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Parametric methods, such as autoregressive models or latent growth modeling,
are usually inflexible to model the dependence and nonlinear effects among the
changes of latent traits whenever the time gap is irregular and the recorded time
points are individually varying. Often in practice, the growth trend of latent
traits is subject to certain monotone and smooth conditions. To incorporate such
conditions and to alleviate the strong parametric assumption on regressing
latent trajectories, a flexible nonparametric prior has been introduced to model
the dynamic changes of latent traits for item response theory models over the
study period. Suitable Bayesian computation schemes are developed for such
analysis of the longitudinal and dichotomous item responses. Simulation studies
and a real data example from educational testing have been used to illustrate
our proposed methods.

Keywords: Bayesian nonparametric; monotonic regression; dynamic changes; item
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1. Introduction

Longitudinal studies play a prominent role in investigating temporal changes
in a construct of interest, which are often referred to as growth curve analysis in
social and behavior science. The advent of computerized testing and online rating
brings an entirely new way for social and behavior researchers to collect long-
itudinal data. Test takers have much more freedom to choose their test time than
before. Then, the responses collected are often observed at variable and irregular
time points across individuals. The randomness of responses may further create
sparsity in certain period, such as in the summer or winter holidays.

Traditionally, there are two models of wide usage for studying individual
changes. One is called latent growth curve modeling (Bollen & Curran, 2006)
and the other is multilevel modeling or hierarchical linear modeling (Raudenbush
& Bryk, 2002). However, when outcomes are observed at individually varying
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and irregularly spaced time points, the inferences from these two traditional
models for studying individual changes may become problematic due to the
uneasy adjustment of parametric structures in the models (Geiser, Bishop, Lock-
hart, Shiffman, & Grenard, 2013). For instance, their analysis typically required
the same time span of the study and the same testing points for all examiners.
Furthermore, for computerized testing/survey in education, the manifest
responses are usually dichotomous, ordinal, or nominal, while latent traits needed
to be inferred are often continuous. These make the inference even more difficult
because of the information loss in the discretization procedure of the underlying
latent variables. In this article, we mainly focus on the extension of classic item
response theory (IRT) model framework to model longitudinal dichotomous data
collected at irregular and variable time points.

1.1. Review of Relevant Literature

There are two major approaches, that is, the multidimensional and multilevel
approach, available in the current literature of IRT models for the analysis of
longitudinal data. First, for the multidimensional approach, a multidimensional
IRT model is used to represent the change of an ability as an initial ability and
one or more modified ability in unidimensional or multidimensional tests (Cho,
Athay, & Preacher, 2013; Embretson, 1991; te Marvelde, Glas, Landeghem, &
Damme, 2006). However, this approach allows little variation of items on dif-
ferent occasions, and it often requires the individuals to take the same tests.
These drawbacks prevent us from extending their methods to analyze a time
series of computerized testing data.

Second, for the multilevel approach, the first level is often assumed to follow a
classic IRT model, while in the higher level, there are two common ideas to
model the growth. One idea is to assume the growth of a latent trait be parametric
function of time, such as a linear or polynomial regression of the time variable
with fixed or random coefficients. This idea is a variation of the latent growth
curve modeling in the analysis of binary/categorical longitudinal data (Albers,
Does, Imbos, & Janssen, 1989; Hsieh, von Eye, Maier, Hsieh, & Chen, 2013;
Johnson & Raudenbush, 2006; Tan, Ambergen, Does, & Imbos, 1999; Verhagen
& Fox, 2012). Another idea is to employ Markov chain models, where the
changes of a latent trait over time are assumed to be dependent on its previous
value or status (Bartolucci, Pennoni, & Vittadini, 2011; Kim & Camilli, 2014,
Martin & Quinn, 2002; Park, 2011). However, there are many instances in which
neither of two ideas would be enough to describe the growth (Bollen & Curran,
2004). One of such instances is computerized testing, especially when the time
lapses between tests are unequally spaced across individuals as well as within
individuals.

To tackle the challenges in computerized testing for modeling the growth of
latent traits, Wang, Berger, and Burdick (2013) proposed a dynamic model by
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combining the ideas of parametric functions of time as well as Markov chain
models to describe the growth. They imbedded IRT models into a new class of
state space models for analyzing longitudinal data located at individually varying
and irregularly spaced time points. Nevertheless, assuming a particular func-
tional relationship for the growth in general is restrictive and usually difficult
to justify. Instead, a nonparametric model could be much more flexible to
describe changes of latent traits and avoid the errors of model misspecification.

As further investigation of the results shown in Wang et al. (2013), we found
the trajectory of one’s reading ability grows more quickly in the initial period but
slows down when it approaches maturation. Overall, the ability exhibits an
increasing trend but often has a flat region at the end. Such discovery of the
shape for the growth trajectory is consistent with prior beliefs and experiences
from practitioners. In social or behavior science, prior knowledge about the shape
of the trajectory, such as monotonicity, convexity, or concavity, may be available
ahead of the analysis to aid in the modeling process and enhance interpretability.
This calls our attention to incorporate shape constraints as a prior information to
nonparametric modeling. It is expected that the usage of shape information may
improve the efficiency and accuracy of the nonparametric estimates.

