9B-2

Parallelism in Deep Learning Accelerators

Fan Chen
Duke University

Linghao Song
Duke University
linghao.song @duke.edu

Deep learning is the core of artificial intelligence and it
achieves state-of-the-art in a wide range of applications. The
intensity of computation and data in deep learning processing
poses significant challenges to the conventional computing plat-
forms. Thus, specialized accelerator architectures are proposed
for the acceleration of deep learning. In this paper, we classify
the design space of current deep learning accelerators into three
levels, (1) processing engine, (2) memory and (3) accelerator, and
present a constructive view from a perspective of parallelism in
the three levels.

I. INTRODUCTION

Deep learning approaches [1], [2] have become the core
of artificial intelligence (AI) research across a broad range of
applications, including computer vision [3], [4], [5], health-
care [6], [7], [8], and scientific computing [9], [10], [11]. Rep-
resentative Deep Neural Network (DNN) and Convolutional
Neural Network (CNN) applications are normally parameter-
rich and computation-intensive, which poses significant chal-
lenges to the computing power and memory bandwidth of
the underlying computing platforms. However, we are ap-
proaching the end of the scaling of Moore’s Law [12], and
general-purpose platforms such as CPUs and GPUs will no
longer benefit from the integration of cores [13]. Therefore,
a novel architecture paradigm equipped with domain-specific
accelerators is proposed as a common solution to provide
sustainable performance and efficiency improvement for deep
learning applications.

The fundamental computational component in DNNs and
CNNs is Matrix-Vector Multiplication (MVM), which exhibits
inherent parallel processing capability. In order to achieve high
performance and energy efficiency, various accelerators are
proposed to exploit the parallelism in deep leaning algorithms.
Based on the parallelism being explored, we classify the
design space of current deep learning accelerators into three
levels as described below:

o Processing Engine Level Parallelism (PELP) comes nat-
urally from the fact that the massive multiplication and
accumulation operations in MVM can be processed inde-
pendently. In this level, operation primitives are organized
in a high-parallel fashion to exploit the temporal and/or
spatial parallelism.

- -~ Accelerator =
Processing R N Acc Acc
Engine PE | | PE /
p 4 ‘< ///
@ ® e . Memory ,/’ Acc Acc
/
@) () ©

Fig. 1: Three levels of design space for deep learning acceler-
ators. (a) processing engine, (b) memory and (c) accelerator.

fan.chen@duke.edu

Yiran Chen Hai “Helen” Li
Duke University Duke University
yiran.chen@duke.edu hai.li@duke.edu
- BL;
Vi2
VL3,
Vi
Vi WLt
Vit mi;
VIN |
Vo Vo de Vo,é Vo,j1| Vo,j V(),‘N-l Vo, N
rS

Rg 7 rsi I T T T

AN
W

1
Fig. 2: Mapping a weight matrix to a ReRAM crossbar array
to build a parallel VMM engine in [14].

e Memory Level Parallelism (MLP) is achieved through
parallel and efficient memory accessing to alleviate the
memory wall effect. In this level, the data movement and
sharing between Process Engines (PEs), while memory is
optimized for parallel accessing to disjoint memory space
and high data utilization.

o Accelerator Level Parallelism (ALP) emerges as a recent
research direction to address the the coordination of
multiple accelerators in a heterogeneous system. In this
level, parallelism for multiple accelerators is proposed.

In the following sections, we study the current landscape
of deep learning accelerators and present a constructive view
from a perspective of parallelism in the above three levels.

II. PARALLELISM IN PROCESSING ENGINES
A. Matrix-Vector Multiplication Engine

Matrix-Vector Multiplication (MVM) is the basic computa-
tion type in DNNs. The time complicity for the multiplication
between an N-by-N matrix and an N-by-1 vector is O(N?) in
a conventional single thread processing unit. An MVM engine
processes the multiplications and accumulations in MVM to
achieve a lower time complexity than O(N?).

