sources of error by, for example, testing
for correlations between the location of heterozygous windows in
MRO09 and MR22. No correlation was found (r>=0.03846, linear
regression, P=0.5871), suggesting that underlying genomic features
(for example, sets of paralogs that can cause SNP miscalls'’) did not
consistently inflate heterozygosity across lines. Altogether, we believe
our heterozygosity estimates to be reasonable and probably conser-
vative; together with previous work®’, they suggest that heterozygos-
ity generally declines more slowly than expected. Nevertheless, more
studies are needed to characterize this important dynamic, perhaps
by incorporating more intervening generations.

Biological explanations for slower-than-expected rates of hetero-
zygosity decline usually invoke either overdominance or associative
overdominance, with the latter thought to be the prevailing force
maintaining heterozygosity in selfed lineages*>****. If higher-than-
expected levels of heterozygosity are caused in part by linkage to
deleterious variants, then heterozygosity should be higher in regions
of low recombination, where selection against deleterious variants
is inefficient because loci are coupled. Consistent with this predic-
tion, heterozygosity is elevated in regions of low recombination in
the maize nested association mapping population®*. Here, over the
short-term timescale of our experiment, we find that heterozygosity
is lower in regions of low recombination, probably reflecting linked
selection™ against strongly deleterious variants.

Another feature of recombination is that it has the capacity
to uncouple linked variants, making selection more efficacious.
Putatively deleterious variants are purged from our lines more
rapidly than presumably neutral variants (Fig. 3a), and they are
purged more rapidly from high versus low recombination regions
in S6 (Fig. 3b). We infer that recombination separates deleterious
variants from linked variation, permitting the independent loss of
the deleterious variant and allowing neutral diversity to remain®. A
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similar relationship between heterozygosity and recombination was
discovered recently within hybrid genomes of swordtail fish*. In
these hybrids, high recombination regions retained heterozygosity
because recombination breaks up incompatibilities that otherwise
contribute to hybrid load.

Outstanding questions. At least three questions remain. First, what
is the mechanism of TE (and knob) removal? One potential expla-
nation is ectopic and/or unequal recombination, which can leave
a signature of an increased ratio of solo to intact LTR elements*,
but we found no evidence for this effect. It is possible, of course,
that unequal recombination caused a small number of large dele-
tion events, with only minor effects on the ratio of solo:intact ele-
ments. We nonetheless favour a non-exclusive mechanism for GS
loss in this experiment, which is that selection tends to act against
the larger haplotype when there is a size difference in a heterozy-
gote. Under this scenario, selfed plants with the best collection of
small(er) haplotypes are favoured by the selfing process, leading
to GS reductions. If true, we expect the resolution of selfing to be
a contest between haplotypes, with recombination occasionally
reducing interference and combining linked structural variants
from different haplotypes onto a single chromosome. Under this
model, we can make two predictions: (1) parental plants of higher
heterozygosity and larger differences in size between haplotypes
are more likely to lose GS, and (2) regions of higher recombination
will tend to lose more Mb, due to more efficient selection against
large(r) haplotypes. These predictions remain to be tested, under-
scoring how little we know about selfing, purging and its effects on
genomic variants.

Second, what is the proximal cause of GS loss? Our results sug-
gest that the primary effect of selfing is to uncover deleterious reces-
sive mutations, leading to selection against homozygous recessives.
But is there a phenotype that drives this selection? GS is known to
correlate with several traits, including reproductive rates, growth
rates, flowering time, cell sizes and other factors**>**-*2, Selection
on one or several of these diverse characteristics may have occurred
during the formation of the inbred lines. However, we cannot find
any pattern among our lines that suggest selection was more pro-
nounced on the GSA versus GS_,, groups. For example, each of the
members of GSA group (MR01, MR08 and MR18) originated from
landraces in the tropical lowlands and were bred in lowland tropical
nurseries, but the same is true of MR05, MR09, MR11, M22 and
MR23, none of which exhibited obvious GS loss.

