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Abstract

These notes summarize and expand on a mini-course given at CIRM in February 2018 as part

of Winter Braids VIII. We somewhat obsessively develop the slogan “Trisections are to 4–manifolds

as Heegaard splittings are to 3–manifolds”, focusing on and clarifying the distinction between

three ways of thinking of things: the basic definitions as decompositions of manifolds, the Morse

theoretic perspective and descriptions in terms of diagrams. We also lay out these themes in

two important relative settings: 4–manifolds with boundary and 4–manifolds with embedded 2–

dimensional submanifolds.

1. Introduction

All manifolds are smooth in this paper, except that a very mild form of manifold with boundary

and corners appears without comment at various places, and the appropriate rounding of

corners is assumed without comment.

Most of the content of this paper is in the form of definitions and statements of basic

results, and some discussion. There are no proofs; either proofs are suggested as exercises,

sometimes with hints, or external references are given. We necessarily present a very limited

range of material and hope that this a useful launching point for more in-depth reading and,

especially, for new and original research.

At the risk of overdoing it, we maintain a format throughout which heavily emphasizes the

parallels between the 3– and 4–dimensional settings. In particular, we use a 2–column format

for most definitions and theorems, with parallel bulleted items for the 4–dimensional setting

on the left and the 3–dimensional setting on the right; sometimes there is an extra condition

in dimension four which does not have a three dimensional analog, in which case to avoid

excessive white space we drop the 2–column format for this last condition. This format is

based on the approach taken on the blackboard in the original mini-course, and we hope the

experiment is equally effective in printed form.

One goal of these notes is to emphasize the Morse theoretic perspective where it often

gets conveniently ignored in other presentations. In principle one can understand everything

one needs to know about trisections without thinking Morse theoretically, but this seems

to miss an essential piece of the intuition. For this reason, in Section 2, we quickly cover

the basic definitions of Heegaard splittings and trisections as decompositions of manifolds

somewhat drily and minimally so as to get on to the Morse theory of Section 3 quickly.
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2. The basic definitions: decompositions

We use the symbol # for connected sum and ♮ for boundary connected sum, so that ∂(A♮B) =

(∂A)#(∂B). Then #nA is the connected sum of n copies of A, with #0A = Sm, when A is a

manifold of dimension m. Similarly ♮nB is the boundary connected sum of n copies of B, with

♮0B = Bm, when B is a manifold with connected boundary of dimension m. With this in mind

we name the following standard manifolds of dimensions 2, 3 and 4:

• The standard genus g surface is g = #g(S1 × S1).

• The standard genus g handlebody is Hg = ♮g(S1 × B2), with ∂Hg = g.

• The standard 4–dimensional 1–handlebody (of “genus k”) is Zk = ♮k(S1 × B3).

Definition 1. In which we define Heegaard splittings and trisections and establish orienta-

tion conventions. (See Figure 2.1.)

Dimension four: A (g;k1, k2, k3) trisection

of a closed, connected, oriented 4–manifold

X is a decomposition X = X1 ∪ X2 ∪ X3 such

that:

Dimension three: A genus g Heegaard

splitting of a closed, connected, oriented 3–

manifold M is a decomposition M = M1 ∪M2

such that:

• For each , X is diffeomorphic to Zk . • For each , M is diffeomorphic to Hg.

• Taking indices mod 3, each X ∩X+1 is dif-

feomorphic to Hg. We orient X ∩ X+1 as a

submanifold of ∂X+1.

• M1 ∩M2 is diffeomorphic to g. We orient

M1 ∩M2 as ∂M1 = −∂M2.

• X1 ∩ X2 ∩ X3 is diffeomorphic to g. We orient X1 ∩ X2 ∩ X3 as ∂(X1 ∩ X2) = ∂(X2 ∩ X3) =

∂(X3 ∩ X1).

A (g;k1, k2, k3) trisection is balanced if k1 = k2 = k3 = k, in which case we call it a (g, k)

trisection.

A Heegaard splitting will often be labelled S, to refer to the triple S = (M,M1,M2), and

similarly a trisection will often be labelled T , to refer to the 4–tuple T = (X,X1, X2, X3). Note

that the labeling of the pieces matters; (M,M1,M2) and (M,M2,M1) are different Heegaard

splittings of the same underlying oriented 3–manifold.

To digest the orientation conventions, a good exercise is to verify first that, in a trisection

T = (X,X1, X2, X3), the orientations of  = X1 ∩X2 ∩X3 as ∂(X1 ∩X2), ∂(X2 ∩X3) and ∂(X3 ∩X1)

really do agree. Then one should verify that this orientation of  from the T agrees with its

orientation as the splitting surface in each of the the Heegaard splittings S = (∂X, X−1 ∩

X, X ∩ X+1).

Definition 2. In which we define a stabilization operation for both kinds of decompositions.

