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ABSTRACT

Multi-Agent Path Finding (MAPF) is the problem of moving a team
of agents from their start locations to their goal locations without
collisions. We study the lifelong variant of MAPF where agents
are constantly engaged with new goal locations, such as in ware-
houses. We propose a new framework for solving lifelong MAPF by
decomposing the problem into a sequence of Windowed MAPF in-
stances, where a Windowed MAPF solver resolves collisions among
the paths of agents only within a finite time horizon and ignores
collisions beyond it. Our framework is particularly well suited to
generating pliable plans that adapt to continually arriving new
goal locations. We evaluate our framework with a variety of MAPF
solvers and show that it can produce high-quality solutions for up
to 1,000 agents, significantly outperforming existing methods.
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1 INTRODUCTION

Multi-Agent Path Finding (MAPF) is the problem of moving a team
of agents in discrete timesteps on a graph from their start loca-
tions to their goal locations while avoiding collisions. MAPF has
numerous real-world applications, such as autonomous aircraft-
towing vehicles [9], office robots [13], video game characters [8],
and quadrotor swarms [3]. Today, in autonomous warehouses, mo-
bile robots already navigate autonomously to move inventory pods
or flat packages from one location to another [4, 15]. However,
MAPF is only the “one-shot” variant of the actual problem in many
real-world applications. Typically, after an agent reaches its goal lo-
cation, it does not stop and wait there forever. Instead, it is assigned
a new goal location and required to keep moving, which is referred
to as lifelong MAPF [7] and characterized by agents constantly be-
ing assigned new goal locations. In this paper, we assume that there
is a task assigner (outside of our path-planning system) that the
agents can request goal locations from during the operation of the
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system. Our task is to plan collision-free paths that move all agents
to their goal locations and maximize the throughput, that is, the
average number of goal locations visited per timestep.

Existing methods for solving lifelong MAPF include (1) solving
it as a whole [10], (2) decomposing it into a sequence of MAPF
instances at every timestep where one replans paths for all agents [2,
14], and (3) decomposing it into a sequence of MAPF instances
where one plans new paths at every timestep for only the agents
with new goal locations [5, 7]. Method (1) needs to know all goal
locations a priori and has limited scalability. Method (2) can work
for an online setting and scales better than Method (1). However,
replanning for all agents at every timestep is time-consuming even
if one uses incremental search techniques. As a result, its scalability
is also limited. Method (3) scales to substantially more agents than
the first two methods but both the map and the MAPF model need
to have additional structure to guarantee the completeness. As a
result, it works only for specific classes of lifelong MAPF instances.
In addition, Methods (2) and (3) plan at every timestep, which may
not be practical since planning is time-consuming.

In this paper, we propose a new framework for solving lifelong
MAPF where we decompose lifelong MAPF into a sequence of
Windowed MAPF instances and replan once every h timesteps. A
Windowed MAPF instance is different from a MAPF instance in the
following ways: (1) it allows an agent to be assigned a sequence
of goal locations, and (2) collisions need to be resolved only for
the first w timesteps (w > h).! The benefit of this decomposition is
two-fold. First, it keeps the agents continually engaged, avoiding
idle time, and increasing throughput. Second, it generates pliable
plans that adapt to continually arriving new goal locations. In fact,
methods that resolve all collisions within the entire time horizon
may often do so unnecessarily since the paths of the agents can
change as new goal locations arrive.

2 FRAMEWORK

Our framework has two parameters w and h (w > h). w specifies
that the Windowed MAPF solver has to resolve collisions within a
time window of w timesteps. h specifies that the Windowed MAPF
solver has to replan once every h timesteps.

In every Windowed MAPF episode, say, starting at timestep ¢,
we first update the start location and the goal location sequence for
each agent. We set the start location of the agent to its location at
timestep t. Then, we calculate the distance d from the start location
to the first goal location plus the sum of the distances between

IResolving collisions only within a window is not a new idea. Silver [12] has already
applied this idea to solving MAPF with prioritized planning. He refers to it as WHCA*
and empirically shows that, as the length of the window decreases, WHCA”" runs faster
but also generates longer paths. In this paper, we showcase the benefits of applying
this idea to lifelong MAPF and other types of MAPF solvers.



(a) Fulfillment warehouse map.

(b) Sorting center map.

Figure 1: Two maps. Black cells represent obstacles, which
the agents cannot traverse. Cells of other colors represent
empty locations, which the agents can traverse.

Table 1: Throughput and average runtime per run in seconds.
Here, a run means a call to the (Windowed) MAPF solver.

Table 2: Results of our framework using PBS, CA*, CBS, and
ECBS. For each algorithm, the top rows report the through-
put while the bottom rows report the average runtime per
run in seconds. “-” indicates that the runtime of the Win-
dowed MAPF solver exceeds 1 minute per run.

