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Abstract

The complexity of graph homomorphism problems has been the subject of intense study for some

years. In this paper, we prove a decidable complexity dichotomy theorem for the partition function

of directed graph homomorphisms. Our theorem applies to all non-negative weighted forms of the

problem: given any fixed matrix A with non-negative algebraic entries, the partition function ZA(G)

of directed graph homomorphisms from any directed graph G is either tractable in polynomial time

or #P-hard, depending on the matrix A. The proof of the dichotomy theorem is combinatorial,

but involves the definition of an infinite family of graph homomorphism problems. The proof of its

decidability on the other hand is algebraic and based on properties of polynomials.
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1 Introduction

The complexity of counting graph homomorphisms has received much attention [13, 4, 2, 1, 12, 18, 9]. The
problem can be defined over both directed and undirected graphs, and the directed version of the problem
turns out to be significantly more challenging. In particular, Feder and Vardi showed that the decision
problems defined by directed graph homomorphisms are as general as the Constraint Satisfaction Problems
(CSPs), and it is known that a complexity dichotomy for the former implies the full dichotomy conjecture
for all decision CSPs [16]. While no such implication is known for counting problems, our understanding
of the problem over directed graphs is more limited compared to that over undirected graphs.

Let G and H be two graphs. We follow the standard definition of graph homomorphisms, where G
is allowed to have multiple edges but no self loops; and H can have both multiple edges and self loops. 1

We say ξ : V (G) → V (H) is a graph homomorphism from G to H if ξ(u)ξ(v) is an edge in E(H) for all
uv ∈ E(G). Here if H is an undirected graph, then G is also an undirected graph; if H is directed, then
G is also directed. The undirected problem is a special case of the directed one.

For a fixed H, we are interested in the complexity of the following integer functionZH(G): The input
is a graph G, and the output is the number of graph homomorphisms from G to H. More generally, we
can define ZA(·) for any fixed m×m matrix A = (Ai,j):

ZA(G) =
∑

ξ:V→[m]

∏

uv∈E

Aξ(u),ξ(v), for any directed graph G = (V,E).

Note that the input G is a directed graph in general. However, if A is a symmetric matrix, then one can
always view G as an undirected graph. Moreover, if A is a {0, 1}-matrix, then ZA(·) is exactly ZH(·),
where H is the graph whose adjacency matrix is A.

Graph homomorphisms can express many interesting counting problems over graphs. For example, if
we take H to be an undirected graph over two vertices {0, 1} with an edge (0, 1) and a loop (1, 1) at 1,
then a graph homomorphism from G to H corresponds to a Vertex Cover of G, and ZH(G) is simply
the number of vertex covers of G. As another example, if H is the complete graph on k vertices without
self loops, then ZH(G) is the number of k-Colorings of G. In [17], Freedman, Lovász, and Schrijver
characterized what graph functions can be expressed as ZA(·).

For increasingly more general families C of matrices A, the complexity of ZA(·) has been studied and
dichotomy theorems have been proved. A dichotomy theorem for a given family C of matrices A states
that for any A ∈ C, the problem of computing ZA(·) is either in polynomial time or #P -hard (note that all
such problems belong to P#P, or more precisely FP#P, the class of functions2 computable by a polynomial-
time Turing machine with access to a #P oracle). A decidable dichotomy theorem further requires that
the dichotomy criterion is computably decidable: There is a finite-time classification algorithm that, given
any A in C, decides whether ZA(·) is in polynomial time or #P-hard. Most results have been obtained
for undirected graphs.

Symmetric matrices A, and ZA(G) over undirected graphs G:

In [20, 21], Hell and Nešetřil showed that given any symmetric {0, 1} matrix A, deciding whether ZA(G)
> 0 is either in P or NP-complete. Then Dyer and Greenhill [13] showed that given any symmetric {0,1}
matrix A, the problem of computing ZA(·) is either in P or #P-complete. Bulatov and Grohe generalized
their result to all non-negative symmetric matrices A [4].3 They obtained an elegant dichotomy theorem

1Our results are actually stronger in that our tractability result allows for loops in G, while our hardness result holds for
G without loops.

2We will abuse the notation slightly and use P to denote polynomial-time computable predicates as well as functions.
3More exactly, they proved a dichotomy theorem for symmetric matrices A in which every entry Ai,j is a non-negative

algebraic number. Our result in this paper applies similarly to all non-negative algebraic numbers. Throughout the paper we
use R to denote the set of real algebraic numbers and refer to them as real numbers when it is clear from the context.
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which basically says that ZA(·) is in P if every block of A has rank at most one, and is #P-hard otherwise.
In [18] Goldberg, Grohe, Jerrum and Thurley proved a beautiful dichotomy for all symmetric real matrices.
Finally a dichotomy theorem for all symmetric complex matrices was proved by Cai, Chen and Lu [9]. We
remark that all these dichotomy theorems for symmetric matrices above are polynomial-time decidable,
meaning that given any matrix A, one can decide in polynomial time (in the input size of A) whether
ZA(·) is in P or #P-hard.

General matrices A, and ZA(G) over directed graphs G:

In a paper that received the best paper award at ICALP in 2006, Dyer, Goldberg and Paterson [12]
proved a dichotomy theorem for directed graph homomorphism problems ZH(·) that are restricted to
directed acyclic graphs H. They introduced the notion of Lovász-goodness and proved that ZH(·) is in P
if the graph H is layered 4 and Lovász-good, and is #P-hard otherwise. The property of Lovász-goodness
turns out to be polynomial-time decidable.

In 2008, Bulatov [5, 1] obtained a sweeping dichotomy theorem for all unweighted (i.e., {0, 1}-valued)
counting Constraint Satisfaction Problems (#CSP for short). Later Dyer and Richerby [14] presented an
alternative proof at STOC in 2010. The dichotomy theorem of Bulatov implies a dichotomy for ZH(·) over
directed graphs H but its decidability was unclear since its dichotomy criterion5 requires one to check a
condition on an infinitary object. The decidability of the dichotomy theorem of Bulatov was left as an
open problem in [5]. This was resolved by Dyer and Richerby in their journal version [15] of [14] after
the preliminary version of the present paper appeared in [6] (see discussion on “Recent Developments on
the Complexity of #CSP”). The techniques of Dyer and Richerby generalize to rational weights, but in
a more complicated way, via the translation of Bulatov et al. [3]. In contrast, the present paper gives a
direct proof that applies to all non-negative algebraic weights; the techniques of Bulatov et al. [3] depend
heavily on the weights being rational.

In this paper we prove a dichotomy theorem for the family of all non-negative algebraic matrices. We
show that for every fixed m×m matrix A with non-negative algebraic entries, the problem of computing
ZA(·) is either in P or #P-hard. Furthermore, our dichotomy criterion is decidable: We present a finite-
time algorithm which, given a non-negative and algebraic matrix A, determines whether ZA(·) is in P or
#P-hard. In particular, for the special family of matrices with {0, 1} entries, our result gives an alternative
dichotomy criterion6 to that of Bulatov [5] and Dyer–Richerby [14], which we show is decidable.

The main obstacle we encountered in obtaining the dichotomy theorem is due to the abundance of new
intricate but tractable cases, when moving from acyclic graphs to general directed graphs. For example, H
does not have to be layered for the problem ZH(·) to be tractable (see Figure 1 for an example). Because
of the generality of directed graphs, it seems impossible to have a simply stated criterion (e.g., Lovasz-
goodness, as was used in the acyclic case [12]) which is both powerful enough to completely characterize
all the tractable cases and also easy to check. However, we manage to find a dichotomy criterion as well
as a finite-time algorithm to decide whether A satisfies it or not.

In particular, the dichotomy theorem of Dyer, Goldberg and Paterson [12] for the acyclic case fits into
our framework as follows. In our dichotomy, we start from an m×m matrix A and then define, in each
round, a (possibly infinite) set of new matrices. The size of the matrices defined in round i+1 is strictly

4A directed acyclic graph is layered if one can partition its vertices into k sets V1, . . . , Vk, for some k ≥ 1, such that every
edge goes from Vi to Vi+1 for some i : 1 ≤ i < k.

5A dichotomy criterion is a well-defined mathematical property over the family of matrices A being considered such that
ZA(·) is in P if A has this property; and is #P-hard otherwise.

6Both our dichotomy criterion (when specialized to {0, 1} matrices) and the one of Bulatov characterize {0, 1} matrices A
with ZA(·) in P and thus, they must be equivalent assuming P 6= P#P, i.e., A satisfies our criterion if and only if it satisfies
the one of Bulatov. As a corollary, our result implies a finite-time algorithm for checking the dichotomy criterion of Bulatov
[1] (and the version of Dyer and Richerby [14]) for the case of {0, 1} matrices, assuming that P 6= P#P. However, we are not
able to prove unconditionally that these dichotomy criteria for {0, 1} matrices are equivalent.
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smaller than that of round i (so there can be at most m rounds). The dichotomy then states that ZA(·)
is in P if and only if every block of any matrix defined in the process above is of rank 1 (see Section 1.1
and 1.2 for details). For the special acyclic case treated by Dyer, Goldberg and Paterson in [12], let A
be the adjacency matrix of H which is acyclic and has k layers, then at most k rounds are necessary to
reach a conclusion about whether ZA(·) = ZH(·) is in P or #P-hard. The general case is more difficult.
For example, let H be a directed graph obtained from a k-layered graph by adding edges from Vk back
to V1. Then deciding whether ZA(·) is in P or #P-hard becomes much harder compared to the original
k-layered graph in the sense that we may need many more than k rounds to reach a conclusion.

Recent Developments on the Complexity of #CSP:
A number of new developments have been made on the complexity of #CSP after a preliminary version of
this paper appeared in [6]. First of all, in their journal version of [14], Dyer and Richerby [15] showed that
their dichotomy criterion for unweighted #CSP is indeed decidable in NP. This was extended to #CSP

with non-negative and rational weights by Bulatov, Dyer, Goldberg, Jalsenius, Jerrum and Richerby in
[3], and then to #CSP with non-negative weights by Cai, Chen and Lu in [8], both decidable in NP. In
[7], Cai and Chen obtained a complexity dichotomy theorem for #CSP with complex weights, though the
decidability of its dichotomy criterion remains open.

Compared to [8], our dichotomy theorem is weaker: 1) While [8] covers all #CSP with non-negative
weights, ours only covers counting directed graph homomorphisms with non-negative weights, which can
be equivalently viewed as a special case of non-negative #CSP for which the language consists of a single
binary function; 2) The criterion of [8] is shown to be not only decidable but in NP. However, we believe
that the approach of our dichotomy in this paper is still of interest because of the following reasons: 1)
Compared to the recent series of dichotomy theorems for #CSP [1, 15, 3, 8, 7], the current paper has a
more natural and combinatorial approach that is designed specifically for directed graph homomorphisms.
This goes for the tractability algorithm and the decidability algorithm, both of which are more germane
to the problem of counting directed graph homomorphisms. 2) Our method does not use the machinery
of Universal Algebra, which played a critical role in all the #CSP papers, and thus may find applications
when Universal Algebra is not known to be applicable such as Holant problems [10, 11]. 3) Assuming that
P 6= P#P, our dichotomy criterion is equivalent to that of Bulatov [1] (and that of Dyer and Richerby
[15]) over ZA(·) with {0, 1}-matrices A. However, it remains an open problem to show this equivalence
unconditionally. Such a proof may improve our understanding of these criteria and shed new light on the
decidability of the dichotomy for #CSP with complex values [7].

1.1 Intuition of the Dichotomy: Domain Reduction

For an integer m ≥ 1 we denote [m] = {1, . . . ,m}; for m = 0 we denote [0] = ∅.
Let A be the m×m non-negative matrix being considered, and let G = (V,E) be an input directed

graph. Before giving a more formal sketch of the dichotomy theorem, we use a simple example to illustrate
one of the most important ideas of this work: domain reduction.

For this purpose we need to introduce the concept of labeled directed graphs. A labeled directed graph
G over domain [m] is a directed graph in which each directed edge e is labeled with an m×m matrix A[e]

and each vertex v is labeled with an m-dimensional vector w[v]. The partition function of G is defined as

Z(G) =
∑

ξ:V→[m]

∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

A
[uv]
ξ(u),ξ(v).

In particular, we have ZA(G) = Z(G0) where G0 has the same graph structure as G; every edge of G0 is
labeled with the same A; and every vertex of G0 is labeled with 1, the m-dimensional all-1 vector.

Roughly speaking, starting from the input G, we build (in polynomial time) a finite sequence of new
labeled directed graphs G0, G1, G2, . . . ,Gh one by one. Gk+1 is constructed from Gk by using the domain
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Figure 1: A directed graph H such that ZH(·) is tractable

reduction method which we are going to describe next. On the one hand, the domains of these labeled
graphs shrink along with k. This means, the size of the edge weight matrices associated with the edges
of Gk (or equivalently, the dimension of the vectors associated with the vertices of Gk) strictly decreases
along with k. On the other hand, we have Z(Gk+1) = Z(Gk) for all k ≥ 0 and thus,

ZA(G) = Z(G0) = . . . = Z(Gh).

Since the domain size decreases monotonically, the number of graphs Gk in this sequence is at most m.
To prove our dichotomy theorem, we show that, either something bad happens which forces us to stop
the domain reduction process, in which case we show that ZA(·) is #P-hard; or we can keep reducing the
domain size until the computation becomes trivial, in which case we show that ZA(·) is in P.

A =

























A1,1 A1,3

A2,1 A2,3

A3,5 A3,7

A4,5 A4,7

A5,2 A5,4

A6,2 A6,4

A7,6 A7,8

A8,6 A8,8

























Figure 2: The 8× 8 block-rank-1 matrix A

We say a non-negative matrix A is block-rank-1 if one can separately permute its rows and columns to
get a block diagonal matrix in which every block is of rank at most 1. Bulatov and Grohe [4] (see Theorem
2) showed that ZA(·) is #P-hard when A is not block-rank-1. So we assume below that A is block-rank-1;
otherwise the problem is already known to be #P-hard. As an example, let A be the 8× 8 block-rank-1
non-negative matrix with 16 positive entries as shown in Figure 2, and let

T =
{

(A1, B1), (A2, B2), (A3, B3), (A4, B4)
}

denote its block structure, where

∀s ∈ [4], As = {2s − 1, 2s}, B1 = {1, 3}, B2 = {5, 7}, B3 = {2, 4} and B4 = {6, 8},
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Figure 3: The input directed graph G

so that Ai,j > 0 if and only if i ∈ As and j ∈ Bs, for some s ∈ [4]. Because A is block-rank-1, there also
exist two 8-dimensional positive vectors α and β such that

Ai,j = αi · βj, for all (i, j) such that i ∈ As and j ∈ Bs for some s ∈ [4].

