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ON THE EXISTENCE AND INSTABILITY OF SOLITARY WATER
WAVES WITH A FINITE DIPOLE∗

HUNG LE†

Abstract. This paper considers the existence and stability properties of two-dimensional solitary
waves traversing an infinitely deep body of water. We assume that above the water is air and that the
waves are acted upon by gravity with surface tension effects on the air-water interface. In particular,
we study the case where there is a finite dipole in the bulk of the fluid, that is, the vorticity is a sum
of two weighted δ-functions. Using an implicit function theorem argument, we construct a family of
solitary waves solutions for this system that is exhaustive in a neighborhood of 0. Our main result
is that this family is conditionally orbitally unstable. This is proved using a modification of the
Grillakis–Shatah–Strauss method recently introduced by Varholm, Wahlén, and Walsh.
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1. Introduction. This paper is motivated by the following simple experiment.
Imagine that a surface water wave passes over a thin submerged body. Boundary layer
effects may then produce so-called shed vortices—highly localized vortical regions in
the object’s wake. A natural idealization for this phenomenon is a finite dipole, which
is a solution of a weakened version of the Euler equations whose vorticity ω consists
of a pair of Dirac δ-measures (called point vortices) of nearly opposite strength that
are separated by a fixed distance.

It is well-known that, if the problem is posed in the plane, then there are exact
(stable) solutions for which the pair of vortices translate in parallel at a fixed velocity.
Here, we wish to study the far more complicated situation where the dipole lies inside
a water wave. We prove that there exist traveling wave solutions to this system. How-
ever, our main result shows that they are conditionally orbitally unstable. Physically,
this indicates that a pair of counterrotating shed vortices moving with a wave will not
persist over long periods of time. For instance, they may approach and then breach
the surface.

1.1. Main equations. For each time t ≥ 0, let Ωt ⊂ R2 be the fluid domain:

Ωt :=
{

(x1, x2) ∈ R2 : x2 < η(t, x1)
}
,

where the a priori unknown function η = η(t, x1) describes the free surface between
air and water. We define the water wave with a finite dipole problem as follows.

Let v = v(t, ·) : Ωt → R2 be the fluid velocity. The vorticity ω = ω(t, ·) : Ωt → R
is the (scalar) curl of v. In the physics literature, a finite dipole consists of two
counterrotating point vortices. Mathematically, this means that we look for solutions
with

(1.1) ω := ∂x2
v1 − ∂x1

v2 = −εγ1δx̄ + εγ2δȳ,
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in the sense of distributions. Here x̄ = x̄(t) and ȳ = ȳ(t) are the vortex centers, and
εγ1 and −εγ2 are the strengths, respectively. We require that v is a weak solution of
the incompressible Euler equations away from the two point vortices:{

∂tv + (v · ∇)v +∇p+ ge2 = 0 in Ωt\{x̄, ȳ},
∇ · v = 0 in Ωt.

(1.2)

We assume that there is finite excess kinetic energy, which corresponds to v(t, ·) ∈
L1

loc(Ωt) ∩ L2(Ωt\Nt) for any open set Nt containing {x̄, ȳ}.
On the free surface St := ∂Ωt, we have the kinematic and dynamic boundary

condition:

∂tη = −η′v1 + v2, p = bκ on St,(1.3)

where primes indicate derivatives with respect to x1, and κ = κ(t, x1) is the mean
curvature of the surface

κ(t, x1) = − η′′(t, x1)

〈η′(t, x1)〉3
.

Here we are using the bracket notation: 〈·〉 := (1+(·)2)
1
2 . The constant b > 0 in (1.3)

is the coefficient of surface tension.
Finally, the motion of the vortices is governed by the Kirchhoff–Helmholtz model

[13, 15]: {
∂tx̄ =

(
v − γ1

2π ε∇
⊥ log |x− x̄|

)∣∣
x̄
,

∂tȳ =
(
v + γ2

2π ε∇
⊥ log |x− ȳ|

)∣∣
ȳ

(1.4)

with∇⊥ := (−∂x2
, ∂x1

). This system mandates that the point vortices are transported
by the irrotational part of the fluid velocity field and also attract each other due to
the opposite vortex strengths.

1.2. Statement of main results. We are interested in both showing the ex-
istence of solitary waves solutions to (1.1)–(1.4) and determining their stability. As
long as the two point vortices are separated from each other and the surface, the fluid
velocity v can be decomposed as

v = ∇Φ + ε∇Θ(1.5)

in a neighborhood of St, where Φ is a harmonic function and Θ represents the influence
of the dipole. Note that Θ can be written explicitly in terms of x̄ and ȳ. To determine
v, it is enough to know η and the restriction of Φ to the surface St:

(1.6) ϕ = ϕ(t, x1) := Φ (t, x1, η(t, x1)) .

For the steady problem, we look for solutions of the form

η = ηc(x1 − ct), ϕ = ϕc(x1 − ct), x̄ = cte1 + (−a+ ρ)e2, ȳ = cte1 + (−a− ρ)e2,

where (ηc, ϕc) are time-independent and spatially localized. Here, (0,−a) is the center
of the dipole, and 2ρ is the separation between the point vortices. Specifically, we
work in the space

(1.7) (η, ϕ, a, ρ) ∈ X = X1×X2×X3×X4 := Hk
e (R)×

(
Ḣk−1
o (R) ∩ Ḣ1/2

o (R)
)
×R×R
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4076 HUNG LE

with real number k > 3
2 that can be freely chosen,

Hk
e (R) := {f ∈ Hk(R) : f is even in x1}, Hk

o (R) := {f ∈ Hk(R) : f is odd in x1},

and let Ḣk
o (R) be the corresponding homogeneous space. Then our first result is the

existence of traveling capillary-gravity water waves with a finite dipole. This theorem
is an analogue of the work of Varholm on the water wave problem with point vortices
in finite depth [31].

Theorem 1.1 (existence). Fix a real number k > 3
2 and integer ` ≥ 1. Let

a0 ∈ (0,∞), ρ0 ∈ (0, a0), γ0
1 > 0, and γ0

2 > 0 be given subject to the compatibility
condition

γ0
2 =

a3
0 + ρ3

0

a3
0 − ρ3

0

γ0
1 .(1.8)

Then, there exists ε1 > 0, γ1
1 > 0, γ1

2 > 0, and a C` family of traveling water waves
with a finite dipole:

Cloc = {(η(ε, γ1, γ2), ϕ(ε, γ1, γ2), a(ε, γ1, γ2), ρ(ε, γ1, γ2), c(ε, γ1, γ2)) :

|ε| < ε1, |γ1 − γ0
1 | < γ1

1 , |γ2 − γ0
2 | < γ1

2

}
⊂ X × R.

In particular, at (ε, γ1, γ2) = (0, γ0
1 , γ

0
2), (η, ϕ, c) = (0, 0, 0) and (a, ρ) = (a0, ρ0).

Remark 1.2. More precise asymptotics for the family Cloc are given in (2.9) and
(2.10). Also, for simplicity, we have suppressed one of the parameters; for further
details, see the proof in section 2.3.

Because the vorticity is conserved for the time-dependent problem, when we ana-
lyze the stability of these waves it is more natural to fix ε, γ1, γ2. In the construction
of Cloc, we show that c = εc̃0 +O(ε2), where c̃0 is explicitly determined by a0, ρ0, γ

0
1 ,

and γ0
2 . Therefore, we can fix 0 < |ε| � 1 and reparameterize locally in terms of c.

This results in a curve of solitary waves indexed by the wave speed:

Uc := (η(c), ϕ(c), x̄(c), ȳ(c)).

The compatibility condition (1.8) implies that the lower vortex at ȳ must have
a greater strength than the upper vortex at x̄, that is, γ2 > γ1 for 0 < ρ0 < a0

sufficiently small. This is a consequence of the fact that x̄ is closer to the free surface St
and is therefore influenced by it more strongly. We emphasize that the compatibility
condition is not artificial; rather, it is necessary for the existence of a steady solution to
the classical problem of a dipole moving through the lower half-plane bounded above
by a fixed rigid lid. Moreover, as the family Cloc is exhaustive in a neighborhood of
0 in the space X, (1.8) must hold for any sufficiently small-amplitude, slow moving
waves with even symmetry and having the regularity in (1.7).

Returning to the time-dependent problem, we introduce two important spaces.
Let

(1.9) X := X1 × X2 × X3 × X4 := H1(R)× Ḣ1/2(R)× R4,

and set

(1.10) W := W1 ×W2 ×W3 ×W4 := H3+(R)×
(
Ḣ5/2+(R) ∩ Ḣ1/2(R)

)
× R4,
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INSTABILITY OF FINITE DIPOLE 4077

where Hk+ means Hk+s for some fixed 0 < s � 1. We think of W as the well-
posedness space for (1.1)–(1.4). A local well-posedness result for irrotational capillary-
gravity water waves with this degree of regularity was proved by Alazard, Burq, and
Zuily [1]. On the other hand, X is the natural energy space. This is discussed in more
detail in section 3.1. Finally, for the problem to be well-defined, the finite dipole must
be away from the free surface, so we take

O := {u ∈ X : x̄2 < η(x̄1) < −x̄2, ȳ2 < η(ȳ1) < −ȳ2, x̄ 6= ȳ} .(1.11)

To simplify our computation, we will incorporate the reflection of each point vortex
over the free surface, and hence the upper limits −x̄2 and −ȳ2 ensure those reflections
stay in the air region.

To state the main result, we introduce some terminology. First, observe that the
entire system is invariant under the one-parameter affine symmetry group T (s) : X→
X defined by

(1.12) T (s)u := T (s)(η, ϕ, x̄, ȳ)T = (η(· − s), ϕ(· − s), x̄+ se1, ȳ + se1)T .

This suggests that stability or instability should be understood modulo T (s). With
that in mind, for each ρ > 0, we define the tubular neighborhood

Uρ :=

{
u ∈ O : inf

s∈R
‖T (s)Uc − u‖W < ρ

}
.

Definition 1.3. We say Uc is orbitally unstable provided that there is a ν0 > 0
such that for every 0 < ν < ν0 there exists initial data in Uν whose corresponding
solution exits Uν0 in finite time.

Our main theorem is as follows.

Theorem 1.4 (instability). Assuming that (1.1)–(1.4) is locally well-posed in
W in the sense that there exists ν0 > 0 and t0 > 0 such that for all initial data
u0 ∈ Uν0 , there exists a unique solution to the abstract Hamiltonian system (3.8) on
the interval [0, t0). Then for any ε 6= 0 sufficiently small, the corresponding family of
solitary capillary-gravity water waves with a finite dipole Uc furnished by Theorem 1.1
is conditionally orbitally unstable.

One physical interpretation for this is that, while we can construct steady con-
figurations of counterrotating vortices moving in parallel through a water wave, these
will not tend to persist over long periods of time. Instead, we expect them to migrate
to the surface of the water, fail to keep pace with the surface wave, or otherwise desta-
bilize. Moreover, this result covers all sufficiently small amplitude, wave speed, and
vortex strength waves with even symmetry because Cloc comprises also such waves
near 0 in X.

