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Abstract
We consider the problem of finding D-optimal designs for certain generalized linear 
models (GLMs). In particular, we study GLMs with factorial effects and one con-
tinuous covariate. The factorial effects include both main effects and interactions, 
and the design region for the continuous covariate can be unrestricted. The local 
D-optimality of the proposed design is established through the equivalence theorem, 
and the results are illustrated with an electrostatic discharge (ESD) experiment.

Keywords  Locally optimal design · D-optimality · Factorial experiment · 
Equivalence theorem

1  Introduction

Factorial experiments are commonly used to study the effects of multiple factors on 
a response variable of interest. When the response variable is categorical, general-
ized linear models (GLMs) form a very useful class of models. In this paper, we 
focus on a binary response variable. In that case, two frequently used link functions 
for GLMs are the logistic and probit links.
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When a controllable continuous covariate is included in addition to the factorial 
effects, optimal design questions for these models center on the combinations of val-
ues and levels for the covariate and factors, respectively, that should be selected in 
the experiment. These choices are extremely important because good designs can 
improve parameter estimation for a fixed number of runs or reduce costs to achieve 
a desired level of precision. Previous studies for this problem focus primarily on 
computational approaches, with rather few theoretical results. For models with 
main effects only, [4] provided an explicit expression for optimal designs under 
D-optimality. [5] extended their results and obtained smaller optimal designs using 
orthogonal arrays. He also explored interaction models where all interactions up to a 
specified order are included in the model. The results of our paper are more general. 
For example, with 3 factors, for a second-order model, [5] required all three of the 
2-factor interactions to be included. We extend this to the case that only one or two 
of these 2-factor interactions are in the model. Similar extensions are presented for 
higher-order models.

Studies with binary responses are extremely common. A drug may or may not 
relieve a symptom, a rat may or may not develop a tumor, a stimulant may or may 
not lead to increased performance and so on. When possible, in order to establish 
causal relationships, such studies are conducted in the form of experiments. Many 
factors are often studied, such as gender, age, body weight, and so on. Continuous 
covariates, for example measurements at the beginning of a study, such as body 
mass index, blood pressure, concentration of a certain chemical in the blood, are 
also often of interest to account for natural differences between subjects. Whether all 
of the factors and covariates can be controlled for the experiment, or whether some 
can only be observed, depends on the specific experiment. As a result, many differ-
ent situations, objectives and models can occur. The goal of this paper is to develop 
optimal design theory for one of such situations, namely the situation with only one 
continuous covariate, where all factors and the covariate can be controlled during 
the experiment, and where the objective is to study the effect that the factors have on 
the binary response.

For such situations, we propose designs that are then shown to be locally D-opti-
mal by using the equivalence theorem (see [1, 2]). The main theorem is formulated 
in Sect. 2. In Sect. 3 we provide an illustrative example about determining factors 
affecting ESD failure voltage ([7]). An optimal design is obtained using our pro-
posed theorem and is compared in terms of D-efficiency to the design used in the 
original study. A summary and discussion are presented in Sect. 4, followed by an 
“Appendix” with several of the proofs.

2 � Theory

Referring to experimental units as subjects, for L factors with s1, s2,… , sL levels, 
respectively, each subject can be assigned to one of the s = s1 ⋅ s2 ⋯ sL groups. We 
assume that the linear predictor has a common slope for the continuous covariate 
across all of the groups. Then the model that we will consider can be written as
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where Yi1i2...iLj is the response from the jth subject in group (i1, i2,… , iL) , 
il = 1,… , sl ; j = 1,… ,mi1i2⋯iL

 , and mi1i2⋯iL
 is the number of subjects in group 

(i1, i2,… , iL) . Further, P(⋅) is a cumulative distribution function; �0 is the grand 
mean, �il

l
 is the effect of the ith

l
 level of factor l, �

il1
il2
⋯ilt

l1l2⋯lt
 is the effect of the level com-

bination (il1 , il2 ,… , ilt ) for the tth-order effect for the factors (l1, l2,… , lt) , 
t = 2,… , L ; and Gt is a set of t-tuples representing the tth-order effects included in 
the model. For simplicity, we also denote G1 = {1, 2,… , L} . Moreover, � is the 
common slope parameter, and xi1i2⋯iLj

 is the covariate value for the jth subject in 
group (i1, i2,… , iL) , which must be in the design region denoted by [Li1i2⋯iL

,Ui1i2⋯iL
] . 