Now let G = (V,E) be the directed graph in Figure 3, where |V | = 6 and |E | = 6. We illustrate the
domain reduction process by constructing the first labeled directed graph G1 in the sequence as follows.
To simplify the presentation, we let y ∈ [8]6 (instead of ξ : V → [8]) denote an assignment, where yi ∈ [8]
denotes the value of vertex i in Figure 3 for every i ∈ [6].

First, let y ∈ [8]6 be any assignment with a nonzero weight: Ayi,yj > 0 for every edge ij ∈ E. Since
A has the block structure T , for every ij ∈ E, there exists a unique index s ∈ [4] such that yi ∈ As and
yj ∈ Bs. This inspires us to introduce a new variable xℓ ∈ [4] for each edge eℓ ∈ E, ℓ ∈ [6] (as shown in
Figure 3). For every possible assignment of x = (x1, x2, . . . , x6) ∈ [4]6, we use Y [x] to denote the set of
all possible assignments y ∈ [8]6 such that for every eℓ = ij, yi ∈ Axℓ

and yj ∈ Bxℓ
. Now we have

ZA(G) =
∑

x∈[4]6

∑

y∈Y [x]

wt(y), where wt(y) =
∏

ij∈E

Ayi,yj .

Second, we further simplify the sum above by noticing that if x2 6= x3 in x, then Y [x] must be empty
because the two edges e2 and e3 share the same head in G. In general, we only need to sum over the case
when x1 = x2 = x3 and x4 = x5, since otherwise the set Y [x] is empty. As a result,

ZA(G) =
∑

x1=x2=x3
x4=x5
x6

∑

y∈Y [x]

wt(y).

The advantage of introducing xℓ, ℓ ∈ [6], is that, once x is fixed, one can always decompose Ayi,yj as
a product αyi · βyj , for all y ∈ Y [x] and all ij ∈ E, since y belonging to Y [x] guarantees that (yi, yj) falls
inside one of the four blocks of A. This allows us to greatly simplify wt(y): If y ∈ Y [x], then

wt(y) = Ay1,y3 · Ay1,y2 ·Ay2,y3 · Ay3,y4 ·Ay3,y5 ·Ay5,y6 = αy1βy3αy1βy2αy2βy3αy3βy4αy3βy5αy5βy6 .

Also notice that Y [x], for any x, is a direct product of subsets of [8]: y ∈ Y [x] if and only if

y1 ∈ L1 = Ax1 , y2 ∈ L2 = Ax3 ∩Bx1 = Ax1 ∩Bx1 , y3 ∈ L3 = Ax4 ∩Ax5 ∩Bx2 ∩Bx3 = Ax4 ∩Bx1

y4 ∈ L4 = Bx4 , y5 ∈ L5 = Ax6 ∩Bx4 , y6 ∈ L6 = Bx6 .

As a result, ZA(G) becomes

ZA(G) =
∑

x1,x4,x6

∑

yi∈Li, i∈[6]

(

(αy1)
2αy2βy2

)

·
(

(αy3)
2(βy3)

2
)

· βy4 · (αy5βy5) · βy6 . (1)
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Finally we construct the following labeled directed graph G1 over domain [4]. There are three vertices
a, b and c, which correspond to x1, x4 and x6, respectively; and there are two directed edges ab and bc.
We construct the weights as follows. The vertex weight vector of a is

w
[a]
ℓ =

∑

y1∈Aℓ, y2∈Aℓ∩Bℓ

(αy1)
2 · (αy2βy2), for every ℓ ∈ [4];

the vertex weights of b and c are the same:

w
[b]
ℓ = w

[c]
ℓ =

∑

y∈Bℓ

βy, for every ℓ ∈ [4].

The edge weight matrix C[ab] of ab is

C
[ab]
k,ℓ =

∑

y3∈Bk∩Aℓ

(αy3)
2(βy3)

2, for all k, ℓ ∈ [4];

and the edge weight matrix C[bc] of bc is

C
[bc]
k,ℓ =

∑

y5∈Bk∩Aℓ

αy5βy5 , for all k, ℓ ∈ [4].

Using (1) and the definition of Z(G1), one can verify that ZA(G) = Z(G1) and thus, we have reduced the
domain size from 8 (which is the number of rows and columns in A), to 4 (which is the number of blocks
in A). However, we also seem to have paid a high price. Two issues are worth pointing out here:

1. Unlike in ZA(G), different edges in G1 have different edge weight matrices in general. For
example, the matrices associated with ab and bc are clearly different, for general α and β.
Actually, the set of matrices that may appear as an edge weight of G1, constructed from all
possible directed graphs G after one round of domain reduction, is infinite in general.

2. Unlike in ZA(G), we have to introduce vertex weights in G1. Similarly, vertices may have different
vertex weight vectors, and the set of vectors that may appear as a vertex weight of G1, constructed
from all possible G after one round of domain reduction, is infinite in general.

It is also worth noticing that {0, 1}-matrices are not that special under this framework. Even if the A we
start with is {0, 1}, the edge and vertex weights of G1 immediately become general non-negative integers
right after the first round of domain reduction, and we have to deal with integer weights afterwards.

These two issues pose a difficulty because we need to carry out the domain reduction process several
times, until the computation becomes trivial. However, the reduction process described above crucially
used the assumption that A is block-rank-1 (otherwise one cannot replace Ai,j with αi · βj). Thus, there
is no way to continue this process if some edge weight matrix in G1 is not block-rank-1. To deal with this
case, we show that if this happens for some G, then ZA(·) is #P-hard. Informally, we have

Theorem 1 (Informal). For any G, if one of the edge matrices in Gk (constructed from G after k rounds
of domain reductions), for some k ≥ 1, is not block-rank-1, then ZA(·) is #P-hard.

The proof of Theorem 1 for k = 1 follows directly from Bulatov and Grohe [4]. However, due to the
two issues discussed earlier, edge weights and vertex weights of G1 are drawn from infinite sets in general
and thus, even proving it for k = 2 is highly non-trivial.

After obtaining Theorem 1, which essentially gives us a dichotomy theorem for non-negative matrices,
it remains unclear whether the dichotomy is decidable. The difficulty is that, to decide whether ZA(·) is
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in P or #P-hard, one needs to check infinitely many matrices (all the edge weight matrices that appear
in the domain reduction process, from all possible directed graphs G) and to see whether all of them are
block-rank-1. To do this, we give an algebraic proof using properties of polynomials. We manage to show
that it is not necessary to check these matrices one by one, but only need to check whether or not the
entries of A satisfy finitely many polynomial constraints.

1.2 Proof Sketch

We assume below that A is non-negative and block-rank-1 since the case when A is not block-rank-1 has
already been dealt with by Bulatov and Grohe [4]. To show that ZA(·) is either in P or #P-hard, we use
the following two steps.

In the first step, we define from A a finite sequence of pairs:

(X0,Y0), (X1,Y1), . . . , (Xh,Yh), for some h : 0 ≤ h < m,

where X0 = {1}, Y0 = {A} and 1 denotes the m-dimensional all-1 vector. Each pair (Xk,Yk), k ∈ [h], is
defined from (Xk−1,Yk−1). Roughly speaking, Yk (resp. Xk) is the set of all edge matrices (resp. vertex
vectors) that may appear in Gk, after k rounds of domain reductions. There also exist positive integers

m = m0 > m1 > . . . > mh ≥ 1

such that every Yk, k ∈ [h], is a set of mk ×mk non-negative matrices; and every Xk, k ∈ [h], is a set of
mk-dimensional non-negative vectors. Although the sets Xk and Yk are infinite in general (which is the
reason why we used the word “define” instead of “construct”), the definition of (Xk,Yk) guarantees the
following two properties:

1. For each k ∈ [h], matrices in Yk share the same support structure:

for all B,B′ ∈ Yk, Bi,j > 0 ⇐⇒ B′
i,j > 0;

2. Every matrix B in Yh is a permutation matrix.

The definition of (Xk,Yk) from (Xk−1,Yk−1) can be found in Section 4. In Section 7 we prove that,
for all k ∈ [h] and B ∈ Yk, the problem of computing ZB(·) is polynomial-time reducible to that of ZA(·).
From this we obtain the hardness part of our dichotomy theorem using Bulatov and Grohe [4]: If there
exists a matrix B ∈ Yk for some k ∈ [h] such that B is not block-rank-1, then ZA(·) is #P-hard.

Now we assume that all matrices in Yk, k ∈ [h], are block-rank-1. To finish the proof we only need
to show that if this is true, then ZA(·) is indeed in P. To this end, we use the domain reduction process
to construct from the input graph G a sequence of labeled directed graphs G1, . . . ,Gh such that

1. Z(G1) = ZA(G) and Z(Gk+1) = Z(Gk) for all k : 1 ≤ k < h; and

2. For every k ∈ [h], we have A[e] ∈ Yk for all edges e in Gk and w[v] ∈ Xk for all vertices v in Gk.

This sequence can be constructed in polynomial time, because the construction of Gk+1 from Gk can be
done very efficiently as described in Section 1.1, and also because the number of graphs in the sequence
is at most m. By the two properties above, we have ZA(G) = Z(Gh); and every edge weight matrix A[e]

in Gh is a permutation matrix. As a result, we can compute ZA(G) in polynomial time since Z(Gh) can
be computed efficiently.

This finishes the proof of our dichotomy theorem: Given any non-negative matrix A, the problem of
computing ZA(·) is either in polynomial time or #P-hard. Moreover, to decide which case it is, we only
need to check whether the matrices in Yk, k ∈ [h], satisfy the following condition:

7



The Block-Rank-1 Condition: Every matrix B ∈ Yk, k ∈ [h], is block-rank-1.

However, as mentioned earlier, each of the sets Yk, k ∈ [h], is infinite in general, so one cannot check the
matrices one by one. Instead, we express the block-rank-1 condition as a finite collection of polynomial
constraints over Yk. The way (Xk,Yk) is defined from (Xk−1,Yk−1) allows us to prove that, to check
whether every matrix in Yk (or every vector in Xk) satisfies a certain polynomial constraint, one only
needs to check a finitely many polynomial constraints for (Xk−1,Yk−1). Therefore, to check whether Yk,
k ∈ [h], satisfies the block-rank-1 condition we only need to check a finitely many polynomial constraints
for (X0,Y0). Since X0 = {1} and Y0 = {A} are both finite, this can be done in a finite number of steps.

2 Preliminaries

We write R+ to denote the set of non-negative algebraic numbers. Throughout the rest of the paper, we
deal with non-negative algebraic numbers (or vectors/matrices with non-negative algebraic entries) only
and will refer to them simply as non-negative (real) numbers for convenience. We can also work with any
reasonable model of computation for algebraic numbers, e.g., the one used in [22, 23, 9]. This issue does
not seem central to this paper because when the complexity of ZA(·) is concerned, the matrix A is fixed
and its entries are considered as constants. The input size only depends on the size of the input graph.

We say G = (G,V, E) is a labeled directed graph over [m] = {1, . . . ,m} for some positive integer m, if

1. G = (V,E) is a directed graph (which may have parallel edges but no self-loops);

2. Every vertex v ∈ V is labeled with an m-dimensional non-negative vector V(v) ∈ R
m
+ as its

vertex weight; and

3. Every edge uv ∈ E is labeled with an m×m (not necessarily symmetric) non-negative matrix
E(uv) ∈ R

m×m
+ as its edge weight.

Let G = (G,V, E) be a labeled directed graph, where G = (V,E). For each v ∈ V , we use w[v] = V(v)
to denote its vertex weight vector; and for each uv ∈ E, we use C[uv] = E(uv) to denote its edge weight
matrix. Then we define Z(G) as follows:

Z(G) =
∑

ξ:V→[m]

wt(G, ξ), where wt(G, ξ) =
∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

C
[uv]
ξ(u), ξ(v)

denotes the weight of the assignment ξ.

Let C be an m×m non-negative matrix. We are interested in the complexity of ZC(·):

ZC(G) = Z(G), for any directed graph G = (V,E),

where G = (G,V, E) is the labeled directed graph with V(v) = 1 ∈ R
m
+ for all v ∈ V and E(uv) = C for

all edges uv ∈ E.

Definition 1 (Pattern and block pattern). We say P is an m×m pattern if P ⊆ [m]× [m]. P is said
to be trivial if P = ∅. A non-negative m×m matrix C is of pattern P, if for all i, j ∈ [m], we have Ci,j

> 0 if and only if (i, j) ∈ P. C is also called a P-matrix. We say T is an m×m block pattern if

1. T =
{

(A1, B1), . . . , (Ar, Br)
}

for some r ≥ 0;

2. Ai ⊆ [m], Ai 6= ∅, Bi ⊆ [m] and Bi 6= ∅ for all i ∈ [r]; and

3. Ai ∩Aj = Bi ∩Bj = ∅, for all i 6= j ∈ [r].
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T is said to be trivial if T = ∅. A block pattern T naturally defines a pattern P, where

P =
{

(i, j)
∣

∣ ∃ k ∈ [r] such that i ∈ Ak and j ∈ Bk

}

.

We also say P is consistent with T . Finally, we say a non-negative m×m matrix C is of block pattern
T , if C is of pattern P defined by T . C is also called a T -matrix.

Definition 2. We say an m×m non-negative matrix C is block-rank-1 if

1. Either C = 0 is the zero matrix (and is of block pattern T = ∅); or

2. C is of block pattern T , for some m×m block pattern T = {(A1, B1), . . . , (Ar, Br)} with r ≥ 1;
and for every k ∈ [r], the sub-matrix of C indexed by Ak and Bk is (exactly) rank 1.

Let C be a non-negative block-rank-1 matrix of block pattern T . Then there exists a unique pair (α,β)
of non-negative m-dimensional vectors such that

1. For every i ∈ [m], αi > 0 ⇐⇒ i ∈
⋃

k∈[r]Ak; and βi > 0 ⇐⇒ i ∈
⋃

k∈[r]Bk;

2. Ci,j = αi · βj for all i, j ∈ [m] such that Ci,j > 0; and

3. If r ≥ 1, then
∑

j∈Ai
αj = 1 for every i ∈ [r].

The pair (α,β) is called the (vector) representation of C. Note that we have α = β = 0 when C = 0.

It is clear that T and (α,β) together uniquely determine a non-negative block-rank-1 matrix.

The following theorem concerning the complexity of ZC(·) is proved by Bulatov and Grohe [4] (also
see [19]).

Theorem 2 (Bulatov and Grohe [4]). Let C be a non-negative m×m matrix. If C is not block-rank-1,
then the problem of computing ZC(·) is #P-hard.

