
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2019 1

PRIMAL: Pathfinding via Reinforcement and

Imitation

Multi-Agent Learning

Guillaume Sartoretti1, Justin Kerr1, Yunfei Shi1, Glenn Wagner2,

T. K. Satish Kumar3, Sven Koenig3, and Howie Choset1

Abstract—Multi-agent path finding (MAPF) is an essential
component of many large-scale, real-world robot deployments,
from aerial swarms to warehouse automation. However, despite
the community’s continued efforts, most state-of-the-art MAPF
planners still rely on centralized planning and scale poorly past a
few hundred agents. Such planning approaches are maladapted
to real-world deployments, where noise and uncertainty often
require paths be recomputed online, which is impossible when
planning times are in seconds to minutes. We present PRIMAL, a
novel framework for MAPF that combines reinforcement and im-
itation learning to teach fully-decentralized policies, where agents
reactively plan paths online in a partially-observable world while
exhibiting implicit coordination. This framework extends our
previous work on distributed learning of collaborative policies by
introducing demonstrations of an expert MAPF planner during
training, as well as careful reward shaping and environment
sampling. Once learned, the resulting policy can be copied onto
any number of agents and naturally scales to different team sizes
and world dimensions. We present results on randomized worlds
with up to 1024 agents and compare success rates against state-
of-the-art MAPF planners. Finally, we experimentally validate
the learned policies in a hybrid simulation of a factory mockup,
involving both real-world and simulated robots.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Deep Learning in Robotics and Automation, Distributed
Robot Systems, AI-Based Methods, Factory Automation

I. INTRODUCTION

G
IVEN the rapid development of affordable robots with

embedded sensing and computation capabilities, man-

ufacturing applications will soon regularly involve the de-

ployment of thousands of robots [1], [2]. To support these

applications, significant research effort has been devoted to

multi-agent path finding (MAPF) [3], [4], [5], [6] for de-

ployment in distribution centers and potential use for airplane

Manuscript received: September, 10, 2018; Revised November, 28, 2018;
Accepted February, 6, 2019.

This paper was recommended for publication by Editor Nancy Amato
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by CMU Manufacturing Futures Initiative, made possible by
the Richard King Mellon Foundation, and NSF grants 1409987, 1724392,
1817189, 1837779, and ACI-1445606.

G. Sartoretti, H. Choset, J. Kerr, Y. Shi are with the Robotics
Institute at Carnegie Mellon University, Pittsburgh, PA 15213, USA.
{gsartore,jgkerr,yunfeischoset}@andrew.cmu.edu.
G. Wagner is with the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Pullenvale QLD 4069, Australia,
glenn.s.wagner@gmail.com.
T. K. S. Kumar and S. Koenig are with the Computer Science Department
at the University of Southern California, Los Angeles, CA 90089, USA.
tkskwork@gmail.com, skoenig@usc.edu.

Digital Object Identifier (DOI): see top of this page.

Figure 1. Example problem where 100 simulated robots (white dots) must
compute individual collision-free paths in a large, factory-like environment.

taxiing [7], [8]. However, as the number of agents in the

system grows, so does the complexity of coordinating them.

Current state-of-the-art optimal planners can plan for several

hundreds of agents, and the community is now settling for

bounded suboptimal planners as a potential solution for even

larger multi-agent systems [3], [9]. Another common approach

is to rely on reactive planners, which do not plan joint paths for

all agents before execution, but rather correct individual paths

online to avoid collisions [5], [10]. However, such planners

often prove inefficient in cluttered factory environments (such

as Fig. 1), where they can result in dead- and livelocks [5].

