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ABSTRACT

Multi-Agent Path Finding (MAPF) is the problem of moving a team

of agents from their start locations to their goal locations without

collisions. We study the lifelong variant of MAPF where agents

are constantly engaged with new goal locations, such as in ware-

houses. We propose a new framework for solving lifelong MAPF by

decomposing the problem into a sequence of Windowed MAPF in-

stances, where a Windowed MAPF solver resolves collisions among

the paths of agents only within a finite time horizon and ignores

collisions beyond it. Our framework is particularly well suited to

generating pliable plans that adapt to continually arriving new

goal locations. We evaluate our framework with a variety of MAPF

solvers and show that it can produce high-quality solutions for up

to 1,000 agents, significantly outperforming existing methods.
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1 INTRODUCTION

Multi-Agent Path Finding (MAPF) is the problem of moving a team

of agents in discrete timesteps on a graph from their start loca-

tions to their goal locations while avoiding collisions. MAPF has

numerous real-world applications, such as autonomous aircraft-

towing vehicles [9], office robots [13], video game characters [8],

and quadrotor swarms [3]. Today, in autonomous warehouses, mo-

bile robots already navigate autonomously to move inventory pods

or flat packages from one location to another [4, 15]. However,

MAPF is only the łone-shotž variant of the actual problem in many

real-world applications. Typically, after an agent reaches its goal lo-

cation, it does not stop and wait there forever. Instead, it is assigned

a new goal location and required to keep moving, which is referred

to as lifelong MAPF [7] and characterized by agents constantly be-

ing assigned new goal locations. In this paper, we assume that there

is a task assigner (outside of our path-planning system) that the

agents can request goal locations from during the operation of the

The research at the University of Southern California was supported by the National
Science Foundation (NSF) under grant numbers 1724392, 1409987, 1817189, and 1837779,
as well as a gift from Amazon.
Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9ś13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

system. Our task is to plan collision-free paths that move all agents

to their goal locations and maximize the throughput, that is, the

average number of goal locations visited per timestep.

Existing methods for solving lifelong MAPF include (1) solving

it as a whole [10], (2) decomposing it into a sequence of MAPF

instances at every timestep where one replans paths for all agents [2,

14], and (3) decomposing it into a sequence of MAPF instances

where one plans new paths at every timestep for only the agents

with new goal locations [5, 7]. Method (1) needs to know all goal

locations a priori and has limited scalability. Method (2) can work

for an online setting and scales better than Method (1). However,

replanning for all agents at every timestep is time-consuming even

if one uses incremental search techniques. As a result, its scalability

is also limited. Method (3) scales to substantially more agents than

the first two methods but both the map and the MAPF model need

to have additional structure to guarantee the completeness. As a

result, it works only for specific classes of lifelong MAPF instances.

In addition, Methods (2) and (3) plan at every timestep, which may

not be practical since planning is time-consuming.

In this paper, we propose a new framework for solving lifelong

MAPF where we decompose lifelong MAPF into a sequence of

Windowed MAPF instances and replan once every h timesteps. A

Windowed MAPF instance is different from a MAPF instance in the

following ways: (1) it allows an agent to be assigned a sequence

of goal locations, and (2) collisions need to be resolved only for

the firstw timesteps (w ≥ h).1 The benefit of this decomposition is

two-fold. First, it keeps the agents continually engaged, avoiding

idle time, and increasing throughput. Second, it generates pliable

plans that adapt to continually arriving new goal locations. In fact,

methods that resolve all collisions within the entire time horizon

may often do so unnecessarily since the paths of the agents can

change as new goal locations arrive.

2 FRAMEWORK

Our framework has two parameters w and h (w ≥ h). w specifies

that the Windowed MAPF solver has to resolve collisions within a

time window ofw timesteps. h specifies that the Windowed MAPF

solver has to replan once every h timesteps.

In every Windowed MAPF episode, say, starting at timestep t ,

we first update the start location and the goal location sequence for

each agent. We set the start location of the agent to its location at

timestep t . Then, we calculate the distance d from the start location

to the first goal location plus the sum of the distances between

1Resolving collisions only within a window is not a new idea. Silver [12] has already
applied this idea to solving MAPF with prioritized planning. He refers to it as WHCA*
and empirically shows that, as the length of the window decreases, WHCA* runs faster
but also generates longer paths. In this paper, we showcase the benefits of applying
this idea to lifelong MAPF and other types of MAPF solvers.
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