
Parallelism in Deep Learning Accelerators

Linghao Song Fan Chen Yiran Chen Hai “Helen” Li
Duke University Duke University Duke University Duke University

linghao.song@duke.edu fan.chen@duke.edu yiran.chen@duke.edu hai.li@duke.edu

Deep learning is the core of artificial intelligence and it
achieves state-of-the-art in a wide range of applications. The
intensity of computation and data in deep learning processing
poses significant challenges to the conventional computing plat-
forms. Thus, specialized accelerator architectures are proposed
for the acceleration of deep learning. In this paper, we classify
the design space of current deep learning accelerators into three
levels, (1) processing engine, (2) memory and (3) accelerator, and
present a constructive view from a perspective of parallelism in
the three levels.

I. INTRODUCTION

Deep learning approaches [1], [2] have become the core

of artificial intelligence (AI) research across a broad range of

applications, including computer vision [3], [4], [5], health-

care [6], [7], [8], and scientific computing [9], [10], [11]. Rep-

resentative Deep Neural Network (DNN) and Convolutional

Neural Network (CNN) applications are normally parameter-

rich and computation-intensive, which poses significant chal-

lenges to the computing power and memory bandwidth of

the underlying computing platforms. However, we are ap-

proaching the end of the scaling of Moore’s Law [12], and

general-purpose platforms such as CPUs and GPUs will no

longer benefit from the integration of cores [13]. Therefore,

a novel architecture paradigm equipped with domain-specific

accelerators is proposed as a common solution to provide

sustainable performance and efficiency improvement for deep

learning applications.

The fundamental computational component in DNNs and

CNNs is Matrix-Vector Multiplication (MVM), which exhibits

inherent parallel processing capability. In order to achieve high

performance and energy efficiency, various accelerators are

proposed to exploit the parallelism in deep leaning algorithms.

Based on the parallelism being explored, we classify the

design space of current deep learning accelerators into three

levels as described below:

• Processing Engine Level Parallelism (PELP) comes nat-

urally from the fact that the massive multiplication and

accumulation operations in MVM can be processed inde-

pendently. In this level, operation primitives are organized

in a high-parallel fashion to exploit the temporal and/or

spatial parallelism.

Acc Acc

Acc Acc

Accelerator

PE PE

Memory

Processing
Engine

⊕ ⊗

(a) (b) (c)

Fig. 1: Three levels of design space for deep learning acceler-

ators. (a) processing engine, (b) memory and (c) accelerator.

RS

VO

VI

vI, 1

vI, 2

vI, 3

vI, i

vI, i+1

vI, N

vO, NvO, N-1vO, jvO, j-1vO, 3vO, 2vO, 1

rs rs rs rs rs rs rs

WLi

BLj

mi,j

Fig. 2: Mapping a weight matrix to a ReRAM crossbar array

to build a parallel VMM engine in [14].

• Memory Level Parallelism (MLP) is achieved through

parallel and efficient memory accessing to alleviate the

memory wall effect. In this level, the data movement and

sharing between Process Engines (PEs), while memory is

optimized for parallel accessing to disjoint memory space

and high data utilization.

• Accelerator Level Parallelism (ALP) emerges as a recent

research direction to address the the coordination of

multiple accelerators in a heterogeneous system. In this

level, parallelism for multiple accelerators is proposed.

In the following sections, we study the current landscape

of deep learning accelerators and present a constructive view

from a perspective of parallelism in the above three levels.

II. PARALLELISM IN PROCESSING ENGINES

A. Matrix-Vector Multiplication Engine

Matrix-Vector Multiplication (MVM) is the basic computa-

tion type in DNNs. The time complicity for the multiplication

between an N -by-N matrix and an N -by-1 vector is O(N2) in

a conventional single thread processing unit. An MVM engine

processes the multiplications and accumulations in MVM to

achieve a lower time complexity than O(N2).
Resistive random access memory (ReRAM) [15] is a

promising candidate for MVM processing engine design be-

cause of the characteristics of high reading speed, high density

and multi-level cells. Hu et al. [14] proposed to utilize a

ReRAM crossbar array to design an MVM processing engine

to calculate y = W × x. As shown in Fig. 2, the matrix

weight mi,j is mapped to the conductance state of the cell

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
645

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: An on-chip processing engine design for the accelera-

tion of MLP and AAM [17], [18].