From the Bayesian perspective, nonparametric regression with monotonicity
constraints has already been considered in the literature. For instance, Gelfand
and Kuo (1991) used an ordered Dirichlet process prior to impose the monotone
constraint. Neelon and Dunson (2004) imposed a piecewise linear regression,
with an autoregressive prior for the parameters of basis functions. Shively, Sager,
and Walker (2009) as well as Brezger and Steiner (2012) implemented restricted
splines to ensure monotonicity. McKay Curtis and Ghosh (2011) used Bernstein
polynomials with restrictions on parameter space, while Choi, Kim, and Jo
(2016) extended this idea by allowing incorporation of uncertainty of the con-
straints through the prior. Lin and Dunson (2014) proposed Gaussian process
projection to perform shape-constrained inference and applied the method to
multivariate surface estimation. Wang and Berger (2016) imposed the constraints
on the derivative process of the original Gaussian process to estimate shape-
constrained functions.

However, typical nonparametric models are often less interpretable. In this
article, enlightened by the idea of Bornkamp and Ickstadt (2009), we imbed a
flexible Bayesian nonparametric monotone regression of latent traits into the IRT
models with easy interpretation. The monotone regression can be written as the
sum of two parts: (1) an intercept parameter (interpretable as one’s initial ability)
and (2) the product of a scale parameter (interpretable as the maximum ability
that one can grow during the study period) with a continuous function of the time
variable (which is monotonically increasing over the study period and can easily
capture the plateaus effect of one’s ability at the end). Another advantage of our
proposed approach is that the parameters for the underlying base functions which
constitute the monotone function do not have constraints on the domain of
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parameter space. Lacking of constraints on the parameter space could make the
model more flexible and reduce computational burden. Additionally, the base
functions themselves can be directly leamed from the data.

1.2. EdSphere Test Bed Application

We will apply our proposed method to the EdSphere data set provided by
Highroad Learning Company. EdSphere is a personalized literacy learning plat-
form that continuously collects data about student performance and strategic
behaviors each time when he or she reads an article. During a typical reading
test, a student selects from a system-generated list of articles having the test
difficulty level in a range targeted to the current estimate of the student’s ability.
Then, for the selected article, a subset of words from the article is eligible to be
clozed, that is, removed and replaced by a blank. The computer, following a
prescribed protocol, randomly selects a sample of the eligible words to be clozed
and presents the article to the student with these words clozed. The question
items produced by this procedure are randomized items. They are single-use
items generated at the time of an encounter between a student and an article.
If another student selects the same article to read, a new set of clozed words is
selected. As a consequence, the occurrence of individual items among students is
highly improbable, so obtaining empirical estimates of item parameters is not
feasible.

The difficulty levels of the items in the reading test are provided by Meta-
Metrics using proprietary data and methods. The ensemble mean and the var-
iance of difficulty level for the items in a test are known due to the test design of
EdSphere learning platform.

Currently, the EdSphere data set consists of 16,949 students from a school
district in Mississippi, who participated over 5 years (2007-2011) in EdSphere
learning platform. A snapshot of the data sets is included in Table B1 in the
online version of the article. The students were in different grades and could
enter and leave the program at different times. They were free to take tests on
different days and had different time lapses between tests. This design yields
longitudinal observations located at individually varying and irregularly spaced
time points and suggests that we need to model the changes of latent traits with
a dynamic structure. Further, in the spirit of EdSphere test design, we could
imagine the factors, such as overall comprehension, emotional status, and
others, would exist and undermine the local independence assumption of IRT
models as mentioned in Wang et al. (2013). Therefore, we aim to extend the
classic IRT models to accommodate the modern computerized (adaptive) test-
ing (not merely EdSphere data sets), which have the described distinctive
features, that is, randomized items, longitudinal observations, and local
dependence.
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2. Nonparametric Monotone Regression

In this article, we keep the discussion focused on the one-parameter IRT
model that links latent ability and item difficulty to the correctness of each item.
The idea could be similarly implemented on two-parameter/three-parameter IRT
models or other continuous, ordinal, and nominal latent variable models. In the
classic one-parameter IRT model, the latent ability of each individual and the
difficulty level for each item are the two key components and often they assume
to be static. But in the EdSphere data set, the item responses are longitudinal, and
thus, the latent ability of individuals and item difficulty levels are both varying
with time. In addition, each test taker is allowed to take tests at any time they
wish in the computerized testing. Moreover, they can take more than one exams
per day. Therefore, following the discussion of Wang et al. (2013), we need to
extend the classic one-parameter IRT model as below.