Extending our previous work on distributed reinforcement

learning (RL) for multiple agents in shared environments [11],

[12], the main contribution of this paper introduces PRIMAL,

a novel hybrid framework for decentralized MAPF that com-

bines RL [13] and imitation learning (IL) from an expert

centralized MAPF planner. In this framework, agents learn to

take into account the consequences of their position on other

agents, in order to favor movements that will benefit the whole

team and not only themselves. That is, by simultaneously

learning to plan efficient single-agent paths (mostly via RL),

and to imitate a centralized expert (IL), agents ultimately

learn a decentralized policy where they still exhibit implicit

coordination during online path planning without the need for

explicit communication among agents. Since multiple agents

learn a common, single-agent policy, the final learned policy

can be copied onto any number of agents. Additionally, we

consider the case where agents evolve in a partially-observable

world, where they can only observe the world in a limited field

of view (FOV) around themselves. We present the results of an



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2019

extensive set of simulation experiments and show that the final,

trained policies naturally scale to various team and world sizes.

We further highlight cases where PRIMAL outperforms other

state-of-the-art MAPF planners and cases where it struggles.

We also present experimental results of the trained policy in

a hybrid simulation of a factory mockup.

The paper is structured as follows: In Section II, we sum-

marize the state-of-the-art in MAPF and multi-agent RL. We

detail how MAPF is cast in the RL framework in Section III,

and how learning is carried out in Section IV. Section V

presents our results, and Section VI concluding remarks.

II. PRIOR WORK

A. Multi-Agent Path Finding (MAPF)

MAPF is an NP-hard problem even when approximat-

ing optimal solutions [14], [15]. MAPF planners can be

broadly classified into three categories: coupled, decoupled,

and dynamically-coupled approaches. Coupled approaches

(e.g., standard A∗), which treat the multi-agent system as a

single, very high dimensional agent, greatly suffer from an

exponential growth in planning complexity. Hence we focus on

decoupled and dynamically-coupled, state-of-the-art planners

for large MAPF problems.

Decoupled approaches compute individual paths for each

agent, and then adjust these paths to avoid collisions. Since

individual paths can be planned, as well as adjusted for colli-

sions, in low-dimensional search spaces, decoupled approaches

can rapidly find paths for large multi-agent systems [5], [16].

Velocity planners fix the individual path that will be followed

by each agent, then find a velocity profile along those paths

that avoids collisions [6], [10]. In particular, ORCA [5] adapts

the agents’ velocity magnitudes and directions online to avoid

collisions, on top of individually-planned single-agent paths,

and recent work has focused on such an obstacle avoidance

approach using reinforcement learning (RL) [10]. Priority

planners assign a priority to each agent, and plan individual

paths in decreasing order of priority, each time treating higher

priority agents as moving obstacles [17], [18], [19]. The main

drawback of decoupled approaches is that the low-dimensional

search spaces used only represent a small portion of the joint

configuration space, meaning that these approaches cannot be

complete (i.e., find paths for all solvable problems) [20].

Several recent approaches lie between coupled and decou-

pled approaches: they allow for richer agent-agent behaviors

than can be achieved with decoupled planners, while avoiding

planning in the joint configuration space. A common approach

followed by dynamically coupled approaches is to grow the

search space as necessary during planning [3], [21]. Conflict-

Based Search (CBS) and its variants [4], [21] plans for

individual agents and constructs a set of constraints to find

optimal or near-optimal solutions without exploring higher-

dimensional spaces. Extending standard A∗ to MAPF, M∗ and

its variants [3] first plan paths for individual agents and then

project these individual plans forward through time searching

for collisions. The configuration space is only locally expanded

around any collision between single-agent plans, where joint

planning is performed through (usually limited) backtracking

to solve the collision and resume single-agent plans. In particu-

lar, OD-recursive-M∗ (ODrM*) [22] can further reduce the set

of agents for which joint planning is necessary, by breaking it

down into independent collision sets, combined with Operator

Decomposition (OD) [23] to keep the branching factor small

during search.

