Journal of Statistical Theory and Practice (2020) 14:19
https://doi.org/10.1007/542519-020-0085-0

ORIGINAL ARTICLE

™

Check for
updates

Locally D-optimal Designs for Binary Responses
in the Presence of Factorial Effects

Zhongshen Wang' - John Stufken?

Published online: 18 February 2020
© Grace Scientific Publishing 2020

Abstract

We consider the problem of finding D-optimal designs for certain generalized linear
models (GLMs). In particular, we study GLMs with factorial effects and one con-
tinuous covariate. The factorial effects include both main effects and interactions,
and the design region for the continuous covariate can be unrestricted. The local
D-optimality of the proposed design is established through the equivalence theorem,
and the results are illustrated with an electrostatic discharge (ESD) experiment.

Keywords Locally optimal design - D-optimality - Factorial experiment -
Equivalence theorem

1 Introduction

Factorial experiments are commonly used to study the effects of multiple factors on
a response variable of interest. When the response variable is categorical, general-
ized linear models (GLMs) form a very useful class of models. In this paper, we
focus on a binary response variable. In that case, two frequently used link functions
for GLMs are the logistic and probit links.
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When a controllable continuous covariate is included in addition to the factorial
effects, optimal design questions for these models center on the combinations of val-
ues and levels for the covariate and factors, respectively, that should be selected in
the experiment. These choices are extremely important because good designs can
improve parameter estimation for a fixed number of runs or reduce costs to achieve
a desired level of precision. Previous studies for this problem focus primarily on
computational approaches, with rather few theoretical results. For models with
main effects only, [4] provided an explicit expression for optimal designs under
D-optimality. [5] extended their results and obtained smaller optimal designs using
orthogonal arrays. He also explored interaction models where all interactions up to a
specified order are included in the model. The results of our paper are more general.
For example, with 3 factors, for a second-order model, [5] required all three of the
2-factor interactions to be included. We extend this to the case that only one or two
of these 2-factor interactions are in the model. Similar extensions are presented for
higher-order models.

Studies with binary responses are extremely common. A drug may or may not
relieve a symptom, a rat may or may not develop a tumor, a stimulant may or may
not lead to increased performance and so on. When possible, in order to establish
causal relationships, such studies are conducted in the form of experiments. Many
factors are often studied, such as gender, age, body weight, and so on. Continuous
covariates, for example measurements at the beginning of a study, such as body
mass index, blood pressure, concentration of a certain chemical in the blood, are
also often of interest to account for natural differences between subjects. Whether all
of the factors and covariates can be controlled for the experiment, or whether some
can only be observed, depends on the specific experiment. As a result, many differ-
ent situations, objectives and models can occur. The goal of this paper is to develop
optimal design theory for one of such situations, namely the situation with only one
continuous covariate, where all factors and the covariate can be controlled during
the experiment, and where the objective is to study the effect that the factors have on
the binary response.

For such situations, we propose designs that are then shown to be locally D-opti-
mal by using the equivalence theorem (see [1, 2]). The main theorem is formulated
in Sect. 2. In Sect. 3 we provide an illustrative example about determining factors
affecting ESD failure voltage ([7]). An optimal design is obtained using our pro-
posed theorem and is compared in terms of D-efficiency to the design used in the
original study. A summary and discussion are presented in Sect. 4, followed by an
“Appendix” with several of the proofs.

2 Theory

Referring to experimental units as subjects, for L factors with s;,s,, ..., s, levels,
respectively, each subject can be assigned to one of the s = s, - 5, -+ 5, groups. We
assume that the linear predictor has a common slope for the continuous covariate
across all of the groups. Then the model that we will consider can be written as
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PrOb(Yili2...iLj =1)= P<0!() + a’ll 4o F aZL + Z 2 azll:’?-.l’llt + ﬁxiliz"'id>’
1=2 (Iy byl )EG,

ey

where Yl .i,j 1s the response from the jth subject in group (ij,iy,..., i),

ip=1,.. s,, j=1,. liz---i," and m ;i .i is the number of subjects in group

(iy, Iy oee 5 0p) Further P() is a cumulatrve drstrrbutron function; « is the grand