The proposed shape-constrained IRT model involves two levels, that is,

Level 1 : Pr(Xijsx = 1183, My s, dijisk) = F(0ij — dijisk +Mijs), @
Level 2 - ejui :ﬁ(tl,j) +mf‘f' (2)

In the first level, Equation 1 extends the classic one-parameter IRT models to the
scenario of computerized testing, where 0;; represents the ith person’s ability
(latent trait) on jth day with assuming a person’s ability is constant over a given
day; d; jx is the difficulty of the kth item in the sth test on the jth day taken by
the subject i; n; ;, takes account of the random effects that cannot explained by
person’s ability and the item difficulty in the sth test on the jth day for the ith
person; F(-) is a cumulative distribution function (CDF) for continuous random
variables;andi= 1, ...,n,j=1, ..., T,s=1,....8 ;andk =1, ... K
For the EdSphere data set, since the ensemble mean and variance of the item
difficulties in a test are known quantities due to the test design, we assume

dijsk =aijs~+ Vijsk, (3)

where v; j;x ~N (0, 62),and a; ;s and & are known. Further, we presume for each
individual i, the random effects m; A0, 7)) for j=1,...,T; and
s=1,...,8;, where 1; is a precision parameter and changes according to indi-
viduals. For the link function F~!(-), we will use F~!(-) = ®~!(-) (called the
Normal Ogive or Probit link), where ®~'(-) is the inverse function of the standard
normal CDF, and this link can ease the computation for Bayesian analysis.

In the second level (Equation 2), w;; represents the random residuals,
wij~N(0,67'A;;), where ¢ is an unknown proportion of the precision of
w; ; and A, ; is the time lapse between the jth test day and the (j — 1)th test day
of the subject i, j = 1, ..., T;. We assume the variance of w; ; is proportional to
the time lapse because it implies the uncertainty about one’s ability would
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become larger when he or she does not take the tests for a while. f;(-) is the ith
individual latent trajectory and assumed to be a continuous function, where 7 ; is
the time location, that is, the actual test day for an examinee to take a test in the
study period. Often when we model f;(-), there is some prior information avail-
able. For example, psychologists and educators can assume that the mean trend
for a student’s reading ability would be growing or at least not decreasing during
the study period. We choose to impose such prior beliefs on the modeling of f;(-)
since it can be used for a large part of the potential applications, and we may be
able to check from the data fit about the reasonableness of this assumption.

We will utilize the idea of Bornkamp and Ickstadt (2009) to model the
unknown latent trajectory fi(-) flexibly and conveniently with a monotone
shape constraint. First, for each individual i,i = 1, ..., n, we rescale the orig-
inal time units into [0, 1], by subtracting the original time with the minimum
time value of the ith individual and then divided by the time range of individual
i. After such rescaling, we continue to use # ; for the notation of time for
convenience and assume

fl:(ti‘j) = BE,O + Bi,]fzjo(ti,j)!i = 1: e :ﬂ:j: 1! st T}: (4)

where £°(-) is the CDF of a bounded and continuous random variable on [0,1].
Thus, f;(-) will be increasing if f; ; > 0 and decreasing otherwise. Moreover, f;(-)
can accommodate flatregionsif chosenf?(-) properly. This is because a CDF of a
random variable will reach its plateau when the variable approaches its bound of
the domain. Under the current time rescaling mechanism and since 0 < £°(¢;) <
1 for each individual i, the intercept B; , can be interpreted as the initial level of
the latent ability for the ith individual, while B;o + B;; can be treated as the
maximum level that an individual can reach during the study period. Second, to
make the modeling of £(-) much flexible, we introduce the nonparametric ideas,

L;
) = IF(*‘E,;, E)Gi(dE) = ) “migF(ti, 6 0), Ei " py, (5)
= =1
where we model £°(-) as a discrete mixing of parametric CDFs. In Equation 5,
F(-, £) is a CDF with parameters £ belong to the parameter space Z; G; is a discrete
probability measure on = with assigning a general discrete random measure prior
introduced by Ongaro and Cattaneo (2004), that is, G;(d%) = S/ m;8¢, (),
where 8 is a Dirac delta function; ; ,’s are independent and identically distributed
realizations from a continuous distribution Py on = and are assumed to be inde-
pendent with m;,’s and L,’s; m; ¢ satisfies Zﬁfz 1 Tie = 1, and L; requires its support
on positive integers. Also, note the common choices of P, in Equation 5 will help
us to borrow strength among individual latent trajectories. The construction of
Equation 5 actually contains many popular discrete random probability measures
in the current literature as a special case, such as the Dirichlet process, general
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stick-breaking processes, and so on. In addition, this construction is very flexible
in modeling monotone function since it has not imposed any restricted structure on
parameters (i.c., for the weights m;,’s and the parameters £; ,’s) in comparison to
other methods mentioned in the Introduction section.

In Equation 5, proper choice of the base distribution function F(-, &) is the key
for the success of modeling f;(-). A typical requirement is that we need a convex
combination of functions F(-, &, ),F(-,&;,), ..., foranyi =1, ..., n,which can
approximate any arbitrary continuous CDF on [0, 1]. The beta distribution func-
tions (i.e., the regularized incomplete beta functions) will satisfy this requirement,
however, there is usually heavy computational burden associated with the beta
distribution functions since they have no closed form. To balance the computation
burden and the adequacy of approximation, we consider the CDF of two-sided
power (TSP) distribution (cf. Van Dorp & Kotz, 2002) for F(-, &):

AN
b L), if 0<¢;<b,
b

F(ti‘j:";a) = ’ (b: Y) € [0! 1] x R—H

1—6;\" .
1—(1—:5) m , if bgt,-‘}-gl.

which has two key parameters (b, v) and is a viable alternative of beta distribu-
tion functions. Here, define & = (b, y). Bomkamp and Ickstadt (2009) proved the
convex combination of the CDF of TSP functions can be capable of approximat-
ing any continuous CDF on [0, 1].