B. Multi-Agent Reinforcement Learning (MARL)

The first and most important problem encountered when

transitioning from single- to multi-agent learning is the curse

of dimensionality: most joint approaches fail as the state-

action spaces explode combinatorially, requiring impractical

amounts of training data to converge [24]. In this context,

many recent work have focused on decentralized policy learn-

ing [25], [26], [27], [28], [29], where agents each learn their

own policy, which should encompass a measure of agent

cooperation, at least during training. One such approach is to

train agents to predict other agents’ actions [26], [27], which

generally scales poorly as the team size increases. In most

cases, some form of centralized learning is involved, where the

sum of experience of all agents can be used towards training

a common aspect of the problem (e.g., network output or

value/advantage calculation) [25], [27], [28]. When centrally

learning a network output, parameter sharing has been used

to enable faster and more stable training by sharing the

weights of some of the layers of the neural net [25]. In

actor-critic approaches, for example, the critic output of the

network is often trained centrally with parameter sharing, since

it applies to all agents in the system, and has been used

to train cooperation between agents [25], [27]. Centralized

learning can also help when dealing with partially-observable

systems, by aggregating all the agents’ observations into a

single learning process [25], [27], [28].

Second, many existing approaches rely on explicit com-

munication among agents, to share observations or selected

actions during training and sometimes also during policy

execution [26], [27], [28]. In our previous work [11], [12],

we focused on extending the state-of-the-art asynchronous

advantage actor-critic (A3C) algorithm to enable multiple

agents to learn a common, homogeneous policy in shared

environments without the need for any explicit agent com-

munication. That is, the agents had access to the full state

of the system (fully-observable world), and treated each other

as moving obstacles. There, stabilizing learning is key: the

learning gradients obtained by agents experiencing the same

episode in the same environment are often very correlated and

destabilized the learning process. To prevent this, we relied

on experience replay [30] and carefully randomized episode

initialization. However, we did not train agents to exhibit any

form of coordination. That is, in our previous extension of

A3C, agents collaborate (i.e., work towards a common goal)

but do not explicitly cooperate (i.e., take actions to benefit

the whole group and not only themselves).

In our work, we propose to rely on imitation learning

(IL)of an expert centralized planner (ODrM*) to train agents

to exhibit coordination, without the need for explicit commu-

nication, in a partially-observable world. We also propose a







SARTORETTI et al.: PRIMAL: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING 5

long hallway is a dead-end, yet the universal critic sharply

decreases the value function. Another popular multi-agent

training technique is to apply joint rewards to agents in an

attempt to help them realize the benefit of taking personal

sacrifices to benefit the team [35], [12]. We briefly tried to

assign joint rewards to agents within the same FOV. However,

this produced no noticeable difference in behavior, so we

abandoned it in favor of the methods described below.

To successfully teach agents collaborative behavior, we

rely on three methods: applying a penalty for encouraging

other agents’ movement (called the “blocking penalty”), using

expert demonstrations during training, and tailoring the ran-

dom environments during training to expose agents to more

difficult cluttered scenarios. We emphasize that, without all

three methods, the learning process is either unstable (no

learning) or converges to a worse policy than with all three,

as is apparent in Fig. 5.

1) Blocking Penalty: First, we augment the reward function

shown in Table I with a sharp penalty (−2 in practice) if an

agent decides to stay on goal while preventing another agent

from reaching its goal. The intuition behind this reward is to

provide an incentive for agents to leave their goals, offsetting

the (selfish) local maximum agents experience while resting on

goal. Our definition of blocking includes cases where an agent

is not just preventing another agent from reaching its goal, but

also cases where an agent delays another agent significantly

(in practice, by 10 or more steps to match the size of the

agents’ FOV). This looser definition of blocking is necessary

because of the agents’ small FOV. Although an alternate route

might exists around the agent in larger worlds, it is illogical

to move around the agent when coordination could lead to

shorter a path, especially if the alternate route lies outside the

agent’s FOV (and therefore is uncertain).

We use standard A∗ to determine the length of an agent’s

path from its current position to its goal and then that of its

path when each one of the other agents is removed from the

world. If the second path is shorter than the first one by more

than 10 steps, that other agent is considered blocking. The

“blocking” output of the network is trained to predict when

an agent is blocking others, to implicitly provide the agent

with an “explanation” of the extra penalty it will incur in this

case.