The instability result in this paper can be understood roughly as follows. The
family Cloc of water waves is constructed using the implicit function theorem at a
trivial state where the free surface is completely flat η = 0 and Φ = 0. At leading
order, this problem is analogous to the motion of a dipole in the lower half-plane
bounded above by a rigid lid. This is a well-studied finite-dimensional Hamiltonian
system. The compatibility condition (1.8) guarantees the existence of a family of
steady solutions to this ODE; these are effectively in one-to-one correspondence to
Cloc. We find that, in a neighborhood of the bifurcation point, the finite-dimensional
dynamics dominates, and so the orbital instability of the water waves is inherited
from the instability of the corresponding dipole configuration in the lower half-plane.
See the discussion in sections 2.4 and 3.4
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1.3. History of the problem. The study of point vortices was initiated by
Helmholtz [13] and Kirchhoff [16], who independently developed the model (1.4).
Since then, there has been extensive research on this subject. The majority of this
work concerns vortices in fixed fluid domains. For instance, Love found a condition
under which the motion of two pairs of vortices may be periodic [18] and investigated
the stability of Kirchhoff’s elliptic vortex [19]. Aref and Pomphrey [3] examined
the chaotic behavior of a more general system of four point vortices. Marchioro
and Pulvirenti [20] later justified the connection between the incompressible Euler
equation (1.2) and the Kirchhoff–Helmholtz model (1.4). Aref and Newton gave a
thorough review of the results for the N -vortex problem in the plane [2, 22] or on
the surface of the sphere [22]. Recently, Smets and Van Schaftingen [26] and Cao,
Liu, and Wei [5] studied the existence of solutions to the point vortex problem in a
bounded domain using either a variational or Lyapunov–Schmidt reduction approach.
Point vortex models can also be used in studies of atmosphere and oceans [4].

When a dipole is placed inside a water wave, which is the case in this paper, inves-
tigating the existence and stability of solutions is much more involved mathematically
as it requires developing an understanding of the interaction between the motion of
the vortices and the free surface. Nonetheless, there have been a sizable number of
studies in this regime. The first rigorous existence theory for steady solutions was
given by Filippov [10] and Ter-Krikorov [29], who investigated the finite-depth regime
in the purely gravitational case. Moreover, Shatah, Walsh, and Zeng constructed a
family of traveling capillary gravity waves in infinite depth water with a single point
vortex [24]. Using a similar method, Varholm obtained analogues for capillary-gravity
waves with one or more vortices in finite depth [31]. Our existence theory follows in
large part from the techniques in these two papers.

We also mention that recently several authors have considered the related problem
of steady rotational water waves with one or more stagnation points in the bulk. As
in the case of waves with a point vortex or dipole, these may have closed streamlines,
which requires some inventiveness to treat. For instance, Ehrnström and Villari [9],
Wahlén [33], and Ehrnström, Escher, and Wahlén [8] find families of small-amplitude
periodic water waves with vorticity that have one or more critical layers (that is, lines
of stagnation points in the interior of the fluid domain).

In terms of stability theory, our main source of inspiration is the recent paper
by Varholm, Wahlén, and Walsh [32] that proves the orbital stability of traveling
capillary gravity waves with a single point vortex. As we explain below, we will adopt
a similar methodology. However, the dipole turns out to be significantly more difficult
to analyze at a technical level. One way to account for this is to note that, at leading
order, the stability theory is dictated by the corresponding finite-dimensional problem
where the free surface is replaced by a rigid lid. With a single point vortex, we can
introduce a mirror vortex and consider the system of two vortices in the plane. On
the other hand, with a dipole, this leads to a four body problem, which is far more
subtle.

It is well-known in the physics literature that the governing equations for water
waves with submerged point vortices have a Hamiltonian structure. Rouhi and Wright
gave the formulation for the motion of vortices in the presence of a free surface in two
and three dimensions [23]. A similar formulation was later given by Zakharov [35].

There have also been a number of numerical results about vortex pairs in a fluid.
The closest to the current problem is the recent paper of Curtis, Carter, and Kalisch
[7], who studied how constant vorticity shear profile affects the motion of the particles
both at and beneath waves in infinitely deep water. Many authors have looked at
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the related scenario where a submerged dipole is sent moving toward the free surface
rather than moving with the wave; see, for example, [28, 34, 30]. In all of these papers,
the authors found cases where the vortices are able to breach the upper boundary.
The exact opposite scenario was considered by Su [27], who found that if a dipole
initially moves away from the surface, the solution will persist over a long time scale.
This is in stark contrast to the present paper, where we ask the dipole to move with
the wave.

1.4. Plan of the article. This paper contains two main sections. In section 2,
we show the existence of traveling capillary-gravity waves with a finite dipole. This
follows from an implicit function theorem argument in the spirit of Varholm [31] and
Shatah, Walsh, and Zeng [24]. Then, in section 3, we prove that these waves are
orbitally unstable.

We first establish that (1.1)–(1.4) can be formulated as an infinite-dimensional
Hamiltonian system of the form

du

dt
= J(u)DE(u)

with J being the Poisson map and E the energy functional. This is similar but
distinct from the version due to Rouhi and Wright [23]. We offer a rigorous derivation
in Theorem 3.3.

In two seminal papers [11, 12], Grillakis, Shatah, and Strauss (GSS) provided
a fairly simple method for determining the stability or instability of traveling wave
solutions to systems of this form that are invariant under a continuous symmetry
group. Among the hypotheses of this theory are that the Poisson map J is invertible
and that the initial value problem is globally well-posed in time. Unfortunately, our
J is state-dependent and not surjective. Moreover, we do not expect the problem to
be well-posed in the energy space.

In this paper, we will use a recent variant of the GSS method developed by
Varholm, Wahlén, and Walsh [32]. Among other improvements, this machinery per-
mits J to have merely a dense range and also allows for a mismatch between the space
where the problem is well-posed and the natural energy space. In the present context,
the latter point relates to the fact that W " X. As one of the hypotheses to apply
the instability theory [32], we must compute the spectrum of the second variation of
the augmented Hamiltonian defined in section 3.2.

For the convenience of the reader, steady and unsteady equations for the velocity
potential and stream functions are provided in Appendix A. In Appendix B, we record
the variations of the energy and momentum functional.

2. Existence theory. This section is devoted to proving the existence of trav-
eling capillary-gravity water waves with a finite dipole. We will adopt a methodology
introduced by Varholm [31] and Shatah, Walsh, and Zeng [24]. The first step is to
reformulate (1.1)–(1.4) in the spirit of Zakharov [35] and Craig and Sulem [6]. This
entails reducing the problem to a nonlocal system involving only surface variables.

2.1. Harmonic conjugates and splitting. Recall that we wish to split the
velocity field v as in (1.5). For the rotational contribution, we take

Θ = Θ1 + Θ2 + Θ∗1 + Θ∗2

D
ow

nl
oa

de
d 

08
/0

2/
20

 to
 1

61
.1

30
.1

88
.2

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4080 HUNG LE

with

Θ1(x) = − γ1

2π
arctan

(
x1 − x̄1

|x− x̄|+ x2 − x̄2

)
,

Θ∗1(x) =
γ1

2π
arctan

(
x1 − x̄∗1

|x− x̄∗| − x2 − x̄∗2

)
,

Θ2(x) =
γ2

2π
arctan

(
x1 − ȳ1

|x− ȳ|+ x2 − ȳ2

)
,

Θ∗2(x) = − γ2

2π
arctan

(
x1 − ȳ∗1

|x− ȳ∗| − x2 − ȳ∗2

)
.

Here x̄∗ = (x̄1,−x̄2) and ȳ∗ = (ȳ1,−ȳ2) are the reflection of the two point vortices
over the x1-axis. This corresponds to making a branch cut straight down from the
vortex centers. It is easy to see that ∇Φ and ε∇Θ are both in L2 on the complement
of any neighborhood of x̄ and ȳ.

It is often useful to work with the harmonic conjugates of these functions. In
particular, let Γ be the stream function corresponding to Θ, that is, ∇Θ = ∇⊥Γ.
Then we have

Γ = Γ1 + Γ2 + Γ∗1 + Γ∗2,

where

Γ1(x) =
γ1

2π
log |x− x̄|, Γ2(x) = − γ2

2π
log |x− ȳ|,

Γ∗1(x) = − γ1

2π
log |x− x̄∗|, Γ∗2(x) =

γ2

2π
log |x− ȳ∗|.

Notice that −∆Γ = −γ1δx̄ + γ2δȳ, and hence −ε∆Γ = ω. Let Ψ be the harmonic
conjugate of Φ, so that

v = ∇⊥Ψ + ε∇⊥Γ.

We denote by ψ the restriction of Ψ to the free boundary:

(2.1) ψ = ψ(t, x1) := Ψ(t, x1, η(t, x1)).

Finally, define

Ξ1 := Θ1 −Θ∗1, Ξ2 := Θ2 −Θ∗2, Υ1 := Θ1 + Θ∗1, Υ2 := Θ2 + Θ∗2,

so that Θ = Υ1 + Υ2. This will be convenient for computing ∂x̄Θ.

2.2. Nonlocal formulation. As mentioned above, rather than working with
the Euler equations in the domain Ωt, we will reformulate the problem in terms of the
surface variables (η, ϕ) or (η, ψ), and the location of the vortex centers (x̄, ȳ). The
normal component of the velocity field on the free boundary can be recovered from
normal derivatives of Φ or tangential derivatives of Ψ. To express these in terms of
ϕ or ψ, we use the Dirichlet–Neumann operator G(η) : Ḣ1/2(R)∩ Ḣk(R)→ Ḣk−1(R)
defined by

G(η)φ := (−η′∂x1φH + ∂x2φH)|St ,(2.2)

where φH := 〈H(η), φ〉 ∈ Ḣk+1/2(Ωt) is the harmonic extension of φ to Ωt determined
uniquely by

∆φH = 0 in Ω, φH = φ on St,
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and k > 1
2 . It is well-known that for any η ∈ Hk0(R), k0 > 3/2, G(η) is a bounded,

invertible, and self-adjoint operator between these spaces when k ∈ [1−k0, k0]. More-
over, the mapping η 7→ G(η) is C∞ and G(0) = |∂x1

| (see, for example, the book by
Lannes [17] and the paper by Shatah and Zeng [25]).

Using these ideas, the water wave problem can be rewritten as the following
system for the unknowns (η, ϕ, x̄, ȳ):
(2.3)

∂tη = G(η)ϕ+ ε∇⊥Θ,

∂tϕ = − 1
2〈η′〉2

(
(ϕ′)2 − 2η′ϕ′G(η)ϕ− (G(η)ϕ)2

)
− ε∂tΘ− εϕ′∂x1

Θ− ε2

2 |∇Θ|2

− gη + b η′′

〈η′〉3 ,

∂tx̄ = ∇Φ(x̄) + ε∇Θ∗1(x̄) + ε∇Θ2(x̄) + ε∇Θ∗2(x̄),

∂tȳ = ∇Φ(ȳ) + ε∇Θ1(ȳ) + ε∇Θ∗1(ȳ) + ε∇Θ∗2(ȳ).