Dimension four: Given a trisection T =

(X,X1, X2, X3) of a 4–manifold X and an in-

dex  ∈ Z/3Z, an –stabilization of this tri-

section is a trisection T ′ = (X,X′
1
, X′

2
, X′

3
) ob-

tained as follows:

Dimension three: Given a Heegaard split-

ting S = (M,M1,M2) of a 3–manifold M, and

an index  ∈ Z/2Z, an –stabilization of S is

a Heegaard splitting S′ = (M,M′
1
,M′

2
) of M

obtained as follows:

• Choose an arc  properly embedded and

boundary parallel in X−1 ∩X+1, with a regu-

lar neighborhood ν ∼= B3 ×  so that ν ∩ X ∼=

B3 × ∂ and ν ∩ X1 ∩ X2 ∩ X3 ∼= B
2 × ∂.

• Choose an arc  properly embedded and

boundary parallel in M+1, with a regular

neighborhood ν ∼= B2 ×  so that ν ∩ M
∼=

B2 × ∂.

• Let X′

= X ∪ ν. • Let M′


= M ∪ ν.

• Let X′
±1
= X±1 \ ν̊. • Let M′

+1
= M+1 \ ν̊.
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3. The Morse theoretic perspective

We assume familiarity with basic Morse theory and the connection between Morse functions

on manifolds and handle decompositions. We will define some of these basic notions below

in certain cases, only for the purpose of establishing parallels between 3– and 4–dimensional

phenomena.

Definition 4. In which we define Morse functions and Morse 2–functions in the limited con-

text of dimensions three and four.

Dimension four: A Morse 2–function on a

4–manifold X is a smooth function ƒ : X→ R2

which, at every point p ∈ X, has one of the

following three forms with respect to appro-

priate local coordinates (t, , y, z) near p and

(,) near ƒ (p):

Dimension three: A Morse function on a

3–manifold M is a smooth function ƒ : M→ R

which, at every point p ∈ M, has one of the

following two forms with respect to appro-

priate local coordinates (, y, z) near p and

 near ƒ (p):

• (t, , y, z) 7→ ( = t,  = ); here p is called

a regular point.

• (, y, z) 7→  = ; here p is called a regular

point.

• (t, , y, z) 7→ ( = t,  = ±2 ± y2 ± z2);

here p is called a fold point and p is called

definite or indefinite according to whether

the quadratic form ±2 ± y2 ± z2 is definite

or indefinite.

• (, y, z) 7→  = ±2±y2±z2; here p is called

a critical point, and the number of −’s in the

quadratic form ±2 ± y2 ± z2 is the index of

p.

• (t, , y, z) 7→ ( = t,  = 3 − t ± y2 ± z2); here p is called a cusp point.

In both cases, a point q in the codomain of ƒ is called a regular value if all points p ∈ ƒ−1(q)

are regular points, otherwise q is a critical value. In dimension four, both fold and cusp points

are critical points.

A good way to think about the connection between Morse functions and Morse 2–functions

is that, locally, a Morse 2–function looks like time crossed with a generic homotopy between

Morse functions. Along a fold we can parametrize things so that we see a single Morse critical

point not moving in time, while a cusp corresponds to a birth or death of a cancelling pair of

critical points.

Here we recommend that the reader verify the following facts as an exercise in building

the correct intution (assume here that the domain of ƒ is closed):

• In both cases the inverse image of a regular value is a closed surface.

• In both cases the singular locus, the set of all critical points, is a closed codimension

three submanifold, i.e. a finite collection of points in dimension three and a finite

collection of embedded circles in dimension four.

• In dimension four, the cusp points form a finite collection of points on the singular

locus.

• Via a small perturbation, in dimension three one may assume that the critical points

of a Morse function have distinct critical values

• Returning to dimension four, letting Z be the singular locus of a Morse 2–function ƒ ,

via a small perturbation one may assume that ƒ |Z is an immersion with semicubical

cusps, with at worst double point self intersections, none of which occur at cusps.

(Figure 3.1 is an attempt at a cartoon illustrating many of the features of a Morse

2–function discussed in this and the following bullet points.)
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ƒ with this projection can then be seen to be a Morse function on X with only critical points

of index 0 and 1, with one index 0 and k index 1 critical points.

Note that the distinct critical values condition (in dimension three) and double points avoid-

ing cusps condition (in dimension four) are not strictly necessary to make the above lemma

true, but we add them as a conceptual convenience.