2) Combining RL and IL: Second, combining RL and IL

has been shown to lead to faster, more stable training as well as

higher-quality solutions in robot manipulation [36], [37], [38].

These advantages are likely due to the fact that IL can help

to quickly identify high-quality regions of the agents state-

action space, while RL can further improve the policy by freely

exploring these regions. In our work, we randomly select in

the beginning of each episode whether it will involve RL or IL

(thus setting the central switch in the middle of Fig. 4). Such

demonstrations are generated dynamically by relying on the

centralized planner ODrM* [3] (with ε = 2). A trajectory of

observations and actions T ∈ (O ×A)n is obtained for each

agent, and we minimize the behavior cloning loss:

Lbc = −
1

T

T∑

t=0

log(P (at|π, ot; θ)). (3)

World
Reinforcement Learning

a1 a... an

Expert (M*) 

Agent 1 Agent ... Agent n

o1 r1 o... r... on rn

a1 a... an 

o1...n

Imitation Learning

RL/IL
Switch

AC Net 1 AC Net ... AC Net n

Figure 4. Structure of our hybrid RL/IL approach. In the beginning of each
episode, a random draw determines whether the episode will be RL- or IL-
based, and the “switch” (in the middle) is set accordingly. For the RL-based
learning, at each timestep, each agent (1, .., n) draws its observation oi and
reward ri for its previous action from the world (learning environment) and
uses the observation to select an action ai via its own copy of the neural
network. The actions of different agents are executed sequentially in a random
order. Since agents often push and pull weights from a common, shared neural
network, they ultimately share the same weights in their individual nets. For
the IL-based learning, an expert centralized planner coordinates all agents
during the episode, whose behavior the agents learn to imitate, allowing them
to learn coordinated behaviors.

Our implementation deviates from [36], [39] in that we

combine off-policy behavior cloning with on-policy actor-

critic learning, rather than with off-policy deep deterministic

policy gradient. We explored this approach since we can

cheaply generate expert demonstrations online in the beginning

of a new training episode, as opposed to other work where

learning agents only have access to a finite set of pre-recorded

expert trajectories. The heuristic used in ODrM* inherently

helps generate high-quality paths with respect to our reward

structure (Table I), where agents move to their goals as

quickly as possible (while avoiding collisions) and rest on it.

Therefore, the RL/IL gradients are naturally coherent, thus

avoiding oscillations in the learning process.

Leveraging demonstrations is a necessary component of

our system: without it, learning progresses far slower and

converges to a significantly worse solution. However, we

experimented with various IL proportions (10-50% by in-

crements of 10%) and observed that the RL/IL ratio does

not seem to affect the performance of the trained policy by

much. Finally, although we could use dynamic methods such

as DAGGER [40] or confident inference [41] because of the

availability of a real-time planner, we chose to use behavior

cloning because of its simplicity and ease of implementation.

It is unclear whether using such methods would lead to a

performance increase, and will be the subject of future works.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2019

3) Environment Sampling: Finally, during training, we ran-

domize both the sizes and obstacle densities of worlds in

the beginning of each episode. We found that uniformly

sampling the size and densities of worlds did not expose the

agents to enough situations in which coordination is necessary

because of the relative sparsity of agent-agent interactions. We

therefore sample both the size and the obstacle density from

a distribution that favors smaller and denser environments,

forcing the agents to learn coordination since they experience

agent-agent interactions more often.

B. Training Details

1) Environment: The size of the square environment is

randomly selected in the beginning of each episode to be

either 10, 40, or 70, with a probability distribution that

makes 10-sized worlds twice as likely. The obstacle density

is randomly selected from a triangular distribution between 0
and 50%, with the peak centered at 33%. The placement of

obstacles, agents, and goals is uniformly at random across the

environment, with the caveat that each agent had to be able to

reach its goal. That is, each agent is initially placed in the same

connected region as its goal. It is possible that agents train in

impossible environments (e.g., two agents might be spawned

in the same narrow connected region, each on the other’s

goal), although highly unlikely. The actions of the agents are

executed sequentially in a random order at each timestep to

ensure that they have equal priority (i.e., race conditions are

resolved randomly).