The equations for ∂tx̄ and ∂tȳ come from the Kirchhoff–Helmholtz model (1.4). Note
that due to symmetry, many of the components are zero. Nonetheless, we choose to
write it as above to clarify the meaning of each term. Recall that ϕ = Φ|St as in (1.6)
and describes the irrotational part of the velocity field. Here we have made use of the
differential operators

∇⊥ := (−η′∂x1
+ ∂x2

)|St
, ∇> := (∂x1

+ η′∂x2
)|St

,(2.4)

which come naturally as we take derivatives of functions restricted to the free surface.
Note that in (2.3), the equation for ∂tη can be derived from the kinematic bound-

ary condition, but now Θ appears as a forcing term. We can see that the evolution
of ϕ is determined by the unsteady Bernoulli equation (A.3).

2.3. Existence of traveling waves. Now we are prepared to prove the exis-
tence theorem. As this is done in the steady frame, we will simply write S := St and
Ω := Ωt. We also use subscripts x1 and x2 to denote partial derivatives.

Proof of Theorem 1.1. For convenience, we prove this result using ψ, which im-
mediately gives the stated theorem in terms of ϕ. Traveling wave solutions of (2.3)
have the ansatz

η = η(x1 − ct), ψ = ψ(x1 − ct), ∂tx̄ = ce1, ∂tȳ = ce1

for a wave speed c ∈ R. Inserting this into (2.3) and writing it in terms of ψ, we arrive
at the steady problem. Stated as an abstract operator equation, it has the form

(2.5) F(ε, c, γ1, γ2; η, ψ, a, ρ) = 0,

where F = (F1,F2,F3,F4) : R4 ×X → Y is defined by

F1 :=
c

1 + (εη′)2
(ψ′ + η′G(η)ψ) + εcΓx2

|S +
1

2(1 + (η′)2)

(
(ψ′)2 + (G(η)ψ)2

)
+

ε

1 + (η′)2
(G(η)ψ∇⊥Γ + ψ′∇>Γ) +

ε2

2
|(∇Γ)|S |2 + gη + bκ(η),

F2 := cη′ + ψ′ + ε(1, η′)T · ∇Γ,

F3 := c+ (∂x2ψH) (x̄) + εΓ2x2
(x̄) + εΓ∗1x2

(x̄) + εΓ∗2x2
(x̄),

F4 := c+ (∂x2
ψH) (ȳ) + εΓ1x2

(ȳ) + εΓ∗1x2
(ȳ) + εΓ∗2x2

(ȳ).

(2.6)
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Here, ∇Γ is evaluated at x2 = η(x1), the domainX is given by (1.7), and the codomain

Y = Y1 × Y2 × Y3 × Y4 := Hk−2
e (R)×

(
Ḣk−2
o (R) ∩ Ḣ−1/2

o (R)
)
× R× R

for k > 3
2 fixed.

It is easy to calculate that

D(η,ψ,a,ρ)F (0, 0, γ1, γ2; 0, 0, a0, ρ0) =


g − b∂2

x1
0 0 0

0 ∂x1
0 0

0 (∂x2〈H(0), ·〉) |(0,−a0+ρ0) 0 0
0 (∂x2〈H(0), ·〉) |(0,−a0−ρ0) 0 0

 .

We see from the first two rows of the operator matrix that an implicit function theorem
argument allows us to uniquely solve (F1,F2) = (0, 0) locally for η and ψ in terms
of ε, c, γ1, γ2, a, and ρ. Moreover, this dependence is at least C1. Notice, however,
that when ε = 0, setting (η, ψ) = (0, 0) gives a solution to (F1,F2) = (0, 0) for any
(c, γ1, γ2, a, ρ). By uniqueness, this implies that when ε = 0, all small-amplitude
waves must be trivial in that η and ψ vanish. In fact, looking at the equations
(F3,F4) = (0, 0), we can further infer that c = 0 as well.

With that in mind, we introduce a rescaling:

η =: εη̃, ψ =: εψ̃, Ψ =: εΨ̃, c =: εc̃,

which will counteract the degeneracy in the linearized problem for F3 and F4. While
this in principle restricts the analysis to a cone in X, by the above discussion, we see
that it does not incur any loss of generality.

In the rescaled variables, the traveling wave problem for (2.3) becomes

F̃(ε, c̃, γ1, γ2; η̃, ψ̃, a, ρ) = 0,

where F̃ : R4 ×X → Y is given by

F(ε, c, γ1, γ2; η, ψ, a, ρ) = εF̃(ε, c̃, γ1, γ2; η̃, ψ̃, a, ρ).

First, we look for a trivial solution to the rescaled problem. Setting ε = 0, we see
that F̃1 = 0 becomes

gη̃ − bη̃′′ = 0,

and hence η̃ must be at least O(ε). Likewise, looking at F̃2 = 0 shows that ψ̃ must
vanish when ε = 0.

Now, taking η̃0 = 0 and ψ̃0 = 0 and fixing γ0
1 , γ0

2 , a0, ρ0 ∈ R, it is clear that

F̃(0, c̃0, γ
0
1 , γ

0
2 ; η̃0, ψ̃0, a0, ρ0) = 0

if and only if

c̃0 = −Γ2x2
(0,−a0 + ρ0)− Γ∗1x2

(0,−a0 + ρ0)− Γ∗2x2
(0,−a0 + ρ0)

= − γ0
1

4π(a0 − ρ0)
+
γ0

2

4π

(
1

a0
+

1

ρ0

)
(2.7)D
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and the compatibility condition (1.8) holds. A simple computation shows that

L := D(η̃,ψ̃,a,ρ)F̃
(
0, c̃0, γ

0
1 , γ

0
2 ; 0, 0, a0, ρ0

)

=


g − b∂2

x1
0 0 0

0 ∂x1
0 0

0 (∂x2
〈H(0), ·〉) |(0,−a0+ρ0) − γ0

1

4π(a0−ρ0)2 +
γ0
2

4πa20

γ0
1

4π(a0−ρ0)2 +
γ0
2

4πρ20

0 (∂x2
〈H(0), ·〉) |(0,−a0−ρ0) − γ0

1

4πa20
+

γ0
2

4π(a0+ρ0)2
γ0
2

4π(a0+ρ0)2 +
γ0
1

4πρ20

 .

As before, inspecting the first two rows of L , we see that η̃ and ψ̃ can be solved
explicitly. This follows because g−b∂2

x1
and ∂x1 are bounded and invertible operators

between the corresponding spaces. On the other hand, the operators in the column
below ∂x1

are bounded. Thus, the invertibility of L is equivalent to the invertibility
of the 2× 2 real submatrix:

T :=

−
γ0

1

4π(a0 − ρ0)2
+

γ0
2

4πa2
0

γ0
1

4π(a0 − ρ0)2
+

γ0
2

4πρ2
0

− γ0
1

4πa2
0

+
γ0

2

4π(a0 + ρ0)2

γ0
2

4π(a0 + ρ0)2
+

γ0
1

4πρ2
0

 .(2.8)

By the compatibility condition (1.8), we have

det T = − (γ0
1)2

16π2

6(a4
0 − a2

0ρ
2
0 + ρ4

0)

(a0 + ρ0)(a0 − ρ0)3(a2
0 + a0ρ0 + ρ2

0)2
< 0.

Thus, L is an isomorphism.
The implicit function theorem then tells us that, for any ` ≥ 1, there exists a C`

family Cloc of solutions of the form

F̃(ε, c̃, γ1, γ2; η̃(ε, c̃, γ1, γ2), ψ̃(ε, c̃, γ1, γ2), a(ε, c̃, γ1, γ2), ρ(ε, c̃, γ1, γ2)) = 0

for all |ε| � 1, |c̃− c̃0| � 1, |γ1 − γ0
1 | � 1, and |γ2 − γ0

2 | � 1.
Finally, we translate this result to the statement in Theorem 1.1. Recalling the

scalings, we see that the wave speed can be viewed as a function c = c(ε, c̃) := εc̃.
Suppressing the dependence of (η, ψ, a, ρ, c) on c̃ gives Cloc. From the argument above,
it is clear that all traveling wave solutions in a neighborhood of 0 in X are captured
by this family.

For the stability analysis, we rely on asymptotic information about the traveling
waves constructed above. Using implicit differentiation, one can readily compute that

η(ε, c̃, γ1, γ2) = −ε2(g − b∂2
x1

)−1 [c̃0Γx2
(x1, 0)]

+O(|ε|3 + |ε||c− c0|2 + |ε||γ1 − γ0
1 |2 + |ε||γ2 − γ0

2 |2),

ψ(ε, c̃, γ1, γ2) = O(|ε|3 + |ε||c− c0|2 + |ε||γ1 − γ0
1 |2 + |ε||γ2 − γ0

2 |2),

(2.9a)

in C1(U ;X1) and C1(U,X2), respectively, where U is a neighborhood of (0, c0, γ
0
1 , γ

0
2)

in R4. Likewise,

a(ε, c̃, γ1, γ2) = a0 + εac̃(c− c0) + aγ1(γ1 − γ0
1) + aγ2(γ2 − γ0

2)

+O(|ε|2 + |c− c0|2 + |γ1 − γ0
1 |2 + |γ2 − γ0

2 |2),

ρ(ε, c̃, γ1, γ2) = ρ0 + ερc̃(c− c0) + ργ1(γ1 − γ0
1) + ργ2(γ2 − γ0

2)

+O(|ε|2 + |c− c0|2 + |γ1 − γ0
1 |2 + |γ2 − γ0

2 |2),

(2.9b)
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in C1(U ;R). Here, c̃0, T are given by (2.7)–(2.8). We note that the expression (2.9)
contains both c and c̃ = c/ε. The coefficients ac̃, aγ1 , aγ2 , ρc̃, ργ1 , and ργ2 are
variations at the point (0, c̃0, γ

0
1 , γ

0
2) with respect to c̃, γ1, and γ2, respectively. In

particular,

ac̃ =
1

det T

(
− γ0

2

4π(a0 + ρ0)2
− γ0

1

4πρ2
0

+
γ0

1

4π(a0 − ρ0)2
+

γ0
2

4πρ2
0

)
,

ρc̃ =
1

det T

(
γ0

2

4π(a0 + ρ0)2
− γ0

1

4πa2
0

+
γ0

1

4π(a0 − ρ0)2
− γ0

2

4πa2
0

)
.

(2.10)

2.4. The compatibility condition and dipoles in the half-plane. It is
instructive to compare the submerged dipoles constructed in Theorem 1.1 to the
classical problem of dipoles in the lower half-plane. Suppose for a moment that the
x1-axis represents a rigid lid and x̄(t) and ȳ(t) represent point vortices in a fluid
confined to the lower half-plane {x2 < 0}. The Kirchhoff–Helmholtz model for this
system is the (finite-dimensional) point vortex system:

(2.11)

{
∂tx̄ = ε∇⊥Γ∗1(x̄) + ε∇⊥Γ2(x̄) + ε∇⊥Γ∗2(x̄),

∂tȳ = ε∇⊥Γ1(ȳ) + ε∇⊥Γ∗1(ȳ) + ε∇⊥Γ∗2(ȳ).

Note that the phantom vortices here ensure that the fluid velocity is tangential on
the lid.

An elementary calculation confirms that

x̄(t) = cte1 + (−a+ ρ)e2, ȳ(t) = cte1 + (−a− ρ)e2

is a steady solution of (2.11) if and only if the compatibility condition (1.8) holds and
the wave speed satisfies

c = − γ1

4π(a− ρ)
+
γ2

4π

(
1

a
+

1

ρ

)
which is equivalent to (2.7). From this point of view, the family Cloc represents a
perturbation of the above steady dipole configuration. Indeed, the free surface η is
O(|ε|2) and ψ is even higher order (in the appropriate norms), so it is reasonable to ex-
pect that the stability of the waves is determined by the stability of the corresponding
solution to the half-plane problem.