Finally, what bearing do these results have on broader questions
about plant evolution? First, they inform on processes of genome
evolution and show that selection can have several effects even
over the very-short term. This includes purging deleterious alleles
in higher recombination regions more efficaciously and removing
linked variation in regions of low recombination. The data also hint
that interference between deleterious variants contributes to the
retention of heterozygosity, because regions of high heterozygosity
are enriched for deleterious variants in S6. Second, this work relates
to the finding that indirect selection for recombination modifiers
is favoured under selfing®*‘. Our results demonstrate that high
recombination rates are advantageous for quickly purging genetic
load, which in theory could drive the observed trend toward higher
chiasmata frequencies in selfing plants compared to outcrossers.

Methods

Plant materials and phenotypic analyses. Our experiment was based on 11 maize
landraces (Supplementary Table 1) that were inbred by J. Doebley (University of
Wisconsin) and maintained through single-seed descent for several generations™.
The parents represented outcrossed landraces of unknown genotype. For each

line and generation, one seed was grown and selfed, and the remaining sibling
seeds were stored. We grew the sibling seeds in the UC Irvine greenhouses after
germination on Petri dishes. Ten seeds per cultivar were sown in individual pots on
22 July 2014 and grown in a growth chamber under controlled conditions of 12h
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light at 26°C, 12h dark at 20°C, a relative humidity of 70% and 500-600 cal cm=
of radiation per d. The third and fourth leaves of each plant were harvested when
12-13 cm long and then frozen in liquid nitrogen and stored at —80°C. The 11
cultivars, with a subset of 6 plants per cultivar per generation, were grown in 4
completely randomized blocks, with B73 as the control across blocks. Measures
for height were taken 9, 17, 30 and 45 d after sowing; mortality was also noted
throughout the duration. Mortality and growth rates were compared among lines.
We estimated the exponential growth rate for each individual and used a one-way
ANOVA to test whether the estimated growth rates differed between lines. A
logistic regression model was applied to mortality, and a likelihood-ratio test was
used to compare mortality between lines. We did not measure fitness via fecundity,
because none of the lines produced seed under our experimental conditions.

Flow cytometric data and analyses. To estimate GS, leaf samples were sent

to Plant Cytometry Services. Following a previous study”, flow cytometry

used 4',6-diamindino-2-phenylindole (DAPI) staining. Ilex crenata Fastigiata
(2C=2.2pg) and maize B73 (2C=5.64pg)’' were used as internal standards. Three
technical replicates were performed for each plant (Supplementary Table 2).

To assess whether GS changed as a consequence of selfing, we performed linear
regressions, exponential decay analyses and Wilcoxon rank-sum tests in R,
combining biological and technical replicates for rank-sum tests. Flow cytometeric
data were converted to picograms assuming that the maize B73 reference had

a value of 5.64 pgper 2C (ref. *'); picograms were translated to Mb assuming

1 pg=978 Mb*. To infer a significant trend toward genome loss, we estimated that
the probability of loss was 3 lines out of 11 trials (P=0.273) and calculated the
probability of observing zero GS increases over 11 trials with a two-sided binomial.

Whole-genome sequencing and genomic composition. We selected 6 landraces
and 33 individuals for whole-genome sequencing (Supplementary Table 1),
focusing on the S1 and S6 generations. DNA was extracted from frozen leaf

tissue using the QTAGEN DNeasy Plant Mini kit. DNA was multiplexed into
libraries with Illumina TruSeq PCR Free kit. The libraries were sequenced on

the HiSeq2500 (100 bp read length, paired-end, two lanes) in the UCI High-
Throughput Genomics Facility in 2015 (landraces MR01, MR08, MR18 and MR19)
and on the HiSeq3000 (150 bp read length, paired-end, one lane) in the UC Davis
DNA Technologies Core in 2016 (landraces MR09 and MR22). Individuals were
sequenced to an average coverage of ~2.5X per individual (Supplementary

Table 16). Note, however, that we had > 6Xx coverage for each generation for each of
the lines investigated given the inclusion of siblings.