We illustrate several examples of TSP functions in Figure 1. From Figure 1,
we can see that y controls the steepness of the curve. When v is small, the pace of
increasing is comparatively slow, and when y becomes larger, the increasing
trend becomes steeper. The parameter b is the unique mode of TSP function
when y > 1. A TSP function with a small b and a large y describes a curve
increasing steeply in the beginning and stabilizing afterward, which could be
viewed as a “fast learner” growth curve, while a TSP function with a large b and
small y can be viewed as a growth trend for an individual who improves steadily
with a slower pace. Other scenarios could be interpreted accordingly, and they
will be varying with different values of b and .

3. Bayesian Computation Scheme

The hierarchical model of Equations 1 and 2 can accommodate the complex
structure of computerized testing (e.g., EdSphere data sets), and it also allows the
incorporation of prior information. However, because of the complexity of the
model considered, we have to resort to Markov chain Monte Carlo (MCMC)
computational techniques for the analysis. A by-product of Bayesian inference is
that all uncertainties in all quantities are combined in the overall assessment of
inferential uncertainty.
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TSP function examples with 4 different TSP function examples with 4 different TSP function examples with 4 different
values and b= 2 values and b=0.5 values and b=0.8

FIGURE 1. Hllustration of several two-sided power functions with different y and b values.

3.1. Prior Specification and Posterior Distribution

Before starting the Bayesian inference, first, we have to specify the prior
distributions of unknowns in the model. For parameters &, 1;’s, B;,’s, and
B;1’s in Equation 1, 2, and 3, there is a lack of scientific knowledge, so we use

the following objective priors for them: () oc &%, n(t;) o ‘I:l-_%, m(B;o) ox 1,
and (B; ;) o< 1, for i = 1, ..., n. The objective priors used for n(¢) and n(t;)
are recommended in (Wang, Berger, & Burdick, 2013).

According to Lemma 1 in Bornkamp and Ickstadt (2009), the prior distribu-
tions of &; ,’s determine the mean and prior correlation structure of £°(-). Without
expert’s information, a uniform distribution on a finite subset of parameter space
E for £; ;’s would be a reasonable choice to start with. Theoretically, we would
like to elicit an unbounded prior for Z;. One viable choice is the zero-truncated
Poisson distribution with the rate parameter A > 0, and thus, its prior mean is
?)fe_l—]. The larger X value is, the more components are in TSP mixture. For the prior
of ®; = (n;1, ...,m;)’, a natural choice is a symmetric Dirichlet distribution
with common parameter p > 0. Notice the prior variability of £°(-) is increasing
when L; or p gets smaller (see Lemma 1 in Bornkamp & Ickstadt, 2009). Hence,
in practice, the values of A and p are chosen according to the desired prior
variability for £,°(-) and the expected number of jumps in the model response.

Using the priors specified above, we can derive the posteriors of unknowns in
the proposed model as shown in Equation 8 of online Appendix A. We can show
this posterior is proper (see details in online Appendix A). Then, the statistical
inferences based on the sampling from this posterior is legitimate. To facilitate
the computation for the posterior of unknowns, we implement the idea of data
augmentation (Albert & Chib, 1993) by introducing a latent variable Z; ;,x for
each dichotomous response X; j,x, that is, defining Z; ;;x ~N(6;; — a; js +

Tl!-J‘_g ,1 + GZ)I(Zj‘j‘_g‘k = 0) if JYEJ‘g‘k =1 and ZjJ‘_g‘k ~N(9, i — Qi js + Tl!-J‘_g ' 1+
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62)I(Z jsk < 0) if X; j;x = 0. Therefore, the two-level hierarchical model
(Equations 1 and 2) can be simplified as

Zijsk = filtij) + 0ij — dijsk +Nijs + Eijsks (6)

with &,z "* N(0, 1). Then, our computation schemes for drawing samples
from the joint posterior distribution of unknowns will derive from this data
augmentation model.

Let us denote A; = (Lj,m1, ..., g, &, ...,@LLI)’ with each ;, =
(bie, ;) being the corresponding parameters of the £th TSP mixture component
for the ith subject, m;, is the corresponding assigned weight of the /th mixture
component, withi= 1, ...,nand £ =1, ..., L;. Thus, A; contains all informa-
tion about the TSP mixture for the ith individual, and we denote the notations
A={Ay, ..., Ay} and E={&;, ..., &1 1,5 ---,Ep1s -+ -5 &y, ) tO TEpresent
the sets of variables for all n subjects.