Resistive random access memory (ReRAM) [15] is a
promising candidate for MVM processing engine design be-
cause of the characteristics of high reading speed, high density
and multi-level cells. Hu et al. [14] proposed to utilize a
ReRAM crossbar array to design an MVM processing engine
to calculate y = W X x. As shown in Fig. 2, the matrix
weight m; ; is mapped to the conductance state of the cell

645

978-1-7281-4 g 22U ALPLSIFMIEFE: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

MBC Grou;’), Router
[& F Y HT ﬁ; ‘
< 219 .
CPU [O S 1A || HE
Z [& T N

g ki
ey (S 9
[

\
I-cache D-cache \‘ N o]
=
VRS
\ _,_g —] TTTTTTT
\ <]
13 [T T}
\\
I I I I I
N I N I P R R I -2 IR
2 Lol o L 2 [1 [g Ll =25
53 T 3 T] T % T & T § ,8
A = N O i O < T I A - I
I I I I |
| | | | | p NCA
I I RF [—»{ NCA | | $ |
I I I I |
' Pipeline ' I | I I—l—: RF
l I [

Fig. 3: An on-chip processing engine design for the accelera-
tion of MLP and AAM [17], [18].

gi,; at the ith row and jth column in a ReRAM array. In
computation, the input vector x is encoded as the voltage
levels v; and applied on the wordlines. For each individual
cell, the multiplication is performed as the conversion of
voltage to current, i.e., i;; = Vv; - g; ;. On each individual
bitlines, the currents from all the connected ReRAM cells
are accumulated, ie., i; = Zi i; j. To get the results of the
MVM, we just need to sense the currents from the bitlines
to get the output vector y. In the ReRAM MVM processing
engine, on each bitline, N multiplications are computed in
parallel, and for the whole array, the /V bitlines are performing
the accumulation in parallel. The parallel multiplication and
parallel accumulation result in a O(1) time complexity for a
matrix-vector multiplication. Furthermore, in 2016, Hu et al.
[16] fabricated a 4 x 4 ReRAM MVM processing engine.

B. On-chip Processing Engine

With the ReRAM MVM processing engines, a larger scale
on-chip design can be built for more complex tasks than
matrix-vector multiplication. Harmonica [17], [18] is an on-
chip accelerator for Multilayer Perceptron (MLP) and Auto-
Associative Memory (AAM) applications. Because the scale
of the architecture and the applications is relative small
compared to typical DNNs, we classify Harmonica as an on-
chip processing engine.

In Harmonica, groups of ReRAM MVM processing engines
are deployed as shown in Fig. 3. Between the ReRAM MVM
processing engines, an analog Network-on-Chip (NoC) is used
to transfer intermediate data. The Digital-to-Analog-Converter
(DAC) with an in-queue and the Analog-to-Digital-Converter
(ADC) with an out-queue are deployed for data interface.
A config-queue is used to store the routing information.
The NoC coordinates the input signal to the ReRAM MVM
processing engines and collect computing results from the
ReRAM MVM processing engines to out-queue. Thus the
Harmonica architecture benefits from the parallel execution

9B-2

4|
a5 -1

= 11 !

(256 2 128)

G=256

le— TSIT —

=C16¥62)
[68]
TSIL)

ST

(8CL46

.| 555 50 || o

T-ﬂ-ﬂ-ﬁ--ﬂ-ﬂ-ﬁ-

c16¥6C

(TSILD

y u I O

49—
(49=12544/G)

(a) Intra-layer parallelism.

]]]]]]
]]]]]]]]
i i i ' i 1| A31 [i] A21 |1
: : [a1 [i[a2 [i[a3 |i[EnL]! : [an
| | |] | 1| A32 |1 | A22 |4
]]])])]]
:)])])] i
: H— i ! eyt [A31] [0 ! :
! ‘Al MAZMASMEHL‘. ! Han !
: e = I Y :
[} [} [} [} [})
[} 1 [} 1 [} 1
H 1 H 1| A31 |1] A21 i H H
[an [i[a2]i] a3 |i[EnL]! i i[an i i
: : : (A2 A2) : :
To T + T2 1 T + T2 1+ T5 + Te 1+ T7 + Ts | To

(b) Inter-layer pipeline.

Fig. 4: (a) Intra-layer parallelism and (b) Inter-layer pipeline
in PipeLayer [19].

of multiple matrix-vector multiplications. To further explore
instruction level parallelism, an Instruction Set Architecture
(ISA) is designed for Harmonica.