The endpoints Li1i2⋯iL
 and Ui1i2⋯iL

 can be −∞ or ∞ , respectively. The results in this 
paper apply only to models as in (1).

We can also write the model in (1) in vector notation as

Here � = (�0,�1
T ,… ,�L

T ,… ,�l
1
l
2

T ,… ,�l
1
l
2
⋯lt

T ,… , �)T , and terms in � corre-
spond to those in the model where for any 1 ≤ l1 < ⋯ < lt ≤ L and t = 1,… , L , 
�l

1
⋯lt

= (�1⋯1
l1⋯lt

,… , �
1⋯slt
l1⋯lt

,… , �
sl1

⋯slt
l1⋯lt

)T . Further, Xi
1
⋯iLj = (1, (X

i
1

1
)T ,… , (X

iL

L
)T ,… ,

(X
i
l1
i
l2

l
1
l
2

)T ,⋯ , (X
i
l1
i
l2
⋯i

lt

l
1
l
2
⋯l

t

)T ,… , xi1i2⋯iLj
)T , where terms in Xi

1
⋯iLj correspond again to 

those in the model and X
il1
il2
⋯ilt

l
1
l
2
⋯lt

 is a (sl1 ×⋯ × slt ) × 1 vector with a 1 in position 
(il1 ,… , ilt ) and 0’s elsewhere.

While the notation in the previous paragraphs is convenient to present the model, 
we will now immediately change it to facilitate our discussion about designs. Some 
subjects in the same group could be assigned to the same covariate value, others to a 
second or even third value used for that group. To that end, we will now use mi1i2⋯iL

 to 
denote the distinct number of covariate values used in group (i1, i2,… , iL) and intro-
duce ni1i2⋯iLj

 to denote the number of subjects in group (i1, i2,… , iL) who are assigned 
to the jth covariate value in that group, j = 1,… ,mi1i2⋯iL

.
With that notation, a design can be presented as

where the design points Xi
1
⋯iLj are distinct vectors (they either represent differ-

ent groups or correspond to different covariate values in the same group), while ∑
i1
⋯

∑
iL

∑
j ni1i2⋯iLj

= n , the design size. Such a design is called an exact design. 
Therefore, the optimal exact design problem for a design of size n is to select both 
Xi

1
⋯iLj ’s and ni1i2⋯iLj

’s, the latter summing to n, such that the resulting design � is 
the best in terms of a certain optimality criterion. However, due to the discrete-
ness of the ni1i2⋯iLj

’s, such optimization problems are difficult to solve. Instead, we 

(1)

Prob(Yi1i2...iLj = 1) = P

(
�0 + �

i1
1
+⋯ + �

iL
L
+

L∑
t=2

∑
(l1,l2,…,lt)∈Gt

�
il1
il2
⋯ilt

l1l2⋯lt
+ �xi1i2⋯iLj

)
,

(2)Prob(Yi1i2...iLj = 1) = P((Xi
1
⋯iLj)T�).

� = {(Xi
1
⋯iLj, ni1i2⋯iLj

), il = 1,… , sl, l = 1,… , L, j = 1,… ,mi1i2⋯iL
},
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work with the corresponding approximate designs, where ni1i2⋯iLj
∕n is replaced by 

wi1i2⋯iLj
 . The wi1i2⋯iLj

 ’s are called design weights and 
∑

i1
⋯

∑
iL

∑
j wi1i2⋯iLj

= 1 . So 
an approximate design becomes

and when searching for an optimal design the wi1i2⋯iLj
 ’s can take any non-negative 

values that sum to 1, so that the optimal design problem no longer depends on n. 
The disadvantage of this approach is that it may be difficult to convert an optimal 
approximate design to an optimal exact design depending on the value of n.