Sequencing reads were processed by Trimmomatic (v.0.35) to remove
barcodes and low quality reads (< 20), with a minimum read length of 36.
Processed reads were mapped simultaneously onto maize genome AGP version
4.37 (AGPv4)” and B-specific chromosomal repeats using BWA-MEM (v.0.7.12)°°.
To prevent double counts of a feature, only one of the paired reads was mapped
and only the primary alignment was kept for each multi-mapping read, based on
Samtools v.1.3%.

We counted mapped reads for five annotated genomic components: genes,
B-chromosome specific repeats, chromosomal knobs, rDNA and TEs. The
annotation features for protein coding genes and for TEs were obtained from the
Gramene database on 1 May 2017 for B73 AGPv4 (Supplementary Table 17). To
annotate regions containing knob (plus CentC) regions and rDNA (plus transfer
DNA) sequences, a series of fasta files (Supplementary Table 17) representing
both features were mapped to the v4 genome using blat (v.36). The regions of B73
that mapped to either knobs or rDNA were then added to gff files (blattogff v.3)
for read-count analyses. To count reads, all features were merged (bedtools merge
v.2.25.0) to avoid double counting®. Bedtools coverage was used to count reads
that overlapped at least 90% with each feature. An identical approach was used for
W22 annotations (Supplementary Table 17).

We used BUSCO genes to normalize between libraries, on the expectation that
these highly conserved genes represent an invariant component of the genome. To
identify a conserved set of BUSCO genes, we ran BUSCO (v.3)* on AGPv4. From
the resulting set of 1,309 BUSCO genes, we eliminated any that appeared to be
multicopy or that overlapped with TE annotations in B73 AGPv4, leaving a final
set of 761 genes. A similar procedure in W22 yielded 918 BUSCO genes. In both
references, any gene, knob or rDNA annotation that overlapped with a TE was not
considered further. Within any sequencing run, normalized counts for a genomic
feature were calculated as the observed number of sequence counts to that feature
divided by the total number of counts that mapped to BUSCO genes. To verify
that our use of BUSCO genes was accurate, we simulated datasets with BUSCO
normalizations based on Chromosome 10 (see below).

Further analyses considered different families and types of TEs. These analyses
were performed only in B73. For these, we first identified TEs from the AGPv4 gff
file and employed their TE family designations for additional analyses. To examine
the ratio of solo LTRs to complete LTRs, we de novo annotated Sirevirus
sequences on the basis of the MASiVE algorithm®. The application of MASiVE
produced 22,530 full-length elements with defined boundaries between LTRs and
internal regions.

To assess relationships between GS and genomic components, we used both
linear regression and ANOVA, using the Im and aov modules in R (v.3.34).
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ANOVA P-values were FDR-corrected. To estimate the Mb of the genome
explained by various component, we:(1) translated the GS of each plant from
pgper 2C to Mb using the conversion rate of 1 pg=978 Mb™, (2) equated Mb

for each individual to the total number of reads mapped to the five genomic
components, and (3) calculated the number of Mb explained per sequencing

read. Finally, note that in addition to mapping to our W22 and B73 databases, for
completeness we also mapped to a database consisting only of knob repeats, which
avoided the complication of reference TE annotations. These analyses also detected
a moderate group X generation effect (F-test; P=0.015) (Supplementary Table 18),
suggesting again that knob repeats contribute to GS shifts.

Testing BUSCO normalization via simulation. To compare counts among
individuals, it is important to assess the accuracy of our normalization approach.
We tested BUSCO normalization via simulations of TE loss and gain. For

the simulations, we used the smallest chromosome—chromosome 10—for
computational efficiency. We randomly removed either 10% or 20% of TEs from
the chromosome, duplicated 10% of TEs, or did not change the chromosome.
Each treatment was repeated five times with different random TEs removed or
gained. The short-read simulator wgsim (https://github.com/lh3/wgsim) was
used to simulate datasets with 2x and 10X coverage, mimicking the potential for
different coverages among our libraries. For each simulation, reads were mapped
to chromosome 10, counted across annotation features (non-BUSCO genes, TEs,
knobs and rDNA) and then normalized by dividing by the total counts for BUSCO
genes on chromosome 10. We simulated each set of parameters 1,000 times. On
the basis of these simulations, we were able to recover the expected decrease in
genomic components (Supplementary Fig. 1), but it did not recapitulate genome
gain in TEs as accurately. It is likely that the inability to estimate TE gains is a
feature of our simulations, because we duplicated TEs as exact, tandem copies

of chromosomal TEs, which would lead to systematic undercounting of the
duplicated TEs. Nevertheless, our simulations indicate that our normalization
approach is sufficient to compare TE loss among datasets with different coverages
and different degrees of TE loss.