The processing of MLP requires multiple cascaded ReRAM
MVM processing engines and the processing of AAM requires
recurrent data delivered back to the same ReRAM MVM
processing engines. The model sizes of two applications
are relatively small. For large scale applications especially
convolutional neural networks, on-chip processing engines are
not capable. Stand-alone accelerators are required.

ITI. MEMORY LEVEL PARALLELISM
A. Parallelism in Accelerators for DNN Training

Stand-alone accelerators are designed for large-scale deep
learning applications. In DNN training, massive parallel pro-
cessing engines are deployed and data accessing to memory
is delicately optimized. The basic idea for parallelism in
accelerators for DNN training is to enable memory level
parallelism for the regular sequential data layout in DNNs
to achieve high throughput.

CNN Training Accelerator

In PipeLayer [19], intra-layer parallelism and inter-layer
pipeline are the two schemes for parallel processing. The
input feature maps of the convolutional layers are converted
from a three-dimensional tensor into a Toeplitz matrix format
to compatible with the MVM processing engines and fully
utilize the parallel matrix-vector multiplication. For intra-
layer parallelism, the weight for one layer is duplicated and
multiple processing engines are mapped with the same weight
as shown in Fig. 4a. Each processing engine is also equipped
with a buffer memory which stores the corresponding input
feature maps. As a result, processing engines are accessing

646

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

Real TO T

9 osamEIe :E> ; 3 ;
% :E - FCNNZ FCNN3 = ' CNN1
2 > enerated ! > —> i
T0 sample T5
Generator (G) Discriminator (D)
'[7 T‘G T§
e] [| [2 ETaE A
yws W vwe Q) vwy vwp vwy
| ¢ vb§ vb§ vbP 7bp 7o
: : : T‘l(] 1"9 T‘s
(a) Training paths in GAN.
15 T6
0, |
K] ﬂ FCNNZ —)W—)M CNNZ —) wa

50
6 TWE |€e— sz(_ |7W3 <« |7W1 < |7WZ < VWa
7bé VbG Vb“ by | Vb Vb3
13 Tiz Ti1 Té T8

(b) Improved training procedure by computation sharing.

Fig. 5: (a) Training paths in GAN and (b) Improved training
procedure by computation sharing [20].

memory in parallel. The weight and feature map of each layer
in a network is assigned to a group of processing engines
and a buffer memory space. If we consecutively execute the
computation for each layer, when the computation resource
and memory for one layer is busy, the computation resource
and memory for other layers is idle. So we propose the
inter-layer pipeline which is a layer-wise pipeline design as
shown in Fig. 4b to fully unitize the processing engines and
memory. One layer is scheduled as one stage in the pipeline
and the buffer memory coordinates data movement between
two layers. Thus, multiple input data are processed in parallel
to achieve a high throughput.

GAN Training Accelerators

Generative Adversarial Networks (GANs) [21], [22] have
demonstrated a great opportunity toward next generation of
unsupervised deep learning. In a GAN model, a generator
(G) and a discriminator (D) are simultaneously trained against
each other via an adversarial process. A generator captures
the data distribution and attempts to generate synthetic sam-
ples, while a discriminator implements a binary classifier to
differentiates the samples generated by a generator against
real samples. This learning process is performed iteratively
until we receive a generator with strong generative capability
and a discriminator with high classification accuracy. Fig. Sa
illustrated the training paths in a GAN, which involves three
dependent paths: (1)@ @ depicts the dataflow of training D
on real training samples; (2) &~@ shows the path of training
D on generated samples; and (3) ©®@® illustrates the training
phase of G. Clearly, in addition to the parallelism in a single
network training explored in previous works [19], [23], GAN
also exhibits the parallelism between the training of multi-
ple deep network models (ie, generators and discriminators).
Therefore, a customized accelerator architecture is needed to
accommodate the parallelism between the two DNN models,
thereby improving the performance and energy efficiency in
GAN training.