The most basic example of a Heegaard splitting Morse function is the projection

(1, 2, 3, 4) 7→ 1

on S3 ⊂ R4, giving the standard genus 0 Heegaard splitting of S3. Similary, projection

(1, 2, 3, 4, 5) 7→ (1, 2)

is a trisecting Morse 2–function on S4 ⊂ R5, giving the (0,0) trisection of S4. The reader

should verify these basic facts. It is also not too hard to see a Heegaard splitting Morse

function on S1 × S2 inducing a genus 1 Heegaard splitting, and a trisecting Morse 2–function

on S1×S3 inducing a (1,1) trisection. Beyond this, it is in fact not usually very straightforward

to write down explicit Morse functions and Morse 2–functions, let alone ones that induce the

decompositions we desire. More frequently, we understand the decomposition first, from

some other description of the manifold, and from this we can understand an appropriate

Morse function or 2–function.

The existence part of Theorem 3 can, however, be proved by proving the existence of

Heegaard splitting Morse functions and trisecting Morse 2–functions. The former is standard,

done by proving first the existence of Morse functions, then showing that one can cancel

pairs of critical points until there is only one index 0 and one index 3 critical point, and finally

showing that critical points can be rearranged so that their corresponding critical values

increase with increasing index. A proof of the latter appears in [4] starting from a handle

decomposition of the 4–manifold, but can probably also be proved in a purely Morse 2–

function theoretic method, starting with the existence of Morse 2–functions and then arguing

that the critical locus of a Morse 2–function can be cleaned up by a sequence of standard

moves to become a trisecting Morse 2–function. The work of Baykur and Saeki [1] should

provide enough tools to do this.

The uniqueness part of Theorem 3 is proved in the three dimensional case using standard

Cerf theory, where stabilization of the Heegaard splitting corresponds to adding a cancelling

pair of index 1 and 2 critical points. See [10] for a careful exposition of this proof. The four

dimensional uniqueness proof in [4] unfortunately does not follow this parallel, i.e. does not

use a Morse 2–function version of Cerf theory, but is rather more ad hoc. For the sake of

completeness it would be nice to see a Cerf theoretic proof, although it is not clear if the

ultimate payoff would be worth the time.

One challenging but reachable example that the reader who likes working with explicit

expressions might enjoy is to write down a trisecting Morse 2–function on CP2. This can be

done by suitably perturbing the following moment map:

[z0 : z1 : z2] 7→

�

|z1|
2

|z0|2 + |z1|2 + |z2|2
,

|z2|
2

|z0|2 + |z1|2 + |z2|2

�

The moment map itself is not a Morse 2–function, but adding a generic perturbation term

should make it Morse, and careful choice of this perturbation should make it trisecting.

On the other hand, one can extract a trisection directly from this moment map without

perturbing it to a Morse 2–function. Let  = |z1|
2/(|z0|

2 + |z1|
2 + |z2|

2) and y = |z2|
2/(|z0|

2 +

|z1|
2 + |z2|

2). Then the following “tropical” decomposition is in fact a (1,0) trisection of X =

CP2, and verifying this is also a good exercise:

X1 = { ≤ 1/4, y ≤ 1/4}

X2 = {y ≥ 1/4, y ≥ }

X3 = { ≥ 1/4,  ≥ y}
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Proposition 11. In which we relate stabilization of splittings and trisections to diagrams.

Dimension four: Given a trisection dia-

gram D with associated trisected 4–manifold

T = T (D), let T ′ be the result of an –

stabilization of T . Then T ′ ∼= T (D#D∗

).

Dimension three: Given a Heegaard dia-

gram D with associated Heegaard split 3–

manifold S = S(D), let S′ be the result of

stabilizing S. Then S′ ∼= S(D#D1).

• Given two trisection diagrams D and D′,

with
T (D) = (X,X1, X2, X3)

and

T (D′) = (X′, X′
1
, X′

2
, X′

3
),

we have that X ∼= X′ if and only if, for some

k1, k2, k3 and k
′
1
, k′

2
, k′

3
, the following two tri-

section diagrams are slide diffeomorphic:

D#(#k1D∗
1
)#(#k2D∗

2
)#(#k3D∗

3
)

and

D′#(#k′
1D∗

1
)#(#k′2D∗

2
)#(#k′3D∗

3
)

• Given two Heegaard diagrams D and D′,

with
S(D) = (M,M1,M2)

and

S(D′) = (M′,M′
1
,M′

2
),

we have that M ∼= M′ if and only if, for some

k and k′, the following two Heegaard dia-

grams are slide diffeomorphic:

D#(#kD∗)

and

D′#(#k′D∗)

Now we discuss trisection diagrams in relation to trisecting Morse 2–functions; the phe-

nomena discussed here are unique to the 4–dimensional setting and do not have obvious

3–dimensional analogues. Recall the notation from Section 3, in particular the “trisection” of

R2 as R2 = A1 ∪ A2 ∪ A3, the labelling of rays Rθ by angle −θ to the positive –axis, and the

identification of each ray with [0,∞). Fix a closed 4–manifold X with a trisecting Morse 2–

function ƒ : X → R2, and consider the induced trisection X = X1 ∪ X2 ∪ X3, where X = ƒ−1(A),

as in Lemma 6. We can read off a trisection diagram from the function ƒ and a (generic)

choice of gradient-like vector field over each ray R2π/3, since this data gives us descending

manifolds for each of the index 2 critical points in each handlebody, i.e. a handle decomposi-

tion of each handlebody, with the attaching “spheres” in the central surface  = X1 ∩ X2 ∩ X3
being a collection of simple closed curves α, β or γ.