For model (2) with approximate design � , the corresponding information 
matrix for � is

where IXi1⋯iLj(�) is the information matrix for the design that places all weight on the 
single design point Xi

1
⋯iLj.

Inference could focus on a vector of � , say g(�) . Assuming g to be differentia-
ble, from the Delta method we obtain the asymptotic covariance matrix of g(𝜽̂) as

where I�(�)− is a generalized inverse of I�(�).
It is possible that for some function g(⋅) , ��(�) is singular, but we will restrict 

our attention to situations where ��(�) is non-singular. The information matrix 
for g(�) is therefore the inverse of ��(�),

For design selection, we focus on D-optimality. A design � is called D-optimal for 
g(�) if it minimizes the determinant of the covariance matrix ��(�) , or equivalently, 
maximizes the determinant of the information matrix I�(g(�)) . Note that I�(g(�)) 
depends on � , which is unknown before conducting the experiment. One way to 
overcome this is to replace � in I�(g(�)) by a “best guess,” which could be based on 
prior experiments. The resulting D-optimal designs are known as locally D-optimal 
designs (for that guessed value of �).

The model in (2) is overparameterized, and � is not estimable. Instead, we 
consider a maximal set of linearly independent estimable functions of � . Since 
D-optimality is invariant under reparameterization, the optimal design result is 
invariant to the choice of this maximal set. Let g(�) = B� = � denote one particu-
lar maximal set. Note that

� = {(Xi
1
⋯iLj,wi1i2⋯iLj

), il = 1,… , sl, l = 1,… , L, j = 1,… ,mi1i2⋯iL
},

(3)I�(�) =

s1∑
i1=1

⋯

sL∑
iL=1

mi1 i2⋯iL∑
j=1

wi1i2⋯iLj
IXi1⋯iLj (�),

(4)��(�) =

(
�g(�)

��T

)
I�(�)

−

(
�g(�)

��T

)T

(5)I�(g(�)) = ��(�)
−1 =

((
�g(�)

��T

)
I�(�)

−

(
�g(�)

��T

)T)−1

.
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We will denote the rank in (6) by r.
We define ci1⋯iLj

= (Xi
1
⋯iLj)T� , which belongs to the design region 

[Di1⋯iL1
,Di1⋯iL2

] induced by the region [Li1i2⋯iL
,Ui1i2⋯iL

] for xi1i2⋯iLj
 . In this way, 

rather than specifying covariate values for each group, a design can now also be 
presented by specifying values for ci1⋯iLj

 for each group. By doing so, Theorem 1 
provides a locally D-optimal design for � under models as in (2).

Theorem  1  For a model of form (2) with the logistic or pro-
bit link, if {c∗,−c∗} ⊂ [Di1⋯iL1

,Di1⋯iL2
] for all groups (il,… , iL) , 

where c∗ > 0 maximizes f (c) = c2(� (c))r on (−∞,∞) , the design 
�∗ = {(ci1⋯iL1

= c∗,wi1⋯iL1
=

1

2s
), (ci1⋯iL2

= −c∗,wi1⋯iL2
=

1

2s
), il = 1,… , sl, l = 1,… , L} 

is a locally D-optimal design for � . Here s = s1 ×⋯ × sL and � (x) is given by

Proof  We start with a reparameterization of model (1), the proof of which is rele-
gated to “Appendix.” To formulate this reparameterization, define the sets H1,… ,HL 
from G1,… ,GL as follows: For 1 ≤ t ≤ L,

Then the reparameterization of model (1) is given by

where, for each factor l, we define

(6)rank(B) = 1 +

L∑
t=1

∑
(l1,…,lt)∈Gt

[
t∏

i=1

(sli − 1)

]
+ 1.