Agents Holding endpoints Dummy paths Our framework
throughput runtime | throughput runtime | throughput runtime
60 2.17 0.01 2.19 0.02 2.33 0.33
100 3.33 0.02 3.41 0.05 3.56 2.04
140 4.35 0.04 4.50 0.17 4.55 7.78

consecutive future goal locations in the goal location sequence. d
being smaller than h indicates that the agent might finish visiting
all its goal locations and being idle before the next planning episode
starts at timestep t + h. To avoid this situation, the task assigner
continually assigns new goal locations to the agent until d > h.
Once we get the start locations and the goal location sequences of
all agents, we call a Windowed MAPF solver to find paths for all
agents that are collision-free for the first w timesteps and that move
them from their start locations through all their goal locations in
the order given by their goal location sequences. Finally, we move
the agents for h timesteps along the generated paths and remove
the visited goal locations from the goal location sequences.

In order to find a shortest path for an agent to move through
a sequence of goal locations, we propose a generalized variant
of Multi-Label A* [2] and use it as the single-agent pathfinding
algorithm for our Windowed MAPF solvers. Compared to A*, we
add an additional attribute label to each node N that indicates the
number of goal locations in the goal location sequence that the
corresponding path from the root node to N has already visited. The
label of the root node is 0. We increase the label of a node by one iff
its location is its next goal location. A node is a goal node iff its label
equals the cardinality of the goal location sequence. In addition, we
set the h-value of a node to the distance from its location to the next
goal location plus the sum of the distances between consecutive
future goal locations in the goal location sequence.

3 EMPIRICAL RESULTS

We evaluate our framework with various MAPF solvers imple-
mented in C++, namely, CA* [12] (incomplete and suboptimal),
PBS [6] (incomplete and suboptimal), ECBS [1] (complete and
bounded suboptimal) and CBS [11] (complete and optimal). For com-
parison, we also implemented two existing realizations of Method
(3), namely, holding endpoints [7] and reserving dummy paths [5].
We do not compare against Method (1) since it does not scale be-
yond 20 agents [10]. We do not compare against Method (2) since
its performance in dense environments (that have many obstacles

PBS
Agents | 200 300 400 500 600 700 800 900 1000
w=5 1622 928 1227 1517 1797 20.69 2336 25.79 27.95
w=10 [ 6.27 936 1241 1543 1838 21.19 2394 2644 28.77
w=20 630 938 1245 1548 1838 21.24 2391 - -
w=o00 | 632 936 1246 1546 1840 21.30 - - -
w=5 1013 031 0.61 1.12 1.87 3.01 4.73 7.30  10.97
w=10 | 0.16 0.42 0.89 1.66 291 4.81 7.79 12.66 21.31
w=20 022 061 1.36 2.71 5.11 9.28 17.46 - -
w=oc0 [0.28 0.80 1.83 3.84 7.63 16.16 - - -
CA” CBS ECBS
Agents | 200 300 400 || Agents | 100 200 || Agents 400 500 600
w=5 |617 9.12 - w=5 | 3.17 - w=5 | 1203 1479 17.28
w=o00 | 620 9.16 - w =00 - - w=oc0 | 12.28 15.20 -
w=5|021 1.07 - w=5 |0.14 - w=>5 1.27 2.37 4.22
w=oc0 | 0.84 258 - w =00 - - w=oco | 1148 2347 -

and many agents) is similar to that of our framework with w = co.
We simulate 5,000 timesteps for each experiment. All experiments
were conducted on Amazon EC2 instances of type “m4.xlarge” with
16 GB memory.

We first use the map in Figure 1(a) from [5] to demonstrate
fulfillment warehouse applications. The initial locations of agents
are chosen uniformly at random from the orange cells, while the
task assigner chooses their goal locations uniformly at random
from the blue cells. This map satisfies the structure requirement of
Method (3), and we thus compare our framework with both existing
realizations of Method (3). For our method, we use a time horizon
of w = 20 timesteps and replan every h = 5 timesteps. For the other
two methods, we replan at every timestep, as required by Method
(3). All methods use PBS as their MAPF solvers. Table 1 reports the
throughput and runtime of these methods. In terms of throughput,
our method outperforms the two existing realizations of Method
(3). In terms of runtime, however, our method is slower per run
because the competing methods usually replan for fewer than 5
agents. The disadvantages of these methods are that they need to
replan at every timestep, achieve a lower throughput, and are not
applicable to all maps.

We then use the map in Figure 1(b) to demonstrate sorting cen-
ter applications. Each agent is assigned green cells and blue cells
alternately. In particular, the task assigner chooses blue cells uni-
formly at random and chooses green cells that are closest to the
current locations of the agents. This map does not satisfy the struc-
ture requirement of Method (3). Table 2 reports the throughput
and runtime of our framework for different values of w and h =5
timesteps using PBS, CA*, CBS, and ECBS with a suboptimality
bound of 1.1. As expected, the value of w does not substantially
affect the throughput. In most cases, small value of w influences
the throughput by less than 1% compared to w = co. However,
the value of w significantly affects the runtime. In all cases, small
value of w speeds up our framework by up to a factor of 6 without
compromising the throughput.
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