Identification of SNPs and deleterious variants. To identify SNPs, paired-
end sequencing reads were evaluated for quality using FastQC v.0.11.2, and
were further processed to remove adapter contamination and low quality bases
using Trimmomatic v.0.35%, with the parameters LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:20 and MINLEN:50. Trimmed reads were then mapped
to the B73 reference genome (AGPv4.37%; ftp://ftp.ensemblgenomes.org/pub/
plants/release-37/fasta/zea_mays) using the MEM algorithm implemented in
Burrows-Wheeler Aligner (BWA) v.0.7.12° with the parameters “-M -k 9 -T
25”. Mapping alignments from one individual were merged using Picard tools
v.1.96 (http://broadinstitute.github.io/picard/) MergeSamFiles, and potential
PCR duplicates were filtered from alignments using SAMtools v.1.1° rmdup. To
minimize the number of mismatched bases, local realignment of reads around
indels were performed using the Genome Analysis Toolkit (GATK) v.3.77
RealignerTargetCreator and IndelRealigner. Only uniquely mapped reads were
kept for downstream SNP calling.

To detect SNPs, we used HaplotypeCaller, CombineGVCFs and
GenotypeGVCFs from GATK v.3.7" separately on each of the six resequenced
lines. Variant sites having a minimum phred-scaled confidence threshold 30 and
a minimum base quality 20 were considered as SNP candidates. For the SNP set
in all samples: (1) only biallelic SNPs were retained, (2) genotypes with genotype
quality score <5 were assigned as missing, and (3) the filtration “QUAL < 30.0,
QD <2.0, MQ<10.0, DP < 3.0, ReadPosRankSum < —8.0, FS > 30.0” were set to
further reduce false positives. A Python program parseVCE.py (https://github.com/
simonhmartin/genomics_general) was adopted to extract the genotypes of every
sample at each SNP site.

We identified putative deleterious SNPs (dSNPs) using SIFT”', which annotated
SNPs as non-coding, synonymous and nonsynonymous, on the basis of the
gene annotation information in Ensembl (https://plants.ensembl.org). The SIFT
database of maize (AGPv3.22) was downloaded from SIFT 4 G (http://sift.bii.a-star.
edu.sg/siftdg/public/Zea_mays/). Our SNP coordinates were converted to AGPv3
using CrossMap v.0.2.77, and then SIFT 4 G™ was launched to compute scores
for all converted SNPs. Nonsynonymous SNPs were then predicted as deleterious
or tolerated according to their computed SIFT scores. Nonsynonymous SNPs
having SIFT score < 0.05 were predicted as deleterious; they were considered to
be tolerated if they had a normalized probability value > 0.05. For SNPs annotated
by SIFT, the derived SNP was inferred using the Sorghum genome, on the basis
of mapping the raw data from six sorghum varieties from the NCBI Short Read
Archive (accession numbers DRR045087, DRR045074, DRR045075, DRR045082,
DRR045083 and DRR045081) to the B73 reference. For our analyses, the derived
allele was assumed to be the deleterious variant.

Recombination data. Crossover data for maize US-NAM population were
retrieved from ref. ’. The start and end positions of crossover intervals were
translated from Z. mays B73 AGPv2 to the AGPv4 reference, using CrossMap
0.2.7”%. The number of crossover events in each non-overlapping, 5 Mb window
was computed as in ref. ’; if a given crossover interval fell over > 1 window, the
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proportion of the interval present in each window was added to the window
crossover counts. Genomic windows were then classified into highly and lowly
recombining using the crossover counts quartiles.