(7)� (x) =

{
ex

(1+ex)2
, for the logistic link

[��(x)]2

�(x)(1−�(x))
, for the probit link

.

(8)
Ht ={(l1,… , lt) ∶ there is an index t� ≥ t and a t�-tuple

(j1,… , jt� ) ∈ Gt� so that {l1,… , lt} is a subset of {j1,… , jt� }}.

(9)

Prob(Yi1i2...iLj = 1) = P

�
�0 +

L�
t=1

�
(l1,…,lt)∈Ht

⎡⎢⎢⎣

sl1
−1�

il1
=1

⋯

slt−1�
ilt=1

�
il1
⋯ilt

l1⋯lt
z
il1
l1
⋯ z

ilt
lt

⎤⎥⎥⎦
+ �xi1⋯iLj

⎞⎟⎟⎠
,

z1
l
=

{
1, if factor l is at level 1

−
1

sl−1
, otherwise

z2
l
=

{
1, if factor l is at level 2

−
1

sl−1
, otherwise

⋮

z
sl−1

l
=

{
1, if factor l is at level sl − 1

−
1

sl−1
, otherwise.
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Only including terms that appear in the model, the parameter vector �
1
 for model (9) 

can be written as �
1
= (�0, �1

T ,… , �L
T ,⋯ , �l

1
l
2

T ,… , �l
1
l
2
⋯lL

T , �)T , where for any 
t = 1,… , L and 1 ≤ l1 < ⋯ < lt ≤ L , we use the notation 
�l

1
⋯lt

= (�1⋯1
l1⋯lt

,… , �
1⋯(slt−1)

l1⋯lt
,… , �

(sl1
−1)⋯(slt−1)

l1⋯lt
)T . Note that the length of �

1
 is equal 

to r. Again only focusing on t-tuples that appear in model (9), we define 
Zi

1
⋯iLj = (1, (Z

i
1

1
)T ,… , (Z

iL

L
)T ,… , (Z

il1
il2

l
1
l
2

)T ,… , (Z
il1
il2
⋯ilL

l
1
l
2
⋯lL

)T , xi1i2⋯iLj
)T , where for 

each factor l,

and Z
il1
il2
⋯ilt

l
1
l
2
⋯lt

= Z
il1

l
1

⊗⋯⊗ Z
ilt

lt
 .

Since model (9) is a reparameterization of the original model, due to the invari-
ance of D-optimality under reparameterizations, we can focus on D-optimality for �

1
 

under model (9). Let Di
1
⋯iLj = (1, (Z

i
1

1
)T ,… , (Z

iL

L
)T ,… , (Z

il1
il2

l
1
l
2

)T ,… , (Z
il1
il2
⋯ilL

l
1
l
2
⋯lL

)T ,

ci1i2⋯iLj
)T , then Zi

1
⋯iLj = A(�

1
)Di

1
⋯iLj , where

and A(t)(�1
) = (−(�l1⋯lt

)T∕�,… ,−(�
l′
1
⋯l′

t
)T∕�) represents the coefficients of all the t-th 

order effects included in the model.
Then, for the design �∗ in Theorem 1, the information matrix for �

1
 becomes

where the last expression defines M�∗ (�1
).

To prove that �∗ is D-optimal for �
1
 , we use the equivalence theorem in [2]. After 

simple calculations, �∗ is a locally D-optimal design for �
1
 if

Z
il

l
=

⎧
⎪⎪⎨⎪⎪⎩

�
−

1

sl−1
,… ,−

1

sl−1
, 1,−

1

sl−1
,… ,−

1

sl−1

�T

, for 1 ≤ il ≤ sl − 1 and

the 1 is in position il�
−

1

sl−1
,… ,−

1

sl−1

�T

, for il = sl

A(�
1
) =

⎛
⎜⎜⎜⎜⎝

1 0 ⋯ 0 0

0 I ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ I 0

− �0∕� A(1)(�1
) ⋯ A(L)(�1

) 1∕�

⎞⎟⎟⎟⎟⎠

(10)