What we would like to emphasize here is that there is more information available in a Morse

2–function than just in the trisection diagram. In fact, if we choose a smoothly varying family

of gradient-like vector fields over the rays Rθ, i.e. on each ƒ−1(Rθ) we choose a gradient-

like vector field Vθ for the Morse functions ƒθ : Rθ → [0,∞), smooth in θ, then we can look

at the descending manifolds for the index 2 critical points of ƒθ in  = ƒ−1θ (0). There we

will see a “moving family” of cut systems, mostly moving by isotopy but, at isolated times,

experiencing discrete moves. More precisely, from a trisecting Morse 2–function on a closed

4–manifold X, we can first arrange that all the cusps in each sector appear at the same

θ value, and then choosing one representative θ–value during each θ interval when only

isotopies occur, we can produce an augmented trisection diagram

(, α1, . . . , α, β1, . . . , βb, γ1, . . . , γc)

satisfying the following properties:

• For any indices , j and k, (, α, βj, γk) is a trisection diagram for X.

• The cut system α+1 is obtained from α by a single handle slide, and similary for the

β’s and γ’s.

• The Heegaard diagrams (, α, β1), (, βb, γ1) and (, γc, α1) are each diffeomorphic

(not just slide diffeomorphic) to the standard diagram (g, α
g,k , βg,k ).

(If we think of cut systems as ordered lists of simple closed curves, ordered by the relative

heights of the corresponding critical points, rather than just as sets of simple closed curves,
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then we should also include transposition of two adjacent curves in the list as a move, and

this would correspond to one critical point rising above another.)

In what sense does this augmented trisection diagram contain more information than an

ordinary trisection diagram? The main point is that rather than simply asserting that each

pair (,α, β), (, β, γ) and (, γ, α) is slide diffeomorphic to a standard Heegaard diagram,

with the augmented diagram we now know exactly how to slide handles to get each pair

to be standard. This in turn means that, rather than simply appealing to Laudenbach and

Poénaru to assert that we can fill in each sector with ♮kS1 × B3, i.e. with 3–handles and a

4–handle, and that any way of filling in is as good as any other way, we actually explicitly see

the attaching maps for the 3–handles. Also, the minimum length  + b + c of an augmented

trisection diagram for a given trisection is a measure of the complexity of the trisection,

which should be of interest and is closely related to certain complexity measures coming

from simplicial complexes associated to curve systems on surfaces; see [7] for example.

5. 4–manifolds with boundary

One advantage to thinking of trisections from a Morse 2–function perspective is that this

gives us the most natural definition of a trisection of a 4–manifold with boundary.

Definition 12. In Definition 5, we assumed that the manifolds we were working with were

closed. Now suppose they have nonempty boundary instead.

Dimension four: A (g, k) trisecting Morse

2–function ƒ on a 4–manifold X with

nonempty connected boundary is a Morse

2–function ƒ : X→ R2 such that:

Dimension three: A genus g Heegard split-

ting Morse function ƒ on a 3–manifold M with

nonempty connected boundary is a Morse

function ƒ : M→ R such that:

• ƒ (X) = D2. • ƒ (M) = [−1,1].

• For all points p ∈ S1 = ∂D2, ƒ−1(p) is a

compact surface with boundary, contained

in ∂X, and in fact the restriction of ƒ to

ƒ−1(S1) is a compact surface bundle over S1.

• ƒ−1(1) and ƒ−1(−1) are diffeomorphic

compact surfaces with boundary, contained

in ∂M.

• The closure of the complement of ƒ−1(S1)

in ∂M is diffeomorphic to B × D2, for B a col-

lection of circles and with ƒ being projection

onto the D2 factor. For each p ∈ S1, B × {p}

is the boundary of ƒ−1(p).

• The closure of the complement of

ƒ−1({−1,1}) in ∂M is diffeomorphic to B ×

[−1,1], for B a collection of circles and with

ƒ being projection onto the [−1,1] factor.

B × {−1} is the boundary of ƒ−1(−1) and

B × {1} is the boundary of ƒ−1(1).

• 0 = (0,0) is a regular value of ƒ , and thus

ƒ−1(0) =  is a compact surface with bound-

ary, where ∂ = B × {0} ⊂ B × D2.

• 0 is a regular value of ƒ , and thus

ƒ−1(0) =  is a compact surface with bound-

ary, where ∂ = B × {0} ⊂ B × [−1,1].