ReGAN [20] exploited the similar pipelined training proce-

9B-2

FC-CELLn
FC-CELL-1
CONV-CELL-m
Global CONV-CELL-1
CTRL
v
=}
@ |
O |
} (72]
- [
P o
2 Q
3 =
Q
© <
SRAM | | CTRL ‘ 1/0 Interface ‘ —

Fig. 6: Heterogeneous computing cells in EMAT [26] archi-
tecture.

dure as in [19] to reduce on-chip memory access. In particular,,
ReGAN presented Spatial Parallelism and Computation Shar-
ing to parallel the multiple training phases to further improve
performance. Spatial Parallelism co-process the calculations
in @@ and ©@ by duplicating D for multiple copies, while
Computation Sharing parallel phases @ @ and @ @ since
they share the same forward path as demonstrated in Fig. 5b.
In addition to the multiple training phases involved in GAN,
another important reason why existing solutions are unable
to efficiently support GAN training is due to the fact that
GAN utilizes a new operator, called transposed convolution
(TCONYV), which introduces significant resource underutiliza-
tion as it inserts massive zeros in its input before a convolution
operation. RED [24] presented pixel-wise mapping and the
zero-skipping for TCONV inference acceleration. The pixel-
wise mapping scheme is able to eliminate zero-inserting
operations in TCONV and improve the resource utilization.
The zero-shipping data flow increases the computation paral-
lelism and further improve computing efficiency. ZARA [25]
proposed a novel computation deformation technique that can
skip zero-insertions in TCONV. A dataflow mapper and an
operation scheduler were also implemented to support the
proposed execution model. These optimized zero-aware com-
puting model coupled with high-parallel architecture proposed
in [20] provide significant system performance improvement
compared with previous accelerators designed for general
CNNs [19].

Transfer Learning Accelerator

Transfer Learning [27] recently emerges as a more practical
and efficient training paradigm that re-utilizes a developed
neural network onto a different domain/task, significantly
reducing the extensive efforts in training and data labeling
in supervised learning. Chen et al. [26] proposed EMAT to
accommodate the heterogeneous computing phases involved in
transfer learning: the transferred CNN layers are fixed and exe-
cute only the feed-forward function; while the newly added FC
layers are trained through back propagation. Similar with pre-
vious works, EMAT utilizes the energy-efficiency of ReRAM
array for MVM and realizes a hierarchical reconfigurable
design to incorporate the data patterns in transfer learning. As
demonstrated in Fig. 6, two types of computation components,

647

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

4
Filter 3

Filter 2 Filter 4 Activation

Vector

(2)

¥ ‘:%

Vit

Structually-compressed
Weight Matrix

123456789

7
7

Original Weight Matrix Original Weight Matrix

® © 0

Fig. 7: (a) The elements in the feature map are converted
into a vector in processing, (b) the nonzero-neuron oriented
computation, (c) the nonzero-neuron and nonzero-weight ori-
ented computation, and (d) the computation in accelerators
for structural compression [29]. The performed computation
is marked by triangles.

namely CNN-CELL and FC-CELL, are specialized designed
according to the computation and storage characteristics of
CNNs and FCs, respectively. In real-life scenario, it often
desires the real-time execution of multiple tasks and dynamic
adaptation capability [28]. Hence, EMAT also introduced a
time-multiplexed training flow for efficiently executing multi-
tasks that share a same trained CNN.

B. Parallelism in Accelerators for DNN Inference

DNN accelerators for inference are usually constrained
by hardware resources and stringent power budgets. Model
compression methods such as weight sparsity and connection
pruning can significant reduce the scale of model size and
hence, reduce the computation for DNN inference. However,
conventional element-wise compression and pruning is not
helpful for inference acceleration because of the irregularity of
the indexing and accessing of the element-wisely compressed
data. Accelerators for structural compression with regular,
sequential and light memory accessing are needed.

Accelerator for Structural Compression

The acceleration of DNN inference takes the benefit from
zero-element skipping. Two element wise skipping schemes
are (1) nonzero-neuron oriented computation where the com-
putation is performed only when the neuron element is
nonzero, and (2) nonzero-neuron and nonzero-weight oriented
computation where the computation is performed only when
both the neuron element and the weight element are nonzero,
as shown in Fig. 7 (b) and (c). However, because data
are element-wisely compressed in the two schemes, massive
irregular and random memory accessing is incurred, which
significantly hinders the memory level parallelism. At the
same time, element-wisely compression requires index pro-
cessing for every element, which increase the computation.
Thus, structural compression is required for memory efficient
DNN inference, as shown in Fig. 7 (d). For the structurally
compressed weight, within a weight chunk, elements are
placed continuously thus the accessing is sequential. Because

Wy | Wy wL1

wi2
wp| W2

wi3
Wy | Wq

w4
W3 | Wy

wr

Cyc4 Cyc3 Cyc2 Cycl

Fig. 8: Shift method and overall mapping scheme [30].

the chunks usually have the same size, thus prefetching and
parallel memory accessing can be utilized. Furthermore, the
structural compression chunks can be set to fit the hard-
ware buffer, thus high memory bandwidths utilization can be
achieved.