Let T be an m×m non-trivial block pattern where T = {(A1, B1), . . . , (Ar, Br)} for some r ≥ 1. It
defines the following r× r pattern P = gen(T ): For all i, j ∈ [r], (i, j) ∈ P if and only if Bi ∩Aj 6= ∅. (To
avoid ambiguity, we always assume that Aj ’s in T are indexed using a canonical ordering when deriving
P = gen(T ) from T , e.g., sorted by the smallest elements in Aj ’s.) Note that P = gen(T ) can be trivial,

i.e., P = ∅, even if T is non-trivial.

Next, we introduce a generalized version of ZC(·). Let m ≥ 1 and (P,Q) be a pair in which

1. P is a finite and nonempty set of non-negative m-dimensional vectors with 1 ∈ P; and

2. Q is a finite and nonempty set of m×m non-negative matrices.

We then use Z(·) to define the function ZP,Q(·) as follows:

ZP,Q(G) = Z(G),

where G = (G,V, E) is a labeled directed graph with V(v) ∈ P for any vertex v ∈ V (G); and E(uv) ∈ Q for
any edge uv ∈ E(G). Note that ZP,Q(·) captures exactly #CSPs with non-negative constraint functions
of arity at most two. As a special case, ZC(·) is exactly ZP,Q(·) with P = {1} and Q = {C}.

Finally, let m ≥ 1 and (X,Y) and (X′,Y′) be two pairs such that:

1. X and X′ are two nonempty (and possibly infinite) sets of non-negative m-dimensional
vectors with 1 ∈ X and 1 ∈ X′; and

2. Y and Y′ are two nonempty (and possibly infinite) sets of non-negative m×m matrices.

Definition 3 (Reduction). We say (X′,Y′) is polynomial-time reducible to (X,Y) if for every finite and
nonempty subset P′ ⊆ X′ with 1 ∈ P′ and every finite and nonempty subset Q′ ⊆ Y′, there exist a finite
and nonempty subset P ⊆ X with 1 ∈ P and a finite and nonempty subset Q ⊆ Y, such that ZP′,Q′(·) is
polynomial-time reducible to ZP,Q(·).
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3 Main Theorems

We prove a complexity dichotomy theorem for all counting problems ZC(·) where C is any non-negative
matrix. Actually, our main theorem is more general and applies to ZP,Q(·) over all finite P-pairs (P,Q)
as defined below.

Definition 4. Let P be an m×m pattern. An m-dimensional non-negative vector w is said to be

– positive: wi > 0 for all i ∈ [m]; and

– P-weakly positive: for all i ∈ [m], wi > 0 if and only if (i, i) ∈ P.

We call (X,Y) a P-pair if

1. X is a nonempty (and possibly infinite) set of positive or P-weakly positive vectors with 1 ∈ X;

2. Y is a nonempty (and possibly infinite) set of m×m (non-negative) P-matrices.

We say it is a finite P-pair if both sets are finite. We normally use (P,Q) to denote a finite P-pair.

Similarly, for any m×m block pattern T , we can define T -weakly positive vectors as well as T -pairs
by replacing the P above with the pattern defined by T .

We prove the following complexity dichotomy theorem:

Theorem 3 (Complexity Dichotomy). Let P be an m×m pattern for some m ≥ 1. Then for any finite
P-pair (P,Q), the problem of computing ZP,Q(·) is either in polynomial time or #P-hard.

It gives us a dichotomy for the special case of ZC(·) when P = {1} and Q = {C}. Moreover, we show
that for the special case when P = {1}, we can decide in a finite number of steps whether ZP,Q is in
polynomial time or #P-hard. In particular, it implies that the dichotomy for ZC(·) is decidable.

Theorem 4 (Decidability). Given any positive integer m ≥ 1, an m×m pattern P, and a finite P-pair
(P,Q) with P = {1}, the problem of whether ZP,Q(·) is in polynomial time or #P-hard is decidable.

Remark 1. Compared to the dichotomy theorem for #CSP with non-negative weights [8], the classifica-
tion of Theorems 3 and 4 are limited since they only apply to #CSP with constraint functions that have
arity at most two and satisfy certain conditions.

We prove Theorem 3 and 4 in the rest of the section. The lemmas (Lemmas 1, 2, and 3) used in the
proof will be proved in the rest of the paper.

3.1 Defining New Pairs: gen-pair (X,Y)

We first state a key lemma which will be proved in Sections 4 and 7. We need the following definition.

Definition 5. A set S of non-negative m-dimensional vectors, for some m ≥ 1, is closed if w1 ◦w2 ∈ S
for all vectors w1,w2 ∈ S, where we use ◦ to denote the Hadamard product of two vectors: w1 ◦w2 is the
m-dimensional vector whose ith entry is w1,i · w2,i for all i ∈ [m].

Let (X,Y) be a (possibly infinite) T -pair for some non-trivial m×m block pattern T . We also assume
that every matrix in Y is block-rank-1. Let P ′ = gen(T ). Then in Section 4, we introduce an operation
gen-pair over (X,Y), which defines a new (and possibly infinite) P ′-pair (X′,Y′) = gen-pair(X,Y) in
which X′ is closed. In Section 7, we further show that (X′,Y′) is polynomial-time reducible to (X,Y).

We summarize properties of gen-pair needed in the following lemma:

Lemma 1. Let (X,Y) be a T -pair for some non-trivial block pattern T . Suppose that every matrix in Y

is block-rank-1, then (X′,Y′) = gen-pair(X,Y) (as defined in Section 4) is a P ′-pair, where P ′ = gen(T ).
Moreover, the new vector set X′ is closed and (X′,Y′) is polynomial-time reducible to (X,Y).
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3.2 Proof of Theorem 3

Assuming Lemma 1, we are now ready to prove Theorem 3.
Let (P,Q) be a finite P-pair for some m×m pattern P. We may assume that there is a block pattern

T that is consistent with P and all matrices in Q are block- rank-1; otherwise it follows from Theorem 2
that ZP,Q(·) is #P-hard and we are done with it. We summarize this as the following property:

R0: (P,Q) is a finite T -pair for some m×m block pattern T ; and
Every matrix in Q is block-rank-1.

For convenience, we rename (P,Q) to be (X0,Y0) and rename m and T to be m0 and T0, respectively.
Next we define a finite sequence of pairs using the gen-pair operation, starting with (X0,Y0).

First, if |Ai| = |Bi| = 1 for all i, i.e., every set Ai and Bi in T0 is a singleton, then the sequence has
only one pair (X0,Y0), and the definition of this sequence is complete. Note that this includes the special
case when T0 = ∅ and Y0 = {0}, where 0 denotes the all-0 matrix of dimension m0.

Otherwise, in Step 1, we define a new P1-pair (X1,Y1) using gen-pair:

(X1,Y1) = gen-pair(X0,Y0), where P1 = gen(T0).

By Lemma 1, (X1,Y1) is polynomial-time reducible to (X0,Y0) (recall Definition 3). This leads to one of
the following two cases: (1) either we have that P1 is consistent with a block pattern, denoted by T1 (hence
(X1,Y1) is also a T1-pair), and every matrix in Y1 is block-rank-1, or (2) it follows from Theorem 2 and
the polynomial-time reduction that ZP,Q(·) is #P-hard and we are done with this case. (To see the latter,
assuming that D ∈ Y1 is not block-rank-1, it follows from Theorem 2 that ZP1,Q1(·) is #P-hard where
we let P1 = {1} and Q1 = {D}. It follows from Lemma 1 (and the fact that 1 ∈ X1) that there exists
a finite7 pair (P0,Q0) with P0 ⊆ X0 and Q0 ⊆ Y0 such that ZP1,Q1(·) is polynomial-time reducible to
ZP0,Q0(·) which is trivially reducible to ZP,Q(·) since P0 ⊆ X0 = P and Q0 ⊆ Y0 = Q.)

As a result, we assume below that T1 and (X1,Y1) satisfy the following property:

R∗: T1 is an m1 ×m1 block pattern that is consistent with P1 = gen(T0), where m1 is the number of
pairs in T0; (X1,Y1) = gen-pair(X0,Y0) is a T1-pair, and every matrix in Y1 is block-rank-1.

We also have m0 > m1 since at least one of the sets in T0 is not a singleton.
We remark that both sets X1 and Y1 are infinite in general, so one cannot check the matrices in Y1

for the block-rank-1 property one by one. It does not matter right now because we are only proving the
dichotomy theorem. However, it will become a serious problem later when we show that the dichotomy
is decidable. We have to show that the block-rank-1 property can be verified in a finite number of steps.

We repeat the process above. After ℓ ≥ 1 steps, either we are already done with (P,Q) by showing
that ZP,Q(·) is #P-hard, or we have defined a sequence of ℓ+ 1 pairs:

(X0,Y0), (X1,Y1), . . . , (Xℓ,Yℓ),

and ℓ+ 1 block patterns T0,T1, . . . ,Tℓ that satisfy the following property:

Rℓ: For every i ∈ [0 : ℓ], Ti is a block pattern;
For every i ∈ [ℓ], Ti is consistent with Pi = gen(Ti−1);
For every i ∈ [ℓ], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a Ti-pair; and
For every i ∈ [0 : ℓ], all the matrices in Yi are block-rank-1.

7Here this is trivial since (X0,Y0) is itself a finite pair.
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We have two cases. If every set in Tℓ is a singleton (including the case when Tℓ = ∅ and Yℓ = {0}), then
the sequence has only ℓ+ 1 pairs and the definition of the sequence is complete. Otherwise in Step ℓ+ 1
we apply gen and gen-pair again to define Pℓ+1 and (Xℓ+1,Yℓ+1) from Tℓ and (Xℓ,Yℓ). It follows from
Theorem 2, Lemma 1, and a similar argument (note that the definition of reductions in Definition 3 is
transitive so (Xℓ+1,Yℓ+1) is polynomial-time reducible to (X0,Y0)) that either Pℓ+1 is consistent with a
block pattern, denoted by Tℓ+1, and

(X0,Y0), (X1,Y1), . . . , (Xℓ+1,Yℓ+1),

together with T0,T1, . . . ,Tℓ+1 satisfy (Rℓ+1), or we have that ZP,Q(·) is #P-hard.
We conclude that either we are already done with (P,Q) by showing that ZP,Q(·) is #P-hard, or this

process must end with a sequence of h+ 1 pairs

(X0,Y0), (X1,Y1), . . . , (Xh,Yh), for some h ≥ 0,

together with h+ 1 positive integers m0 > . . . > mh ≥ 1 and h+ 1 block patterns T0, . . . ,Th such that

R: For every i ∈ [0 : h], Ti is an mi ×mi block pattern;
For every i ∈ [h], Ti is consistent with Pi = gen(Ti−1);
Either Th = ∅ is trivial or every set in Th is a singleton;
For every i ∈ [h], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a Ti-pair; and
For every i ∈ [0 : h], all the matrices in Yi are block-rank-1.

Because m0 > . . . > mh ≥ 1, we also have h < m0 = m.

To complete the proof of the dichotomy theorem, we show in Section 5 that

Lemma 2 (Tractability). Given any block pattern T and a finite T -pair (P,Q), let (X0,Y0), . . . , (Xh,Yh)
be a sequence of pairs that satisfies condition (R) for some h < m, with (X0,Y0) = (P,Q). Then we have
that ZP,Q(·) is computable in polynomial time.

This finishes the proof of Theorem 3.

3.3 Proof of Theorem 4

Let (P,Q) be a finite P-pair, where P is an m×m pattern. We now show that for the special case when
X0 = P = {1} the dichotomy (Theorem 3) is indeed decidable. For convenience we rename m and (P,Q)
to be m0 and (X0,Y0), and without loss of generality write T0 as the block pattern that is consistent with
P (if no such T0 exists we know that ZP,Q(·) is #P-hard). We describe our decidability algorithm below.

The algorithm first checks (R) on Y0, i.e., every matrix in Y0 is block-rank-1. This is easy since Y0

is finite. It then computes from T0 a sequence of no more than m block patterns T0, . . . ,Th using gen

repeatedly, and checks if they satisfy (R). If (R) is violated (i.e., there is an i such that Pi = gen(Ti−1)
is not consistent with any block pattern) we know from the proof of Theorem 3 that ZP,Q(·) is #P-hard
and the algorithm terminates. If h = 0, i.e., either T0 = ∅ is trivial or every set in Th is a singleton,
ZP,Q(·) is in polynomial time by Lemma 2 so the algorithm also terminates. Without loss of generality,
we assume below that both (X0,Y0) and T0, . . . ,Th satisfy condition (R), and h ≥ 1. The rest of the
algorithm consists of h < m steps.

At the beginning of the ℓth step, ℓ ∈ [h], we have defined from (X0,Y0) a sequence of ℓ pairs:

(X0,Y0), (X1,Y1), . . . , (Xℓ−1,Yℓ−1), where (Xi+1,Yi+1) = gen-pair(Xi,Yi) is a Ti+1-pair,

and the algorithm has verified that they all satisfy condition (R), i.e., every matrix in Yi with i < ℓ is
block-rank-1; otherwise we know from the proof of Theorem 3 that ZP,Q(·) is #P-hard and the algorithm
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terminates. As a result, (Xℓ,Yℓ) = gen-pair(Xℓ−1,Yℓ−1) is a new and well-defined Tℓ-pair, and the goal
of the ℓth step of the algorithm is to check whether every matrix in Yℓ is block-rank-1. We refer to this
property as the rank property for Yℓ. We prove the following lemma in Section 8, showing that the rank

property for Yℓ can be checked in a finite number of steps.

Lemma 3. Let (X0,Y0) be a finite T0-pair with X0 = {1}. Assuming that T0, . . . ,Tℓ−1,Tℓ and (X0,Y0), . . .
(Xℓ−1,Yℓ−1) all satisfy their conditions in (R) for some ℓ ∈ [h], the rank property for Yℓ can be checked
in a finite number of steps.

This finishes the description of our decidability algorithm, and Theorem 4 follows.

4 Definition of the gen-pair Operation

In this section, we define the operation gen-pair.
Let T = {(A1, B1), . . . , (Ar, Br)} be a non-trivial m ×m block pattern with r ≥ 1. We use diag(T )

to denote the set of all i ∈ [m] such that i ∈ Ak and i ∈ Bk for some k ∈ [r]. In this section, we always
assume that (X,Y) is a T -pair such that every matrix in Y is block-rank-1. This means that

1. All matrices in Y are block-rank-1 and are of the same block pattern T ;

2. 1 ∈ X and every vector w ∈ X is either

positive: wi > 0 for all i ∈ [m]; or

T -weakly positive: wi > 0 if and only if i ∈ diag(T ).