• On each of the three rays R0, R2π/3 and

R4π/3, ƒ has only index 2 critical points, all

of which have distinct critical values which

lie in the interiors of the rays (with the same

number of critical points on each ray).

• On each of the two rays R0 and Rπ, ƒ has

only index 2 critical points, all of which have

distinct critical values which lie in the inte-

riors of the rays (with the same number of

critical points on each ray).

• Over each of the three sectors A1, A2 and A3, each component of the singular locus of ƒ

is an arc from one bounding ray of A to the next, with at most one cusp per component.

All folds are indefinite folds. Furthermore, in R2 each of these components is transverse to

each ray Rθ except at cusps, which are tangent to the rays, and ƒ restricted to the singular

locus is an immersion with cusps and double points avoiding the cusps.

From this we can give the following definition:
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Definition 13. Let X, resp. M, be a compact 4–manifold, resp. 3–manifold, with nonempty

connected boundary.

Dimension four: A relative trisection of X

is a decomposition X = X1∪X2∪X3 for which

there exists a trisecting Morse 2–function ƒ :

M→ R2 with X = ƒ
−1(A).

Dimension three: A sutured Heegaard

splitting of M is a decomposition M = M1∪M2

for which there exists a Heegaard splitting

Morse function ƒ : M → R with M1 = ƒ−1(Rπ)

and M2 = ƒ
−1(R0).

These are not the standard definitions, but we feel that the Morse theoretic perspective

better conveys the central idea. The standard definitions can be recovered with some obser-

vations/exercises:

• Starting in dimension three, the induced structure on ∂M is a decomposition ∂M =

−R− ∪ ([−1,1] × ∂R−)∪R+ , where R− and R+ are diffeomorphic oriented compact sur-

faces with boundary. A 3–manifold with such a structure on its boundary is a balanced

sutured 3–manifold.

• The two pieces M1 and M2 can each be viewed as either sutured compression bod-

ies from the central surface  = ƒ−1(0) to R± or as handlebodies, where ∂M1 =

 ∪ ([−1,0] × ∂) ∪ −R− and ∂M2 = − ∪ ([0,1] × ∂) ∪ R+ .

• The 3–dimensional part of Definition 2, stabilization of Heegaard splittings, makes

sense in this relative setting, assuming the stabilizing arc lies entirely in the interior

of M. The assertion that the result is again a sutured Heegaard splitting, using the

Morse theoretic definition of splitting given above, requires seeing that stabilization is

achieved by perturbing the Morse function to introduce a cancelling 1–2 critical point

pair.

• Moving to dimension four, the induced structure on ∂X is an open book decomposi-

tion, namely a decomposition into a surface bundle over S1 (E ⊂ ∂X with ƒ : E → S1)

and a disjoint union of solid tori B × D2, such that the boundary of each fiber ƒ−1(θ)

of the surface bundle (each “page”) is the link B × {θ} in B × D2. These pages are

traditionally extended by adding on the annuli B × Rθ, to get Seifert surfaces for the

link B × 0, the “binding” of the open book.

• Each pairwise intersection X ∩ Xj is a sutured compression body from the central sur-

face  = ƒ−1(0) to the page ƒ−1(e2π/3) (identifying R2 with C).

• Each piece X is a 4–dimensional 1–handlebody, but it’s boundary comes with a de-

composition into three pieces: ∂X = (X ∩ X−1) ∪ (X ∩ X+1) ∪ (X ∩ ∂X). The first two

pieces are the above mentioned sutured compression bodies, and the third part X∩∂X

is one third of the open book decomposition of ∂X.

• The internal portion of ∂X, i.e. the closure of ∂X \ ∂X, comes equipped with a sutured

Heegaard splitting, i.e (X ∩ X−1) ∪ (X ∩ X+1).

• In fact each such X is diffeomorphic to C × [−1,1] for some sutured compression

body C from some surface ′ to the page ƒ−1(e2π/3), with the internal portion of ∂X
being diffeomorphic to (C × {−1}) ∪ (

′ × [−1,1]) ∪ (C × {1}).

• Note that the preceding item also gives a sutured Heegaard splitting of the internal

portion of ∂X, namely as the union of (C× {−1})∪ (
′× [−1,0]) and (C× {1})∪ (

′×

[0,1]). The previous Heegaard splitting (X ∩X−1)∪ (X ∩X+1) is a stabilization of this

Heegaard splitting.
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• The 4–dimensional version of stabilization in Definition 2 also now makes sense, again

assuming the stabilizing lies entirely in the interior of X. Seeing that the result is again

a relative trisection according to our definition of relative trisections as coming from

trisecting Morse 2–functions requires seeing that stabilization can be achieved by a

perturbation of the Morse 2–function. The stabilization takes place in a neighborhood

of a boundary parallel arc in some X−1∩X+1. The perturbation of the Morse 2–function

takes place in a neighborhood of that arc and its boundary parallelizing disk, and

literally pulls the arc from lying over A−1 ∩A+1 back to lying over A. This is discussed

in detail in [4].