Examining SNP frequencies. We focused only on those SNPs for which the parent
could be inferred to be heterozygous—that is, H=1 in the parent. Operationally,
this implied that at least one heterozygote was detected in S1 or that there were
two S1 homozygotes with alternative alleles. The derived allele was inferred by
comparing SNPs to the Sorghum genome and making the hypothesis that the
Sorghum allele is ancestral. SNPs were annotated using SIFT and classified into
four categories (see main text). The proportion of the derived allele was computed
for each SNP type in each chromosome separately for every line.

A generalized linear model with mixed effects was applied to the proportion
of derived allele in each chromosome of every line using the R function glmer
in the Ime4 package, using the binomial family of tests. Two fixed effects with
interaction were considered in the model: the type of SNP as defined by SIFT
and the inbreeding generation, see equation (1) below. The line was considered a
random effect.

(number of derived alleles, number of ancestral alleles)
~ SNP type*Generation + (1|Line)

1)
Both fixed effects and their interaction were significant (all P<2.2.107'¢) using
comparison of the fit of equation (1) to simpler nested models (removing one effect at
a time in equation (1)). To statistically test whether there was a significant difference
between different types of SNPs and/or generations, we computed contrasts with the
R package multcomp, which automatically corrects for multiple tests.

To study the effect of recombination on the proportion of the derived allele,
the number of derived and ancestral alleles were summed for each chromosome of
every line when considering only highly or lowly recombining genomic windows
as previously defined. A similar linear model was then applied, with an additional
fixed effect for recombination which interacts with the other two previous
fixed effects:

(number of derived alleles, number of ancestral alleles)
~ SNP type*Generation*Recombination + (1|Line)

)
As previously, all three fixed effects and their interactions were significant when
comparing model (2) to simpler nested models (all P <0.007).

Heterozygosity analyses. For each individual, we used sliding windows of 100 SNPs
to infer heterozygosity for genomic regions, focusing only on SNPs within genes
to avoid potential misalignments due to repetitive elements. Using the set of SNPs
inferred to be heterozygous in the parents, the proportion of the major allele P was
calculated as follows: if a position was homozygous, then the proportion of the major
allele was 1. If a position was heterozygous, then one of the two alleles was arbitrarily
assigned to be the major allele and given a proportion of 0.5. The proportion P was
then averaged across the 100 SNPs of each window for each individual separately to
calculate P’. We assumed that the limited number of recombination events in each
line over the time course of the experiment did not fully homogenize chromosomes,
so that most genomic regions were either heterozygous or homozygous. Based on
this approach, the genomic regions that are heterozygous should exhibit a P’ close
to 0.5 while genomic regions that are homozygous should have P’ close to 1. Note,
however, that real heterozygous loci can be misgenotyped as homozygous to make
the P'>0.5. Also, the maize genome contains a high number of duplicated genes,
and erroneous mapping of reads from duplicated genes can cause false heterozygous
SNPs in homozygous regions'’, making P’ <1 in homozygous regions. Nevertheless,
when coverage is high enough to genotype heterozygotes correctly, two peaks of
P'=0.5and P’'=1.0 should be observed.

The distribution of P’ for each line across all individuals and generations
is presented in Supplementary Fig. 11. Only MR09 and MR22 exhibited the
expected two peaks. These two lines have the highest coverage among the set of
lines (Supplementary Table 16), and they were therefore the only lines we studied
hereafter. Given the distribution of P’ across genomic regions, the R package
Mclust was used to classify each window of each individual as homozygous or
heterozygous™ by forcing the number of components to be 2 (G=2). Windows that
fell between the two peaks of the P’ distribution were classified as ‘uncertain’ if the
Mclust classification uncertainty was> 0.1 (Supplementary Figs. 12 and 13).