[‘ 'Z -, " is the effect of the level com-

brnatron (lll,llz, e ’l,) for the rth-order effect for the factors (I},0,,...,1),
t=2,...,L; and G, is a set of ¢-tuples representing the rth-order effects included in
the model. For simplicity, we also denote G, = {1,2,...,L}. Moreover, f is the
common slope parameter, and X ey is the covariate value for the jth subject in
group (i, iy, .- iL) which must be in the design region denoted by [L; ; ...;, U,Il2 .l
The endpornts i, and U; ; ..; can be —oo or oo, respectively. The results in thrs
paper apply only to models as in (1)

We can also write the model in (1) in vector notation as

mean, a is the effect of the z’h level of factor /, a

Prob(Y,; . ;=1)=P(X""/)"0). )
Here 6 = (ag, ", ..., oy, 7oy g7 ,ﬂ)T, and terms in € corre-
spond to those in the model where for any 1 </, <+ <[, <Landt=1,...,L,

w =@ ey T Further, X = (LX), L (X

l A .
(X il )T (X ey l’)T ~) , where terms in X%/ correspond again to

’ ’112
those in the model and Xl’1 iy
1 2

(i,l, . il,) and 0’s elsewhere.

While the notation in the previous paragraphs is convenient to present the model,
we will now immediately change it to facilitate our discussion about designs. Some
subjects in the same group could be assigned to the same covariate value, others to a
second or even third value used for that group. To that end, we will now use m; ; ..; to
denote the distinct number of covariate values used in group (i, i,, ..., ;) and intro-
duce n; ; ...; ; to denote the number of subjects in group (i, iy, ... , i) who are assigned
to the jth covariate value in that group, j=1,...,m; ; ;.

12 L

With that notation, a design can be presented as

&= {(xh

"is a (s, X -+ Xs5;) X 1 vector with a 1 in position

,L]»),i] =1,...,5,0=1,...,Lj=1,....m;,; .; },

’1’2 Lyl

where the design points X%t/ are distinct vectors (they either represent differ-
ent groups or correspond to different covariate values in the same group), while
2 o 2 2iMiiyiy; = 1 the design size. Such a design is called an exact design.
Therefore, the optimal exact design problem for a design of size n is to select both
Xiv+i’s and i, j’s, the latter summing to n, such that the resulting design £ is
the best in terms of a certain optimality criterion. However, due to the discrete-

ness of the n; ; ...; s, such optimization problems are difficult to solve. Instead, we

@ Springer



19 Page4of15 Journal of Statistical Theory and Practice (2020) 14:19

work with the corresponding approximate designs, where n; ; ..; ;/n is replaced by
Wi,y THE W, ;5 are called design weights and Z i, 24 Wisiy-iyj = 1- S0
an approximate desrgn becomes

E= (XMW =1, s, =1, L j=1...m, .}

iyiye1gj/? Lyl 22

and when searching for an optimal design the w; ; .., ;s can take any non-negative
values that sum to 1, so that the optimal design problem no longer depends on .
The disadvantage of this approach is that it may be difficult to convert an optimal
approximate design to an optimal exact design depending on the value of n.

For model (2) with approximate design &, the corresponding information
matrix for 0 is

m
Sy iy

1,0) = Z > Z Wity x5 (), 3)

i=1 ip=1 j=1

where Iyi,--i,i(0) is the information matrix for the design that places all weight on the
single design point X%/,

Inference could focus on a vector of 8, say g(8). Assuming g to be differentia-
ble, from the Delta method we obtain the asymptotic covariance matrix of g(é) as

0g(0) 0g(0)
2.(0) = 4
«0) <ae>§()<9> @

where /.(0)” is a generalized inverse of I.(6).