Given such a pair (X,Y), gen-pair defines a new P-pair

(X′,Y′) = gen-pair(X,Y), where P = gen(T ).

To this end we first define a pair (X∗,Y∗) from (X,Y), which is a generalized P-pair defined as follows.

Definition 6. Let P be an r× r pattern with r ≥ 1. An r× r non-negative matrix is called a P-diagonal
matrix if it is a diagonal matrix and for all i ∈ [r], its (i, i)th entry is positive if and only if (i, i) ∈ P.

We call (X∗,Y∗) a generalized P-pair if

1. X∗ is a nonempty (and possibly infinite) set of positive or P-weakly positive vectors with 1∈X∗;

2. Y∗ is a nonempty (and possibly infinite) set of P-matrices or P-diagonal matrices.

For any block pattern T , one can define T -diagonal matrices and generalized T -pairs similarly, by rep-
lacing the pattern P above with the one defined by T .

We then use (X∗,Y∗) to define (X′,Y′). In this section we only show that (X′,Y′) is a P-pair and X′

is closed. We will give the polynomial-time reduction from (X′,Y′) to (X,Y) in Section 7.

4.1 Definition of Y∗

We defineY∗ which contains both P-matrices and P-diagonal matrices, where P = gen(T ). As it becomes
clear later in Section 4.3, P-diagonal matrices are really just P-weakly positive vectors in disguise, and
will be absorbed into X′ when we define the final P-pair (X′,Y′) in which Y′ contains P-matrices only.

There are two types of matrices in Y∗. First, an r × r matrix D is in Y∗ if there exist

1. a finite subset of matrices {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1, and positive integers s1, . . . , sg;
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2. a finite subset of matrices {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1, and positive integers t1, . . . , th;

3. a positive vector w ∈ X,

such that: Let (α[i],β[i]) and (γ [i], δ[i]) be the representations of C[i] and D[i], respectively, then

Di,j =
∑

x∈Bi∩Aj

(

β[1]
x

)s1
· · ·
(

β[g]
x

)sg
·
(

γ[1]x

)t1
· · ·
(

γ[h]x

)th
· wx, for all i, j ∈ [r].

The following lemma is easy to prove.

Lemma 4. If w ∈ X is positive, then the matrix D defined above is a P-matrix, where P = gen(T ).

Proof. Because (X,Y) is a T -pair, all the matrices C[i] and D[j], i ∈ [g] and j ∈ [h], are T -matrices and
thus, β[i] is positive over B1 ∪ · · · ∪Br and γ [j] is positive over A1 ∪ · · · ∪Ar. Since w is positive, we have
that Di,j > 0 if and only if Bi ∩Aj 6= ∅.

Second, an r × r matrix D is in Y∗ if there exist

1. a finite subset of matrices {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1, and positive integers s1, . . . , sg;

2. a finite subset of matrices {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1, and positive integers t1, . . . , th;

3. a T -weakly positive vector w ∈ X,

such that: Let (α[i],β[i]) and (γ [i], δ[i]) be the representations of C[i] and D[i], respectively, then

Di,j =
∑

x∈Bi∩Aj

(

β[1]
x

)s1
· · ·
(

β[g]
x

)sg
·
(

γ[1]x

)t1
· · ·
(

γ[h]x

)th
· wx, for all i, j ∈ [r].

Similarly one can show that

Lemma 5. If w is T -weakly positive, then the matrix D defined above is P-diagonal where P = gen(T ).

Proof. First, we show that D is diagonal. Let i 6= j be two distinct indices in [r]. If Bi ∩ Aj = ∅, then
Di,j is trivially 0. Otherwise, for every k ∈ Bi∩Aj, we know that (k, k) is not in the pattern defined by T
because k ∈ Bi, k ∈ Aj but i 6= j. As a result, we have wk = 0 which implies Di,j = 0 for all i 6= j ∈ [r].

Second, if Ai ∩ Bi 6= ∅ then (k, k) is in the pattern defined by T for every k ∈ Ai ∩Bi. This implies
that wk > 0. As a result, we have Di,i > 0 if and only if Ai ∩Bi 6= ∅.

It follows that Y∗ contains P-matrices and P-diagonal matrices only, where P = gen(T ).

4.2 Definition of X∗

Now we define X∗. To this end, we first define X# which is a set of r-dimensional positive and P-weakly
positive vectors. We have w# ∈ X# if and only if one of the following four cases is true:

1. w# = 1;

2. There exist a finite subset {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1, positive integers s1, . . . , sg and a vector

w ∈ X (positive or T -weakly positive) such that: Let (α[i],β[i]) be the representation of C[i], then

w#
i =

∑

x∈Ai

(

α[1]
x

)s1
· · ·
(

α[g]
x

)sg
· wx, for all i ∈ [r].

We have that w# is positive if w is positive and w# is P-weakly positive if w is T -weakly positive.
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3. There exist a finite subset {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1, positive integers t1, . . . , tg and a vector

w ∈ X (positive or T -weakly positive) such that: Let (γ[i], δ[i]) be the representation of D[i], then

w#
i =

∑

x∈Bi

(

δ[1]x

)t1
· · ·
(

δ[h]x

)th
· wx, for all i ∈ [r].

Similarly, it can be checked that w# is positive if w is positive and w# is P-weakly positive if
w is T -weakly positive.

4. There exist two finite subsets {C[1], . . . ,C[g]} ⊆ Y and {D[1], . . . ,D[h]} ⊆ Y with g ≥ 1 and h ≥ 1,
positive integers s1, . . . , sg, t1, . . . , th and a vector w ∈ X (positive or T -weakly positive) such that:

Let (α[i],β[i]) and (γ [i], δ[i]) be the representations of C[i] and D[i], respectively, then

w#
i =

∑

x∈Bi∩Ai

(

β[1]
x

)s1
· · ·
(

β[g]
x

)sg
·
(

γ[1]x

)t1
· · ·
(

γ[h]x

)th
· wx, for all i ∈ [r].

It can be checked that w# is always a P-weakly positive vector.

This finishes the definition of X#.

Set X∗ is the closure of X#: w ∈ X∗ if and only if there exist a finite subset {w1, . . . ,wg} ⊆ X# and
positive integers s1, . . . , sg such that

w =
(

w1

)s1 ◦ · · · ◦
(

wg

)sg ,

where ◦ denotes the Hadamard product and (wi)
si denote the vector in which the jth entry is the si-th

power of the jth entry of wi. It follows that X
∗ is closed and any vector in it is either positive or P-weakly

positive. It is also easy to check that (X∗,Y∗) is a generalized P-pair.

4.3 Definition of (X′
,Y′)

We use (X∗,Y∗) to define (X′,Y′) as follows.
First, Y′ contains exactly all the P-matrices in Y∗.
The definition of X′ is more complicated. We have w′ ∈ X′ if and only if

1. w′ ∈ X∗; or

2. There exist

(a) a finite subset of P-matrices {C[1], . . . ,C[g]} ⊆ Y∗ with g ≥ 0 (so this set could
be empty) and g positive integers s1, . . . , sg;

(b) a finite subset of P-diagonal matrices {D[1], . . . ,D[h]} ⊆ Y∗ with h ≥ 1, and h
positive integers t1, . . . , th;

(c) and a vector w ∈ X∗ (which is either positive or P-weakly positive),

such that w′ satisfies

w′
i = wi ·

(

C
[1]
i,i

)s1
· · ·
(

C
[g]
i,i

)sg
·
(

D
[1]
i,i

)t1
· · ·
(

D
[h]
i,i

)th
, for any i ∈ [r].

It can be checked that every w′ ∈ X′ is either positive or P-weakly positive.

This finishes the definition of (X′,Y′) and the gen-pair operation. It is easy to verify that the new
pair (X′,Y′) is a P-pair. Moreover, since X∗ is closed, one can show that X′ is also closed. This proves
the first part of Lemma 1:
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Lemma 6. Let (X,Y) be a T -pair for some non-trivial block pattern T . Suppose every matrix in Y is
block-rank-1, then (X′,Y′) = gen-pair(X,Y) is a P-pair, where P = gen(T ), and X′ is closed. Moreover,
the pair (X∗,Y∗) defined from (X,Y) is a generalized P-pair and X∗ is also closed.

5 Dichotomy: Tractability

In this section, we prove Lemma 2 (restated below), the tractability part of the dichotomy theorem.

Lemma 2 (Tractability). Given any block pattern T and a finite T -pair (P,Q), let (X0,Y0), . . . , (Xh,Yh)
be a sequence of pairs that satisfies condition (R) for some h < m, with (X0,Y0) = (P,Q). Then we have
that ZP,Q(·) is computable in polynomial time.

Let (X0,Y0) = (P,Q) be a finite T0-pair, for some block pattern T0. Let (X0,Y0), . . . , (Xh,Yh) be a
sequence of h + 1 pairs for some h ≥ 0, m0 > m1 > . . . > mh ≥ 1 be h + 1 positive integers, and T0,
T1, . . . ,Th be h+ 1 block patterns such that

R: For every i ∈ [0 : h], Ti is an mi ×mi block pattern;
For every i ∈ [h], Ti is consistent with Pi = gen(Ti−1);
Either Th = ∅ is trivial or every set in Th is a singleton;
For every i ∈ [h], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a Ti-pair; and
For every i ∈ [0 : h], all the matrices in Yi are block-rank-1.

We need to show that ZP,Q(·) = ZX0,Y0(·) can be computed in polynomial time.

Let G0 = (G0,V0, E0) be an input labeled directed graph of ZX0,Y0(·). By definition we have V0(v) ∈
X0 for all vertices v ∈ V (G0), and E0(uv) ∈ Y0 for all edges uv ∈ E(G0). We further assume that the
underlying undirected graph of G0 is connected. (If G0 is not connected, then we only need to compute
ZX0,Y0(·) for each undirected connected component of G0 and multiply them to obtain ZX0,Y0(G0).)

To compute ZX0,Y0(G0), we will construct in polynomial-time a sequence of h + 1 labeled directed
graphs G0, . . . ,Gh. We will show that these graphs have the following two properties:

P1: For every ℓ ∈ [0 : h], Gℓ = (Gℓ,Vℓ, Eℓ) is a labeled directed graph such that Vℓ(v) ∈ Xℓ for all v ∈
V (Gℓ); Eℓ(uv) ∈ Yℓ for all uv ∈ E(Gℓ); and the underlying undirected graph of Gℓ is connected.

P2: Z(G0) = Z(G1) = · · · = Z(Gh).

As a result, to compute Z(G0), one only needs to compute Z(Gh). On the other hand, we do know how to
compute Z(Gh) in polynomial time. If Th is trivial, then computing Z(Gh) is trivial. Otherwise, if every
set in Th is a singleton, then one can efficiently enumerate all assignments of Gh with a positive weight.
(To see this we note that for any edge uv in Gh and any assignment of u, there is at most one assignment
of v such that the edge weight of uv is positive. As Gh is connected, each assignment of u can be extended
to at most one assignment of vertices of Gh with a positive weight, and this extension can be computed
efficiently.) This allows us to compute Z(G0) = Z(Gh) in polynomial time.

5.1 Construction of G ′ from G

Let (X,Y) be a T -pair for some m ×m non-trivial block pattern T such that all the matrices in Y are
block-rank-1. Then by Lemma 6, (X′,Y′) = gen-pair(X,Y) is a P-pair where P = gen(T ).

Let G = (G,V, E) be a labeled directed graph such that V(v) ∈ X for all v ∈ V (G); E(uv) ∈ Y for
all uv ∈ E(G); and the underlying undirected graph of G is connected. We further assume that G is not
trivial: V is not a singleton (since for this special case, Z(G) can be computed trivially). In this section,
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we show how to construct a new graph G′ = (G′,V ′, E ′) in polynomial time such that V ′(v) ∈ X′ for all
v ∈ V (G′); E ′(uv) ∈ Y′ for all uv ∈ E(G′); the underlying undirected graph of G′ is connected; and

Z(G) = Z(G′). (2)

Then we can repeatedly apply this construction, starting from G0, to obtain a sequence of h+ 1 labeled
directed graphs G0, . . . ,Gh that satisfy both P1 and P2. Lemma 2 then follows.

Now we describe the construction of G′. Let G = (V,E) and T = {(A1, B1), . . . , (An, Bn)} for some
n ≥ 1, then P = gen(T ) is an n × n pattern. The construction of G′ is divided into two steps, just like
the definition of (X′,Y′) = gen-pair(X,Y) in Section 4. In the first step, we construct a labeled graph
G∗ = (G∗,V∗, E∗) from G such that

1. V∗(v) ∈ X∗ for all v ∈ V (G∗); E∗(uv) ∈ Y∗ for all uv ∈ E(G∗); and the underlying undirected
graph of G∗ is connected, where (X∗,Y∗) denotes the generalized P-pair defined in Section 4.

2. Z(G∗) = Z(G).

In the second step, we construct G′ from G∗ and show that Z(G′) = Z(G∗).

5.1.1 Construction of G∗ from G

Let G = (G,V, E) and G = (V,E). We decompose the edge set using the following equivalence relation:

Definition 7. Let e, e′ be two directed edges in E. We say e ∼ e′ if e = e′ or there is a sequence of edges

e = e0, e1, . . . , ek = e′

in E such that for all i ∈ [0 : k − 1], ei and ei+1 share either the same head or the same tail.

We divide E into equivalence classes R1, . . . , Rf using ∼:

E = R1 ∪ . . . ∪Rf , for some f ≥ 1.

Because the underlying undirected graph of G is connected, there is no isolated vertex v in G and thus
every vertex v ∈ V appears as an incident vertex of some edge in at least one of the equivalence classes.
This equivalence relation is useful because of the following observation.

Observation 1. For any i ∈ [f ], the subgraph spanned by Ri is connected if we view it as an undirect-
ed graph. There are three types of vertices in it:

1. Type-L: vertices which only have outgoing edges in Ri;

2. Type-R: vertices which only have incoming edges in Ri; and

3. Type-M: vertices which have both incoming and outgoing edges in Ri.

Let ξ : V → [m] be any assignment with wt(G, ξ) 6= 0, then for any i ∈ [f ] there exists a unique ki ∈ [n]
such that the value of every edge uv ∈ Ri is derived from the ki-th block of T :

ξ(u) ∈ Aki and ξ(v) ∈ Bki .

Therefore, for every i ∈ [f ], there exists a unique ki ∈ [n] such that

1. For every Type-L vertex v in the graph spanned by Ri, ξ(v) ∈ Aki ;
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2. For every Type-R vertex v in the graph spanned by Ri, ξ(v) ∈ Bki ; and

3. For every Type-M vertex v in the graph spanned by Ri, ξ(v) ∈ Aki ∩Bki .

Now we build G∗ = (G∗,V∗, E∗), where G∗ = (V ∗, E∗). The next observation is important.