3. Instability theory. In this section, we show that the traveling waves con-
structed in Theorem 1.1 are orbitally unstable. Heuristically, this can be attributed
to the instability of dipoles in a half-plane as discussed above. To make this rigorous
for the water wave problem, we follow the general strategy of Varholm–Wahlén–Walsh
[32], which is an adaptation of the classical GSS method [11, 12]. In section 3.1, we
rewrite the equations of capillary-gravity waves with a finite dipole (1.1)–(1.4) as a
Hamiltonian system and give an explicit form for its energy functional E and momen-
tum functional P . We also establish that the traveling waves are critical points of the
so-called augmented Hamiltonian E − cP . In section 3.2, we analyze the spectrum of
the second variation of the augmented Hamiltonian at a small-amplitude wave in Cloc.
It is shown that it has the required configuration for [11, 12]. This calculation is done
in the spirit of Mielke’s work on irrotational capillary-gravity waves [21]. Finally, in
section 3.3, we complete the proof of our main result by computing the second deriv-
ative of the moment of instability for small waves in this family. This shows, via [32,
Theorem 2.6], such waves are not local minima of the energy on the fixed momentum
manifold and are consequently (conditionally) orbitally unstable.
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3.1. Hamiltonian formulation.

Hamiltonian structure and functional analytic setting. We first show that
the system of equations (2.3) has a Hamiltonian structure in terms of the state variable
u = (η, ϕ, x̄, ȳ)T . Define the energy E = E(u) to be

(3.1) E(u) := K(u) + V (u),

where K is the (excess) kinetic energy and V is the potential energy. The submerged
dipole does not affect the latter, and so we expect

V (u) :=

∫
R

(
1

2
gη2 + b(〈η′〉 − 1)

)
dx1.(3.2)

However, some care is needed in deriving the correct expression for K. Formally,
we take the classical kinetic energy 1

2

∫
Ω
|v|2 dx, split v according to (1.5), and then

integrate by parts. We will end up with terms on the boundary plus terms at the
vortex centers. The Newtonian potentials in Γ will naturally lead to some of these
being singular, and those we discard. This process is equivalent to removing the self-
advection of the point vortices as in the Helmholtz–Kirchhoff model (see, for example,
[23]). What results is the following:

K(u) := K0(u) + εK1(u) + ε2K2(u)

=
1

2

∫
R
ϕG(η)ϕdx1 + ε

∫
R
ϕ∇⊥Θ dx1 + ε2

(
1

2

∫
R

Θ|St
∇⊥Θ dx1 + Γ∗

)
,

where

Γ∗ :=
γ1

2

(
Γ∗1(x̄) + Γ2(x̄) + Γ∗2(x̄)

)
− γ2

2

(
Γ1(ȳ) + Γ∗1(ȳ) + Γ∗2(ȳ)

)
.

Note that K0 = 1
2

∫
Ω
|∇Φ|2 dx and hence represents the kinetic energy contributed by

the purely irrotational part of the velocity. On the other hand, K1 is the interaction
between the irrotational and rotational parts, and K2 is the kinetic energy attributed
to the rotational part. Finally, ε2Γ∗ is the kinetic energy for dipoles in the lower
half-plane.

Recall that the energy space X was defined by (1.9) and the well-posedness space
W was defined by (1.10). As X is a Hilbert space, it is isomorphic to its continuous
dual X∗, and the isomorphism I : X→ X∗ takes the form

I = (1− ∂2
x1
, |∂x1

|, IdR2 , IdR2),

where IdR2 is the 2× 2 identity matrix. For the Dirichlet–Neumann operator in E to
be well-defined, we must have that η is at least Lipschitz continuous. This forces us
to work in a smoother space than X:

(3.3) V := V1 × V2 × V3 × V4 := H3/2+(R)×
(
Ḣ1+(R) ∩ Ḣ1/2(R)

)
× R4.

As before, we are using the standard shorthand Hs+ for Hs+ε with fixed ε > 0 taken
sufficiently small and then suppressed.

From the definition of the energy in (3.1), we see that E ∈ C∞(O ∩ V;R). In
short, our Hamiltonian structure is formulated in X, and that is where we will conduct
our spectral analysis. On the other hand, the conserved quantities are only smooth in
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V. One of the main ideas in [32] is that one can bridge this gap to control quantities in
V using the assumption of boundedness in the local well-posedness space W and inter-
polation. For that, we use the following lemma, which is an immediate consequence
of the Gagliardo–Nirenberg interpolation inequality.

Lemma 3.1 (spaces). There exist constants θ ∈ (0, 1] and C > 0 such that

‖u‖3V ≤ C‖u‖2+θ
X ‖u‖1−θW

for all u ∈W.

Next, in order to give the symplectic structure of the Hamiltonian system, we need
to describe the Poisson map J(u). We first encode the structures for water waves and

point vortices by themselves by considering the closed operator Ĵ : D(Ĵ) ⊂ X∗ → X
defined by

(3.4) Ĵ :=


0 1 0 0
−1 0 0 0
0 0 (εγ1)−1J 0
0 0 0 −(εγ2)−1J

 ,

where J is a 2× 2 real matrix

J =

(
0 −1
1 0

)
and

D(Ĵ) = (H−1(R) ∩ Ḣ1/2(R))× (H1(R) ∩ Ḣ−1/2(R))× R2 × R2.

It is well-known that the irrotational water waves problem possesses a canonical
Hamiltonian structure [6, 35]; this is represented by the upper-left 2 × 2 submatrix
in (3.4). Likewise, the motion of a finite dipole in the plane is Hamiltonian with the
Poisson map given by the lower-right 4× 4 submatrix (see, for example, [22]).

We must now account for wave-vortex interaction. As we saw in the proof of
Theorem 1.1, this should intuitively be a lower order term. Let B ∈ C1(O; Lin(X)) ∩
C1(O ∩W; Lin(W)) be defined by

(3.5) B(u) := IdX + Z(u),

where

Z(u)ẇ :=


0 0 0 0

−ε(γ1)−1(J ξ|St)
T ε(γ2)−1(J ζ|St)

T εξT |St εζT |St

γ−1
1 J 0 0 0
0 −(γ2)−1J 0 0



〈ξ|St

, η̇〉
〈ζ|St

, η̇〉
˙̄x
˙̄y


for all ẇ = (η̇, ϕ̇, ˙̄x, ˙̄y)T ∈ O with

ξ := −∇x̄Θ = (Υ1x1
,Ξ1x2

)T , ζ := −∇ȳΘ = (Υ2x1
,Ξ2x2

)T .

Writing Z this way, while hard to motivate physically, is convenient in that it is clearly
finite-rank. Here we are following a similar idea from [32].

Finally, for each u ∈ O, let the Poisson map J(u) : D(Ĵ) ⊂ X∗ → X be defined
by

J(u) := B(u)Ĵ .
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We see that B is state-dependent, but it is a C1 compact perturbation of identity
and bijective (see parts (iii) and (iv) of Lemma 3.2). On the other hand, Ĵ is state-

independent, but it is not surjective. The decomposition of J into Ĵ and B allows
us to treat each of the difficulties one at a time. In particular, this makes it easy to
confirm that J depends smoothly on u in an appropriate way.

It is useful to write down explicitly the form of J(u), which can be computed

directly from the definition of B and Ĵ :

J(u) := B(u)Ĵ =


0 1 0 0
−1 J22 J23 J24

0 J32 (εγ1)−1J 0
0 J42 0 −(εγ2)−1J

 ,(3.6)

where

J22 := εΥ1x1
|St
〈·,−γ−1

1 Ξ1x2
|St
〉+ εΞ1x2

|St
〈·, γ−1

1 Υ1x1
|St
〉

+ εΥ2x1
|St 〈·, γ−1

2 Ξ2x2
|St〉+ εΞ2x2

|St 〈·,−γ−1
2 Υ2x1

|St〉,

J23 :=
(
γ−1

1 Ξ1x2
|St
, − γ−1

1 Υ1x1
|St

)
, J24 :=

(
−γ−1

2 Ξ2x2
|St
, γ−1

2 Υ2x1
|St

)
,

J32 :=

(
〈·,−γ−1

1 Ξ1x2
|St
〉

〈·, γ−1
1 Υ1x1

|St
〉

)
, J42 :=

(
〈·, γ−1

2 Ξ2x2
|St
〉

〈·,−γ−1
2 Υ2x1

|St
〉

)
.

We also note that the terms J22, J23, J24, J32, and J42 are from the operator B. In
particular, J23, J32, J24, and J42 represent interactions between point vortices and
water waves.

The next lemma verifies that the Poisson map J has the properties required by
the general theory in [32, section 2]. The proof of can be obtained similarly as in [32,
Lemma 5.2].

Lemma 3.2 (Poisson map). The Poisson map J(u) satisfies the following:

(i) The domain D(Ĵ) is dense in X∗.
(ii) Ĵ is injective.
(iii) For each u ∈ O ∩ V, the operator B(u) is bijective.
(iv) The map u 7→ B(u) is of class C1(O ∩ V; Lin(X)) ∩ C1(O ∩W; Lin(W)).
(v) For each u ∈ O ∩ V, J(u) is skew-adjoint in the sense that

〈J(u)v, w〉 = −〈v, J(u)w〉

for all v, w ∈ D(Ĵ).

Part (i) is a technical fact needed for the general theory. Many water waves
problems, including our system (2.3), do not have a Poisson map that is bijective and
hence do not satisfy the hypotheses for the stability theory in [11, 12]. However, the
work [32] allows J to be only injective (as in part (ii)) with dense range. The injectivity
of J excludes the existence of Casimir invariants, which simplifies the arguments. Part
(v) is the characteristic of a Poisson map in a Hamiltonian system.

In the next subsection, we will use spectral theory to analyze the Hamiltonian
system. Since there is a mismatch between space V, where the energy is differentiable,
and the energy space X itself, we must therefore show that DE can be realized as an
element of X∗. With that in mind, we define the extension ∇E ∈ C0(O ∩ V;X∗) by

〈∇E(u), v〉X∗×X := 〈E′η(u), v1〉H−1×H1 + 〈E′ϕ(u), v2〉Ḣ−1/2×Ḣ1/2

+ (E′x̄(u), v3)R2 + (E′ȳ(u), v4)R2 ,
(3.7)
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where

E′ϕ(u) := G(η)ϕ+ ε∇⊥Θ,

E′η(u) :=
1

2

∫
R
ϕ〈DηG(η)·, ϕ〉dx1 + εϕ′Θx1 |St +

ε2

2
|(∇Θ)|St |2 + gη − b

(
η′

〈η′〉

)′
,

and

E′x̄(u) := −ε
∫
R
ϕ∇⊥ξ dx1 −

ε2

2

∫
R

(
ξ∇⊥Θ + Θ|St

∇⊥ξ
)

dx1 +∇x̄Γ∗,

E′ȳ(u) := −ε
∫
R
ϕ∇⊥ζ dx1 −

ε2

2

∫
R

(
ζ∇⊥Θ + Θ|St∇⊥ζ

)
dx1 +∇ȳΓ∗.