It is possible that for some function g(-), 2;(0) is singular, but we will restrict
our attention to situations where X.(6) is non-singular. The information matrix
for g(0) is therefore the inverse of 2:(0),

_ 0g(0) 0g(0)
1.(8(0)) = Z:(0) 1=<< v >5<) ( o ) ) . o)

For design selection, we focus on D-optimality. A design ¢ is called D-optimal for
() if it minimizes the determinant of the covariance matrix X.(0), or equivalently,
maximizes the determinant of the information matrix ,(g(0)). Note that 1.(g(6))
depends on 6, which is unknown before conducting the experiment. One way to
overcome this is to replace 6 in /:(g(6)) by a “best guess,” which could be based on
prior experiments. The resulting D-optimal designs are known as locally D-optimal
designs (for that guessed value of ).

The model in (2) is overparameterized, and 0 is not estimable. Instead, we
consider a maximal set of linearly independent estimable functions of 6. Since
D-optimality is invariant under reparameterization, the optimal design result is
invariant to the choice of this maximal set. Let g(6) = BO = n denote one particu-
lar maximal set. Note that
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L t
rank(B) = 1 + Z Z lH(Sli - 1)] + 1. (6)

=1 (I,,...[)eG, Li=1

We will denote the rank in (6) by r.

We define ¢; ., ;= (X"1"")70, which belongs to the design region
[D;...i,1>Dj, ...i, 2] 1nduced by the region [L; ; ..., U; ... 1 for x;; _; ;. In this way,
rather than spec1fy1ng covariate values for each group, a de51gn can now also be
presented by specifying values for ¢, ..; ; for each group. By doing so, Theorem 1

provides a locally D-optimal design for  under models as in (2).

Theorem 1 For a model of form (2) with the logistic or pro-

bit  link, if A{c*,—c*} CID; ;1D ..ipl  for —all  groups (i, ....i),
where c¢* >0 maximizes fl©)=c2®() on (—c0,0), the design
6 - {(cll gl T =c" Wl] gl T 2() ( Qi 2 T —c* Wll 1L2 ) ll =1,. Shl_ 1. ’L}
is a locally D-optimal design for n. Here s = s X +-+ X sL “and T(x) is given by
{ ﬁ, for the logistic link
Y’(x) = [d')/(x)]Z e 1. . (7)
v for the probit link

Proof We start with a reparameterization of model (1), the proof of which is rele-
gated to “Appendix.” To formulate this reparameterization, define the sets H,, ..., H}
from G, ..., Gy as follows: For1 <t <L,

H,={(l,,...,1,) : thereisanindex / >t and a ¢-tuple

Gis---»Js) € Gy sothat {1, ..., [} is a subset of {j,,...,j,}}. ®)
Then the reparameterization of model (1) is given by
L Sy~ s, =1 .
Prob(Y,, , =1)= P<y0 +y ) Z 2 7, ,"z,” g |+ B |
=1 (ydpet, [ i=t =t : ’
©)

where, for each factor /, we define

. 1, if factor / is at level 1
4= —L, otherwise
s;—1

5 1, if factor [ is at level 2
4= —L, otherwise
s;—1

1
——, otherwise.

5-1 { 1, if factor / is at level s; — 1
-1’
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Only including terms that appear in the model, the parameter vector 8, for model (9)
can be written as 0y = (yg, Y1 » > ¥ ’J’l,lsz ...,y,llz,,,,LT,ﬂ)T, where for any
t=1,...,L and 1<l <<, LL, we use the notation
Vi, = (y['l'_'_'_}[, ,ylll'.:(:"_l), ’yl(ls']}-l_,l)w(s’t_l))T. Note that the length of 6, is equal
to r. Again only focusing on f-tuples that appear in model (9), we define
2T = (L@, o BT @0 T, wherefor

each factor [,

1 1 1 1 T
(—‘—,...,—% 1,—%,...,—%4) . for 1 < il SS,- 1 and

. §;— s=1° s;—1 S

i .. .. .
Z'= the 1 is in position i,

L T

1 1 .
e e, for i, =
( s—=17 ’ s,—l) ’ l 51
79 L i I}
andZ"'"? " =7Z"@---QZ".