Observation 2. Each vertex v ∈ V can appear in no more than two subgraphs spanned by Ri’s. To see
this, assume for a contradiction that v appears in three subgraphs spanned by three distinct subsets of
edges Ri, Rj and Rk. Then there exist three distinct edges e ∈ Ri, e

′ ∈ Rj and e′′ ∈ Rk such that v is
incident to all of them, either as head or as tail. So v must be the head of at least two of them, or the
tail of at least two of them. Then at least two of e, e′ and e′′ are equivalent under ∼, and Ri, Rj and Rk

are not three distinct equivalence classes. This is a contradiction.

We start with the construction of G∗. V ∗ is exactly [f ] in which the vertex i ∈ [f ] corresponds to Ri

of G. For each vertex v ∈ V , if it appears in two subgraph spanned by Ri and Rj for some i 6= j ∈ [f ] and
if the incoming edges of v are from Ri and the outgoing edges of v are from Rj , then we add a directed
edge ij in E∗. Note that E∗ may have parallel edges. This finishes the construction of G∗. It is easy to
verify that the underlying undirected graph of G∗ is also connected.

The only thing left is to label the graph G∗ with vertex and edge weights. For every edge in E∗ we
assign it the following n× n matrix. Assume that an edge ij is created because of a vertex v ∈ V which
appears in both Ri and Rj. Let the incoming edges of v be u1v, . . . , usv in Ri and the outgoing edges of
v be vw1, . . . , vwt in Rj , where s, t ≥ 1. We use C[k] ∈ Y to denote the edge weight of ukv, D

[k] ∈ Y to
denote the edge weight of vwk, and w ∈ X to denote the vertex weight of v in G. We use (α[k],β[k]) and
(γ [k], δ[k]) to denote the representations of C[k] and D[k], respectively. Then the (k, ℓ)th entry of D is

Dk,ℓ =
∑

x∈Bk∩Aℓ

β[1]
x · · · β[s]

x · γ[1]x · · · γ[t]x · wx, for all k, ℓ ∈ [n].

By the definition of gen-pair, it is easy to check that D ∈ Y∗.

Finally, we define the vertex weight of i ∈ [f ]. To this end, we first define an n-dimensional vector
w[v] for each vertex v ∈ V that only appears in Ri. We then multiply (using Hadamard product) all such
vectors to get the vertex weight vector of i ∈ [f ].

Let v ∈ V be a vertex which only appears in Ri, then we have the following three cases:

1. If v is Type-L, then we use vw1, . . . , vws to denote its outgoing edges. We let w denote the vertex
weight of v in G and C[j] denote the edge weight of vwj with representation (α[j],β[j]). Then

w
[v]
k =

∑

x∈Ak

α[1]
x · · ·α[s]

x · wx, for all k ∈ [n].

2. If v is Type-R, then we use u1v, . . . , usv to denote its incoming edges. We let w denote the vertex
weight of v in G and C[j] denote the edge weight of ujv with representation (α[j],β[j]). Then

w
[v]
k =

∑

x∈Bk

β[1]
x · · · β[s]

x · wx, for all k ∈ [n].

3. If v is Type-M, then we use u1v, . . . , usv, vw1, . . . , vwt to denote its edges where s, t ≥ 1. We let w
be the vertex weight of v in G, C[j] be the edge weight of ujv with representation (α[j],β[j]), and

D[j] be the edge weight of vwj with representation (γ [j], δ[j]). Then

w
[v]
k =

∑

x∈Bk∩Ak

β[1]
x · · · β[s]

x · γ[1]x · · · γ[t]x · wx, for all k ∈ [n].
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We then multiply (using Hadamard product) all the vectors w[v] over all vertices v that only appear in
Ri to get the vertex weight vector w of i ∈ [f ] in G∗. By definition we have that w ∈ X∗, and this
finishes the construction of G∗. Note that both G∗ and edge and vertex weights of G∗ can be computed
in polynomial time (in the input size of G). Next, we show that Z(G∗) = Z(G).

Let φ : V ∗ = [f ] → [n] be any assignment. We use Ξφ to denote

{

ξ : V → [m]
∣

∣

∣
∀ i ∈ [f ], ∀uv ∈ Ri, ξ(u) ∈ Aφ(i) and ξ(v) ∈ Bφ(i)

}

.

Equivalently, φ defines for each vertex v ∈ V a set Uv ⊆ [m], where

1. If v appears in both the subgraph spanned by Ri and the subgraph spanned by Rj, for some
i 6= j ∈ [f ]; and v is Type-R in Ri and Type-L in Rj , then Uv = Bφ(i) ∩Aφ(j);

2. Otherwise, assume v only appears in the subgraph spanned by Ri. Then

(a) If v is Type-L, then Uv = Aφ(i);

(b) If v is Type-R, then Uv = Bφ(i); and

(c) If v is Type-M, then Uv = Bφ(i) ∩Aφ(i),

such that ξ ∈ Ξφ ⇐⇒ ξ(v) ∈ Uv for all v ∈ V . In particular, Ξφ = ∅ if Uv = ∅ for some v ∈ V .
By Observation 1, if wt(G, ξ) 6= 0 then ξ ∈ Ξφ for some unique φ. For any v ∈ V , we let w[v] denote

its vertex weight in G; and for any uv ∈ E, we let D[uv] denote its edge weight in G, with representation
(α[uv],β[uv]). Then by the definition of Ξφ, we have for all ξ ∈ Ξφ,

D
[uv]
ξ(u),ξ(v) = α

[uv]
ξ(u) · β

[uv]
ξ(v), for all uv ∈ E.

Therefore, we have the following equation:

∑

ξ∈Ξφ

wt(G, ξ) =
∑

ξ∈Ξφ

(

∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

α
[uv]
ξ(u) · β

[uv]
ξ(v)

)

.

This sum can be written as a product:
∑

ξ∈Ξφ

wt(G, ξ) =
∏

v∈V

Hv,

in which for every v ∈ V , the factor Hv is a sum over ξ(v) ∈ Uv.
By the construction of G∗, we can show that

wt(G∗, φ) =
∑

ξ∈Ξφ

wt(G, ξ) =
∏

v∈V

Hv. (3)

This follows from the following observations:

1. If v appears in both the subgraph spanned by Ri and the subgraph spanned by Rj, for some
i 6= j ∈ [n], and this v defines an edge ij ∈ E∗, then the edge weight of this edge ij in G∗ with
respect to φ is exactly Hv;

2. For every i ∈ [n], we let Vi ⊆ V denote the set of vertices that only appear in the subgraph
spanned by Ri. We also let w denote the vertex weight of i ∈ [n] in G∗. Then we have

wξ(i) =
∏

v∈Vi

Hv.
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As a result, it follows from (3) that

Z(G∗) =
∑

φ

wt(G∗, φ) =
∑

φ

∑

ξ∈Ξφ

wt(G, ξ) = Z(G).

5.1.2 Construction of G′ from G∗

Let G∗ = (G∗,V∗, E∗) be the labeled directed graph constructed above, where G∗ = (V ∗, E∗). We know
that V∗(v) ∈ X∗ for all v ∈ V ∗; E∗(uv) ∈ Y∗ for all uv ∈ E∗; the underlying undirected graph of G∗ is
connected. As (X∗,Y∗) is a generalized P-pair, each D ∈ Y∗ is either a P-matrix or a P-diagonal matrix.

We will build a new labeled directed graph G′ = (G′,V ′, E ′) with G′ = (V ′, E′) such that V ′(v) ∈ X′

for all v ∈ V ′; E ′(uv) ∈ Y′ for all uv ∈ E′; the underlying undirected graph of G′ is connected; and

Z(G′) = Z(G∗).

Let E∗ = E0∪E1, where E0 consists of edges in E∗ whose weight is a P-matrix and E1 consists of edges
in E∗ whose weight is a P-diagonal matrix. We write V1, . . . , Vg, for some g ≥ 1, to denote connected
components of (V ∗, E1), where we view E1 as a set of undirected edges and (V ∗, E1) as an undirected
graph. Then we have the following observation:

Observation 3. Let φ : V ∗ → [n] be an assignment with non-zero weight: wt(G∗, φ) 6= 0. Then for any
i ∈ [g], there exists a unique ki ∈ [n] such that φ(v) = ki for all v ∈ Vi.

Now we construct G′ = (G′,V ′, E ′). First we construct G′ = (V ′, E′). V ′ is exactly [g] in which vertex
i ∈ [g] corresponds to Vi. For every edge uv ∈ E0 such that u ∈ Vi, v ∈ Vj, and i 6= j ∈ [g], we add
an edge from i to j in G′. This finishes the construction of G′. It is easy to verify that the underlying
undirected graph of G′ is also connected.

Finally, we assign vertex and edge weights. For each edge ij in G′, suppose it is created because of
uv ∈ E0. Then the edge weight of ij is the same as that of uv. As a result, all the edge weight matrices
of G′ come from Y′ (since by definition of gen-pair, Y′ contains all the P-matrices in Y∗).

We define the vertex weights of G′ as follows. If Vi = {v} is a singleton, then the vertex weight of i
in G′ is the same as the weight of v in G∗. Otherwise, we let v1, . . . , vr be the vertices in Vi with r > 1,
let e1, . . . , es be the edges in E1 with both vertices in Vi for some s ≥ 1, and let e′1, . . . , e

′
t be the edges

in E0 with both vertices in Vi for some t ≥ 0. We use w[j] ∈ X∗ to denote the vertex weight of vj in G′

C[j] ∈ Y∗ to denote the P-diagonal matrix of ej and D[j] ∈ Y∗ to denote the P-matrix of e′j . Then we
assign the following vertex weight vector w to i ∈ V ′:

wk = w
[1]
k · · ·w

[r]
k · C

[1]
k,k · · ·C

[s]
k,k ·D

[1]
k,k · · ·D

[t]
k,k, for every k ∈ [n].

By definition w ∈ Y′. We also have that G′ can be computed in polynomial time (in the input size of G∗).
Using Observation 3, it is easy to verify that Z(G′) = Z(G∗).

This completes the proof of Lemma 2.

6 Reduction: Normalized Matrices are Free to Use

To give a polynomial-time reduction from (X′,Y′) = gen-pair(X,Y) to (X,Y), we need to first prove a
technical lemma on normalized block-rank-1 matrices as defined below.

Let C be an m × m block-rank-1 matrix of block pattern T and representation (α,β), where T =
{(A1, B1), . . . , (Ar, Br)} for some r ≥ 1. By definition, α satisfies

∑

j∈Ai

αj = 1, for all i ∈ [r].
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We say C′ is the normalized version of C if it is an m ×m block-rank-1 matrix of block pattern T and
representation (α, δ), where

δj =
βj

∑

k∈Bi
βk

, for all j ∈ Bi and i ∈ [r],

so that δ also satisfies
∑

j∈Bi

δj = 1, for all i ∈ [r].

Let (P,Q) be a finite T -pair for some non-trivial m×m block pattern T , and

Q =
{

C[1], . . . ,C[s]
}

,

in which every C[i] is block-rank-1 and has representation (α[i],β[i]). For each i ∈ [s], we let D[i] denote
the normalized version of C[i] with representation (α[i], δ[i]), and

Q′ =
{

C[1], . . . ,C[s],D[1], . . . ,D[s]
}

.

In the rest of this section, we show in Lemma 7 that ZP,Q(·) and ZP,Q′(·) are computationally equivalent.
It will be crucially used in Section 7, where we give a polynomial-time reduction from (X′,Y′) to (X,Y).
To obtain such a reduction, it follows from Lemma 7 that it suffices to give a polynomial-time reduction
from (X′,Y′) to (X,Y†) where Y† contains all matrices in Y as well as their normalized versions.

Lemma 7. ZP,Q(·) and ZP,Q′(·) are computationally equivalent.

Proof. In the proof, we use two levels of interpolations and Vandermonde systems.

We start with some notation. Let G = (G,V, E) be the input labeled directed graph of ZP,Q′(·) with
G = (V,E). For v ∈ V , we use w[v] ∈ P to denote its vertex weight. We use Ei ⊆ E, i ∈ [s], to denote
the set of edges labeled with C[i], and Fi ⊆ E, i ∈ [s], to denote the set of edges labeled with D[i]. For
every assignment ξ : V → [m], we define

vw(ξ) =
∏

v∈V

w
[v]
ξ(v), cw(ξ) =

∏

i∈[s]

∏

uv∈Ei

C
[i]
ξ(u),ξ(v), dw(ξ) =

∏

i∈[s]

∏

uv∈Fi

D
[i]
ξ(u),ξ(v).

Note that a product over an empty set is equal to 1. Then we need to compute the following sum

ZP,Q′(G) =
∑

ξ

vw(ξ) · cw(ξ) · dw(ξ).

For all a ∈ [s] and b ∈ [r], we use K
[a]
b > 0 to denote the number such that

C
[a]
i,j = K

[a]
b ·D

[a]
i,j , for all i ∈ Ab and j ∈ Bb.

Actually, this gives us the following equation

C
[a]
i,j = K

[a]
b ·D

[a]
i,j , for all i ∈ Ab and j ∈ [m],

since C[a] and D[a] have the same block pattern T . Then we use kw(ξ), where ξ : V → [m], to denote

kw(ξ) =
∏

a∈[s]





∏

uv∈Fa with ξ(u)∈Ab

K
[a]
b



 .
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We use X to denote the following set:

X =







∏

a∈[s]

∏

b∈[r]

(

K
[a]
b

)ma,b

: ma,b are non-negative integers that sum to |E|







.

It is clear that |X| is polynomial in |E|, since both s and r are constants, and that X can be computed in
polynomial time. We also have that kw(ξ) ∈ X for all ξ. Below we use L to denote |X|.

For all k ∈ [0 : L− 1], we build a new graph G[k] = (G[k],V [k], E [k]) below, where G[k] = (V [k], E[k]):

1. V [k] contains V as a subset, and every v ∈ V is labeled with the same vertex weight as in G;

2. For all i ∈ [s] and uv ∈ Ei, we add one edge uv ∈ E[k] and label it with the same matrix C[i];

3. For all i ∈ [s] and all e = uv ∈ Fi, we add L− k parallel edges from u to v with C[i] as their edge
weights; we also add 2k new vertices ue,j and ve,j, j ∈ [k], to V [k]; we add one edge from u to ue,j
and one edge from ve,j to v for all j ∈ [k], all of which are labeled with C[i]. For each new vertex,
we assign 1 as its vertex weight.