2) Parameters: We use a discount factor (γ) of 0.95, an

episode length of 256, and a batch size of 128 so that up to

two gradient updates are performed each episode per agent.

The probability of observing a demonstration is 50% per

episode. We use the Nadam optimizer [42] with a learning

rate beginning at 2 · 10−5 and decaying proportionally to the

inverse square root of episode count. We train in 3 independent

environments with 8 agents each, synchronizing agents in

the same environment in the beginning of each step and

allowing them to act in parallel. Training was performed at

the Pittsburgh Supercomputing Center (PSC) [43] on 7 cores

of a Intel Xeon E5-2695 and one NVIDIA K80 GPU, and

lasted around 20 days. The full code used to train agents is

available at https://goo.gl/T627XD.

V. RESULTS

In this section, we present the results of an extensive

set of simulations comparing PRIMAL against state-of-the-

art MAPF planners in gridworlds. These tests are performed

in environments with varying obstacle densities, grid sizes,

and team sizes. Finally, we present experimental results for a

scenario featuring both physical and simulated robots planning

paths online in an indoor factory mockup.

A. Comparison with Other MAPF Planners

For our experiments, we selected CBS [21] as our optimal,

centralized planner, ODrM* [3] as suboptimal, centralized

option (with inflation factors ε = 1.5 and ε = 10), and

0 1 2 3.14

Episode 10
5.

0

50

100

150

200

256

E
p
is

o
d
e
 l
e
n
g
th

Mean episode length during training

Full PRIMAL

No Environment Sampling

No Blocking Penalty

No Imitation Learning

Expert (ODrM*)

Figure 5. Mean episode length during training, lower is better. The dotted
line shows the baseline, obtained from the expert ODrM* planner. When
we remove either environment sampling, the blocking penalties, or imitation
learning from our approach, the policy converges to a worse solution.

ORCA [5] as fully-decoupled velocity planner. Note that all

other planners have access to the whole state of the system,

whereas PRIMAL assumes that each agent only has partial ob-

servability of the system. World sizes are {10, 20, 40, 80, 160},

densities {0, 0.1, 0.2, 0.3}, and team sizes {4, 8, ..., 1024}. We

placed no more than 32 agents in 10-sized worlds, no more

than 128 agents in 20-sized worlds, and no more than 1024
agents in 40-sized worlds.

In our experiments, we compared the success rates of the

different planners, that is whether they complete a given prob-

lem within a given amount of wall clock time or timesteps. For

CBS and ODrM*, we used a timeout of 300s and 60s, respec-

tively, to match previous results [3]. We divided the timeout

by 5 for ODrM* because we used a C + + implementation

which was experimentally measured to be about 5 times faster

than the previously used Python implementation. For ORCA,

we use a timeout of 60s but terminate early when all agents

are in a deadlock (defined as all agents being stuck for more

than 120s simulation time, which corresponds to 10s physical

time). Finally, for PRIMAL, we let the agents plan individual

paths for up to 256 timesteps for 10- to 40-sized worlds, 384
timesteps for 80-sized worlds, and 512 timesteps for 160-

sized worlds. Experiments for the conventional planners were

carried out on a single desktop computer, equipped with an

AMD Threadripper 2990WX with 64 logical cores clocked

at 4Ghz and 64Gb of RAM. Experiments for PRIMAL were

partially run on the same computer, which is also equipped

with 3 GPUs (NVIDIA Titan V, GTX 1080Ti and 1070Ti),

as well as on a simple desktop with an Intel i7-7700K, 16Gb

RAM and an NVIDIA GTX 1070.