Similarly, we use bold notations 0, B,Z,m,T to define the sets of
corresponding variables introduced in Section 2, over all indices, that is,
B = {B]‘O: B]‘]: ] Bn‘(]} Bn‘]}a n= {ni‘j‘s ti= 1: ] H}j = 1: ] T!
s=1,.... 8} v={t, ..., b Z={Zjsx:i=1,...,n,j = 1,..., T,
8§ = 1, ey S,'J, k = 1, ceey Kj‘j‘_g}, 9 = {81‘1, .ss }e]‘j'” . .,G,,‘l, P ,G,,‘T"}.
Similarly, define X={X;;;:i=1,...,n,j=1,...,T;,s=1,...,8,
k=1, ...,K s} Then, the joint posterior distribution of parameters
0,B,A,Z,m,T, ¢ given the data X is derived as

f(e! B! A! Z!Tl!';! ¢|x)
o f(X|Z)f (Z]6, ) (6|B, A, O)f (m[T)n(B)n(A)n()n(T)

n T SijiKijs

o HHHH{ (I(Zijsx > O (Xijsp = 1) + I(Z; jsp < O)(X; 5 = 0))

2
X | '1’;1;1 exp {_ Vijisk (Zijisk — 9::2;' + @ijs — Mijs) } }

_ (7)
ml o) 600y — Bio— Bufl(e)]
<111 2:1{_&.,-‘;"1’{_ 27, }

if- tfznﬁj,s n

where \j; ;o = (1+ 62)"" and n(x,), 7(B,), ©(A;), and () denote the priors
specified in the beginning of this subsection.
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3.2. The MCMC Sampling Schemes

The key part in developing MCMC algorithm to draw samples from the joint
posterior distribution (Equation 7) is to estimate the latent trajectory £,(; ;)s in
Equation 4. Notice that once A is known, £°(#; ;)s are fully determined. Since the
distribution of A can vary in dimension, we employ a reversible jump Markov
chain Monte Carlo (RJ-MCMC) sampling scheme (Green & Hastie, 2009). Fur-
ther, to reduce the correlation as well as to achieve faster convergence of the
MCMC samples of parameters, we implement the idea of partially collapsed
Gibbs sampling (Van Dyk & Park, 2008). Thus, at the gth iteration, we perform
the sampling procedure of unknowns in the order below:

1. Sample Z@ from £(Z@)]8~V n@1), which is a truncated normal distribution
for the full conditional distribution of each individual Z; ; ;x given the rest;

2. Sample 0@ fromf(n'@|6~) 4= Z(@), whichisanormal distribution for the
full conditional distribution of each n, ;; given the rest;

3. Sample t@ from f(t@|q@), which is a gamma distribution for the full condi-
tional distribution of each t; given the rest;

4. Sample A9 from f(A?|8?~1)), which has no closed form; moreover, the dimen-
sion of A is varying for each iteration, and thus, we employ the Metropolis—
Hasting algorithm within the RI-MCMC to sample the full conditional distribution
of each A; given the rest;

5. Sample ¢'? from (8@ VA'?), which is a gamma distribution for the full
conditional distribution of ¢ given the rest;

6. Sample B from f(B?|09) A@ @), which is a multivariate normal distri-
bution for the full conditional distribution of P given the rest;

7. Sample 69 from £(89 |9, A@ 729 3@ @), which is a normal distribution
for the full conditional distribution of each individual 0; ; given the rest.

The details of each sampling step are described in online Appendix A. The
MCMC sampling loops through Steps 1 through 7 and repeats until the MCMC is
converged. The initial values (i.e., when (g — 1)th iteration = (0)th iteration) of

parameters chosen in simulations and application are: Gfﬂ)’s drawing from

N(0,1), Bg)’s and Bg)’s being 0, 11(0) ’s being 0, ¢(” = 200, and IEO)’S being

i
6 fori =1, ... ,n. While, we will specifically discuss how to choose the initial
values of AEO) = (Lfo), rtfo), bfo), yfo)) fori =1, ...,nindifferent examples. The

convergence is evaluated informally by looking at trace plots.

Then, statistical inferences are made straightforward from the MCMC sam-
ples. For example, an estimate and 95% credible interval (CI) for the latent
trajectory of one’s ability 6; = (0,1, ...,0;7,) can be plot from the median,
2.5%, and 97.5% empirical quantiles of the corresponding MCMC realizations
ofeeach 0, ;, forj =1, ..., T;. In examples, these will be graphed as a function of
time #;;, so that the dynamic changes of an examinee are apparent.
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4. Simulation Examples

To validate the inference procedure of MCMC schemes and show the success
of'using monotone shape constraints in the nonparametric modeling, two simula-
tion studies are conducted. For the first simulated example, we know the true
underlying curve £;°(-)’s that generate the latent trajectory of one’s ability, while
for the second simulated example, we have no information about the true under-

lying curve £°(-)’s.

4.1. An Example Using the Mixture of TSP Functions as the Latent Trajectory

In this section, we apply our proposed method to a simulated data set that uses the
mixture of TSP functions as the true latent trajectory. We consider 10 test takers, that
is, n = 10; each of them is examined at 60 different test days, that is,

T; = 60,i = 1,...,10.Duringeach distinctive test day, there are four examinations
for eachindividual, thusS; j = 4 fori=1, ...,10,j =1, ..., T;, and there are 10
questions (or items) in each test, that is, K;;, = 10 fori=1,...,10,j =

1, ..., Tyands =1, ...,S; ;. Foreach person i, we assume the time lapse between
two consecutive tests is a function of j, which is set to be A; j =j+ 10 for j =
I, ...,T;/2and A; ; =j — 10forj=T; /2 + 1, ..., T, withi= 1, ..., 10.