The fundamental existence and uniqueness result from the closed case still holds in this

relative setting, provided we work relative to fixed boundary data:

Theorem 14 (Existence and Uniqueness). The above decompositions exist and are unique

up to stabilization relative to fixed boundary data. More precisely:

Dimension four: Given any open book de-

composition on the boundary ∂X of a com-

pact connected oriented 4–manifold with

nonempty connected boundary, there exists

a relative trisection of X inducing this open

book on ∂X. Any two trisections of the same

4–manifold inducing the same open book on

the boundary become isotopic after some

number of stabilizations [4].

Dimension three: Given any balanced su-

tured decomposition of the boundary of a

compact connected oriented 3–manifold M

with nonempty connected boundary, there

exists a sutured Heegaard splitting on M in-

ducing the sutured structure on ∂M. Any two

sutured Heegaard splittings of the same 3–

manifold inducing the same boundary data

become isotopic after some number of sta-

bilizations.

Theorem 15 (Gluing). These relative decompositions are especially useful because they

can be glued together when the boundary data agree.

Dimension four: Given relatively trisected

4–manifolds X = X1 ∪ X2 ∪ X3 and X′ = X′
1
∪

X′
2
∪ X′

3
and an orientation reversing diffeo-

morphism ϕ : ∂X → ∂X′ respecting the in-

duced open book decompositions, then the

following decomposition of the closed 4–

manifold X̃ = X ∪ϕ X
′ is a trisection [2]:

X̃ = (X1 ∪ϕ X
′
1
) ∪ (X2 ∪ϕ X

′
2
) ∪ (X3 ∪ϕ X

′
3
)

Dimension three: Given 3–manifolds with

sutured Heegaard splittings M = M1 ∪ M2

and M′ = M′
1
∪M′

2
and an orientation revers-

ing diffeomorphism ϕ : ∂M→ ∂M′ respecting

the induced sutured decompositions, then

the following decomposition of the closed 3–

manifold M̃ = M∪ϕM
′ is a Heegaard splitting:

M̃ = (M1 ∪ϕ M
′
1
) ∪ (M2 ∪ϕ M

′
2
)

The reader should prove the 3–dimensional statement as an exercise. The 4–dimensional

statement takes more work.

An important example of the boundary data one might consider comes, in both cases,

when studying a knot complement.

In dimension three, a classical knot K in S3 gives rise to its exterior E(K) = S3 \ ν(K), a

3–manifold with boundary parametrized as S1 × S1, where the first S1 factor is the meridian,

i.e. the boundary of D2 in ν(K) ∼= D2 × S1. Then (see Figure 5.1) identifying the second S1

factor as ∂([−1,1] × [−1,1]), we can decompose ∂E(K) as −R− ∪ (∂R × [−1,1]) ∪ R+ where

R− = S
1× [−1,1]×{−1}, R+ = S1× [−1,1]×{1} and ∂R−× [−1,1] = S1×{−1,1}× [−1,1]. A

sutured Heegaard splitting of E(K) with respect to these sutures is precisely the restriction of

an ordinary Heegaard splitting of S3 to E(K) when E(K) is in 1–bridge position with respect to

this splitting (equivalently, when K is represented by a doubly pointed Heegaard diagram).

Also, it is not important here that the knot K is in S3, the same construction works in any

closed 3–manifold. But in S3 this is the standard construction used to apply sutured Floer

homology to knot complements [6].
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Dimension four: A relative trisection di-

agram is a tuple (,α, β, γ) where  is a

compact oriented surface with nonempty

boundary and the triples (, α, β), (, β, γ)

and (, γ, δ) are each slide diffeomorphic to

a standard sutured Heegaard diagram as

shown in Figure 5.2a.

Dimension three: A sutured Heegaard di-

agram is a tuple (, α, β) where  is a com-

pact oriented surface with nonempty bound-

ary and the pairs (, α) and (, β) are both

diffeomorphic to a standard pair as shown

on the right in Figure 5.2b.

Note that we have dropped reference to the genus and other parameters describing the

exact standard diagrams used for these definitions since the naming of the parameters at

this point seems not to be helpful. Other references take care to name the genus, number of

boundary components, number of curves, and so forth.

Parts of the following result can be proved as basic exercises in both dimensions, but in

dimension four the heart of the result is perhaps nontrivial and is proved in [3], to which the

reader is referred.

Proposition 17. In which we relate sutured Heegaard diagrams and relative trisection dia-

grams to sutured Heegaard splittings and relative trisections.