For each individual, the heterozygosity status of a region was inferred from
the clustering of overlapping sliding windows. The start and end of a heterozygous
region were defined by (1) the start of the first window that had the given
heterozygosity state and (2) the start of the closest next ‘uncertain’ window.
All SNPs inside the region were afterwards considered to be of the inferred
heterozygosity type, regardless of genotyping errors. A similar procedure was
applied to homozygous regions. Although in principle the categorical status of
uncertain regions could be inferred by parsimony arguments, we adopted the
conservative approach to discard these blocks of uncertainty from heterozygosity
calculations. Heterozygosity levels could then be averaged across individuals of the
same line and generation in sliding windows containing 100 SNPs as follows:
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Heterozygosity =number of inferred heterozygous SNPs/(number of inferred
heterozygous SNPs 4+ number of inferred homozygous SNPs)

Average heterozygosity levels across individuals were plotted along
chromosomes for sliding windows of 100 SNPs that fall within genes (Fig. 4).
For statistical tests, chromosomes were considered as biologically independent
units, owing to the small number of individuals (n=2 or 3). The non-parametric
Wilcoxon signed-rank test was used to compare the expected heterozygosity with
the observed heterozygosity of the ten chromosomes averaged across individuals
for each line and generation separately. As a conservative control, this analysis
was repeated when considering windows with uncertain heterozygosity in the
clustering method as homozygous, instead of discarding them. A similar approach
with non-overlapping windows of 100 SNPs falling within genes was used to
correlate heterozygosity with crossover number using the R Im function. The
same non-overlapping windows were used to study the effect of the proportion of
nonsynonymous SNPs on heterozygosity using a y* contingency table test with the
R function chisq.test.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Sequence data that support the findings of this study have been deposited in NCBI
Short Read Archive under project code SRP158803. The gff files used in this
study, the GS flow cytometry data and the raw mapping count data are available
on figshare.com (https://doi.org/10.6084/m9.figshare.783825.v2) or from the
corresponding author. The SNP VCEF files and dataset are available from the
corresponding authors upon request.

Code availability
Custom code used in SNP analyses is available from the corresponding authors
upon request.
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Research sample The research sample utilized a set of 11 inbred lines that had been generated by J. Doebley at the University of Wisconsin. These
lines were chosen to represent diverse landraces of maize. Each began with a parent that was selfed for up to 7 generations. The
lines were promulgated by single seed descent, and sibling seed were retained from each generation. Plants grown from the sibling
seed were utilized in this study.

Sampling strategy No preliminary analyses on sample size were performed. For the first analyses (genome size) we first identified lines that appeared
to change genome size by utilizing materials available to us in early (S1) and late (S6) generations. For sequencing data, we chose the
beginning and end point of the experiment, choosing 3 replicates of the two groups - lines that lost genome size and lines that
apparently did not - for contrasts.

Data collection Plants were grown in a randomized plot design. Samples from available plants were outsourced to get flow cytometric estimates of
genome size. The sequencing data were generated by making libraries and sequencing at UC Irvine.

Timing and spatial scale  Plants were germinated and sown in Spring 2014, with plant height and mortality measured 9, 17, 30 and 45 days after sowing.

Data exclusions We excluded sequence data from generations 2 and 4 from the analysis. These data were generated from only two lines and hence
did not follow the broader study design. The data were pre-excluded because of their failure to conform to the study design.

Reproducibility For flow cytometry, we included both technical and biological replicates. For sequence data, we used biological replicates,
sequencing different sets of plants based on the their line and their number of generations of inbreeding.

Randomization Plant growth was in a randomized block design.
Blinding For phenotyping, plant growth and genome size assays, blinding was inherent in the randomized block design. The generation of

sequencing data was blind to control vs. genome-loss groups. Sequence analysis was performed as if blinded, but members of the
two groups were known.
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Methodology

Sample preparation Source tissue was leaves. Leaf punches were sent to Plant Cytometry Services (Schijndel, the Netherlands) where relative DNA
measurements were performed by flow cytometry using internal standards for DAPI and Pl analysis.
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Instrument DAPI: Partec CyFlow Space PI: partec cube

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples
and how it was determined.

Gating strategy Samples were analysed using llex crenata and maize B73 as internal standards, as stated in the manuscript.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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