We set the true values for model parameters as below: ¢~ /2 = 0.05, and thus,
the corresponding standard deviation of the random component w; ; in Equation 2 is
0.05,/A,,. t~'/2 = (0.361, 0.286, 0.322, 0.362, 0.359, 0.302, 0.347, 0.325, 0.360, 0.378),
where each element represents the standard deviation of random effects n, ; ; for the
ith person, respectively. 62= .73332, which is chosen based on the test design of
EdSphere data. The parameters specified for the mixture components of TSP func-
tions are addressed in Table 1.

We use the prior specified in Section 3.1 for the unknown parameters of the
proposed model. Particularly, for this simulated example, we use a zero-
truncated Poisson for each L; with A = 2, which implies there are expecting no
more than three jumps since each of the mixture of TSP functions in the simula-
tion consists at most two components. Without available scientific information,
we employ a symmetric Dirichlet distribution with the parameter p = 1 as the
prior for m;;’s, assign a Uniform(0, 1) for the prior of each b;; and specify a
Uniform(1, 50) for the prior of each v, ,.

Model fitting is done with the MCMC algorithm described in the Section
3.2, based on 50,000 iterations in total. The first 10,000 samples are burned
in, and only every 20th value is taken for our inference as to reduce
dependence. After this burn-in process, the mixing of MCMC samples
looks pretty good, and the trace plots of MCMC samples of parameters are
convergent.
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TABLE 1.
Simulated Parameters for Each Individual of Two-Sided Power Functions

L n b v
Ay 2 [0.5, 0.5] [0.5, 0.1] [3, 5]
Ay 2 [0.2, 0.8] [0.4, 0.7] [2, 8]
Az 1 1 0.15 10
Ay 2 [0.3, 0.7] [0.3, 0.5] [5, 13]
As 1 1 0.3 4
Ag 1 1 0.5 17
Aq 2 [0.1, 0.9] [0.2, 0.3] [3, 15]
Ag 1 1 0.3 5
Ao 2 [0.6, 0.4] [0.1, 0.5] [8, 5]
A 2 [0.7, 0.3] [0.2, 0.45] [4, 10]

In Figure 2, we display results of 4 represented individuals among the 10
simulated individuals in the example. Those four individuals have noticeable
differences in the shape of their corresponding trajectories. The growth curve
for the first subject is steadily increasing without obvious transition. While for
the second individual in Figure 2, he or she has obvious turning points. He or she
grows slowly during the initial period, then rapidly grows in the middle and
reaches the plateaus in the end. For third and sixth subjects in Figure 2, they
have similar phenomena as the second individual but with different lengths of the
three stages in the study.

In each subfigure of Figure 2, the dash line represents the true underlying
function f;(-), the bullet dots are simulated values of 0; ;’s forj =1, ..., T},
and the star dotted line is the estimate of posterior median of f;(-), along with
the solid lines representing the corresponding 2.5% and 97.5% credible bands.
We could see that the fitted trajectory captures the trend pretty well even
though the number of different test date is comparatively small, that is, 60.
Simulations for larger sample sizes have been tested, and the results were
generally better. Those results are not addressed here as to save the space.

We also calculate the posterior estimates of all other unknowns. The posterior
median of ¢~"/% is 0.0561, with a 95% credible interval (CI) being [0.0491,
0.0634], where the true value of ¢~ /2 (i.e., 0.05) is included. The posterior
median as well as 95% ClIs of other parameters are displayed in Figures 3 and
4. We could see that their respective true values, which are marked by cross, are
all included in the 95% Cls.

To take account of randomness in the simulations, another 100 independent
data sets are simulated to check frequentist coverage probabilities, with same
parameter setup but different random seeds. For each data set, we also run the
MCMC sampling for 50,000 iterations with the first 10,000 samples being
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FIGURE 2. The estimation of latent trajectories for the first, second, third, and sixth
subjects. (A) First individual. (B) Second individual. (C) Third individual. (D) Sixth
individual.
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FIGURE 4. The results of posterior median and 95 % ClIs of p; ;s and f; ;s in the mixture
of two-sided power function based simulation.

burned in. In addition, the MCMC chains are thinned by only using every 20th
sample. The results are shown in Table 2. We can see that the coverage prob-
abilities of the 95% ClIs of all model parameters including the truth are equal or
very close to the nominal level 95%. Thus, while the inferential method is
Bayesian, it seems to yield sets that have good frequentist coverage.

4.2. An Example of the Logistic Curve as the Latent Trajectory

In this section, we apply our proposed method to some non-TSP-based true
latent trajectories. The setup is the same as the previous simulation except the

true trajectories f;(+), 7 = 1, ..., 10 become the logistic curves as below:
MO Tt ) Tt 1)
o (exp(—?{;f——: zl.s) +1) e (“”‘p(‘olj’iz” +1)
o= (exp(fésri ;) +1) o= (“”‘p(‘_?‘.’fig +1)
o= (exp(—10r1+ 2) + 1) RO (e"p(i)ftif) + 1) |
o (exp(:lsfjj +1) e (eXP(—2f1+ D+1)

The motivation for using logistic curves as the true latent trajectories in the
simulation is that the logistic curves have been widely applied in the growth
curve analysis. Similarly, our model fitting is done based on 200,000 iterations in
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TABLE 2.