Based on our results, we first notice that our approach per-

forms extremely well in low obstacle densities, where agents

can easily go around each other, but is easily outperformed

in dense environments, where joint actions seem necessary

for agents to reach their goals (which sometimes requires

drastic path changes). Similarly, but with significantly worse

performance, ORCA cannot protect against deadlocks and

performs very poorly in most scenarios involving more than 16
agents and any obstacles, due to its fully-decoupled, reactive

nature. Second, we notice that, since our training involves

worlds of varying sizes but a constant team size, agents are

inherently exposed to a small variability in agent density

within their FOV. In our results, we observed that agents

perform more poorly as the number of nearby agents increases



SARTORETTI et al.: PRIMAL: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING 7

in their FOV (small worlds, large teams), an effect we believe

could be corrected by varying the team sizes during training.

This will be investigated in future works. However, we expect

traditional planners to generally outperform our approach in

small (10-20-sized) worlds, even with larger teams. Third, we

notice that the paths generated by PRIMAL are sometimes

more than twice as long as the paths of the other planners’.

However, other planners allow moves that the agents cannot

take in our definition of the MAPF problem: agents can

follow each other with no empty space between them, can

swap around (similar to a runabout), etc. [3], which leads

to shorter paths. Additionally, visual inspection of the cases

where PRIMAL generates longer paths shows that most agents

move to their goals effectively, except for a few laggards.

Finally, since agents are never exposed to worlds larger than

70 × 70 during training, they seem to perform extremely

poorly in larger worlds during testing (≥ 80-sized). However,

by capping the goal distance in the agents’ state, PRIMAL’s

success rate in larger worlds can be drastically improved.

In the results presented here for 80- and 160-sized worlds,

the distance to goal is capped at 75 (empirically set) in the

agents’ state. Example videos of near-optimal and severely

sub-optimal plans for PRIMAL in various environments are

available at https://goo.gl/T627XD.

Due to space constraints, we choose to discuss the three

main scenarios shown in Fig. 6: a case where PRIMAL

strongly outperforms all other planners, one where PRIMAL

slightly outperforms them, and one where PRIMAL struggles.

The complete set of results (for all team sizes, obstacles den-

sities, and world sizes) can be found at https://goo.gl/APktNk

and contains the path lengths generated by the different

planners as well as the planning times. First, in a large world

with no obstacles (160× 160), centralized planners especially

struggle since the joint configuration space quickly grows to

encompass all agents, making planning for more than 100
agents very time-consuming. PRIMAL, on the other hand, can

easily deal with teams up to 1024 agents, with a near-perfect

success rate. Second, in a medium-sized world with low

obstacle density, the centralized planners can easily plan for a

few hundred agents. PRIMAL’s success rate starts decreasing

earlier than that of the other planners, but remains above 60%
for cases with 512 agents, whereas all other planners perform

poorly. Third, in a smaller world that is very densely populated

with obstacles, all planners can only handle up to 64 agents,

but PRIMAL starts to struggle past 8 agents, whereas ODrM*

can handle up to 64 agents. However, even when PRIMAL

cannot finish a full problem, it usually manages to bring

many agents to their goals quickly, with only a few failing

to reach their goals. At this point, a conventional planner

could be used to complete the problem, which has become

simple for a graph-based solver since most agents should

remain motionless at their goals. Future work will investigate

the combination of PRIMAL with a complete planner to

leverage the fast, decentralized planning of PRIMAL while

guaranteeing completeness.

B. Experimental Validation

We also implemented PRIMAL on a small fleet of au-

4 8 16 32 64 128 256 512 1024
0

50

100

S
u
c
c
e
s
s
 R

a
te

 [
%

]

Succes rates - obstacle density 0.0, world size 160

4 8 16 32 64 128 256 512 1024
0

50

100

S
u
c
c
e
s
s
 R

a
te

 [
%

]

Succes rates - obstacle density 0.1, world size 80

Figure 6. Success rates of the different planners in our three scenarios.
PRIMAL outperforms all planners in the top obstacle-free world, slightly
outperforms the others in low-obstacle-density worlds, and is strongly outper-
formed in the high-obstacle-density world.

tonomous ground vehicles (AGVs) evolving in a factory

mockup. In this hybrid system, two physical robots evolve

alongside two (then, half-way through the experiment, three)

simulated ones. The physical robots have access to the po-

sition of simulated robots, and vice-versa, as they all plan

their next actions online using our decentralized approach.