I�∗ (�1
) = A(�

1
)

[
s1∑

i1=1

⋯

sL∑
iL=1

mi1⋯iL∑
j=1

wi1⋯iLj
� (ci1⋯iLj

)Di
1
⋯iLj(Di

1
⋯iLj)T

]
AT (�

1
)

= A(�
1
)

[
1

2s
� (c∗)

s1∑
i1=1

⋯

sL∑
iL=1

2∑
j=1

Di
1
⋯iLj(Di

1
⋯iLj)T

]
AT (�

1
)

= A(�
1
)M�∗ (�1

)AT (�
1
),
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with equality at the support points of �∗ , for all design points (i1,… , iL, c) . Here 
Di

1
⋯iL is obtained from Di

1
⋯iLj by writing c instead of ci1⋯iLj

.

We first use a lemma to state that M�∗ (�1
) is a block-diagonal matrix.

Lemma 1  M�∗ (�1
) is equal to � (c∗) times a block-diagonal matrix with (1) the top-

left element equal to 1; (2) the bottom-right element equal to (c∗)2 ; (3) the block cor-
responding to �lT equal to Bl =

1

(sl−1)
2
(slI − J) , where J is a matrix of ones; and (4) 

the block corresponding to �l
1
l
2
...lt

 equal to

Proof  See “Appendix.” 	�  ◻

From Lemma 1, M−1
�∗
(�

1
) is equal to 1

� (c∗)
 times a block-diagonal matrix with (1) 

the top-left element equal to 1; (2) the bottom-right element equal to 1

(c∗)2
 ; (3) the 

block corresponding to �lT equal to B−1
l

=
(sl−1)

2

sl
(I + J) ; and (4) the block corre-

sponding to �l
1
l
2
...lt

 equal to B−1
l1l2⋯lt

= B−1
l1

⊗⋯⊗ B−1
lt

.
Before evaluating the expression on the left-hand side of Eq. (11), we need one 

more lemma.

Lemma 2 
Proof  See “Appendix.” 	�  ◻

From the block-diagonal form of M−1
�∗
(�

1
) , it is immediately clear that 

(Di
1
⋯iL)TM−1

�∗
(�

1
)Di

1
⋯iL in Eq. (11) is a relatively simple sum of various terms. First, 

corresponding to �0 , we have

Next, corresponding to � , we have

Further, corresponding to �lT we obtain

(11)� (c)(Di
1
⋯iL)TM−1

�∗
(�

1
)Di

1
⋯iL ≤ r,

Bl1l2⋯lk
= Bl1

⊗ Bl2
⊗⋯⊗ Blt

.

(Z
il

l
)TZ

il

l
+ (Z

il

l
)TJZ

il

l
=

sl

sl − 1
.

1 ⋅
1

� (c∗)
⋅ 1 =

1

� (c∗)
.

c ⋅
1

(c∗)2� (c∗)
⋅ c =

1

� (c∗)
⋅

c2

(c∗)2
.
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And finally, for �l
1
⋯lt

T the contributing term is given by

Combining all of the above, we find that

where the last equality follows from the definition of r in Eq. 6. So the requirement 
in Eq. (11) becomes

The validity of this inequality is stated in the following lemma.

Lemma 3  For the logit and probit links,

for any r ≥ 2 and c ∈ (−∞,∞).

Proof  See “Appendix.” 	�  ◻

(Z
il

l
)T ⋅

1

� (c∗)
B−1
l

⋅ Z
il

l
=

1

� (c∗)

(sl − 1)2

sl
(Z

il

l
)T (I + J)Z

il

l

=
1

� (c∗)

(sl − 1)2

sl

[
(Z

il

l
)TZ

il

l
+ (Z

il

l
)TJZ

il

l

]

=
1

� (c∗)

(sl − 1)2

sl

sl

sl − 1
(from Lemma 2)

=
1

� (c∗)
⋅ (sl − 1).