Lilyeed, hL L

Since model (9) is a reparameterization of the original model, due to the invari-
ance of D-optimality under reparameterizations, we can focus on D-optimality for 6,

under model (9). Let Divi = (1,(Z)7, ... (ZM), ..., Z""T, ... """y
1 L L, Lyl

Cjiiyiy)) > then Zi i) = A(6,)D""/, where
1 0 0 0
0 1 0 0
0 0 1 0
—/p A(l)(el) A(L)(Gl) /s

and A,(6,) = (=) /g, s —(7’1;...:;)7//3) represents the coefficients of all the #-th
order effects included in the model.
Then, for the design &£* in Theorem 1, the information matrix for 8, becomes

15*(91) =A(91) lz ZL:

i=1 ip=1
My g
w

J=1

iy eipf

T(Cil lu)DlllU(Dllld)T] AT(GI)
(10)

sp 2

— A6, lleT(c*) 2 Z ZDil-..iLj(Dil-..iJ)T] AT(0,)

=1 i=1j=I
= A(6))M,.(6)A" (6)),
where the last expression defines M..(6,).

To prove that £* is D-optimal for 8,, we use the equivalence theorem in [2]. After
simple calculations, £* is a locally D-optimal design for 6, if
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P (D" M OPD <7, (1)

with equality at the support points of £*, for all design points (i, ..., i;,c). Here

Diri is obtained from D"/ by writing ¢ instead of Ciyomiy

We first use a lemma to state that M = (6,) is a block-diagonal matrix.

Lemma 1 M.. (8,) is equal to ¥ (c*) times a block-diagonal matrix with (1) the top-
left element equal to 1; (2) the bottom-right element equal to (c*)*; (3) the block cor-

responding to y,! equal to B, = o 11)2 (s = J), where J is a matrix of ones; and (4)
the block corresponding to y, equal to

By, =B, ®B,® - ®B,.

Proof See “Appendix.” O

From Lemma 1, M 1(0,) is equal to —) times a block-diagonal matrlx with (1)
(3) the
block corresponding to y,” equal to B‘ = tf (I +J); and (4) the block corre-

the top-left element equal to 1; (2) the bottom-right element equal to *)2,
sponding to y;;, ; equal to Blllz---l, = Bll ® - ® B‘

Before evaluating the expression on the left—hanrd side of Eq. (11), we need one
more lemma.

N iNT 770 L
Z)zZ/ +Z)JZ/ = p—y
Lemma 2
Proof See “Appendix.” O

From the block-diagonal form of Mg,}(@l), it is immediately clear that
(D"l“"’L)TM;1 (0D in Eq. (11) is a relatively simple sum of various terms. First,
corresponding to y,,, we have

1 . 1 . 1 = 1 .
¥(c*) ¥(c*)

Next, corresponding to g, we have

1 1 2
C . . c = . .
(c*)?P(c*) Y(c*) (c*)?

Further, corresponding to ¥, we obtain
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L g1 g 1 (s, — 1)

@ AR s @) +Z!
B ‘P(lc*) . S N\ + o2
= T(lc*) (s ; 24 sls—l 1 (from Lemma 2)
- % = 1),

And finally, fory, .. T the contributing term is given by

1 i) eeei
’ ’t T 1 I
(Z ) q/( *)Bll 4T

(¢4 l‘)T® ®(Z")T)(B ® - ®Bl)(Z"® ®Z")

'P( *)
1
T P(er)

1 t
h lF(C*) g(sli -

Combining all of the above, we find that

L
(Dil'"iL)TMf_*l(OI)DiI"‘iL _ T(C*){ + Z Z lH(Sl - 1)] (C*)2 }

t=1 (I},...1l)eG, | i=1

_ 1 .
_'P(c*){r 1+(c*)2}’

where the last equality follows from the definition of r in Eq. 6. So the requirement
in Eq. (11) becomes

[(ZZI:)TBZIZ;’:] R ® [(ZZt)TBITIZ;f]

iy T g i, _ PO 40
¥ () D) M O,)D e = (r=D+—Fc——=<r c€(-00, ).
¢ ) (PP ()
(12)
The validity of this inequality is stated in the following lemma.
Lemma 3 For the logit and probit links,
2
Y(c) r—1)+ c¥(c) <r
¥(c*) (c*)¥(c)
foranyr > 2andc € (—c0, ).
Proof See “Appendix.” O
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This concludes the proof of Theorem 1. a

Note that the value of ¢* in Theorem 1 does not depend on the values of the
unknown parameters 6. It merely depends on the value of the rank r and the link
function. However, to compute the covariate values x; ; ..; ; from the points —c* and
c* in each cell, we do have to use the best guess for 8. This observation emphasizes
that the designs in Theorem 1 are locally optimal designs.