Accelerator for Block-Circulant Neural Networks

The recent proposed block-circulant DNNs [31] provide a
candidate solution for efficient deployment DNNs on edge de-
vices with controllable compression ratio and storage savings.
The key idea is to approximate the original weight matrix
by a circulant matrix defined by a representative vector. In
this way, the original O(n?) storage complexity is reduced to
O(nlogn). The state-of-the-art accelerators for block-circulant
DNNs relied on the the Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT) for the computation.
The memory level parallelism is realized by simultaneously
processing massive FFT/IFFT. REBocC [30] make an im-
portant observation that FFT-base approach does not always
leads to practical computation reduction. In this work, the
processing of block-circulant DNNs is directly performed in
ReRAM based on a novel mapping scheme with shift method
as shown in Fig. 8. To fully utilize the massive parallelism for
MVM in ReRAM, a block-circulant DNN model is mapped
onto ReRAM crossbar with horizontal weight slicing and
intro-crossbar weight duplication to achieve high crossbar
utilization.

IV. ACCELERATOR LEVEL PARALLELISM

The scales of deep learning applications are becoming
larger because the network model contains a larger number of
parameters and the size of the data set increases to terabyte-
level. As a result, computation and the data for the weight and
feature map generated in the processing are no longer capable
for only one accelerator. For a higher system performance,
we need to consider to deploy multiple accelerators for the
processing of a large-scale deep learning application. Thus,
we need to propose accelerator level parallelism for the
deployed multiple accelerators. In large-scale deep learning
with multiple accelerators, the data communication between
accelerators becomes the bottleneck. We are focusing to design
an accelerator level parallelism to reduce the communication
of weight and the feature map transferred between accelerators
in [32].

In DNN training, there are three tensor computation for
each layer, i.e., forward, backward and gradient. In forward,
the input feature map tensor F; is multiplied with the weight
tensor W, and then an element-wise activation is applied to
get the output feature map tensor F; 1 = f(F; @ W;). In
backward, the error tensor E;;; the transposed weight tensor

648

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

Fi1 499
—i

1722

Fi W,
Forward 161 % — 70[%

100

W/
E 70 1 Ei

Backward 6] % <= 0{

100

< el
]

E
oo

"

.
Fi 16 70
18,

i e —

,,,,,,,,,,,,,,,,,

(a) data parallelism

F; 35, W,

Forward 321 %. - 351 :DSZI

,,,,,,,,,,,,,,,,,

B 35, B E—
|
Backward 321- <= 100[I -— 321

[p——y
35
.
F/ 3

Gradient SSI I

Computation - AW
I

A e

100

(b) model parallelism

Fig. 9: Forward, Backward and Gradient Computation in (a) data parallelism and (b) model parallelism, and intra-layer

communication is marked by a & [32].

TABLE I: Intra-layer communication in data parallelism and
model parallelism [32].

data parallelism
A(AW))

model parallelism
A(F111)

‘W, and the feature map tensor F'; are used to calculate the er-
ror tensor in a previous layer as E; = (El+1 ® Wl—r) oOf'(F),
where f/(-) is the derivative function of f(-). In gradient
computation, the partial derivatives to the weight is computed
by AW, =F] ® E ;. Since f(-), f'(-) and ® are element-
wise operation and performed in-place, we focus on the three
tensor multiplications, F11 = F; @ W, E; = Ej 1 @ W/
and AW, =F] @ Ej 1.