It is clear that G[k] can be constructed in polynomial time and is a valid input of ZP,Q(·).
Fix k ∈ [0 : L− 1]. For every assignment φ : V → [m], we let Ξφ denote the set of all ξ : V [k] → [m]

such that ξ(v) = φ(v) for all v ∈ V . We also define

wt[k](φ) =
∑

ξ∈Ξφ

wt(G[k], ξ).

Then we have the following equation

ZP,Q(G
[k]) =

∑

ξ:V [k]→[m]

wt(G[k], ξ) =
∑

φ:V→[m]

wt[k](φ).

By the construction, we show that

wt[k](φ) = vw(φ) · cw(φ) ·
(

dw(φ)
)L

·
(

kw(φ)
)L+k

, for all k ∈ [0 : L− 1]. (4)

First, we have

wt[k](φ) = vw(φ) · cw(φ) ·
∑

ξ∈Ξφ





∏

i∈[s]





∏

e=uv∈Fi

(

C
[i]
ξ(u),ξ(v)

)L−k





∏

j∈[k]

C
[i]
ξ(u),ξ(ue,j)

C
[i]
ξ(ve,j),ξ(v)











 . (5)

For each edge e = uv ∈ Fi for some i ∈ [s], there must exist an index be ∈ [r] such that φ(u) ∈ Abe and
φ(v) ∈ Bbe ; otherwise both sides of (4) are 0 and we are done. In this case, the sum in (5) becomes

∏

i∈[s]







∏

e=uv∈Fi

(

K
[i]
be

·D
[i]
ξ(u),ξ(v)

)L−k





∑

x∈Bbe

C
[i]
ξ(u),x





k



∑

x∈Abe

C
[i]
x,ξ(v)





k





. (6)

By the definition of (α[i],β[i]) and (α[i], δ[i]), we have

∑

x∈Bbe

C
[i]
ξ(u),x = α

[i]
ξ(u)

∑

x∈Bbe

β[i]
x = α

[i]
ξ(u) ·K

[i]
be

and
∑

x∈Abe

C
[i]
x,ξ(v) = β

[i]
ξ(v).
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As a result, (6) becomes

∏

i∈[s]





∏

e=uv∈Fi

(

K
[i]
be

·D
[i]
ξ(u),ξ(v)

)L−k (

α
[i]
ξ(u) ·K

[i]
be

)k (

β
[i]
ξ(v)

)k



 =
∏

i∈[s]





∏

e=uv∈Fi

(

K
[i]
be

)L+k (

D
[i]
ξ(u),ξ(v)

)L



 .

This finishes the proof of equation (4).

Since L is polynomial in the input size, we can use ZP,Q(·) as an oracle to compute

∑

φ:V→[m]

vw(φ) · cw(φ) ·
(

dw(φ)
)L

·
(

kw(φ)
)L+k

, for all k ∈ [0 : L− 1].

in a polynomial number of steps.
For every x ∈ X, we use Φx to denote the set of φ : V → [m] with kw(φ) = x, then we computed

∑

x∈X





∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L



 · xL+k, for all k ∈ [0 : L− 1].

Because x > 0 for all x ∈ X, we can solve this Vandermonde system and obtain

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L

, for each x ∈ X,

in a polynomial number of steps.

It is also clear that the whole process can be repeated for any L′ ≥ L with

L′ ≤ L+ poly(input size),

and we can use ZP,Q(·) as an oracle to compute

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L′

, for all x ∈ X and L ≤ L′ ≤ L+ poly(input size),

in a polynomial number of steps.

Similar to the definition of X for kw earlier, we can define a set Y such that |Y | is polynomial, Y can
be computed in polynomial time and contains all possible values of dw(φ) for φ : V → [m] (note that it
is possible that 0 ∈ Y ). Let M = |Y |. For every x ∈ X, we can compute

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L+k

, for all k ∈ [0 : M − 1].

Let Φx,y denote the set of φ with kw(φ) = x and dw(φ) = y. Solving this Vandermonde system, we get

∑

φ∈Φx,y

vw(φ) · cw(φ), for all x ∈ X and 0 < y ∈ Y .

Finally, using all these items, we can compute ZP,Q′(G) in a polynomial number of steps:

ZP,Q′(G) =
∑

x∈X, 0<y∈Y





∑

φ∈Φx,y

vw(φ) · cw(φ)



 · y.

This proves the lemma since the other direction from ZP,Q(·) to ZP,Q′(·) is trivial.
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7 Polynomial-Time Reduction from (X′
,Y′) to (X,Y)

Let (X,Y) be a T -pair, where T is a non-trivial m×m block pattern T = {(A1, B1), . . . , (Ar, Br)} with
r ≥ 1 and every matrix in Y is block-rank-1. Let P be the r × r pattern where P = gen(T ) and (X′,Y′)
be the P-pair generated from (X,Y) using the gen-pair operation: (X′,Y′) = gen-pair(X,Y). We also
use (X∗,Y∗) to denote the generalized P-pair defined in Section 4.

In this section, we prove that (X′,Y′) is polynomial-time reducible to (X,Y). To this end, we first
reduce (X′,Y′) to (X∗,Y∗), and then reduce (X∗,Y∗) to (X,Y). The first step is trivial, so we will only
give a polynomial-time reduction from (X∗,Y∗) to (X,Y) below.

Let P∗ = {p[i] : i ∈ [s]} be a finite subset of vectors in X∗ with 1 ∈ P∗ and Q∗ = {F[i] : i ∈ [t]} be a
finite subset of matrices in Y∗. By the definition of gen-pair, they can be generated by a finite subset
P = {w[i] : i ∈ [h]} ⊆ X with 1 ∈ P and a finite subset Q = {C[i] : i ∈ [g]} ⊆ Y in the following sense.
(We let (α[i],β[i]) denote the representation of C[i] for every i ∈ [g].)

For every matrix F ∈ Q∗, there exists a (2g + 1)-tuple
(

k ∈ [h];k = (k1, . . . , kg); ℓ = (ℓ1, . . . , ℓg)
)

,

where ki, ℓi ≥ 0, k 6= 0 and ℓ 6= 0, such that

Fi,j =
∑

x∈Bi∩Aj

(

β[1]
x

)k1
· · ·
(

β[g]
x

)kg
·
(

α[1]
x

)ℓ1
· · ·
(

α[g]
x

)ℓg
· w[k]

x . (7)

This (2g + 1)-tuple is also call the (not necessarily unique) representation of F with respect to (P,Q).

For every p ∈ P∗, there exist three finite (and possibly empty) sets S1, S2 and S3 of tuples, where
every tuple in S1 and S2 is of the form

(

k ∈ [h];k = (k1, . . . , kg)
)

with ki ≥ 0 and k 6= 0, and every tuple in S3 is of the form
(

k ∈ [h];k = (k1, . . . , kg); ℓ = (ℓ1, . . . , ℓg)
)

with ki, ℓi ≥ 0, k 6= 0 and ℓ 6= 0. Every tuple in S1 gives us a vector whose ith entry, i ∈ [r], is equal to

∑

x∈Ai

(

α[1]
x

)k1
· · ·
(

α[g]
x

)kg
· w[k]

x ;

every tuple in S2 gives us a vector whose ith entry, i ∈ [r], is equal to

∑

x∈Bi

(

β[1]
x

)k1
· · ·
(

β[g]
x

)kg
· w[k]

x ;

and every (2g + 1)-tuple in S3 gives us a vector whose ith entry, i ∈ [r], is equal to

∑

x∈Bi∩Ai

(

β[1]
x

)k1
· · ·
(

β[g]
x

)kg
·
(

α[1]
x

)ℓ1
· · ·
(

α[g]
x

)ℓg
· w[k]

x .

Vector p is then the Hadamard product of all these vectors.

We remark that all exponents ki, ℓi in the equations above are considered as constants because both
(P,Q) and (P∗,Q∗) are fixed (when we are concerned about ZP,Q(·) and ZP∗,Q∗(·) as two computational
problems). We now prove the following lemma.

Lemma 8. ZP∗,Q∗(·) is polynomial-time reducible to ZP,Q(·).
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7.1 Proof Sketch

We first give a proof sketch. Again, we will use interpolations and Vandermonde systems.

First, by Lemma 7, we only need to give a reduction from ZP∗,Q∗(·) to ZP,R(·), where

R =
{

C[i],D[i] : i ∈ [g]
}

contains both C[i] and its normalized version D[i], i ∈ [g].

Let G = (G,V, E) be an input labeled graph of ZP∗,Q∗(·), where G = (V,E). For every assignment
ξ : V → [r], we will define nvw(ξ) > 0. Moreover, let X be the set of all possible values of nvw(ξ), and
L = |X|, then L is polynomially bounded. For every k ∈ [L], we will build a new labeled directed graph
G[k] from G. G[k] is a valid input graph of ZP,R(·) (with domain [m]) and satisfies

ZP,R(G
[k]) =

∑

ξ:V→[r]

wt(G, ξ) ·
(

nvw(ξ)
)k

. (8)

For each x ∈ X, we use Ξx to denote the set of all ξ : V → [r] with nvw(ξ) = x. Then by solving the
Vandermonde system which consists of equations (8) for k = 1, 2, . . . , L, we can compute

∑

ξ∈Ξx

wt(G, ξ), for every x ∈ X,

which allow us to compute in polynomial time

ZP∗,Q∗(G) =
∑

ξ:V→[r]

wt(G, ξ) =
∑

x∈X





∑

ξ∈Ξx

wt(G, ξ)



 .

7.2 Construction of G[k]

We start with the construction of G[1] = (G[1],V [1], E [1]). It will become clear that the construction can
be generalized to get G[k] for every k ∈ [L].

Let V = [n], then the vertex set V [1] of G[1] = (V [1], E[1]) will be defined as a union:

V [1] = R1 ∪R2 ∪ · · · ∪Rn,

where Rk corresponds to vertex k ∈ V and any edge uv ∈ E[1] will be between two vertices u, v ∈ V [1]

such that u, v ∈ Rk for some unique k ∈ [n]. Ri and Rj , i 6= j ∈ [n], are not necessarily disjoint and there
could be vertices shared by (at most) two different sets Ri and Rj . We further divide the vertices of Ri,
i ∈ [n], into three types: In the subgraph of G[1] spanned by Ri,

1. The Type-L vertices only have outgoing edges;

2. The Type-R vertices only have incoming edges; and

3. The Type-M vertices have both incoming and outgoing edges.

When adding a new vertex, we will also specify which type it is. The construction also guarantees that
the underlying undirected graph spanned by every Ri is connected.
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7.2.1 Construction of G[1] = (V [1], E[1])

We start with the vertex set V [1].

1. First, for every i ∈ [n] and a ∈ [g], we add a new Type-L vertex ui,a in Ri and add a new Type-R
vertex wi,a in Ri. All these vertices appear in Ri only.

2. Second, for every e = ij ∈ E, where i, j ∈ [n], we add a vertex ve ∈ Ri ∩ Rj , which is a Type-R
vertex in Ri and a Type-L vertex in Rj .

3. Finally, for every i ∈ V let p ∈ P∗ be its vertex weight in G. Then by the discussion earlier, it can
be generated from (P,Q) using three finite sets of tuples S1,S2 and S3. For each tuple s in S1 we
add a new Type-L vertex vi,s in Ri; for each tuple s in S2, we add a new Type-R vertex in Ri; and
for each tuple s in S3 we add a new Type-M vertex in Ri. All these vertices appear in Ri only.

We will add some more vertices later. Now we start to create edges, and assign edge/vertex weights.
First, for every i ∈ [n], we add 2g edges to connect ui,a and wi,a, a ∈ [g]:

1. For every a ∈ [g], add one edge from ui,a to wi,a, and label the edge with C[1];

2. For every a ∈ [g], add one edge from ui,a to wi,a+1 (with wi,g+1 = wi,1), and label it with C[1];

3. For every a ∈ [g], the vertex weight vector of both ui,a and wi,a is the all-one vector 1.

Second, for each edge e = ij ∈ E, we add the incident edges of ve ∈ Ri ∩ Rj as follows. Assume the
edge weight matrix of ij in G is generated by (P,Q) using the following (2g + 1)-tuple:

(

k ∈ [h];k = (k1, . . . , kg); ℓ = (ℓ1, . . . , ℓg)
)

,

where ki, ℓi ≥ 0, k 6= 0 and ℓ 6= 0. Then we add the following incident edges of ve:

1. For each b ∈ [g], we add kb parallel edges from ui,b to ve in Ri, all of which are labeled with C[b];

2. For each b ∈ [g], we add ℓb parallel edges from ve to wj,b in Rj , all of which are labeled with C[b];

3. Assign the vertex weight vector w[k] ∈ P to ve.

Finally, for every vertex i ∈ V we use p to denote its vertex weight in G. Assume p is generated by
(P,Q) using three finite sets S1,S2 and S3 of tuples. For each s = (k ∈ [h];k = (k1, . . . , kg)) in S1 with
ki ≥ 0 and k 6= 0, we already added a Type-L vertex vi,s in Ri (which appears in Ri only). We add the
following incident edges of vi,s:

1. For each b ∈ [g], add kb parallel edges from vi,s to wi,b in Ri, all of which are labeled with C[b];

2. Assign the vertex weight vector w[k] ∈ P to vi,s.

For every s = (k ∈ [h];k = (k1, . . . , kg)) in S2, we already added a Type-R vertex vi,s ∈ Ri. We add the
following incident edges of vi,s in Ri:

1. For each b ∈ [g], add kb parallel edges from ui,b to vi,s in Ri, all of which are labeled with C[b];

2. Assign the vertex weight vector w[k] ∈ P to vi,s.

For every tuple s = (k ∈ [h];k = (k1, . . . , kg); ℓ = (ℓ1, . . . , ℓg)) in S3, we already added a Type-M vertex
vi,s in Ri. We add the following incident edges of vi,s in Ri:
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1. For every b ∈ [g], add kb parallel edges from ui,b to vi,s, all of which are labeled with C[b];

2. For every b ∈ [g], add ℓb parallel edges from vi,s to wi,b, all of which are labeled with C[b]; and

3. Assign the vertex weight vector w[k] ∈ P to vi,s.

It can be checked that the (undirected) subgraph spanned by Ri, for all i ∈ [n], is connected.

This almost finishes the construction. The only thing left is to add some more vertices and edges so
that the out-degree of ui,a and the in-degree of wi,a are the same for all i ∈ [n] and a ∈ [g].