PRIMAL shows clear online capabilities, as the planning time

per step and per agent is well below 0.1s on a standard

GPU (and well below 0.2s on a CPU). Fig. 7 shows our

factory mockup and simulation environment. The full video

is available at https://goo.gl/T627XD.

VI. CONCLUSION

In this paper, we presented PRIMAL, a new approach to

multi-agent path finding, which relies on combining distributed

reinforcement learning and imitation learning from a central-

ized expert planner. Through an extensive set of experiments,

we showed how PRIMAL scales to various team sizes, world

sizes and obstacle densities, despite only giving agents access

to local information about the world. In low obstacle-density

environments, we further showed how PRIMAL exhibits on-

par performance, and even outperforms state-of-the-art MAPF

planners in some cases, even though these have access to the

whole state of the system. Finally, we presented an example

where we deployed PRIMAL on physical and simulated robots

in a factory mockup, showing how robots can benefit from our

online, local-information-based MAPF approach.

Future work will focus on adapting our training procedure

to factory-like environments, with low to medium obstacle



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2019

Figure 7. Snapshot of the physical and simulated robots evolving in the
factory mockup. Left: overhead (top) and side (bottom) views of the mockup
and robots. Right: visualization showing the obstacles (black solids), the robots
(blue circles), their goals (blue squares), and current moves (green squares).

density but where parts of the environment are very sparse

and other parts highly-structured (such as corridors, aisles,

etc.). We also believe that extending our approach to receding-

horizon planning, where agents plan ahead for several actions,

may help to improve the performance of PRIMAL by teaching

agents to explicitly coordinate their paths.

ACKNOWLEDGMENTS

Detailed comments from anonymous referees contributed to

the presentation and quality of this paper. This work used the

Bridges system, supported by NSF grant ACI-1445606 at the

Pittsburgh Supercomputing Center [43].

REFERENCES

[1] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp.
795–799, 2014.

[2] A. Howard, L. E. Parker, and G. S. Sukhatme, “Experiments with a Large
Heterogeneous Mobile Robot Team: Exploration, Mapping, Deployment
and Detection,” The International Journal of Robotics Research, vol. 25,
no. 5-6, pp. 431–447, 2006.

[3] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[4] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proceedings of SoCS, 2014.

[5] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, 2011, pp. 3–19.

[6] R. Cui, B. Gao, and J. Guo, “Pareto-optimal coordination of multiple
robots with safety guarantees,” Autonomous Robots, vol. 32, no. 3, pp.
189–205, 2011.

[7] J. L. Baxter, E. Burke, J. M. Garibaldi, and M. Norman, “Multi-robot
search and rescue: A potential field based approach,” in Autonomous

Robots and Agents, 2007, pp. 9–16.
[8] H. Balakrishnan and Y. Jung, “A framework for coordinated surface

operations planning at Dallas-Fort Worth International Airport,” in AIAA

GNC, vol. 3, 2007, pp. 2382–2400.
[9] K.-H. C. Wang and A. Botea, “MAPP: a scalable multi-agent path plan-

ning algorithm with tractability and completeness guarantees,” Journal

of Artificial Intelligence Research, vol. 42, pp. 55–90, 2011.
[10] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-

communicating multiagent collision avoidance with deep reinforcement
learning,” in ICRA, 2017, pp. 285–292.

[11] G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot decen-
tralized collective construction,” in DARS, 2018, pp. 35–49.

[12] G. Sartoretti, Y. Shi, W. Paivine, M. Travers, and H. Choset, “Distributed
learning for the decentralized control of articulated mobile robots,” in
ICRA, 2018, pp. 3789–3794.