Fig. 9 shows the tensor shapes and computations in the basic
data parallelism and model parallelism for two accelerators.
The white tensors are assigned to one accelerator and the
shadow tensors are assigned to the other. In data parallelism,
we can see that there is no communication in forward and
backward, but there is communication in gradient computa-
tion because each accelerator calculates the partial sum and
need the partial sum from the other accelerator to get the
final results. In model parallelism, we can see that there is
no communication in backward and gradient computation,
but there is communication in forward for the partial sum
accumulation for the output feature map tensor. We call the
above described data transfer as intra-layer communication.
The intra-layer communication for data parallelism (dp) and
model parallelism (mp) are listed in Table I.

There is another data transfer between tensors which we
call it inter-layer communication. Since we have dp and mp
as the two basic parallelism, we will have four inter-layer
communication patterns, i.e., dp-dp, dp-mp, mp-mp, mp-dp, as
shown in Fig. 9. The inter-layer communication is caused by
the remote accessing for a part of tensors that one accelerator
requires to calculate feature map tensor for next layer of error
tensor for previous layer but the accelerator does not have for
this layer. The inter-layer communication for dp-dp, dp-mp,
mp-mp and mp-dp are listed in Table II.

To minimize the total amount of communication, we can
use a layer-wise dynamic programming method to search for

RFi ELF1+1 RFi ELF11
e — mmpe W™
REi1 | LEy, REy | LEy,

1 1 %

(a) dp-dp (b) dp-mp
RFi, 1 LFy, RFi1 1 LFy,

v | /
= s
REy: | LEu, REy: | LE,
gl Wl

) mp-mp d) mp-dp

Fig. 10. Inter-layer communication for (a) dp-dp, (b) dp-mp,
(c) mp-mp and (d) mp-dp [32].

TABLE II: Inter-layer communication for the transition of dp-
dp, dp-mp, mp-mp and mp-dp [32].

dp-dp 0

dp-mp | 0.25A(F11) + 0.25A(BE11)
mp-mp 0.5A(E;+1)

mp-dp 0.5A(E;41)

the partitions for each layer. A hierarchical partition is used to
recursively partition tensors to two sub-groups of accelerators
until there is only one accelerator in a sub-group. We illustrate
the hybrid parallelisms for VGG-A and AlexNet in Fig. 11.
The data parallelism and model parallelism are interleaved
across layers at one hierarchy and hierarchies of the same
layer for a hybrid parallelism.

O data parallelism @ model parallelism

coooodaa
0 Q0 6 0 0
33333 MO
A
I N®R OO

(b) AlexNet

Fig. 11: The hybrid parallelism for
AlexNet in [32].

(a) VGG-A and (b)

649

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION [18]
In this paper, we systematically and constructively summa-

rize the latest developments in the field of machine learning

accelerator research. Previous works are classified into three [19]

categories based on the levels of parallelism in deep learning

models being exploited in the proposed designs, namely

processing engine-level parallelism, memory-level parallelism, [20]

and accelerator-level parallelism. The readers will understand

the concept and design considerations of different parallelism

levels, be able to identify and evaluate the effectiveness of 1]

different DNN hardware implementations, and apply these

concepts to future DNN accelerator designs and accelerator

designs in other areas such as graph processing [33], [34], [22]

[35] and genome sequencing [36], [37], [38].

ACKNOWLEDGMENTS [23]
This work is supported in part by DOE DE-SC0018064,
NSF-1910299 and NSF CSR-1717885. o4
REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, [25]
no. 7553, p. 436, 2015.

[2] 1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016. (26]

[3] W.Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European conference on [27]
computer vision, pp. 21-37, Springer, 2016.

[4] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, “Dpatch:

An adversarial patch attack on object detectors,” arXiv preprint (28]
arXiv:1806.02299, 2018.

[5] S.Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91-99, 2015.

[6] T. Ching et al., “Opportunities and obstacles for deep learning in biology [29]
and medicine,” Journal of The Royal Society Interface, vol. 15, no. 141,

p. 20170387, 2018.

[7]1 O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, “Deep
learning for healthcare applications based on physiological signals: A (301
review,” Computer methods and programs in biomedicine, vol. 161,
pp. 1-13, 2018.