To this end, we notice that for all i ∈ [n] and a ∈ [g], both the out-degree of ui,a and the in-degree
of wi,a constructed so far are linear in the maximum degree of G, because all the parameters ki, ℓi and
the sets Si are considered as constants. As a result, we can pick a large enough positive integer M ≥ 2
which is linear in the maximum degree of G, such that

M ≥ the out-degree of ui,a and the in-degree of wi,a constructed so far, for all i and a.

We now add vertices and edges so that the out-degree of ui,a and the in-degree of wi,a all become M .

Let i ∈ [n] and a ∈ [g]. Assume the current out-degree of ui,a is k ≤ M . Then we add M − k new
Type-R vertices in Ri and add one edge from ui,a to each of these vertices. The vertex weights of all the
new vertices are 1, and the edge weights of all the new edges are D[a] (recall that we are allowed to use
the normalized version D[a] of C[a], and this is actually the only place we use it).

Similarly, assume the current in-degree of wi,a is k ≤ M . Then we add M − k new Type-L vertices in
Ri and add one edge from each of these vertices to wi,a. The vertex weights of all the new vertices are 1
while the edge weights of all the new edges are C[a].

This finishes the construction of the new labeled directed graph G[1] = (G[1],V [1], E [1]).

7.3 Proof of Equation (8)

We start with the definition of nvw(ξ), for any assignment ξ : V = [n] → [r].

First, for each a ∈ [g], we let µ[a] denote the following positive r-dimensional vector:

µ
[a]
i =

∑

x∈Ai

(

α[1]
x

)2
·
(

α[a]
x

)M−2
, for every i ∈ [r].

For every a ∈ [g], we let ν [a] denote the following positive r-dimensional vector:

ν
[a]
i =

∑

x∈Bi

(

β[1]
x

)2
·
(

β[a]
x

)M−2
, for every i ∈ [r].

Finally, we define nvw(ξ) as follows:

nvw(ξ) =
∏

i∈[n]

∏

a∈[g]

µ
[a]
ξ(i) · ν

[a]
ξ(i), for any ξ : V = [n] → [r].

It is easy to check that nvw(ξ) > 0 and the number of possible values of nvw(ξ) is polynomial in n.
Now we prove equation (8) for k = 1:

ZP,R(G
[1]) =

∑

ξ:V→[r]

wt(G, ξ) · nvw(ξ). (9)

Let ξ be an assignment from V to [r]. We use Φξ to denote the set of all assignments φ : V [1] → [m]
such that for every edge uv in the subgraph spanned by Ri, i ∈ [n], we have

φ(u) ∈ Aξ(i) and φ(v) ∈ Bξ(i).
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In other words, for all i ∈ [n] and v ∈ Ri, if v a Type-L vertex then φ(v) ∈ Aξ(i); if v is a Type-R vertex
then φ(v) ∈ Bξ(i); and if v is a Type-M of Ri, then φ(v) ∈ Aξ(i) ∩ Bξ(i). Equivalently, we can associate

every vertex v ∈ V [1] with a subset Uv ⊆ [m], where

1. If v appears in both Ri and Rj for some i 6= j ∈ V = [n], and v is Type-R in Ri and
Type-L in Rj , then Uv = Bξ(i) ∩Aξ(j);

2. Otherwise, assume v only appears in Ri for some i ∈ V = [n]. Then

(a) If v is Type-L, then Uv = Aξ(i);

(b) If v is Type-R, then Uv = Bξ(i); and

(c) If v is Type-M, then Uv = Bξ(i) ∩Aξ(i),

such that φ ∈ Φξ if and only if φ(v) ∈ Uv for all v ∈ V [1]. In particular, Φξ = ∅ iff Uv = ∅ for some v.

By the construction, we know the subgraph spanned by Ri is connected, for any i ∈ [n]. It implies
that wt(G[1], φ) 6= 0 only if φ ∈ Φξ for a unique ξ : V → [r]. As a result, we have

ZP,R(G
[1]) =

∑

φ

wt(G[1], φ) =
∑

ξ

∑

φ∈Φξ

wt(G[1], φ),

and to prove (9) we only need to show that
∑

φ∈Φξ

wt(G[1], φ) = wt(G, ξ) · nvw(ξ), for any assignment ξ : V = [n] → [r].

We use w[v] to denote the weight vector of v ∈ V [1], Ei to denote the set of edges in E[1] labeled with
C[i], and Fi to denote the set of edges in E[1] labeled with D[i], then we have

∑

φ∈Φξ

wt(G[1], φ) =
∑

φ∈Φξ





∏

v∈V [1]

w
[v]
φ(v)

∏

i∈[g]





∏

uv∈Ei

C
[i]
φ(u),φ(v)









∏

uv∈Fi

D
[i]
φ(u),φ(v)







 .

By the definition of Φξ, if Φξ 6= ∅, then every φ ∈ Φξ satisfies

C
[i]
φ(u),φ(v) = α

[i]
φ(u) · β

[i]
φ(v) and D

[i]
φ(u),φ(v) = α

[i]
φ(u) · δ

[i]
φ(v),

where (α[i], δ[i]) is the representation of D[i]. As a result, we have

∑

φ∈Φξ

wt(G[1], φ) =
∑

φ∈Φξ





∏

v∈V [1]

w
[v]
φ(v)

∏

i∈[g]





∏

uv∈Ei

α
[i]
φ(u) · β

[i]
φ(v)









∏

uv∈Fi

α
[i]
φ(u) · δ

[i]
φ(v)







 .

Because φ ∈ Φξ iff φ(v) ∈ Uv for all v, we can express this sum of products as a product of sums:
∏

v∈V [1]

Hv,

in which every Hv, v ∈ V [1], is a sum over φ(v) ∈ Uv.
Finally, we show the following equation:

∏

v∈V [1]

Hv = wt(G, ξ) · nvw(ξ). (10)

This follows from the construction of G[1] and the following observations:
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1. For each ve ∈ Ri ∩Rj , which is added because of edge ij ∈ E, it can be checked that the sum Hve

over Uve = Bξ(i) ∩ Aξ(j) is exactly Fξ(i),ξ(j), where F is the weight of ij in G (as defined in (7)).

2. Let p denote the vertex weight of i ∈ V , which is generated using S1,S2 and S3. Then we have

pξ(i) =
∏

s∈S1

Hvi,s

∏

s∈S2

Hvi,s

∏

s∈S3

Hvi,s .

3. For all i ∈ [n] and a ∈ [g], we have

µ
[a]
ξ(i) = Hui,a

and ν
[a]
ξ(i) = Hwi,a

.

4. Finally, it can be checked that Hv = 1 for all other vertices in V [1], which is the reason we need to
use the normalized matrices D[a] in the construction.

7.3.1 Construction of G[k]

We can similarly construct G[k] for every k ∈ [L].
The only difference is that, instead of ui,a and wi,a, we add the following 2kg vertices in Ri:

ui,j,a and wi,j,a, for all j ∈ [k] and a ∈ [g].

We also connect these vertices by adding 4kg edges, whose underlying undirected graph is a cycle. All
these edges are labeled with C[1]. We also add extra vertices and edges so that the out-degree of ui,j,a
and the in-degree of vi,j,a are M for all i ∈ [n], j ∈ [k] and a ∈ [g]. It then can be proved similarly that

ZP,R(G
[k]) =

∑

ξ:V→[r]

wt(G, ξ) ·
(

nvw(ξ)
)k

.

This completes the proof of Lemma 1.

8 Decidability

In this section, we prove Lemma 3 (restated below) and show that the rank condition is decidable.

Lemma 3. Let (X0,Y0) be a finite T0-pair with X0 = {1}. Assuming that T0, . . . ,Tℓ−1,Tℓ and (X0,Y0), . . .
(Xℓ−1,Yℓ−1) all satisfy their conditions in (R) for some ℓ ∈ [h], the rank property for Yℓ can be checked
in a finite number of steps.

Let Tℓ = {(A1, B1), . . . , (Ar, Br)}. To check the rank property for Yℓ (i.e., matrices D ∈ Yℓ are block-
rank-1), it suffices to check whether every D ∈ Yℓ satisfies that

Di,j ·Di′,j′ −Di,j′ ·Di′,j = 0,

for all k ∈ [r], i, i′ ∈ Ak and j, j′ ∈ Bk. In Section 8.2, we introduce the notion of matrix polynomials and
say that Yℓ satisfies f if f is a polynomial over variables

{

xi,j : i ∈ Ak and j ∈ Bk for some k ∈ [r]
}

and evaluates to 0 when xi,j is assigned Di,j , for all D ∈ Yℓ. Thus, Yℓ satisfies the rank property if and
only if it satisfies all polynomials fi,i′,j,j′ of the following form:

xi,j · xi′,j′ − xi,j′ · xi′,j ,
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where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r]. The main component of the proof (Section 8.3) shows that
to check whether Yℓ satisfies a polynomial f or not, it suffices to check a finite number of polynomials
over Yℓ−1 and a finite number of polynomials over Xℓ−1 (see Section 8.2 for a similar definition of vector
polynomials applied over vectors in Xℓ−1); a similar reduction also holds for vector polynomials. This is
used in Section 8.4 to show that, to check the rank property for Yℓ, it suffices to check a finite number of
polynomials on X0 and Y0, which can be done in a finite number of steps since both of them are finite.

We start the proof with a technical lemma.

8.1 A Technical Lemma

Lemma 9. Let L, n and m be three positive integers. For each i ∈ [L], let a
[i]
1 , . . . , a

[i]
n be a sequence of n

positive numbers and b
[i]
1 , . . . , b

[i]
m be a sequence of m positive numbers. If

∑

i∈[n]

∏

j∈[L]

(

a
[j]
i

)kj
=
∑

i∈[m]

∏

j∈[L]

(

b
[j]
i

)kj
, for all k1, k2, . . . , kL ≥ 1,

then we must have m = n and there exists a permutation π of [n] such that

a
[j]
i = b

[j]
π(i), for all i ∈ [n] and j ∈ [L].

Proof. We prove it by induction on L. The base case when L = 1 is trivial.
Assume the lemma is true for L − 1 ≥ 1. Without loss of generality, we assume that {a

[L]
1 , . . . , a

[L]
n }

and {b
[L]
1 , . . . , b

[L]
m } are already sorted:

a
[L]
1 ≥ . . . ≥ a[L]n > 0 and b

[L]
1 ≥ . . . ≥ b[L]m > 0.

We let s ≥ 1 and t ≥ 1 be the two maximum integers such that

a
[L]
1 = a

[L]
2 = · · · = a[L]s = a > 0 and b

[L]
1 = b

[L]
2 = · · · = b

[L]
t = b > 0.

First it is easy to show that a = b. Otherwise assume a > b, then we set k1 = . . . = kL−1 = 1, divide
both sides by (a)kL , and let kL go to infinity. It is easy to check that the left side converges to

∑

i∈[s]

∏

j∈[L−1]

a
[j]
i > 0,

while the right side converges to 0, which contradicts the assumption.

Second, we fix k1, . . . , kL−1 to be any positive integers, divide both sides by (a)kL = (b)kL and let kL
go to infinity. It is easy to check that the left side converges to

∑

i∈[s]

∏

j∈[L−1]

(

a
[j]
i

)kj
,

while the right hand side converges to
∑

i∈[t]

∏

j∈[L−1]

(

b
[j]
i

)kj
.

So these two sums are equal for all k1, . . . , kL−1 ≥ 1. Then we apply the inductive hypothesis to claim
that s = t and there exists a permutation π from [s] to itself such that

a
[j]
i = b

[j]
π(i), for all j ∈ [L− 1] and i ∈ [s]. (11)

It is also easy to see that for any i ∈ [s], (11) also holds for j = L.
We then repeat the whole process after removing the first s elements from the 2L sequences.
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Additionally, we also need the following simple lemma in the proof.

Lemma 10. Let m ≥ 1 be an integer and (P1, P2, . . . , ) be a sequence of subsets of [m]. If for any finite
subset {i1, . . . , ik} ⊂ N, Pi1 ∩ Pi2 ∩ · · · ∩ Pik 6= ∅, then there exists a j ∈ [m] such that j ∈ Pi for all i.

Proof. If for every j ∈ [m], there exists some ij ≥ 1 such that j 6∈ Pij , then the finite intersection

m
⋂

j=1

Pij = ∅,

which contradicts the assumption.

8.2 Matrix and Vector Polynomials

Let (X,Y) be a generalized P-pair, for some m×m pattern P. So every vector w ∈ X is either positive
or P-weakly positive and every D ∈ Y is either a P-matrix or a P-diagonal matrix. Note that if Y only
has P-matrices, then (X,Y) is a P-pair. The definitions below also apply to P-pairs.

We say f is a P-matrix polynomial if f is a polynomial over variables
{

xi,j : (i, j) ∈ P
}

with integer coefficients and zero constant term. We say Y satisfies f if for every P-matrix D ∈ Y, we
have f(D) = 0, in which we substitute xi,j by Di,j > 0 for all (i, j) ∈ P. We also say (X,Y) satisfies f if
Y satisfies f .

We say f is a P-diagonal matrix polynomial if f is a polynomial over variables
{

xi : (i, i) ∈ P
}

with integer coefficients and zero constant term. We say Y satisfies f if every P-diagonal matrix D ∈ Y

satisfies f(D) = 0. We also say (X,Y) satisfies f if Y satisfies f .

We say g is an m-vector polynomial if g is a polynomial over variables
{

yi : i ∈ [m]
}

with integer coefficients and zero constant term. Similarly, we say X satisfies g if every positive vector
w ∈ X satisfies g(w) = 0. We also say (X,Y) satisfies g if X satisfies g.

Finally, we say g is a P-weakly positive vector polynomial if g is a polynomial over variables
{

yi : (i, i) ∈ P
}

with integer coefficients and zero constant term. We say X satisfies g if every P-weakly positive vector
w ∈ X satisfies g(w) = 0. We also say (X,Y) satisfies g if X satisfies g.

Let F be a finite set of P-matrix, P-diagonal matrix, m-vector, and P-weakly positive vector poly-
nomials. Then we say (X,Y) satisfies F if (X,Y) satisfies every polynomial f ∈ F .

Similarly, given any block pattern T , we can define T -matrix polynomials, T -diagonal matrix poly-
nomials, and T -weakly positive vector polynomials for T -pairs and generalized T -pairs.

As discussed at the beginning of the section, when (X,Y) is a T -pair, to check whether Y satisfies the
rank condition (i.e., every matrix D ∈ Y is block-rank-1), one only needs to check whether Y satisfies all
the T -matrix polynomials fi,i′,j,j′ of the following form

fi,i′,j,j′(x) = xi,j · xi′,j′ − xi,j′ · xi′,j, where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r].
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8.3 Checking Matrix and Vector Polynomials

Now let (X,Y) be a T -pair for some non-trivial m×m block pattern T = {(A1, B1), . . . , (Ar, Br)} with
r ≥ 1. We also assume that every matrix in Y is block-rank-1, and X is closed.