See Appendix B for details.

Theorem 3.3 (Hamiltonian formulation). A function u := (η, ϕ, x̄, ȳ)T ∈
C1([0, t0);O ∩W) is a solution of (2.3) if and only if it is a solution to the abstract
Hamiltonian system

(3.8)
du

dt
= J(u)∇E(u),

where E is the energy functional defined in (3.1) and J is the skew-symmetric operator
defined by (3.6).

Proof. Throughout the proof, we make repeated use of the identities

∇⊥fx1 = ∇>fx2 =
(
fx2 |St

)′
, ∇⊥fx2 = −∇>fx1 = −

(
fx1 |St

)′
,(3.9)

where f is any function harmonic in a neighborhood of St, and recall ∇⊥ and ∇> are
defined in (2.4).

Suppose we have a solution u of (3.8). From the expressions for J in (3.6) and
the differential equation (3.8), we see that

∂tη = E′ϕ(u) = G(η)ϕ+ ε∇⊥Θ,

which is the kinematic condition (1.3).
Next, we verify that

∂tx̄ = J32ϕ+ (εγ1)−1J∇x̄E(u)

is equivalent to the ODE for x̄ in (1.4). Explicitly, the first component of the equation
is

(3.10) ∂tx̄1 = −(εγ1)−1∂x̄2
E(u) +

〈
E′ϕ(u),−γ−1

1 Ξ1x2
|St

〉
.

Using the fact that

∇⊥Φ = ∇>Ψ, ∇>Φ = −∇⊥Ψ, ∇⊥Θ = ∇>Γ, ∇>Θ = −∇⊥Γ

and the identities (3.9), (3.10) becomes

∂tx̄ =
1

γ1

∫
R

(
−Ξ1x1

|St
∇⊥Ψ + Ψ|St

∇⊥Ξ1x1

)
dx1

+
ε

2γ1

∫
R

(
−Ξ1x1

|St∇⊥Γ− Ξ1x2
|St∇⊥Θ

)
dx1 − εΓ∗1x2

(x̄)− εΓ2x2
(x̄)− εΓ∗2x2

(x̄)

=:
1

γ1
A +

ε

2γ1
B − εΓ∗1x2

(x̄)− εΓ2x2
(x̄)− εΓ∗2x2

(x̄).
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Since Ψ and Θ∗1 are harmonic in Ωt, for any 0 < r � 1 we have

A = −
∫
∂Br(x̄)

(
−Θ1x1

N · ∇Ψ + ΨN · ∇Θ1x1

)
dSt

= −
∫
∂Br(x̄)

(
γ1

2π

x2 − x̄2

|x− x̄|2
N · ∇Ψ + Ψ

γ1

2π

x2 − x̄2

|x− x̄|3

)
dSt

= − γ1

2π

∫ 2π

0

(
r sin θ

r2
∂r(Ψ) + Ψ

r sin θ

r3

)
r dθ.

Expanding Ψ around r = 0 gives

A = − γ1

2π

∫ 2π

0

[
sin θ(Ψx1

cos θ + Ψx2
sin θ) +

sin θ

r
(Ψ(x̄) + Ψx1

(x̄)r cos θ

+ Ψx2(x̄)r sin θ)

]
dθ + o(r) = −γ1Ψx2(x̄) + o(r)

as r → 0. A direct computation along the same lines shows B = 0. Thus, (3.10) is
equivalent to

∂tx̄1 = −Ψx2
(x̄)− εΓ∗1x2

(x̄)− εΓ2x2
(x̄)− εΓ∗2x2

(x̄),

which agrees with the Kirchhoff–Helmholtz model (1.4). By nearly identical argu-
ments, we likewise confirm that the same holds for ∂tx̄2 and then ∂tȳ.

Finally, we claim that

∂tϕ = −E′η(u) + ξ|St
· (γ−1

1 J )∇x̄E(u) + ζ|St
· (γ−1

2 J )∇ȳE(u)

+ εξ|St

〈
E′ϕ(u), (−γ−1

1 J )ξ
〉

+ εζ|St

〈
E′ϕ(u), (−γ−1

2 J )ζ
〉(3.11)

is equivalent to the unsteady Bernoulli condition in (2.3). By a well-known formula
for the derivative of G(η) (see, for example, [21, Proposition 2.1]), we know that∫

R
ϕ〈DηG(η)η̇, ϕ〉dx1 =

∫
R

1

〈η′〉2
(

(ϕ′)2 − (G(η)ϕ)2 − 2η′ϕ′G(η)ϕ
)
η̇ dx1.

Then

∂tϕ = − 1

〈η′〉2
(

(ϕ′)2 − (G(η)ϕ)2 − 2η′ϕ′G(η)ϕ
)

+ εϕ′Γx2
|St
− ε2

2
|(∇Θ)|St

|2 − V ′η(u)

+ εΘ1x1
|St

∂tx̄1 + εΘ1x2
|St

∂tx̄2 + εΘ2x1
|St

∂tȳ1 + εΘ2x2
|St

∂tȳ2.

Here we have used the fact that for Θ = (Θ1 + Θ∗1 + Θ2 + Θ∗2)(x1, x2, x̄, ȳ),

(∂tΘ)|S = (−Θ1x1
−Θ∗1x1

)|St
∂tx̄1 + (−Θ1x2

+ Θ∗1x2
)|St

∂tx̄2 + (−Θ2x1
−Θ∗2x1

)|St
∂tȳ1

+ (−Θ2x2
+ Θ∗2x2

)|St
∂tȳ2

= −Υ1x1
|St ∂tx̄1 − Ξ1x2

|St ∂tx̄2 −Υ2x1
|St ∂tȳ1 − Ξ2x2

|St ∂tȳ2.

Thus, comparing this to the equations for ϕ in (2.3), the claim has been proved.

The momentum associated to a solution of the system (3.8) is given by

P = P (u) = −εγ1x̄2 + εγ2ȳ2 −
∫
R
η′(ϕ+ εΘ|St

) dx1.(3.12)
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It is clear that P ∈ C∞(O ∩V;R). Similarly to the Fréchet derivatives of the energy,
DP can be extended to ∇P ∈ C0(O ∩ V;X∗):

〈∇P (u), v〉X∗×X := 〈P ′η(u), v1〉H−1×H1 + 〈P ′ϕ(u), v2〉Ḣ−1/2×Ḣ1/2

+ (P ′x̄(u), v3)R2 + (P ′ȳ(u), v4)R2

(3.13)

with

P ′η(u) := ϕ′ + εΘx1
|St
, P ′ϕ(u) := −η′,

P ′x̄(u) := −εγ1e2 + ε

∫
R
η′ξ|St dx1, P ′ȳ(u) := εγ2e2 + ε

∫
R
η′ζ|St

dx1.

Observe also that ∇P is in D(Ĵ) and

J(u)∇P (u) = (−η′,−ϕ′, 1, 0, 1, 0)
T
.(3.14)

The next lemma records the fact that the momentum and the energy are con-
served.

Lemma 3.4 (conservation). Suppose that u ∈ C0 ([0, t0);O ∩W) is a distribu-
tional solution to the Cauchy problem (3.8) with initial data u0 ∈ O ∩W. Then

E(u(t)) = E(u0) and P (u(t)) = P (u0) for all t ∈ [0, t0).

Proof. The fact that the energy is conserved is a consequence of the well-posedness
definition. For the conservation of momentum, let u ∈ C0 ([0, t0);O ∩W). Then using
the chain rule for distributional solutions as in [11, Lemma 4.6], we compute

∂tP (u) = −〈J(u)∇P (u),∇E(u)〉
= 〈η′, E′η〉H−1×H1 + 〈ϕ′, E′ϕ〉Ḣ−1/2×Ḣ1/2 − ∂x̄1

E(u)− ∂ȳ1E(u)

=

∫
R

1

2〈η′〉2
(

(ϕ′)2 − (G(η)ϕ)2 − 2η′ϕ′G(η)ϕ
)
η′ dx1 + ε

∫
R
η′ϕ′Θx1

|S dx1

+
ε2

2

∫
R
η′|(∇Θ)|S |2 dx1 +

∫
R
η′
(
η − b η′′

〈η′〉3
)

dx1 +

∫
R

(G(η)ϕ+ ε∇⊥Θ)ϕ′ dx1

+ ε

∫
R
ϕ∇⊥Θx1

dx1 +
ε2

2

∫
R

(
Θx1
|S∇Θ + Θ|S∇⊥Θx1

)
dx1

= P0 + εP1 + ε2P2.

For terms without ε, using the divergence theorem, we obtain

P0 =

∫
R

(
∇⊥Φ∇>Φ +

1

2〈η′〉2
(

(∇>Φ)2 − (∇⊥Φ)2 − 2η′∇⊥Φ∇>Φ
)
η′

+ η′
(
η − b η′′

〈η′〉3

))
dx1

=

∫
R

(
1

2〈η′〉2
(
η′(∇>Φ)2 − η′(∇⊥Φ)2 + 2∇⊥Φ∇>Φ

)
+ ∂x1

(1

2
(η)2 + b〈η′〉−1

))
dx1

=
1

2

∫
R

(
Φx1
∇⊥Φ−Ψx1

∇⊥Ψ
)

dx1 =
1

2

∫
S

(
Φx1

N · ∇Φ−Ψx1
N · ∇Ψ

)
dS

=
1

2

∫
Ω

(
∇Φx1

· ∇Φ−∇Ψx1
· ∇Ψ

)
dx =

1

4

∫
Ω

∂x1

(
|∇Φ|2 − |∇Ψ|2

)
dx = 0.

Through direct computation, we can show that P1 = P2 = 0. Thus, ∂tP (u) = 0,
which means the momentum is conserved.
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Properties of the symmetry group. Next, we consider the symmetry group T
defined by (1.12) and confirm that it indeed satisfies Assumption 4 (symmetry group)
in [32]. As this follows essentially from the same argument as in [32, Lemma 5.4],
which is itself largely straightforward, we will omit the details of the proofs.

The linear part of T is

(3.15) dT (s)u := T (s)u− T (s)0 = (η(· − s), ϕ(· − s), x̄, ȳ)T for all s ∈ R, u ∈ X,

and the infinitesimal generator of T is the unbounded affine operator

T ′(0)u := (−η′,−ϕ′, e1, e1)T for all u ∈ D(T ′(0))

with domain

D(T ′(0)) := H2(R)×
(
Ḣ3/2(R) ∩ Ḣ1/2(R)

)
× R2 × R2.

From the definition of T , the neighborhood O and the subspaces V and W are all
invariant under the symmetry group. T is strongly continuous on both X, V, and W.
Moreover, I−1D(Ĵ) is invariant under the linear symmetry group, or equivalently,

D(Ĵ) is invariant under the adjoint dT ∗(s) : X∗ → X∗. We also have T (0) = dT (0) =
IdX, and for all s, r ∈ R,

T (s+ r) = T (s)T (r), and hence dT (s+ r) = dT (s)dT (r).

From the definition (3.15), the linear part dT (s) is a unitary operator on X for each
s ∈ R and an isometry on the spaces V and W.

The affine part of T affects only the location of the point vortices and therefore
behaves the same way on X, W, and V. In particular, we have the bound

‖T (s)0‖W, ‖T (s)0‖X ∼ |s|.