(Z
il1
⋯ilt

l
1
⋯lt

)T
1

𝛹 (c∗)
B−1
l1⋯lt

Z
il1
⋯ilt

l
1
⋯lt

=
1

𝛹 (c∗)
((Z

il1

l
1

)T ⊗⋯⊗ (Z
ilt

lt
)T )(B−1

l1
⊗⋯⊗ B−1

lt
)(Z

il1

l
1

⊗⋯⊗ Z
ilt

lt
)

=
1

𝛹 (c∗)

[
(Z

il1

l
1

)TB−1
l1
Z
il1

l
1

]
⊗⋯⊗

[
(Z

ilt

lt
)TB−1

lt
Z
ilt

lt

]

=
1

𝛹 (c∗)

t∏
i=1

(sli − 1).

(Di
1
⋯iL )TM−1

�∗
(�

1
)Di

1
⋯iL =

1

� (c∗)

{
1 +

L∑
t=1

∑
(l1,…,lt)∈Gt

[
t∏

i=1

(sli − 1)

]
+

c2

(c∗)2

}

=
1

� (c∗)

{
r − 1 +

c2

(c∗)2

}
,

(12)

� (c)(Di
1
⋯iL)TM−1

�∗
(�

1
)Di

1
⋯iL =

� (c)

� (c∗)
(r − 1) +

c2� (c)

(c∗)2� (c∗)
≤ r, c ∈ (−∞,∞).

� (c)

� (c∗)
(r − 1) +

c2� (c)

(c∗)2� (c∗)
≤ r
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This concludes the proof of Theorem 1. 	�  ◻

Note that the value of c∗ in Theorem  1 does not depend on the values of the 
unknown parameters � . It merely depends on the value of the rank r and the link 
function. However, to compute the covariate values xi1i2⋯iLj

 from the points −c∗ and 
c∗ in each cell, we do have to use the best guess for � . This observation emphasizes 
that the designs in Theorem 1 are locally optimal designs.

3 � An Illustrative Example

To illustrate the main result, we consider an electrostatic discharge (ESD) study 
originally reported by [7]. It will highlight strengths and weaknesses of our result. 
The study used a logistic model to assess the effect of four factors on the failure rate 
of semiconductors when exposed to electrostatic discharge. The four factors and the 
continuous covariate are displayed in Table 1.

The original study used the factor wafer lot with four levels (lot 1, 2, 3 and 4), 
but the experimenters decided to code it using two two-level factors, Lot A and 
Lot B, and ignore a possible interaction between them. We will use Lot A and 
Lot B in the same way. ESD handling is a factor to indicate whether or not the 
standard procedure was applied. No ESD handling means that no ESD-safe labo-
ratory coat/shoes and no wrist strap were used. The ESD testing involves “zap-
ping” a part first with a pulse polarity (positive or negative) and then followed 
by a second pulse of the opposite polarity. Since there is no industry standard 
specifying the order of pulse polarity, this makes it the fourth factor. The continu-
ous covariate is the voltage each wafer was tested at, and the response variable 
is binary: A wafer either passes or fails the test. Taking the factor levels as 1 and 
−1 and denoting them by x1 through x4 (using the same order for the factors as in 
Table 1), with p and x denoting the probability of a wafer passing the test and the 
voltage, respectively, the model that was used is

Note that the linear predictor includes an interaction term. While Model  (13) is a 
reparameterization of Model (2), Theorem 1 remains applicable.

The experimenters used a full factorial design in the four factors and ran each 
combination at 5 voltage levels: 25, 30, 35, 40 and 45 Volt. This resulted in 
24 × 5 = 80 runs. There is no discussion about reasons for selecting the voltage 

(13)logit(p) = �0 + �1x1 + �2x2 + �3x3 + �4x4 + �34x3x4 + �5x.