[13] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
A Bradford Book, 1998.

[14] H. Ma, D. Harabor, J. Li, and S. Koenig, “Searching with Consistent
Prioritization for Multi-Agent Path Finding,” in AAAI, 2019.

[15] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[16] S. Leroy, J.-P. Laumond, and T. Siméon, “Multiple Path Coordination

for Mobile Robots: A Geometric Algorithm,” in IJCAI, 1999, pp. 1118–
1123.

[17] H. Ma, C. A. Tovey, G. Sharon, T. S. Kumar, and S. Koenig, “Multi-
Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem,” in AAAI, 2016, pp. 3166–3173.

[18] M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokı́nek, “Asynchronous
decentralized prioritized planning for coordination in multi-robot sys-
tem,” in Proceedings of IROS, 2013, pp. 3822–3829.

[19] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1, pp. 477–521, 1987.

[20] G. Sanchez and J. Latombe, “Using a PRM planner to compare central-
ized and decoupled planning for multi-robot systems,” in Proceedings

of ICRA, vol. 2, 2002, pp. 2112–2119.
[21] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-based search

for optimal multi-agent path finding,” in Proc. of AAAI, 2012.
[22] C. Ferner, G. Wagner, and H. Choset, “ODrM*: optimal multirobot path

planning in low dimensional search spaces,” in ICRA, 2013, pp. 3854–
3859.

[23] T. Standley, “Finding Optimal Solutions to Cooperative Pathfinding
Problems,” in Proceedings of AAAI, 2010, pp. 173–178.

[24] L. Busoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innovations in Multi-Agent Systems and

Applications-1, vol. 310, pp. 183–221, 2010.
[25] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent

control using deep reinforcement learning,” in AAMAS, 2017, pp. 66–83.
[26] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,

“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in NIPS, 2017, pp. 6382–6393.

[27] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son, “Counterfactual multi-agent policy gradients,” arXiv preprint

1705.08926, 2017.
[28] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to

communicate with deep multi-agent reinforcement learning,” in NIPS,
2016, pp. 2137–2145.

[29] F. S. Melo and M. Veloso, “Heuristic planning for decentralized MDPs
with sparse interactions,” in DARS, 2013, pp. 329–343.

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint 1511.05952, 2015.

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint 1409.1556, 2014.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[34] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Re-
inforcement learning through asynchronous advantage actor-critic on a
GPU,” 2016.

[35] P. Ying and L. Dehua, “Improvement with joint rewards on multi-agent
cooperative reinforcement learning,” in CASCON, 2008, pp. 536–539.

[36] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” arXiv preprint 1709.10089, 2017.

[37] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov, and
S. Levine, “Learning complex dexterous manipulation with deep re-
inforcement learning and demonstrations,” arXiv preprint 1709.10087,
2017.

[38] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Reinforcement
learning from imperfect demonstrations,” arXiv:1802.05313, 2018.

[39] M. Vecerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint 1707.08817, 2017.

[40] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in ICAIS, 2011,
pp. 627–635.

[41] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using Gaussian mixture models,” in AAMAS.

[42] T. Dozat, “Incorporating Nesterov momentum into Adam,” 2016.
[43] N. A. Nystrom, M. J. Levine, R. Z. Roskies, and J. R. Scott, “Bridges: a

uniquely flexible HPC resource for new communities and data analytics,”
in Proceedings of the XSEDE Conf., 2015, pp. 30:1–30:8.


	INTRODUCTION
	PRIOR WORK
	Multi-Agent Path Finding (MAPF)
	Multi-Agent Reinforcement Learning (MARL)

	POLICY REPRESENTATION
	Observation Space
	Action Space
	Reward Structure
	Actor-Critic Network

	LEARNING
	Coordination Learning
	Blocking Penalty
	Combining RL and IL
	Environment Sampling

	Training Details
	Environment
	Parameters


	RESULTS
	Comparison with Other MAPF Planners
	Experimental Validation

	CONCLUSION
	References