We also have that T commutes with the symplectic structure in the following
way: for all s ∈ R,

ĴI dT (s) = dT (s)ĴI,

dT (s)B(u) = B(T (s)u)dT (s) for all u ∈ O ∩ V.

By the previous discussion about the momentum P , we see that ∇P (u) ∈ D(Ĵ)
for every u ∈ D(T ′(0)|V) ∩ O and that

T ′(0)u = J(u)∇P (u) and ĴI dT ′(0) = dT ′(0)ĴI.

This property and Lemma 3.2 ensure that the traveling waves Uc ∈ D(T ′(0)), and Uc
is a critical point of the linearized Hamiltonian defined later in section 3.2.

We also observe that

Rng Ĵ =
(
H1(R) ∩ Ḣ−1/2(R)

)
×
(
H−1(R) ∩ Ḣ1/2(R)

)
× R4,

D(T ′(0)|W) = H4(R)×
(
Ḣ7/2(R) ∩ Ḣ1/2(R)

)
× R4,

and hence,

Rng Ĵ ∩D(T ′(0)|W) =
(
H4(R) ∩ Ḣ−1/2(R)

)
×
(
H−1(R) ∩ Ḣ7/2(R) ∩ Ḣ1/2(R)

)
×R4.
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Then using [32, Lemma A.1], we conclude that

D(T ′(0)|W) ∩ Rng Ĵ is dense in X.

This property is one of the most important ingredients in proving the instability result
for [32].

Finally, it clear from their definitions in (3.1) and (3.12) that the energy and
momentum are conserved by flow of the symmetry group. In particular, for all u ∈
O ∩ V,

(3.16) E(u) = E(T (s)u) and P (u) = P (T (s)u)

hold for all s ∈ R.

Bound states. We finish this section by recasting the family Cloc of solitary
water waves from Theorem 1.1 as solutions of the above Hamiltonian system. We say
that a solution u is a bound state of the Hamiltonian system (3.8) if it is in the form

u(t) = T (ct)Uc

for some time-independent Uc ∈W. Since T (s) corresponds to horizontal translation,
clearly the bound states correspond to traveling waves with wave speed c. Notice also
that, by conservation of energy and momentum under the group (3.16), the energy
and momentum of T (s)Uc are independent of s.

Now, recall that in Theorem 1.1 we constructed a family of solitary capillary-
gravity waves {(η, ϕ, x̄, ȳ, c)} parameterized smoothly by (ε, c̃, γ1, γ2) lying in a neigh-
borhood of (0, c̃0, γ

0
1 , γ

0
2). However, −εγ1 and εγ2 describe the strengths of the two

point vortices, which are conserved quantities. For the stability analysis, it is there-
fore more natural to set them to a fixed value and imagine varying only the scaled
wave speed c̃. This choice is further motivated by a variational characterization of
the bound states that will be encountered in the next section.

In view of the above discussion, let us fix (ε, γ1, γ2) with 0 < |ε| � 1, |γ1−γ0
1 | � 1,

|γ2−γ0
2 | � 1. We may then freely exchange c̃ with c, which will lie in an open interval

I containing

c0 = εc̃0 = − εγ0
1

4π(a0 − ρ0)
+
εγ0

2

4π

(
1

a0
+

1

ρ0

)
.

The resulting one-parameter family of traveling waves we denote by

(3.17) {Uc = (η(c), ϕ(c), x̄(c), ȳ(c)) : c ∈ I} .

The next lemma records some basic facts about these bound states that are needed
for the general theory. In particular, these play an important role in showing that one
can smoothly quotient out the action of the symmetry group; see [32, Lemma 3.1].

Lemma 3.5 (bound states). Fix any choice of 0 < ρ0 < a0, and consider the cor-
responding surface of solutions Cloc furnished by Theorem 1.1. Then the corresponding
one-parameter family of bound states {Uc}c∈I satisfies Assumption 5 (bound states)
in [32]:

(i) The mapping c ∈ I 7→ Uc ∈ O ∩W is C1.
(ii) The nondegeneracy condition T ′(0)Uc 6= 0 holds for every c ∈ I. Equivalently,

Uc is never a critical point of the momentum.
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(iii) For all c ∈ I,

Uc ∈ D(T ′′′(0)) ∩ D(ĴIT ′(0))

and
ĴIT ′(0)Uc ∈ D(T ′(0)|W).

(iv) lim inf |s|→∞ ‖T (s)Uc − Uc‖X > 0.

Parts (i) and (ii) are automatically given by the implicit function theorem argu-
ments in the proof of Theorem 1.1. Because one can take arbitrarily high regularity
in the existence theory, it is always possible to ensure that part (iii) holds. Part (iv)
is a technical requirement for the theory [32], but essentially always holds for solitary
waves like {Uc}. Indeed,

‖T (s)Uc − Uc‖X ≥ 2|s|.

3.2. Spectrum of the augmented potential. It is well-known that traveling
water waves can frequently be characterized as constrained extrema of the energy
with fixed momentum. With that in mind, we define the augmented Hamiltonian to
be the functional

Ec(u) := E(u)− cP (u).

By (3.8) and (3.14), we have JDE(Uc)− cJDP (Uc) = 0, and hence

DEc(Uc) = DE(Uc)− cDP (Uc) = 0.(3.18)

Thus, each traveling wave Uc is indeed a critical point of the augmented Hamiltonian.
Formally, at least, this is suggestive of a constrained minimization problem, with c
being the Lagrange multiplier. We might hope, then, that the stability or instability
of the bound state will relate to whether it locally minimizes the energy on a fixed
momentum manifold.

This idea, though quite elegant, is far from straightforward to carry out. As a first
step, in this section we compute the second variation of the augmented Hamiltonian
and determine its spectrum. Our main result is that, as in the setting of [11, 12],
D2Ec(Uc) can be associated to a bounded self-adjoint operator on X whose spectrum
takes the form {−µ2

c} ∪ {0} ∪ Σc, where Σc ⊂ R+ is uniformly bounded away from
0 and −µ2

c < 0. This also corresponds to Assumption 6 (spectrum) in [32]. It is
important to note that the presence of an unstable eigenvalue does not immediately
imply instability.

We first note that 0 is in the spectrum. Indeed, for all s ∈ R, T (s)Uc is also a
traveling wave solution. Therefore,

DEc(T (s)Uc) = 0

for all s. Differentiating with respect to s gives〈
D2Ec(T (s)Uc), T

′(0)Uc
〉

= 0,

and hence T ′(0)Uc is an eigenfunction for eigenvalue 0.
Following Mielke’s approach [21], we will determine the remaining spectrum by

first considering the augmented potential

(3.19) Vc = Vc(η, x̄, ȳ) := min
ϕ∈V2

Ec(η, ϕ, x̄, ȳ) =: Ec(η, ϕm, x̄, ȳ)
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for (η, x̄, ȳ) ∈ V1 × V3 × V4. Thus,

(3.20) DϕEc(η, ϕm, x̄, ȳ) = 0.

Because ϕ occurs quadratically in the energy, it is easy to see that this minimum is
attained exactly when

ϕm(η, x̄, ȳ) = G(η)−1 (−cη′ − ε∇⊥Θ) .(3.21)

Since we will be doing many calculations where ϕ is fixed, we adopt the notational
convention that for u = (u1, u2, u3, u4),

v := (u1, u3, u4)

and write a variation in the direction v as v̇. We also use the short hand V1,3,4 :=
V1 × V3 × V4, and for convenience, define

um(v) := (η, ϕm, x̄, ȳ) ∈ V.

Also, when we evaluate derivatives of the Dirichlet–Neumann operator, we will en-
counter the quantities

a := (∇〈H(η), ϕm〉) |S , b := a + ε(∇Θ)|S − ce1.

See Appendix A for an explicit formula giving a in terms of ϕ and η. Physically, b is
the restriction of the full relative velocity to the interface. Therefore, b2 = η′b1 due
to (3.21).

While it is not completely obvious, we will see that the spectral properties of
D2Ec(Uc) can be inferred from those of D2Vc(v). With that in mind, the first step is
to derive a formula for the second variation of the augmented potential.

Lemma 3.6. For all v ∈ V1,3,4 ∩ O1,3,4 and all variations v̇ ∈ V1,3,4, we have〈
D2Vc(v)v̇, v̇

〉
V∗1,3,4×V1,3,4

= −
〈
L(v)v̇,G(η)−1L(v)v̇

〉
X∗2×X2

+
〈
D2
vEc(um(v))v̇, v̇

〉
V∗1,3,4×V1,3,4

,
(3.22)

where L(v) ∈ Lin(X1,3,4;X∗2) defined by

L(v)v̇ := G(η)(a2η̇) + (b1η̇)′ + ε∇⊥ξ · ˙̄x+ ε∇⊥ζ · ˙̄y.(3.23)

The proof follows by a straightforward adaptation of [32, Lemma 6.2], and we
therefore omit it. In the next lemma, we refine expression (3.22) to derive a quadratic
form representation of D2Vc.

Lemma 3.7 (quadratic form). For all v ∈ V1,3,4 ∩ O1,3,4, there is a self-adjoint
linear operator A(v) ∈ Lin(X1,3,4;X∗1,3,4) such that〈

D2Vc(v)v̇, ẇ
〉
V∗1,3,4×V1,3,4

= 〈Av̇, ẇ〉X∗1,3,4×X1,3,4

for all v̇, ẇ ∈ V1,3,4. The form of A is given in (3.25).

Proof. From [21, Proposition 2.1], we have∫
R
ϕ̂〈DηG(η)η̇, ϕ〉dx1 =

∫
R
η̇(a1ϕ̂

′ − a2G(η)ϕ̂) dx1
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and ∫
R
ϕ〈〈D2

ηG(η)η̇, η̇〉, ϕ〉dx1 = 2

∫
R

(
η̇2a′1a2 + a2η̇G(η)(a2η̇)

)
dx1.

Letting the self-adjoint operator M be defined by

Mη̇ := −b1(G(η)−1(b1η̇)′)′

and using the fact that G(η)−1 is a self-adjoint operator, we can compute∫
R
L(v)v̇G(η)−1L(v)v̇ dx1

=

∫
R
a2η̇G(η)(a2η) dx1 +

∫
R
η̇Mη̇ dx1 +

∫
R

(a2b
′
1 − a′2b1)η̇2 dx1

+ 2ε ˙̄x ·
∫
R

(
a2∇⊥ξ − b1

(
G(η)−1∇⊥ξ

)′)
η̇ dx1

+ ε2 ˙̄xT
(∫

R
∇⊥ξ � G(η)−1∇⊥ξ dx1

)
˙̄x

+ 2ε ˙̄y ·
∫
R

(
a2∇⊥ζ − b1

(
G(η)−1∇⊥ζ

)′)
η̇ dx1

+ ε2 ˙̄yT
(∫

R
∇⊥ζ � G(η)−1∇⊥ζ dx1

)
˙̄y

+ 2ε2 ˙̄xT
(∫

R
∇⊥ξ � G(η)−1∇⊥ζ dx1

)
˙̄y,

where x � y = (x ⊗ y + y ⊗ x)/2 is the symmetric outer product. Next, we examine
more closely the term involving D2

vEc in (3.22). We calculate that〈
D2
ηEc(um)η̇, η̇

〉
=

∫
R
a2η̇G(η)(a2η) dx1 +

∫
R

(g + εb1∇>Θx2
+ a2b

′
1) η̇2 dx1

+

∫
R

b

〈η′〉3
(η̇′)2 dx1,

while

∇x̄〈DηEc(um), η̇〉 = ε

∫
R

(a2∇⊥ξ − b1∇>ξ)η̇ dx1,

∇ȳ〈DηEc(um), η̇〉 = ε

∫
R

(a2∇⊥ζ − b1∇>ζ)η̇ dx1.