Table 1   Factors and covariate 
for ESD experiment

Description Levels

Factors Lot A Location 1 Location 2
Lot B Location 1 Location 2
ESD handling No Yes
Pulse polarity Negative Positive

Covariate Voltage Continuous
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range as [25, 45] or for selecting 5 levels. We will treat voltage as a continuous 
covariate that is not necessarily restricted to the range used in the experiment.

To find locally D-optimal designs, we use 
�
0
= (−7.50, 1.50,−0.20,−0.15, 0.25, 0.40, 0.35)T as in [3], which is based on esti-

mates from the original study. Then, according to Theorem 1, a D-optimal design 
using a full factorial and two support points in each group is given by the design in 
Table 2.

Using approximate design representations, the D-efficiency of the design used 
in the study, �0 , relative to the optimal design in Table 2, �∗ , can be computed as

where p = 7 is the number of parameters in the model. We find that 
RE(�0) = 24.22% , suggesting that the optimal design is more than four times as effi-
cient as the design that was used. While [7] may not have had good guesses for the 
parameters in the model, this example shows how to apply our theoretical results 
if such information is available and demonstrates convincingly that the theoretical 
results can then lead to the use of better designs.

4 � Summary and Discussion

Even though GLMs with factorial effects have been widely used in multiple disci-
plines, optimal design theory for such models is limited. In this paper, we proposed 
a locally D-optimal design for logistic and probit links for a general model as in 
Model (2). This model can include any number of interaction terms between the fac-
tors. The power of the main result has been illustrated through an example, which 

(14)RE(�0) =

[
det(I�0 )

det(I�∗ )

]1∕p
,

Table 2   D-optimal design for 
the ESD experiment using a full 
factorial

x1 x2 x3 x4 Volt1 Volt2 x1 x2 x3 x4 Volt1 Volt2

−1 −1 −1 −1 22.07 26.50 1 −1 −1 −1 13.50 17.93
−1 −1 −1 1 22.93 27.36 1 −1 −1 1 14.36 18.78
−1 −1 1 −1 25.22 29.64 1 −1 1 −1 16.64 21.07
−1 −1 1 1 21.50 25.93 1 −1 1 1 12.93 17.36
−1 1 −1 −1 23.22 27.64 1 1 −1 −1 14.64 19.07
−1 1 −1 1 24.07 28.50 1 1 −1 1 15.50 19.93
−1 1 1 −1 26.36 30.78 1 1 1 −1 17.79 22.21
−1 1 1 1 22.64 27.07 1 1 1 1 14.07 18.50
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shows that the same amount of information could have been obtained with far fewer 
runs. Such theoretical results are also very useful to provide benchmarks for other 
designs. What is difficult to incorporate in the theory is possible restrictions on the 
design space. For example, if the voltage had to be between 25 and 45 Volt, then the 
design in Table 2 would not have been feasible. Computational approaches as in [3] 
are important to solve specific problems under such restrictions.

With a large number of factors or levels, the number of support points, 2s, of the 
optimal design in Theorem 1 can become large. Rather than using a full factorial 
design, one could then consider using a fractional factorial design or a design that 
has less then 2 observations per cell. Results for this will be reported in [6].

5 � Appendix

Proof of Lemma 1  By the definition given through Eq. (10),

For the symmetrical summand we have

The top-left element of M�∗ (�1
) is thus

while the bottom-right element is
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) =

1

2s
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⋯iLj(Di

1
⋯iLj)T .