We can apply the gen-pair operation to get a new P-pair

(X′,Y′) = gen-pair(X,Y), where P = gen(T ).

We also let (X∗,Y∗) denote the generalized P-pair defined in Section 4. By definition, X∗ is also closed.

In this section, we first show that to check whether (X∗,Y∗) satisfies a matrix or vector polynomial,
one only needs to check finitely many polynomials for (X,Y). One can prove a similar relation between
(X′,Y′) and (X∗,Y∗). As a result, to check whether (X′,Y′) satisfies a polynomial or not, we only need
to check finitely many polynomials for (X,Y).

We start with the following lemma.

Lemma 11. Let f be a P-matrix or P-diagonal matrix polynomial. Then one can construct a finite set
{F1, . . . , FL} in a finite number of steps, in which every Fi, i ∈ [L], is a finite set of T -matrix, m-vector,
and T -weakly positive vector polynomials, such that

(X∗,Y∗) satisfies f ⇐⇒ ∃ i ∈ [L] such that (X,Y) satisfies Fi.

Proof. We first prove the case when f is a P-matrix polynomial.

If f is the zero polynomial, then the lemma follows by setting L = 1 and F1 to be the set consists of
the zero polynomial only. From now on we assume that f is not the zero polynomial.

Let {C[1], . . . ,C[s]} and {D[1], . . . ,D[t]} be two finite subsets of T -matrices in Y and {w[1], . . . ,w[h]}
be a finite subset of positive vectors in X, where s, t, h ≥ 1. We also let (α[i],β[i]) and (γ [i], δ[i]) denote
the representations of C[i] and D[i], respectively. By the definition of Y∗ and the assumption that Y is
closed, we can construct from every (s+ t+ h)-tuple

p =
(

k1, . . . , ks, ℓ1, . . . , ℓt, e1, . . . , eh
)

, where ki, ℓi, ei ≥ 1,

the following P-matrix C[p] in Y∗: the (i, j)th entry of C[p] is

∑

y∈Bi∩Aj

(

β[1]
y

)k1
· · ·
(

β[s]
y

)ks
·
(

γ[1]y

)ℓ1
· · ·
(

γ[t]y

)ℓt
·
(

w[1]
y

)e1
· · ·
(

w[h]
y

)eh
, for all i, j ∈ [r]. (12)

This follows from the fact that the Hadamard product of (w[1])e1 , . . . , (w[h])eh is actually a vector in X,
because X is known to be closed.

Now we assume (X∗,Y∗) satisfies f , then by definition we must have

f(C[p]) = 0, for all p, (13)

since C[p] is a P-matrix in Y∗. By combining (13) and (12) and rearranging terms, we have

∑

i∈[n1]





∏

j∈[s]

(

fi
(

β
[j]
1 , . . . , β[j]

m

)

)kj









∏

j∈[t]

(

fi
(

γ
[j]
1 , . . . , γ[j]m

)

)ℓj









∏

j∈[h]

(

fi
(

w
[j]
1 , . . . , w[j]

m

)

)ej





=
∑

i∈[n2]





∏

j∈[s]

(

gi
(

β
[j]
1 , . . . , β[j]

m

)

)kj









∏

j∈[t]

(

gi
(

γ
[j]
1 , . . . , γ[j]m

)

)ℓj









∏

j∈[h]

(

gi
(

w
[j]
1 , . . . , w[j]

m

)

)ej




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for all p. In the equation above, n1 and n2 are two non-negative integers. For all i ∈ [n1] and j ∈ [n2],
both fi(x1, . . . , xm) and gj(x1, . . . , xm) are monomials in x1, . . . , xm. Also note that all the monomials
fi, gj only depend on the P-matrix polynomial f but do not depend on the choices of p and the subsets
{C[1], . . . ,C[s]}, {D[1], . . . ,D[t]}, and {w[1], . . . ,w[h]}. Moreover, because we assumed that f is not the
zero polynomial, at least one of n1 and n2 is nonzero.

It follows directly from Lemma 9 that if (X∗,Y∗) satisfies f , then we must have n1 = n2 which we
denote by n. (If n1 6= n2, then we already know that f(C[p]) = 0 cannot hold for all p. The lemma
then follows by setting L = 1 and F1 to be the set that consists of the following m-vector polynomial:
g(x) = x1 so that (X,Y) does not satisfy F1.) Moreover, by Lemma 9, if (X∗,Y∗) satisfies f then there

also exists a permutation π from [n] to itself such that

fi
(

β
[j]
1 , . . . , β[j]

m

)

= gπ(i)
(

β
[j]
1 , . . . , β[j]

m

)

, for all j ∈ [s] and i ∈ [n];

fi
(

γ
[j]
1 , . . . , γ[j]m

)

= gπ(i)
(

γ
[j]
1 , . . . , γ[j]m

)

, for all j ∈ [t] and i ∈ [n]; and

fi
(

w
[j]
1 , . . . , w[j]

m

)

= gπ(i)
(

w
[j]
1 , . . . , w[j]

m

)

, for all j ∈ [h] and i ∈ [n].

Since all the discussion above and all the monomials fi, gi do not depend on the choice of the three
subsets, we can apply Lemma 10 to claim that if (X∗,Y∗) satisfies f , then there must exist a (universal)
permutation π from [n] to itself such that for all D ∈ X (since (X,Y) is a T -pair, D is a T -matrix),

fi(α1, . . . , αm)− gπ(i)(α1, . . . , αm) = 0, for all i ∈ [n] and

fi(β1, . . . , βm)− gπ(i)(β1, . . . , βm) = 0, for all i ∈ [n],

where (α,β) is the representation of D; and for every positive vector w ∈ Y,

fi(w1, . . . , wm)− gπ(i)(w1, . . . , wm) = 0, for all i ∈ [n].

It is also easy to check that these conditions are sufficient.
Furthermore, α and β can be expressed by the positive entries of D as follows. For every i ∈ Ak,

where k ∈ [r], let d be the smallest index in Bk, then we have

αi =
Di,d

∑

j∈Ak
Dj,d

.

For every i ∈ Bk, where k ∈ [r], let d be the smallest index in Ak, then βi = Dd,i/αd. Now it is easy
to see that for every permutation π from [n] to itself, we can construct a finite set Fπ of T -matrix and
m-vector polynomials, such that, if (X∗,Y∗) satisfies f then (X,Y) satisfies Fπ for some π.

The case when f is a P-diagonal matrix polynomial can be proved similarly. The only difference is
that every Fπ is now a finite set of T -matrix and T -weakly positive vector polynomials.

It also follows directly by definition that Y′ satisfies a P-matrix polynomial if and only if Y∗ satisfies
the same polynomial, because Y′ contains precisely all the P-matrices in Y∗. Next, we deal with vector
polynomials.

Lemma 12. Let g be an r-vector or a P-weakly positive vector polynomial. One can construct a finite
set {G1, . . . , GL} in a finite number of steps, in which every Gi is a finite set of T -matrix, m-vector, and
T -weakly positive vector polynomials, such that

(X∗,Y∗) satisfies g ⇐⇒ ∃ i ∈ [L] such that (X,Y) satisfies Gi.
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Proof. We only prove the case when g is P-weakly positive. The other case can be proved similarly.

Again, we assume that g is not the zero polynomial.

Recall that when defining X∗ in Section 4, we first define X# and X∗ is then the closure of X#: w is
a P-weakly positive vector in X∗ if and only if there exist a finite and possibly empty subset of positive
vectors {w[1], . . . ,w[s]} ⊆ X# for some s ≥ 0, a finite and nonempty subset of P-weakly positive vectors
{u[1], . . . ,u[t]} ⊆ X# for some t ≥ 1, and positive integers k1, . . . , ks, ℓ1, . . . , ℓt, such that

w =
(

w[1]
)k1 ◦ · · · ◦

(

w[s]
)ks ◦

(

u[1]
)ℓ1 ◦ . . . ◦

(

u[t]
)ℓt .

To prove Lemma 12, we first construct a finite set {F1, . . . , FM}, in which every Fi is a finite set of
r-vector and P-weakly positive vector polynomials, such that

X∗ satisfies g ⇐⇒ ∃ i ∈ [M ] such that X# satisfies Fi. (14)

To this end, we let {w[1], . . . ,w[s]} be a finite subset of positive vectors in X#; and {u[1], . . . ,u[t]} be a
finite subset of P-weakly positive vectors in X#, with s ≥ 0 and t ≥ 1. Then from any tuple

p =
(

k1, . . . , ks, ℓ1, . . . , ℓt
)

, where ki, ℓi ≥ 1,

we get a P-weakly positive vector w[p] ∈ X∗, where

w[p] =
(

w[1]
)k1 ◦ · · · ◦

(

w[s]
)ks ◦

(

u[1]
)ℓ1 ◦ · · · ◦

(

u[t]
)ℓt .

Assume X∗ satisfies g, then we have g(w[p]) = 0 for all p. Combining these two equations, we have

∑

i∈[n1]





∏

j∈[s]

(

fi
(

w[j]
)

)kj









∏

j∈[t]

(

fi
(

u[j]
)

)ℓj



 =
∑

i∈[n2]





∏

j∈[s]

(

gi
(

w[j]
)

)kj









∏

j∈[t]

(

gi
(

u[j]
)

)ℓj





for all p. In the equation, fi(x) and gi(x) are both monomials over xi, (i, i) ∈ P. Again, fi and gi only
depend on the polynomial g but do not depend on the choices of p and the two subsets {w[1], . . . ,w[s]}
and {u[1], . . . ,u[t]}.

Because g is not the zero polynomial, one of n1 and n2 must be positive, and we have the following
two cases. If n1 6= n2, then by Lemma 9, X∗ cannot satisfy g and (14) follows by setting L = 1 and F1 to
be the set consists of the following r-vector polynomial: f(x) = x1.

Otherwise, we have n1 = n2 > 0, which we denote by n. It follows from Lemma 9 and Lemma 10 that
if X∗ satisfies g, then there exists a universal permutation π from [n] to itself such that for every positive
and P-weakly positive vector w ∈ X#,

fi(w) = gπ(i)(w), for all i ∈ [n].

As a result, we can construct Fπ for each π, and X∗ satisfies g if and only if X# satisfies Fπ for some π.

In the second step, we show that for any r-vector or P-weakly positive vector polynomial f , one can
construct {F1, . . . , FL} in a finite number of steps, in which each Fi is a finite set of T -matrix, m-vector
and T -weakly positive vector polynomials, such that, X# satisfies f if and only if (X,Y) satisfies Fi for
some i ∈ [L]. The idea of the proof is very similar to the proof of Lemma 11 so we omit it here.

Lemma 12, for the case when g is P-weakly positive, then follows by combining these two steps.

We can also prove the following lemma similarly.

Lemma 13. Let g be an r-vector or a P-weakly positive vector polynomial. Then one can construct a
finite set {G1, . . . , GL} in a finite number of steps, in which every Gi, i ∈ [L], is a finite set of P-matrix,
P-diagonal matrix, r-vector, and P-weakly positive vector polynomials, such that

(X′,Y′) satisfies g ⇐⇒ ∃ i ∈ [L] such that (X∗,Y∗) satisfies Gi.
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8.4 Decidability of the Rank Condition

Finally, we use these lemmas to prove Lemma 3, the decidability of the rank condition.

We start with the following simple observation. Let F = {f1, . . . , fs} be a finite set of matrix and
vector polynomials. For each i ∈ [s], there is a finite set {Fi,1, . . . , Fi,Li

} in which every Fi,j is some finite
set of polynomials, and we have the following statement:

(X′,Y′) satisfies fi ⇐⇒ ∃ j ∈ [Li] such that (X,Y) satisfies Fi,j .

Then the conjunction of these statements over fi ∈ F , i ∈ [s], can be expressed in the same form: One
can construct from {Fi,j : i ∈ [s], j ∈ [Li]} a new finite set {G1, . . . , GL} in which every Gj is some finite
set of polynomials, such that

∀f ∈ F,
[

(X′,Y′) satisfies f
]

⇐⇒ ∃ j ∈ [L] such that (X,Y) satisfies Gj .

Now we prove Lemma 3. After ℓ− 1 ≥ 0 steps, we get a sequence of ℓ pairs

(X0,Y0), (X1,Y1), . . . , (Xℓ−1,Yℓ−1),

and ℓ block patterns T0, . . . ,Tℓ−1 which satisfy condition (Rℓ−1). Since we assumed that X0 = {1}, every
Xi in the sequence is closed.

We show how to check whether every matrix D ∈ Yℓ, where

(Xℓ,Yℓ) = gen-pair(Xℓ−1,Yℓ−1),

is block-rank-1 or not. To this end we first check if P = gen(Tℓ−1) is consistent with a block pattern. If not
we conclude that Yℓ+1 does not satisfy the rank condition.

Otherwise, we use Tℓ to denote the block pattern consistent with P. To check the rank condition, it
is equivalent to check whether Yℓ satisfies the following Tℓ-matrix polynomials:

fi,i′,j,j′(x) = xi,j · xi′,j′ − xi,j′ · xi′,j , where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r]

and (A1, B1), . . . , (Ar, Br) are the pairs in Tℓ.
By Lemmas 11-13, we can construct a finite set {F1, . . . , FL} in which every Fi is a finite set of

Tℓ−1-matrix, mℓ−1-vector, and Tℓ−1-weakly positive vector polynomials

such that

Yℓ satisfies the rank condition if and only if (Xℓ−1,Yℓ−1) satisfies Fi for some i ∈ [L].

If ℓ = 1, then we are done, since (X0,Y0) is finite and we can check all the polynomials in Fi for all i ∈ [L]
in a finite number of steps. Otherwise, ℓ ≥ 2 and we can use Lemmas 11–13 and the observation above
to construct, for each Fi, a finite set {Fi,1, . . . , Fi,Li

} in which every Fi,j is a finite set of

Tℓ−2-matrix, mℓ−2-vector, and Tℓ−2-weakly positive vector polynomials

such that

(Xℓ−1,Yℓ−1) satisfies Fi if and only if (Xℓ−2,Yℓ−2) satisfies Fi,j for some j ∈ [Li].

We repeat this process until we reach the finite pair (X0,Y0). So the checking procedure looks like
a huge tree of depth ℓ. Every leaf v of the tree is associated with a finite set Fv of

T0-matrix, m0-vector, and T0-weakly positive vector polynomials,

and Yℓ satisfies the rank condition if and only if (X0,Y0) satisfies Fv for some leaf v of the tree.
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