Similarly, evaluating the Hessian of Ec with respect to (x̄, ȳ) gives

D2
x̄Ec(um) = 2ε2D2

x̄Γ∗ − ε
∫
R
(G(η)ϕmD

2
x̄Θ + ϕ′mD

2
x̄Γ)|S dx1 + ε2

∫
R
∇⊥ξ � ξ dx1

− ε2

2

∫
R

(∇⊥ΘD2
x̄Θ +∇>ΘD2

x̄Γ)|S dx1,

D2
ȳEc(um) = 2ε2D2

ȳΓ∗ − ε
∫
R
(G(η)ϕmD

2
ȳΘ + ϕ′mD

2
ȳΓ)|S dx1 + ε2

∫
R
∇⊥ζ � ζ dx1

− ε2

2

∫
R

(∇⊥ΘD2
ȳΘ +∇>ΘD2

ȳΓ)|S dx1,
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and

∇x̄∇ȳEc(um) = ε2∇x̄∇ȳΓ∗ +
ε2

2

∫
R
∇⊥(ξ � ζ) dx1.

Substituting the above results into the expression (3.22), we arrive at

(3.24)

〈D2Vc(v)v̇, v̇〉 =

∫
R

(g + b′2b1)η̇2 dx1 −
∫
R

(
b

〈η′〉3
η̇′
)′
η̇ dx1 −

∫
R
η̇Mη̇ dx1

+ 2ε ˙̄x ·
∫
R
η̇b1∇>(G(η)−1∇⊥ξ − ξ) dx1

+ 2ε ˙̄y ·
∫
R
η̇b1∇>(G(η)−1∇⊥ζ − ζ) dx1

+ ˙̄xT
(
D2
x̄Ec(um)− ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ξ dx1

)
˙̄x

+ ˙̄yT
(
D2
ȳEc(um)− ε2

∫
R
∇⊥ζ � G(η)−1∇⊥ζ dx1

)
˙̄y

+ ˙̄xT
(
∇x̄∇ȳEc(um)− 2ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ζ dx1

)
˙̄y.

Thus, inspecting (3.24), we see that the claimed quadratic form representation holds
with the operator A defined as follows:

A11η̇ := (g + b′2b1)η̇ −
(

b

〈η′〉3
η̇′
)′
−Mη̇,(3.25a)

A13 ˙̄x := εb1∇>(G(η)−1∇⊥ξ − ξ) · ˙̄x,(3.25b)

A∗13η̇ := ε

∫
R
η̇b1∇>(G(η)−1∇⊥ξ − ξ) dx1,(3.25c)

A14 ˙̄y := εb1∇>(G(η)−1∇⊥ζ − ζ) · ˙̄y,(3.25d)

A∗14η̇ := ε

∫
R
η̇b1∇>(G(η)−1∇⊥ζ − ζ) dx1,(3.25e)

A33 := D2
x̄Ec(um)− ε2

∫
R
∇⊥ξ � G(η)−1∇⊥ξ dx1,(3.25f)

A44 := D2
ȳEc(um)− ε2

∫
R
∇⊥ζ � G(η)−1∇⊥ζ dx1,(3.25g)

A34 = A43 := ∇x̄∇ȳEc(um)− ε2
∫
R
∇⊥ξ � G(η)−1∇⊥ζ dx1.(3.25h)

This finishes the proof of Lemma 3.7.

The next lemma verifies that the second variation of the augmented Hamiltonian
Ec has an extension to the energy space X, which enables us to assign meaning to its
spectrum as an operator on X.

Lemma 3.8 (extension of D2Ec). For all v ∈ V1,3,4 ∩ O1,3,4, there exists a self-
adjoint operator Hc(v) ∈ Lin(X,X∗) such that

〈D2Ec(um(v))u̇, ẇ〉V∗×V = 〈Hc(v)u̇, ẇ〉X∗×X(3.26)
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for all u̇, ẇ ∈ V with

Hc(v)u̇ =


IdX∗1 0 0 0

0 0 0 IdX∗2
0 IdR2 0 0
0 0 IdR2 0

(A(v) + L(v)∗G(η)−1L(v) −L(v)∗

−L(v) G(η)

)[
v̇
ϕ̇

]
,

where L(v) and A(v) are defined in Lemmas 3.6 and 3.7, respectively. The adjoint
L(v)∗ ∈ Lin(X2;X∗1,3,4) is given by

L(v)∗ϕ̇ = (a2G(η)ϕ̇− b1ϕ̇
′, ε〈∇⊥(ξ + ζ), ϕ̇〉),

and we have

〈Hc(v)u̇, u̇〉X∗×X = 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4

+
〈
G(η)(ϕ̇− G(η)−1Lv̇), ϕ̇− G(η)−1Lv̇

〉
X∗2×X2

(3.27)

for all u̇ ∈ X.

Proof. It is straightforward to see that

〈DϕDvEc(um(v))v̇, ϕ̇〉V∗2×V2
= −

∫
R
v̇L(v)v̇ dx1

holds for all v̇ ∈ V1,3,4 and ϕ̇ ∈ V2. Because of symmetry, it suffices to consider only
the diagonal entries. For all u̇ ∈ V, Lemmas 3.6 and 3.7 give

〈D2Ec(um(v))u̇, u̇〉V∗×V = 〈D2
vEc(um(v))v̇, v̇〉+ 2〈DϕDvEc(um(v))v̇, ϕ̇〉

+ 〈D2
ϕEc(um(v))ϕ̇, ϕ̇〉

= 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4

+

∫
R

[
(L(v)v̇)G(η)−1L(v)v̇ − 2ϕ̇L(v)v̇ + ϕ̇G(η)ϕ̇

]
dx1

= 〈A(v)v̇, v̇〉X∗1,3,4×X1,3,4 −
∫
R
L(v)v̇(ϕ̇− G(η)−1L(v)v̇) dx1

+

∫
R
ϕ̇G(η)(ϕ̇− G(η)−1L(v)v̇) dx1.

(3.28)

Using the fact that G(η) and G(η)−1 are self-adjoint operators, the integral is equal
to ∫

R

[
− L(v)v̇(ϕ̇− G(η)−1L(v)v̇) + (ϕ̇− G(η)−1L(v)v̇)G(η)ϕ̇

]
dx1

=

∫
R
G(η)(ϕ̇− G(η)−1L(v)v̇)(ϕ̇− G(η)−1L(v)v̇) dx1.

Substituting this into (3.28) yields our desired result.

We finish this section by characterizing the spectrum of the linearized augmented
Hamiltonian at Uc for 0 < |c| � 1. In particular, we show that Assumption 6
(spectrum) in [32] is satisfied.
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Theorem 3.9 (spectrum). Fix any choice of 0 < ρ0 < a0 subject to the compat-
ibility condition (2.3), and consider the family of traveling wave solutions {Uc}c∈I as
in (3.17). Then, perhaps upon shrinking I, it holds that for all c ∈ I, I−1Hc has one
negative eigenvalue, 0 is in the spectrum, and the rest of the spectrum Σc ⊂ (0,∞) is
bounded away from 0.

Proof. From the asymptotic information (2.9) furnished by Theorem 1.1 we infer
that

a1 = O(|ε|3), a2 = O(|ε|3), b1 = a1−c+o(ε2) = O(|ε|), b2 = a2 +o(ε2) = O(|ε|).

Then from Lemmas 3.7 and 3.8, we can write

Hc =

g − b∂2
x1

0 0
0 |∂x1 | 0

0 0 ε2

4πA

+Rc ∈ Lin(X,X∗),

where

A =

(
A33 A34

A43 A44

)
:=


−α 0 α 0
0 δ1 + α 0 −β
α 0 −α 0
0 −β 0 δ2 + α


with

α :=
γ1γ2

2

(
1

ρ2
− 1

a2

)
, β :=

γ1γ2

2

(
1

ρ2
+

1

a2

)
, δ1 :=

γ2
1

(a− ρ)2
, δ2 :=

γ2
2

(a+ ρ)2
.

Here, the remainder term Rc is O(|ε|3) in Lin(X,X∗), and I−1Rc is self-adjoint on X.
It follows that I−1Hc|ε=0 is a self-adjoint operator on X for which zero is an

eigenvalue of multiplicity 4, and the remainder of the spectrum is strictly positive.
By general results from perturbation theory of self-adjoint operators (see, for example,
[14, Chapter 5, Theorem 4.10]), it follows that for 0 < |ε| � 1, I−1Hc will have four
real eigenvalues in a neighborhood of 0, and the rest of the spectrum Σc ⊂ (0,∞).

The key point is where the small eigenvalues are situated, and to determine that
we must look more closely at the matrix A. In particular, direct computation confirms
that it has the eigenvalues

0, −2α,
2α+ δ1 + δ2 +

√
(δ1 − δ2)2 + 4β2

2
,

2α+ δ1 + δ2 −
√

(δ1 − δ2)2 + 4β2

2
.

We know that 0 is in the spectrum of I−1Hc due to translation invariance. Clearly,
−2α < 0, and the third eigenvalue above is positive. We claim that the last eigenvalue
is also positive. Indeed,

2α+ δ1 + δ2 −
√

(δ1 − δ2)2 + 4β2 > 0

is equivalent to
α2 + αδ1 + αδ2 + δ1δ2 − β2 > 0.

Using the compatibility condition (1.8), we compute

α2 + αδ1 + αδ2 + δ1δ2 − β2 =
γ1γ2

2

(
1

ρ2
− 1

a2

)(
γ2

1

(a− ρ)2
+

γ2
2

(a+ ρ)2

)
− γ2

1γ
2
2

a2ρ2

=
2(a+ ρ)

(a− ρ)(a2 + aρ+ ρ2)2
γ4

1 > 0.

D
ow

nl
oa

de
d 

08
/0

2/
20

 to
 1

61
.1

30
.1

88
.2

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INSTABILITY OF FINITE DIPOLE 4099

In total, then we have proved that A has a unique negative real eigenvalue. For
0 < |ε| � 1, the contribution of I−1Rc is perturbative as it is O(|ε|3) in Lin(X). We
therefore may conclude that I−1Hc possess a unique negative eigenvalue.

3.3. Proof of Theorem 1.4. At this point, we have verified all of the hy-
potheses of Varholm, Wahlén, and Walsh [32, section 2]. Applying [32, Theorems 2.4
and 2.6], we conclude that the stability or instability of the traveling wave is deter-
mined by the so-called moment of instability. That is, let d = d(c) be the scalar-valued
function that results from evaluating Ec along the family {Uc}:

(3.29) d(c) := Ec(Uc) = E(Uc)− cP (Uc).

Under the above hypotheses, the sign of d′′(c) determines precisely whether Uc sits at
a minimum or saddle of the energy constrained to a level set of the momentum, and
this in turn implies stability or instability.