3 An lllustrative Example

To illustrate the main result, we consider an electrostatic discharge (ESD) study
originally reported by [7]. It will highlight strengths and weaknesses of our result.
The study used a logistic model to assess the effect of four factors on the failure rate
of semiconductors when exposed to electrostatic discharge. The four factors and the
continuous covariate are displayed in Table 1.

The original study used the factor wafer lot with four levels (lot 1, 2, 3 and 4),
but the experimenters decided to code it using two two-level factors, Lot A and
Lot B, and ignore a possible interaction between them. We will use Lot A and
Lot B in the same way. ESD handling is a factor to indicate whether or not the
standard procedure was applied. No ESD handling means that no ESD-safe labo-
ratory coat/shoes and no wrist strap were used. The ESD testing involves “zap-
ping” a part first with a pulse polarity (positive or negative) and then followed
by a second pulse of the opposite polarity. Since there is no industry standard
specifying the order of pulse polarity, this makes it the fourth factor. The continu-
ous covariate is the voltage each wafer was tested at, and the response variable
is binary: A wafer either passes or fails the test. Taking the factor levels as 1 and
—1 and denoting them by x, through x, (using the same order for the factors as in
Table 1), with p and x denoting the probability of a wafer passing the test and the
voltage, respectively, the model that was used is

loglt(p) = ﬁo + ,B]Xl + ﬂ2x2 + ﬁ3)€3 + ﬁ4.X4 + ﬁ34X3X4 + ,BS)C. (13)

Note that the linear predictor includes an interaction term. While Model (13) is a
reparameterization of Model (2), Theorem 1 remains applicable.

The experimenters used a full factorial design in the four factors and ran each
combination at 5 voltage levels: 25, 30, 35, 40 and 45 Volt. This resulted in
2% x 5 = 80 runs. There is no discussion about reasons for selecting the voltage

Table 1 Factors and covariate

for ESD experiment Description Levels
Factors Lot A Location 1 Location 2
LotB Location 1 Location 2
ESD handling No Yes
Pulse polarity Negative Positive
Covariate Voltage Continuous
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range as [25, 45] or for selecting 5 levels. We will treat voltage as a continuous
covariate that is not necessarily restricted to the range used in the experiment.

To find locally D-optimal designs, we use
By = (=7.50,1.50,-0.20, -0.15,0.25, 0.40, 0.35)7 as in [3], which is based on esti-
mates from the original study. Then, according to Theorem 1, a D-optimal design
using a full factorial and two support points in each group is given by the design in
Table 2.

Using approximate design representations, the D-efficiency of the design used
in the study, &, relative to the optimal design in Table 2, £*, can be computed as

det(I; )1"”
- ] (14)

RE(,) = [det(lé*)

where p=7 is the number of parameters in the model. We find that
RE &) = 24.22%, suggesting that the optimal design is more than four times as effi-
cient as the design that was used. While [7] may not have had good guesses for the
parameters in the model, this example shows how to apply our theoretical results
if such information is available and demonstrates convincingly that the theoretical
results can then lead to the use of better designs.