gi,j at the ith row and jth column in a ReRAM array. In

computation, the input vector x is encoded as the voltage

levels vi and applied on the wordlines. For each individual

cell, the multiplication is performed as the conversion of

voltage to current, i.e., ii,j = vi · gi,j . On each individual

bitlines, the currents from all the connected ReRAM cells

are accumulated, i.e., ij =
∑

i ii,j . To get the results of the

MVM, we just need to sense the currents from the bitlines

to get the output vector y. In the ReRAM MVM processing

engine, on each bitline, N multiplications are computed in

parallel, and for the whole array, the N bitlines are performing

the accumulation in parallel. The parallel multiplication and

parallel accumulation result in a O(1) time complexity for a

matrix-vector multiplication. Furthermore, in 2016, Hu et al.
[16] fabricated a 4× 4 ReRAM MVM processing engine.

B. On-chip Processing Engine

With the ReRAM MVM processing engines, a larger scale

on-chip design can be built for more complex tasks than

matrix-vector multiplication. Harmonica [17], [18] is an on-

chip accelerator for Multilayer Perceptron (MLP) and Auto-

Associative Memory (AAM) applications. Because the scale

of the architecture and the applications is relative small

compared to typical DNNs, we classify Harmonica as an on-

chip processing engine.

In Harmonica, groups of ReRAM MVM processing engines

are deployed as shown in Fig. 3. Between the ReRAM MVM

processing engines, an analog Network-on-Chip (NoC) is used

to transfer intermediate data. The Digital-to-Analog-Converter

(DAC) with an in-queue and the Analog-to-Digital-Converter

(ADC) with an out-queue are deployed for data interface.

A config-queue is used to store the routing information.

The NoC coordinates the input signal to the ReRAM MVM

processing engines and collect computing results from the

ReRAM MVM processing engines to out-queue. Thus the

Harmonica architecture benefits from the parallel execution

0

16

1

…
3

17

256

1152

1152

……

…

…

…

128
128

2

…

294912

49

…

G=256

(256=2*128)

(1152=
9*128)

(49=12544/G)

(294912=
 G

*1152)

(a) Intra-layer parallelism.

T0

A32

A31

A22

A21
A11ErrLA3A2A1

T1 T2 T3 T4 T5 T6 T7 T8 T9

A32

A31

A22

A21
A11ErrLA3A2A1

A32

A31

A22

A21
A11ErrLA3A2A1

(b) Inter-layer pipeline.

Fig. 4: (a) Intra-layer parallelism and (b) Inter-layer pipeline

in PipeLayer [19].

of multiple matrix-vector multiplications. To further explore

instruction level parallelism, an Instruction Set Architecture

(ISA) is designed for Harmonica.

The processing of MLP requires multiple cascaded ReRAM

MVM processing engines and the processing of AAM requires

recurrent data delivered back to the same ReRAM MVM

processing engines. The model sizes of two applications

are relatively small. For large scale applications especially

convolutional neural networks, on-chip processing engines are

not capable. Stand-alone accelerators are required.

III. MEMORY LEVEL PARALLELISM

A. Parallelism in Accelerators for DNN Training

Stand-alone accelerators are designed for large-scale deep

learning applications. In DNN training, massive parallel pro-

cessing engines are deployed and data accessing to memory

is delicately optimized. The basic idea for parallelism in

accelerators for DNN training is to enable memory level

parallelism for the regular sequential data layout in DNNs

to achieve high throughput.

CNN Training Accelerator
In PipeLayer [19], intra-layer parallelism and inter-layer

pipeline are the two schemes for parallel processing. The

input feature maps of the convolutional layers are converted

from a three-dimensional tensor into a Toeplitz matrix format

to compatible with the MVM processing engines and fully

utilize the parallel matrix-vector multiplication. For intra-

layer parallelism, the weight for one layer is duplicated and

multiple processing engines are mapped with the same weight

as shown in Fig. 4a. Each processing engine is also equipped

with a buffer memory which stores the corresponding input

feature maps. As a result, processing engines are accessing

646

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

Generator (G) Discriminator (D)

��
�

���
�

���
�

��
�

���
�

���
�

�	
�

��	
�

��	
�

IP1 FCNN2 FCNN3

��

���

���

��

���

���

�	

��	

��	

Real
sample

T1 T2 T3T0

no
is

e

T1 T2 T3T0 T4 T5 T6

T5T6T7

T10 T9 T8T13 T12 T11

Generated
sample

1
IP3CNN1 CNN2 Loss

T4

T7

2

3

4
5

(a) Training paths in GAN.