Differentiating d gives the identity

d′(c) =

〈
DE(Uc)− cDP (Uc),

dUc
dc

〉
− P (Uc) = −P (Uc).

Using the expressions for the momentum P , x̄2, and ȳ2, we can compute

d′(c) = εγ1(−a+ ρ)− εγ2(−a− ρ)−
∫
R
η(ϕ′ + ε∇>Θ) dx1.

Differentiating once more yields

d′′(c) = εγ1∂c(−a+ ρ) + εγ2∂c(a+ ρ)

−
∫
R

(
(∂cη)(ϕ′ + ε∇>Θ) + η ∂c(ϕ

′ + ε∇>Θ)
)

dx1.

Recalling the definition of T in (2.8) and using the compatibility (1.8) and variations
for a and ρ in (2.10), we obtain

d′′(c) = −γ1(ac̃ − ρc̃) + γ2(ac̃ + ρc̃) +O(ε3)

= − γ1

det T

(
− γ0

2

2π(a0 + ρ0)2
+
−γ0

1 + γ0
2

4πρ2
0

+
γ0

1 + γ0
2

4πa2
0

)
+

γ2

det T

(
γ0

1

2π(a0 − ρ0)2
+
−γ0

1 + γ0
2

4πρ2
0

− γ0
1 + γ0

2

4πa2
0

)
+O(ε3)

=
γ2

1

2π det T

6a0ρ
2
0

(a0 + ρ0)(a0 − ρ0)2(a2
0 + a0ρ0 + ρ2

0)
+O(ε3).

Thus, since det T < 0, we conclude that d′′(c) < 0 for |ε| � 1 and c = O(ε). Hence,
[32, Theorem 2.6] tells us that the corresponding water waves {Uc} constructed in
Theorem 1.1 are orbitally unstable.

3.4. Stability of a dipole in a half-plane. To understand the physical mean-
ing behind Theorem 1.4, it is useful to reconsider the classical finite-dimensional
problem of a dipole moving in the lower half-plane (2.11). This has a (much simpler)
Hamiltonian formulation with energy

E(x̄, ȳ) = Γ∗(x̄, ȳ) =
γ1

2

(
Γ∗1(x̄) + Γ2(x̄) + Γ∗2(x̄)

)
− γ2

2

(
Γ1(ȳ) + Γ∗1(ȳ) + Γ∗2(ȳ)
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and Poisson map ( 1
εγ1
J 0

0 − 1
εγ2
J

)
,

where recall that Γ∗ and J were introduced earlier in section 3.1. Likewise, the
(linear) momentum is given by

P (x̄, ȳ) := −εγ1x̄2 + εγ2ȳ2.

We have already commented in section 2.4 that there exists a family of steady wave
solutions to this system. One can again study their stability using GSS. In this case,
it is elementary to compute that the second variation of the corresponding augmented

Hamiltonian will give exactly ε2

4πA at leading order. Comparing this to Theorem 3.9,
we see that the spectrum for the water wave problem is simply a perturbation of the
half-plane system.

Similarly, in the proof of Theorem 1.4, we found that

d′′(c) = − d

dc
P (Uc).

But, the leading order term in the momentum for the water wave is exactly the
momentum of the half-plane dipole.

In that sense, the infinite-dimensional system (2.3) is a small perturbation of the
finite-dimensional system of point vortices with a rigid lid (2.11). Therefore, it is
reasonable to see that the family of water waves Uc is orbitally unstable.

Appendix A. Steady and unsteady equations. For the convenience of the
reader, in this appendix we derive the nonlocal formulations for the water wave with
a finite dipole problem (2.3).

Using the definitions of ϕ in (1.6) and G(η) in (2.2), we obtain

(A.1) ∇Φ =
1

〈η′〉2

(
1 −η′
η′ 1

)(
ϕ′

G(η)ϕ

)
=

1

〈η′〉2

(
ϕ′ − η′G(η)ϕ
η′ϕ′ + G(η)ϕ

)
.

Combining with the definitions of ψ in (2.1) gives(
G(η)ϕ
ϕ′

)
=

(
ψ′

−G(η)ψ

)
.(A.2)

Then from the incompressible Euler equations (1.2), using the splitting v = ∇Φ +
ε∇Θ and separating the irrotational and rotational parts, we can derive the unsteady
equation for velocity potential on S

∂tϕ = − 1

2〈η′〉2
(
(ϕ′)2 − 2η′ϕ′G(η)ϕ− (G(η)ϕ)2

)
− ε∂tΘ + εϕ′∂x2

Γ− ε2

2
|∇Γ|2

− gη + b
η′′

〈η′〉3
.

(A.3)

Using the relation (A.2), we also have the relation on S:

∂tϕ = − 1

2〈η′〉2
(
(G(η)ψ)2 + 2η′ψ′G(η)ψ − (ψ′)2

)
− ε∂tΘ− εG(η)ψ ∂x2

Γ− ε2

2
|∇Γ|2

− gη + b
η′′

〈η′〉3
.

(A.4)
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For the traveling water waves, the steady equation for velocity potential on S is

0 = − c

〈η′〉2
(ϕ′ − η′G(η)ϕ) + cε∂x2

Γ +
1

2〈η′〉2
[
(ϕ′)2 + (G(η)ϕ)2

]
+

ε

〈η′〉2
[−ϕ′∇⊥Γ + G(η)ϕ ∇>Γ] +

ε2

2
|∇Γ|2 + gη − b η′′

〈η′〉3
,

(A.5)

and the steady equation for stream function on S is

0 =
c

〈η′〉2
(ψ′ + η′G(η)ψ) + cε∂x2

Γ +
1

2〈η′〉2
[
(ψ′)2 + (G(η)ψ)2

]
+

ε

〈η′〉2
[G(η)ψ∇⊥Γ + ψ′ ∇>Γ] +

ε2

2
|∇Γ|2 + gη − b η′′

〈η′〉3
.

(A.6)

Appendix B. Variations of the energy and momentum. Finally, in
this appendix we record the first and second Fréchet derivatives of the energy and
momentum.

Recall that

a = (∇(Hϕ))|St
, ξ = (Υ1x1

,Ξ1x2
)T , and ζ = (Υ2x1

,Ξ2x2
)T .

Let ∇ξ := (Υ1x1x1
,Ξ1x2x2

)T , ∇ζ := (Υ2x1x1
,Ξ2x2x2

)T , and

D2
x̄Θ :=

(
Υ1x1x1

Ξ1x1x2

Ξ1x1x2
Υ1x2x2

)
, and D2

ȳΘ :=

(
Υ2x1x1

Ξ2x1x2

Ξ2x1x2
Υ2x2x2

)
.

Variations of K0(u). We compute that

DϕK0(u)ϕ̇ =

∫
R
ϕ̇G(η)ϕdx1, DηK0(u)η̇ =

1

2

∫
R
ϕ〈DηG(η)η̇, ϕ〉dx1,

and

〈D2
ϕK0(u)ϕ̇, ϕ̇〉 =

∫
R
ϕ̇G(η)ϕ̇dx1,

〈DϕDηK0(u)ϕ̇, η̇〉 =

∫
R
ϕ̇〈DηG(η)η̇, ϕ〉dx1 =

∫
R
η̇(a1ϕ̇

′ − a2G(η)ϕ̇) dx1

〈D2
ηK0(u)η̇, η̇〉 =

1

2

∫
R
ϕ〈〈D2

ηG(η)η̇, η̇〉, ϕ〉dx1 =

∫
R

(a′1a2η̇
2 + a2η̇G(η)(a2η̇)) dx1.

Variations of K1(u). Likewise, the first variations of K1 are

DϕK1(u)ϕ̇ =

∫
R
ϕ̇∇⊥Θ dx1, DηK1(u)η̇ =

∫
R
η̇ϕ′Θx1

|S dx1,

∇x̄K1(u) = −
∫
R
ϕ∇⊥ξ dx1, ∇ȳK1(u) = −

∫
R
ϕ∇⊥ζ dx1,

and the second are given by

〈DϕDηK1(u)η̇, ϕ̇〉 =

∫
R
η̇ϕ̇′Θx1 |S dx1, 〈D2

ηK1(u)η̇, η̇〉 =

∫
R
η̇2ϕ′Θx1x2 |S dx1,

D2
x̄K1(u) =

∫
R
ϕ∇⊥D2

x̄Θ dx1, D2
ȳK1(u) =

∫
R
ϕ∇⊥D2

ȳΘ dx1,

∇x̄DηK1(u)η̇ = −
∫
R
η̇ϕ′(∇ξ)|S dx1, ∇ȳDηK1(u)η̇ = −

∫
R
η̇ϕ′(∇ζ)|S dx1,

∇x̄DϕK1(u)ϕ̇ = −
∫
R
ϕ̇∇⊥ξ dx1, ∇ȳDϕK1(u)ϕ̇ = −

∫
R
ϕ̇∇⊥ζ dx1.
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Variations of K2(u). It is straightforward to compute that

DηK2(u)η̇ =
1

2

∫
R
η̇|(∇Θ)|S |2 dx1,

∇x̄K2(u) = ∇x̄Γ∗ − 1

2

∫
R
∇⊥(ξΘ) dx1, ∇ȳK2(u) = ∇ȳΓ∗ − 1

2

∫
R
∇⊥(ζΘ) dx1,

and

〈D2
ηK2(u)η̇, η̇〉 =

∫
R
η̇2
(

Θx1
Θx1x2

+ Θx2
Θx2x2

)∣∣∣
S

dx1,

D2
x̄K2(u) = 2D2

x̄Γ∗ +
1

2

∫
R
∇⊥(ΘD2

x̄Θ + ξξT ) dx1,

D2
ȳK2(u) = 2D2

ȳΓ∗ +
1

2

∫
R
∇⊥(ΘD2

ȳΘ + ζζT ) dx1,

∇x̄∇ȳK2(u) = ∇x̄∇ȳΓ∗ +
1

2

∫
R
∇⊥(ξ � ζ) dx1,

∇x̄DηK2(u)η̇ = −
∫
R
η̇((Dxξ)∇Θ)|S dx1,

∇ȳDηK2(u)η̇ = −
∫
R
η̇((Dxζ)∇Θ)|S dx1.

Variations of V (u). Similarly, we find that

DηV (u)η̇ =

∫
R
η̇

(
gη − b η′′

〈η′〉3

)
dx1,

〈D2
ηV (u)η̇, η̂〉 =

∫
R

(
gη̂η̇ +

b

〈η′〉3
η̂′η̇′

)
dx1.

Variations of P (u). Finally, the first variations of momentum P (u) are given
in section 3.1. The second derivatives are as follows:

〈DηDϕP (u)ϕ̇, η̇〉 = −
∫
R
η̇′ϕ̇dx1, 〈D2

ηP (u)η̇, η̇〉 = ε

∫
R
η̇2Θx1x2 |S dx1,

D2
x̄P (u) = −ε

∫
R
η′(D2

x̄Θ)|S dx1, D2
ȳP (u) = −ε

∫
R
η′(D2

ȳΘ)|S dx1,

∇x̄DηP (u)η̇ = −ε
∫
R
η̇(∇ξ)|S dx1, ∇ȳDηP (u)η̇ = −ε

∫
R
η̇(∇ζ)|S dx1.
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