4 Summary and Discussion

Even though GLMs with factorial effects have been widely used in multiple disci-
plines, optimal design theory for such models is limited. In this paper, we proposed
a locally D-optimal design for logistic and probit links for a general model as in
Model (2). This model can include any number of interaction terms between the fac-
tors. The power of the main result has been illustrated through an example, which

Table 2 D-optimal design for
the ESD experiment using a full

factorial -1 -1 -1 -1 2207 2650
-1 -1 -1 1 2293 2736

-1 -1 1 -1 2522 29.64

-1 -1 1 1 2150 2593

1 -1 -1 2322 27.64

1 -1 1 2407 2850
-1 1 1 -1 2636 3078
1 1 1 2264 2707

X, x, Xx3 x4 Voltl Volt2 x; x, x3 x, Voltl Volt2

-1 -1 -1 1350 1793
-1 -1 1 1436 18.78
-1 1 -—1 16.64 2107
1293 17.36
1 -1 -1 1464 19.07
1 -1 1 1550 19.93
1 1 -1 1779 2221
1 1 1 1407 18.50

—_
—_
—_
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shows that the same amount of information could have been obtained with far fewer
runs. Such theoretical results are also very useful to provide benchmarks for other
designs. What is difficult to incorporate in the theory is possible restrictions on the
design space. For example, if the voltage had to be between 25 and 45 Volt, then the
design in Table 2 would not have been feasible. Computational approaches as in [3]
are important to solve specific problems under such restrictions.

With a large number of factors or levels, the number of support points, 2s, of the
optimal design in Theorem 1 can become large. Rather than using a full factorial
design, one could then consider using a fractional factorial design or a design that
has less then 2 observations per cell. Results for this will be reported in [6].

5 Appendix

Proof of Lemma 1 By the definition given through Eq. (10),

SL

Mf (91) = —T( )Z 2 ZDH t,](Dtl IL])T

i=1 ip=1 j=1

For the symmetrical summand we have

i i i iy

1 (le)T (ZLL)T (Z 1 Z)T Ciyoiyj

i 7INT i (7 INT i "1 i1 i

Z,Z) Z,Z) 2,2, il ) Ciymigjly

o if, (g iNT ZiL ”1”2 T iy,
i (piviT = Z(Z") ( ll’z ) Cil...iU'ZL
‘11’12 '11’12 T inin,

Z, 40 Ciyigj®y,,

2

i

The top-left element of M §$(91) is thus

K3 sp 2
—'P(c ) DL D =W(eh),

i=1 i;=1 j=1

while the bottom-right element is

—a"(c)z 22(c ) = (W (ch).

i=1 i;=1j=
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All other elements in the last column of M z;*(191) are 0 because each cell has two

opposite values for the ¢ values.
An off-diagonal block of M,.(6,) is of the form

ir ir "'irm ic ic "'ic,, T ir irm ic T ic,, T
Zoe g0 = (20 @ @2 (22 @ - ® (2.
Since it is an off-diagonal block, at least one factor appears only once in the two sets
of factors. Without loss of generality, say r, does not appear in (¢, ..., c,). By sum-

ming over the levels of factor r;, we obtain

Uy b "lrm c i, B “'ic,, T
Z 1'r2 . 1le )
T2 T clcz---c,,
i, —1
Sr .
weef
’l ’2 & 61 02 en\NT _
Y 7 @22 @ - @z |- @) =0,

1_1

The last equality follows immediately from the definition of the Z;”s
For a diagonal block of M,.(6,) that corresponds to main effects, say for factor /,
we obtain

—srf(c )Z Z Zz"(z")T

i=1 ip=1j=

1
1
IECON | =1 VO 1
5 : s =17 s =1
1
e
L
s,l—l
PN e | (N - _—
E S — 1, S — 1 -1
-
s;—1
1 - e —
(s=1) (i;—l)2 o ~ (S,—ll)2
W(c* (s,=1) (s,=1)? (s,=1)%
L dCON s : =¥(c")- B,
S . __1

—1)2
({I )

(5,-1)

For a diagonal block that corresponds to an interaction, say for factors (/, ..., 1[,), we
get
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_SU(C )2 Z ZZII ,II(ZI1 III)T
ii=1 ip=1j=
— l, ’1, T
- T(C )Z ZZ Zzll Jq, (le 1, )
not (y,...,1,) s
S SIS I Z(Z"‘ ® - ®Z)- () ® - ® @)
n0t (k) Upseenly)
sy,
= —W(c DS Z AU R D WA Y
i i =1
not (I;....1,) h "
= <W(c) Y sy, B ® -+ ® (s, - By)
not (y,...,1,)
1 X *
:;l[/(c ).S.Bll ®...®Blr:lp(c )'Bll ®.“®Blt
This concludes the proof. O

Proofof Lemma2 1f i, < s,, Z! is of the form (-, ... 1,...,— =) So

—1’ ;-1

ZN'Z! + (2 IZ!