Dimension four: Given a relative trisec-

tion diagram D = (, α, β, γ) there is a com-

pact 4–manifold X = X(D) with nonempty

connected boundary with relative trisection

T (D) = (X,X1, X2, X3) such that  = X1 ∩

X2 ∩ X3, oriented according to the conven-

tions in Definition 1, and such that the α

curves bound embedded disks in X3 ∩ X1,

the β curves in X1 ∩ X2 and the γ curves in

X2 ∩ X3.

Dimension three: Given a sutured Hee-

gaard diagram D = (, α, β) there is a su-

tured 3–manifold M = M(D) with sutured

Heegaard splitting S(D) = (M,M1,M2) such

that  = M1 ∩M2, oriented according to the

conventions in Definition 1, and such that

the α curves bound embedded disks in M1

and the β curves bound embedded disks in

M2.

• Any other relatively trisected 4–manifold

satisfying these same properties with re-

spect to the given diagram D is in fact ori-

entation preserving diffeomorphic to T (D).

• Any other 3–manifold with a sutured Hee-

gaard splitting satisfying these same prop-

erties with respect to the given diagram D is

in fact orientation preserving diffeomorphic

to S(D).

• For every relative trisection

T = (X,X1, X2, X3)

of a 4–manifold X there is a relative trisec-

tion diagram D such that T ∼= T (D).

• For every sutured Heegaard splitting

S = (M,M1,M2)

of a 3–manifold M there is a sutured Hee-

gaard diagram D such that S ∼= S(D).

Coming full circle to the Morse theoretic perspective, the last assertion in the result above,

that sutured Heegaard splittings and relative trisections come from diagrams, can be shown

by seeing that a Morse function or Morse 2–function inducing the given decomposition yields,

via the appropriate gradient-like vector fields, descending manifolds for the index 2 critical

points that intersect the central surface in precisely the curves of the diagram.

6. Surfaces in 4–manifolds

Meier and Zupan in [13] introduced the notion of bridge trisections of surfaces embedded

in S4, as the natural trisected generalization of bridge splittings of knots in S3, and further

generalized this to embedded surfaces in arbitrary 4–manifolds. Following our theme, we

introduce these decompositions from a Morse theoretic point of view. To do this we begin

with something easier than Definition 4:

IV–16



Course no IV— From Heegaard splittings to trisections

Definition 18. In which we define Morse functions and Morse 2–functions in the limited

context of dimensions one and two.

Dimension two: A Morse 2–function on a

2–manifold S is a smooth function ƒ : S→ R2

which, at every point p ∈ S, has one of the

following three forms with respect to ap-

propriate local coordinates (t, ) near p and

(,) near ƒ (p):

Dimension one: A Morse function on a 1–

manifold K is a smooth function ƒ : K → R

which, at every point p ∈ M, has one of the

following two forms with respect to appro-

priate local coordinates  near p and  near

ƒ (p):

• (t, ) 7→ ( = t,  = ); here p is called a

regular point.

•  7→  = ; here p is called a regular point.

• (t, ) 7→ ( = t,  = ±2); here p is called

a fold point; in this dimension all folds are

definite.

•  7→  = ±2; here p is called a critical

point, of index 0 if  = 2 and index 1 if  =

−2.

• (t, ) 7→ ( = t,  = 3 − t); here p is called a cusp point.

Here are the parallel basic facts to check (again assume that the domain of ƒ is closed):

• In both cases the inverse image of a regular value is an even number of points.

• In both cases the singular locus, the set of all critical points, is a closed codimen-

sion one submanifold, i.e. a finite collection of points in dimension one and a finite

collection of embedded circles in dimension two.

• In dimension two, the cusp points form a finite collection of points on the singular

locus.

• Via a small perturbation one may assume that the critical points of a Morse function

have distinct critical values

• Letting Z be the singular locus of a Morse 2–function ƒ , via a small perturbation one

may assume that ƒ |Z is an immersion with semicubical cusps, with at worst double

point self intersections, none of which occur at cusps.

• If ƒ : S → R2 is a Morse 2–function and A is an arc in R2 avoiding the cusps and

transverse to the image of the singular locus, then K = ƒ−1(A) is a 1–manifold in X,

with ∂K = ƒ−1(∂A).

• Furthermore, if we identify A with an interval in R via some embedding A ,→ R then

ƒ |M : M → A is a Morse function with critical points where A crosses folds. Reversing

the orientation of A changes the indices of these critical points, with index 0 becoming

index 1 and vice versa.

• Crossing a definite fold in the index 0 direction adds a new pair of points to the fiber

while crossing in the index 1 direction removes such a pair.

Definition 19. In which we define bridge splitting Morse functions and bridge trisecting

Morse 2–functions. (Recall the Rθ and A notation introduced earlier for rays and sectors in

R2.)