Coverage Probabilities of ¢, 0;'s, ti’s, B, ’s, and B, ;’s by 100 Independent Simulations
Parameter Coverage Probability  Parameter Coverage Probability
T 0.940 T2 0.940
13 0.960 T4 0.920
15 0.940 T6 0.900
17 0.900 18 0.920
To 0.880 T 0.940
6, 0.944 0, 0.932
05 0.950 04 0.975
05 0.969 B¢ 0.965
04 0.971 Og 0.931
B9 0.945 010 0.963
Bio 0.960 Bag 0.920
B0 0.960 Bao 1.000
Bso 0.980 Bs.o 0.980
Bro 1.000 Bso 0.940
o 0.960 Bioo 0.960
Buy 0.960 B2 0.960
B 0.960 Ba, 1.000
Bsi 0.980 Pe.1 0.960
B 0.960 By, 1.000
o, 0.980 Buo,s 1.000
¢ 0.940

total. The first 40,000 samples are burned in, and every 20th value of MCMC
samples is taken to reduce the dependence of samples. We use a zero-truncated
Poisson for each L; with A = 3, expecting a few more TSP components are
needed than the previous example to fit the logistic curve. Similarly as before,
we use a symmetric Dirichlet distribution with the parameter p = 1 for m;,’s and
assign uniform(0, 1) for the prior of each b;; as well as specify uniform(1, 50)
for the prior of each v, ,. The priors for the rest unknowns are specified the same
as Section 4.1.

Figure 5 displays the results of four selected individuals, where the dash lines
represent the truth of the underlying growth curve, the bullet dots are simulated
valuesof 6; ;’sforj = 1, ..., T}, the star dots correspond to the posterior median
estimates of one’s ability, and the solid dash lines indicate the 95% credible band
of the estimates. Figure 5(B) and 5(C) show that the true growth curves of fourth
and sixth examiners both have a steadily increasing growth curve at the begin-
ning and reach a plateau after half of the study period, whereas our estimated
growth curves (star dotted line) capture the trend of the truth (dash lines) very
well, and all true values (dash lines) are within the 95% Cls of our estimation
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FIGURE 5. The estimation of latent trajectories for the fourth, sixth, seventh, and eighth
subjects. (A) Second individual. (B) Fourth individual. (C) Sixth individual. (D) Eighth
individual.

(solid lines). For the second and eighth subjects, seen from Figure 5(A) and
5(D), their growth curves are strictly increasing over the study period, and
similarly, our proposed method can capture the underlying trend well under
these situations.

In addition, we calculate the posterior estimates of all other unknowns. The
posterior median of d)""z is 0.0539, with the 95% CI being [0.0471, 0.0610],
which includes its true value 0.05. The posterior median as well as 95% CIs of
1’s, P;o’s, and B, ;s are displayed in Figures 6 and 7, where we can see that the
true-simulated values of t;’s are all inside their corresponding 95% Cls. Notice
that in the logistic curve simulations, the true values of f3;,’s and f3;,’s are
unknown, and thus, we are not able to compare the truth relative to the corre-
sponding 95% ClIs for B;,’s and B, ;’s.
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FIGURE 7. Posterior median and 95 % Cls of B; o’s and B; ; ’s in logistic curve simulation.

5. Application to EdSphere Data

Since our approach has been successfully applied to estimate the trend of f;(-)
from simulated data and recovered the true values of parameters well, we will
employ our two-level hierarchical models to the EdSphere data. Due to the
limitation of our computer’s RAM (8 GB), a sample of 10 individuals from the
EdSphere database was randomly chosen for illustration purpose. The charac-
teristics of the individuals are described in online Appendix B. There are two
goals for the analysis of EdSphere data sets. One is to assess the appropriateness
of the local independence assumption for this type of data, and the other is to
understand the growth in ability of students, by retrospectively producing the
estimated growth trajectories of their latent abilities, incorporating the mono-
tone assumption.
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FIGURE 8. The estimation of latent trajectories for the second, third, sixth, and seventh
subjects. (A) Second individual. (B) Third individual. (C) Sixth individual. (D) Seventh
individual.

The prior specification is the same as the aforementioned simulation examples
except we use a zero-truncated Poisson prior for each L; with A = 1, which
corresponds to a prior belief that using about two different TSP functions, we
can explain the changes of the response trajectory in the data. But such prior
assumption can be washed out by the data if our data have strong information to
indicate that we need more mixture components of TSP functions to explain
one’s ability growth. In addition, to examine the sensitivity of the prior specifi-
cation for L; we have tried other L values; the yielded estimation of latent
trajectories are almost the same as those shown in Figure 8.