S
N 1 R B G A L !
Py IR P IR
1

T
1 / 1 1
— (5 =2)+1)+ 1 - e Ly, —
<(Sz—1)2 (1=2) ) s;p— 1 < s —1 51_1>

5 =2 1 S

(s —1)2 1Jr(sl—1)2_sl—1

L7 So

s;—1

T
Znz v zyiz = (- ] 1
1 ! 1 ;=177 g =1 =177 5 =1

If iy = 5, then Z;’ is in the form of(—ﬁ, ey —
-

- — . — —_ 2:—
=T (s;— D+ (=1 P

Together, this completes the proof.
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Proof of Lemma 3 For models of form (1) with logistic or probit link, if there is
no interaction effect among factors, then according to Theorem 4 in [4], a locally
D-optimal design for a maximal set of estimable functions of the parameter vector
still has the same design structure as described in Theorem 1, and only the power
term 7 in f(c) = c2(¥(c))" refers to the main-effects model, with an explicit expres-
sion asr = Zf(sl -D+2

Then, following the same reparameterization method as shown in the proof of
Theorem 1, since the equivalence theorem can be used to verify the locally D-opti-
mal design for the main-effects model, we have

Y(c) ¥ (c)
e T e =

This concludes the lemma. O

Proof of Reparameterization To show that model (9) is a reparameterization of
model (1), we need to show that the column spaces spanned by the two design matri-
ces are the same. Since the vector of covariate values is the same in both, define

SL iy Ty s1—1 sp—1 iy i,
X = [xy,x 1,...,x1,...,xL,...,xlll2 ,...]and Z = [zg,2 1,...,z IR ST A .

for models (1) and (9), respectively. In both cases, the only interaction terms
included are those that appear in the model, but the columns of X correspond to the
sets G,, while those in Z correspond to the H,’s,t =1, ..., L. We need to show that
C(X)=C(2).

For any v € C(Z), there exist a,,, a%, .,da

s1—1

L .. such that

_ 1.1 sp—=1_sp—1
v=dozgtazz,-ta; z,
v,l—l .s,r—l

DN DB v
J1)eH,

t=2 (I}, i =1 0=

Since z, = x, and, for each factor /,

i
Zl’ = l — 1 —_ 1 <s1x x0> (15)
i#i)

we see that z;’ can be written as a linear combination of the columns in X.
For interaction terms, we have that

i, iy )
. . . . , s;x'—x 85X —X
z’llllz""lt L ( L7y 0) < L, 0 (16)
LUSR” L L H’
izl(sl- - 1)

where “o” represents the Hadamard product. The expression in (16) is a linear com-
bination of x, and Hadamard products of ¢ or fewer xi’s. The subscripts in these
Hadamard product terms form subsets of {/,,...,[,} and correspond to interaction
terms. For example, x} ox! = xg Not all of these interactions appear in the model
though. But by definition of H,, there is a # > ¢ and a 7-tuple (j,, ... ,j,) € G, that

“ Lt}
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i eeed,
contains all of (i, ..., i,). Thus the columns xjj1 j"' do appear in X, and each column
s

corresponding to a Hadamard product term in (16) can be written as a linear combi-
nation of these columns. Hence, all columns in Z can be written as a linear combina-
tion of columns in X. Hence C(Z) C C(X)

For any v € C(X), there exist b, b%, - bi‘, ... such that

_ LSS
v ="boXg+bx + - +b'x)
L 51y S
iy iy iy
150 M D o]

=2 (I},1)EG, Liy =1 i, =1

It is easy to verify that each of these terms is a linear combination of z, the Zs and
Hadamard products of these vectors. Along the same lines as in the first part of this
proof, it follows that C(X) C C(Z)

Combined this gives that C(X) = C(Z). O
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