Di1⋯iLj(Di1⋯iLj)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (Z
i1

1
)T ⋯ (Z

iL

L
)T ⋯ (Z

il1
il2

l1l2
)T ⋯ ci1⋯iLj

Z
i1

1
(Z

i1

1
)T ⋯ Z

i1

1
(Z

iL

L
)T ⋯ Z

i1

1
(Z

il1
il2

l1l2
)T ⋯ ci1⋯iLj

Z
i1

1

⋱ ⋮ ⋮ ⋮

Z
iL

L
(Z

iL

L
)T ⋯ Z

iL

L
(Z

il1
il2

l1l2
)T ⋯ ci1⋯iLj

Z
iL

L

⋱ ⋮ ⋮

Z
il1

il2

l1l2
(Z

il1
il2

l1l2
)T ⋯ ci1⋯iLj

Z
il1

il2

l1l2

⋱ ⋮

c2
i1⋯iLj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2s
� (c∗)

s1∑
i1=1

⋯

sL∑
iL=1

2∑
j=1

1 = � (c∗),

1

2s
� (c∗)

s1∑
i1=1

⋯

sL∑
iL=1

2∑
j=1

(c∗)2 = (c∗)2� (c∗).



	 Journal of Statistical Theory and Practice (2020) 14:19

1 3

19  Page 12 of 15

All other elements in the last column of M�∗ (�1
) are 0 because each cell has two 

opposite values for the c values.
An off-diagonal block of M�∗ (�1

) is of the form

Since it is an off-diagonal block, at least one factor appears only once in the two sets 
of factors. Without loss of generality, say r1 does not appear in (c1,… , cn) . By sum-
ming over the levels of factor r1 , we obtain

The last equality follows immediately from the definition of the Zil

l
’s.

For a diagonal block of M�∗ (�1
) that corresponds to main effects, say for factor l, 

we obtain

For a diagonal block that corresponds to an interaction, say for factors (l1,… , lt) , we 
get
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This concludes the proof. 	�  ◻

Proof of Lemma 2  If il < sl , Z
il

l
 is of the form (− 1

sl−1
,… , 1,… ,−

1

sl−1
)T . So

If il = sl , then Zil
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 is in the form of (− 1
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,… ,−
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)T . So

Together, this completes the proof. 	� ◻
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Proof of  Lemma 3  For models of form (1) with logistic or probit link, if there is 
no interaction effect among factors, then according to Theorem 4 in [4], a locally 
D-optimal design for a maximal set of estimable functions of the parameter vector 
still has the same design structure as described in Theorem 1, and only the power 
term r in f (c) = c2(� (c))r refers to the main-effects model, with an explicit expres-
sion as r =

∑L

1
(sl − 1) + 2.

Then, following the same reparameterization method as shown in the proof of 
Theorem 1, since the equivalence theorem can be used to verify the locally D-opti-
mal design for the main-effects model, we have

This concludes the lemma. 	�  ◻

Proof of Reparameterization  To show that model (9) is a reparameterization of 
model (1), we need to show that the column spaces spanned by the two design matri-
ces are the same. Since the vector of covariate values is the same in both, define 
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for models (1) and (9), respectively. In both cases, the only interaction terms 
included are those that appear in the model, but the columns of X correspond to the 
sets Gt , while those in Z correspond to the Ht’s, t = 1,… , L . We need to show that 
C(X) = C(Z).

For any v ∈ C(Z) , there exist a0, a11,… , a
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For interaction terms, we have that
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Hadamard product terms form subsets of {l1,… , lt} and correspond to interaction 
terms. For example, x1
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2
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 . Not all of these interactions appear in the model 

though. But by definition of Ht , there is a t′ ≥ t and a t′-tuple (j1,… , jt� ) ∈ Gt� that 
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contains all of (i1,… , it) . Thus the columns x
ij1
⋯ij

t′

j
1
⋯jt′

 do appear in X, and each column 
corresponding to a Hadamard product term in (16) can be written as a linear combi-
nation of these columns. Hence, all columns in Z can be written as a linear combina-
tion of columns in X. Hence C(Z) ⊂ C(X)

For any v ∈ C(X) , there exist b0, b11,… , b
s1
1
,… such that

It is easy to verify that each of these terms is a linear combination of z
0
 , the zil

l
 ’s and 

Hadamard products of these vectors. Along the same lines as in the first part of this 
proof, it follows that C(X) ⊂ C(Z)

Combined this gives that C(X) = C(Z) . 	�  ◻
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