We have run in total 500,000 iterations and burn in the first one fifth of the
samples, and to reduce dependence of MCMC samples, we have taken only every
20th value of MCMC samples. We have checked the trace plots of model para-
meters to access the convergence for MCMC samples, and we found a good
mixing is observed after our burn-in and thinning process. Figure 8 shows the

291



Bayesian Nonparameteric Monotone Regression

Al -1 _
i

*

¥
M % % % * 3 Posterior Median 1
% |—|95%C|":dblahbawal

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BI.iJ B2.0 B3.0 Bd.ﬂ BS.O BE.O B?.O BB.O BB.O BIiJ.iJ BI.I B2.| B3.‘ Bd.l B5.| BE.I BTl'.l BE.I Bl!.l BIiJ.I

FIGURE 9. Posterior median and 95% Cls of f;’s and f; ;’s.

estimated trajectory of four individuals, which represent four types of growth
curves we typically observed from the data.

In Figure 8, from our proposed method, the star dotted lines denote the
corresponding 95% credible band of one’s latent trajectory, the square dots
represent the estimated trajectory used in current EdSphere learning platform
(where they assume AR(1) model for 6, ; and consider an observation equation as
Model 1 but without the random effect m, ; ), and the bullet dots correspond to
the estimates of one’s ability obtained by solving the equation that the expecta-
tion of expected score for a person’s ability is equivalent to the observed score
(which can roughly be thought of as the raw test scores put on the same scale as
the 6;,’s). In Figure 8, we can see that our estimated latent trajectory of one’s
ability growth (i.e., the red dots for the posterior median of 6;,’s) displays a much
smooth monotone increasing trend of one’s ability in comparison to current
EdSphere’s estimation, where current EdSphere’s approach shows a continu-
ously up-and-down oscillation in the estimation of one’s ability.

Noticeably, in Figure 8, the latent growth curve of the second individual (i.e.,
see Figure 8[A]), asix-grader, increases sharply at about the 300th day and reaches
the plateau before the 450th day, while the sixth individual (in Figure 8[C])
experiences a moderate growth during most of the time before stabilizing by the
end of the study. For the third and the seventh students in Figure 8(B) and 8(D),
respectively, they botharein Grade 2 and have a similar type of steadily increasing
shape of the growth over the entire study period. However, seen from Figure 8, the
growth rate (or learning speed) of the seventh individual is much faster than that of
the third individual. Since the study period of seventh individual is much shorter
than that of the third individual, clearly, we can also compare the estimation of
posterior median as well as the corresponding 95% CIs of B, and B;; (they
represent the magnitude of one’s ability growth during the study period), respec-
tively, in Figure 9 to validate the differences between the growth rate of these two
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individuals. The results of Figure 8 inform us that the timing for students reaching
the “learning ceiling” (i.e., plateau) as well as their “learning speed” differs among
different individuals. Further investigation or clustering of students based on the
shape of the growth curves might help teachers to tailor education practice or
assignments for each individual student.

Moreover, we are able to summarize the results of other parameters in the
model. The posterior median of ¢~'/? is 0.0566, and its 95% CI is
[0.0301, 0.0797]. The posterior estimates and 95% CIs for 1 and § are summar-
ized in Figures 10 and 9, respectively. In Figure 10, all 1; values and their
corresponding Cls are far away from 0 except ‘I:Z_UZ and r;” %, which suggests
the local dependence indeed exists in the EdSphere data sets. In Figure 10, all
B;1’s values as well as their corresponding 95% Cls are above 0, which shows the
data support the belief that the growth curve of one’s reading ability is always
increasing. Notice our method does not require any additional restriction on the
parameters in the model; thus, the values of parameters are fully determined by
the data. Also, we could see the values of B,o’s and B; ;’s are varying a lot
according to different individuals.

6. Conclusion

In this article, we proposed a Bayesian nonparametric two-level hierarchical
model for the analysis of one’s latent ability growth in educational testing for
longitudinal scenarios. The advantage of our method is able to incorporate the
monotonic shape constraints into the estimation of latent trajectories. Due to the
flexibility of our nonparametric method, we are able to fit any monotonic con-
tinuous curve without further restrictions on the estimation of parameters. There-
fore, the estimation of the slopes B; ;’s without including 0 in their corresponding
95% CI indicates the monotonicity is supported by EdSphere data sets.
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The latent trajectories of ability growth estimated from our approach can help
educators or practitioners to better understand the behaviors of students in the
study, such as the growth patterns (continuous increasing, sharp increasing, and
etc.) and the timing that a student reaches the ceiling of increasing for his or her
learning ability (i.e., the timing of reaching the plateau). Further studies on
clustering those behavioral patterns of individuals will guide us to design edu-
cation practice or teaching tailored to individuals. In addition, since the evidence
of the local dependence assumption is generally strong from the analysis of
EdSphere data sets, we can conclude that the use of random effects to model
the local dependence seems to be necessary and successful.

As the MCMC computation is time-consuming and resource-demanding for
our current approach, our next goal is to improve the efficiency of our computation
by developing big data schemes, such as similar ideas of Wei, Wang, and Conlon
(2017), to make the parallel computing possible so as to conveniently apply our
approach to the entire data sets. With improvement of computation efficiency, we
might be able to develop a computable evaluation criterion to assess the model fit
of the proposed nonparametric model using the predictive score ideas (Gneiting &
Raftery, 2007). Another potential extension is to explore covariates including the
grade and others with their relationships to the growth of one’s ability trajectory.
This direction will facilitate us to group individuals based on their similar char-
acteristics and encourage the development of personalized education.
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