Dimension two: A bridge trisecting Morse

2–function ƒ on a surface S is a Morse 2–

function ƒ : S→ R2 such that:

Dimension one: A bridge splitting Morse

function ƒ on a 1–manifold K is a Morse func-

tion ƒ : K → R such that:

• 0 = (0,0) is a regular value of ƒ . • 0 is a regular value of ƒ .
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• On each of the three rays R0, R2π/3 and

R4π/3, ƒ has only index 1 critical points, all

of which have distinct critical values.

• On each of the two rays R0 and Rπ, ƒ has

only index 1 critical points, all of which have

distinct critical values.

• Over each of the three sectors A1, A2 and A3, the singular locus of ƒ consists of arcs from

one bounding ray of A to the next with at most one cusp on each arc. Furthermore, in R2

each of these components is transverse to each ray Rθ except at cusps, which are tangent

to the rays, and ƒ restricted to the singular locus is an immersion with cusps and double

points avoiding the cusps.

A bridge splitting function on a 1–manifold K decomposes K into K1∪K2, where each K is a

collection or arcs. A bridge trisecting function on a surface S decomposes S into S1 ∪ S2 ∪ S3,

where each S is a disjoint union of disks, each S∩Sj is a disjoint union of arcs, and S1∩S2∩S3
is an even number of points.

Definition 20. In which we define bridge splitting Morse functions and bridge trisecting

Morse 2–functions on pairs.

Dimensions two and four: A bridge tri-

secting Morse 2–function ƒ on a surface S

embedded in a 4–manifold X is a trisecting

Morse 2–function ƒ : X → R2 such that ƒ |S is

a bridge trisecting Morse 2–function on S.

Dimensions one and three: A bridge split-

ting Morse function ƒ on a 1–manifold K em-

bedded in a 3–manifold M is a Heegaard

splitting Morse function ƒ : M → R such that

ƒ |K is a bridge splitting Morse function on K.

• A generalized bridge trisection of a sur-

face S embedded in a 4–manifold X is a

decomposition (X, S) = (X1, S1) ∪ (X2, S2) ∪

(X3, S3) coming from a bridge trisecting

function in the the sense that X = ƒ−1(A)

and S = S ∩ X.

• A generalized bridge splitting of a knot or

link K in a 3–manifold M is a decomposition

(M,K) = (M1, K1) ∪ (M2, K2) coming from a

bridge splitting function ƒ , in the sense that

M1 = ƒ
−1(Rπ), M2 = ƒ

−1(R0) and K = K ∩M.

• A bridge trisection is a generalized bridge

trisection of an embedded surface in S4 for

which the underlying trisection of S4 has

genus 0.

• A bridge splitting is a generalized bridge

splitting of a knot or link in S3 for which the

underlying Heegaard splitting has genus 0.

The reader show now check that the following conditions follow; these are usually taken

as the standard definitions of bridge splitting and bridge trisection:

1. In dimensions one and three, the arcs making up K are properly embedded and si-

multaneously boundary parallel in the handlebody M.

2. In dimensions two and four, the disks making up S are properly embedded and simul-

taneously boundary parallel in the 4–dimensional 1–handlebody X.

3. The intersection S ∩ Sj is a collection of arcs properly embedded and simultaneously

boundary parallel in the handlebody X ∩ Xj.

Meier and Zupan [13] showed that every surface in S4 can be isotoped so as to be bridge

trisected by the standard genus 0 trisecting Morse 2–function, and later [14] showed how to

do this in arbitrary 4–manifolds with respect to arbitrary trisections. The analogous statement

for knots and links in 3–manifolds is standard. There are also uniqueness statements up to

stabilization moves, but we will not discuss those here.

There are actually several interesting ways to think about (generalized) bridge trisections

diagrammatically. Since there is quite a lot to say, we describe these vaguely and give ref-

erences for details. Honest bridge trisections, and bridge splittings, are described by tangles

in 3–balls, so these can simply be drawn as standard tangle diagrams. These are the dia-

grams discussed in [13], and are called triplane diagrams. Trivial (boundary parallel) tangles
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can also be described as half-plat closures of braids, and thus bridge trisections can also be

described by braids; this perspective is important in Saltz’s work [16] on Khovanov-style in-

variants of surfaces in S4. In more general 4–manifolds, one needs to record the trisection of

the 4–manifold as well as the surface, and this can be done either through multi-pointed dia-

grams or by “shadow diagrams”, in which each arc in each tangle is described by it’s shadow

on the trisecting surface. Shadow diagrams are used in [9], while multi-pointed diagrams are

discussed in [5].

As a final remark, in the discussion in this section we have assumed that the ambient

manifolds and submanifolds are closed; the fully relative case, in which either or both may

have boundary, is obviously more subtle but can be understood with care. The details have

been worked out by Meier [12].
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