[8] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep (31)
learning for healthcare: review, opportunities and challenges,” Briefings)
in bioinformatics, vol. 19, no. 6, pp. 12361246, 2017. (32]

[9] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature communications,
vol. 5, p. 4308, 2014. 13

[10] G. B. Goh, N. O. Hodas, and A. Vishnu, “Deep learning for computa- [33]
tional chemistry,” Journal of computational chemistry, vol. 38, no. 16,
pp- 1291-1307, 2017. 4

[11] L. Song, F. Chen, S. R. Young, C. D. Schuman, G. Perdue, and T. E. [34]
Potok, “Deep learning for vertex reconstruction of neutrino-nucleus
interaction events with combined energy and time data,” in /CASSP
2019-2019 IEEE International Conference on Acoustics, Speech and 35
Signal Processing (ICASSP), pp. 3882-3886, IEEE, 2019. (3]

[12] M. M. Waldrop, “The chips are down for moore’s law,” Nature News,
vol. 530, no. 7589, p. 144, 2016.

[13] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and 36
D. Burger, “Dark silicon and the end of multicore scaling,” in 2011 [36]
38th Annual international symposium on computer architecture (ISCA),
pp. 365-376, IEEE, 2011.

[14] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb (37]
recall function using memristor crossbar arrays,” in Proceedings of the
49th Annual Design Automation Conference, pp. 498-503, ACM, 2012.

[15] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,

FE. T. Chen, and M.-J. Tsai, “Metal-oxide rram,” Proceedings of the (38]
IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.

[16] M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-
gramming Itlm crossbar to accelerate matrix-vector multiplication,” in
DAC, p. 19, ACM, 2016.

[17] X. Liu et al., “Reno: A high-efficient reconfigurable neuromorphic
computing accelerator design,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1-6, IEEE, 2015.

650

9B-2

X. Liu, M. Mao, B. Liu, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu,
J. Yang, H. Li, et al., “Harmonica: A framework of heterogeneous
computing systems with memristor-based neuromorphic computing ac-
celerators,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 5, pp. 617-628, 2016.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 541—
552, IEEE, 2017.

F. Chen, L. Song, and Y. Chen, “Regan: A pipelined reram-based
accelerator for generative adversarial networks,” in 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 178-183,
IEEE, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, pp. 2672-2680,
Curran Associates, Inc., 2014.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
CoRR, vol. abs/1511.06434, 2016.

B. Li, L. Song, F. Chen, X. Qian, Y. Chen, and H. H. Li, “Reram-
based accelerator for deep learning,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018.

Z. Fan, Z. Li, B. Li, Y. Chen, and H. H. Li, “Red: A reram-based
deconvolution accelerator,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2019.

F. Chen, L. Song, and Y. Chen, “Zara : A novel zero-free dataflow accel-
erator for generative adversarial networks in 3d reram,” in Proceedings
of the 56th annual design automation conference, ACM, 2019.

F. Chen and H. Li, “Emat: An efficient multi-task architecture for
transfer learning using reram,” in /CCAD, 2018.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in CVPR, June 2014.

S. Han et al., “Mcdnn: An approximation-based execution framework
for deep stream processing under resource constraints,” in Proceedings
of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys *16, (New York, NY, USA), pp. 123—
136, ACM, 2016.

H. Ji, L. Song, L. Jiang, H. H. Li, and Y. Chen, “Recom: An efficient
resistive accelerator for compressed deep neural networks,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 237-240, IEEE, 2018.

Y. Wang, F. Chen, L. Song, R. Shi, H. Li, and Y. Chen, “Reboc:
Accelerating block-circulant neural networks in reram,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2020.

C. Ding et al., “CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-Circulant Weight Matrices,” in MICRO, 2017.
L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar: Towards
hybrid parallelism for deep learning accelerator array,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2019.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105-117, 2016.

G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “Graphsar: a
sparsity-aware processing-in-memory architecture for large-scale graph
processing on rerams,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, pp. 120-126, ACM, 2019.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 531-543,
IEEE, 2018.

W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable
dimm based near data processing accelerator for dna seeding algorithm,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 587-599, ACM, 2019.

F. Zokaee, M. Zhang, and L. Jiang, “Finder: Accelerating fm-index-
based exact pattern matching in genomic sequences through reram tech-
nology,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 284-295, 1IEEE, 2019.

F. Chen, L. Song, H. Li, and Y. Chen, “Parc: A processing-in-cam
architecture for genomic long read pairwise alignment using reram,”
in 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), ACM, 2020.

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