T6

��
�

���
�

���
�

��
�

���
�

���
�

�	
�

��	
�

��	
�

IP1 FCNN2 FCNN3

��

���

���

��

���

���

�	

��	

��	

no
is

e

T1 T2 T3T0 T4 T5

T10 T9 T8

T13 T12 T11

3

4

5

IP3CNN1 CNN2

Loss 1

T6

Loss 2

��

���

���

��

���

���

�	

��	

��	

T7 T7

T10 T9 T8

(b) Improved training procedure by computation sharing.

Fig. 5: (a) Training paths in GAN and (b) Improved training

procedure by computation sharing [20].

memory in parallel. The weight and feature map of each layer

in a network is assigned to a group of processing engines

and a buffer memory space. If we consecutively execute the

computation for each layer, when the computation resource

and memory for one layer is busy, the computation resource

and memory for other layers is idle. So we propose the

inter-layer pipeline which is a layer-wise pipeline design as

shown in Fig. 4b to fully unitize the processing engines and

memory. One layer is scheduled as one stage in the pipeline

and the buffer memory coordinates data movement between

two layers. Thus, multiple input data are processed in parallel

to achieve a high throughput.

GAN Training Accelerators
Generative Adversarial Networks (GANs) [21], [22] have

demonstrated a great opportunity toward next generation of

unsupervised deep learning. In a GAN model, a generator

(G) and a discriminator (D) are simultaneously trained against

each other via an adversarial process. A generator captures

the data distribution and attempts to generate synthetic sam-

ples, while a discriminator implements a binary classifier to

differentiates the samples generated by a generator against

real samples. This learning process is performed iteratively

until we receive a generator with strong generative capability

and a discriminator with high classification accuracy. Fig. 5a

illustrated the training paths in a GAN, which involves three

dependent paths: (1)�˜� depicts the dataflow of training D

on real training samples; (2) �˜� shows the path of training

D on generated samples; and (3) �˜� illustrates the training

phase of G. Clearly, in addition to the parallelism in a single

network training explored in previous works [19], [23], GAN

also exhibits the parallelism between the training of multi-

ple deep network models (ie, generators and discriminators).

Therefore, a customized accelerator architecture is needed to

accommodate the parallelism between the two DNN models,

thereby improving the performance and energy efficiency in

GAN training.

ReGAN [20] exploited the similar pipelined training proce-

FC-CELL-n
FC-CELL-1

CONV-CELL-m

ReRAM
Memory

ReRAM
Memory

ReRAM
Memory

Local
CTRL I/O InterfaceSRAM

G
lo

ba
l I

/O
 B

us FF subarray

…

…
Act
I&F

Dr
iv

er I&F

XB

XB

Dr
iv

er

Act
I&F

Dr
iv

er I&F

XB

XB

Dr
iv

er

Act
I&F

Dr
iv

er I&F

XB

XB

Dr
iv

er

Global
CTRL

CONV-CELL-1

2

3 4
5

1
6

Fig. 6: Heterogeneous computing cells in EMAT [26] archi-

tecture.

dure as in [19] to reduce on-chip memory access. In particular,,

ReGAN presented Spatial Parallelism and Computation Shar-
ing to parallel the multiple training phases to further improve

performance. Spatial Parallelism co-process the calculations

in�˜� and�˜� by duplicating D for multiple copies, while

Computation Sharing parallel phases �˜� and �˜� since

they share the same forward path as demonstrated in Fig. 5b.

In addition to the multiple training phases involved in GAN,

another important reason why existing solutions are unable

to efficiently support GAN training is due to the fact that

GAN utilizes a new operator, called transposed convolution

(TCONV), which introduces significant resource underutiliza-

tion as it inserts massive zeros in its input before a convolution

operation. RED [24] presented pixel-wise mapping and the

zero-skipping for TCONV inference acceleration. The pixel-

wise mapping scheme is able to eliminate zero-inserting

operations in TCONV and improve the resource utilization.

The zero-shipping data flow increases the computation paral-

lelism and further improve computing efficiency. ZARA [25]

proposed a novel computation deformation technique that can

skip zero-insertions in TCONV. A dataflow mapper and an

operation scheduler were also implemented to support the

proposed execution model. These optimized zero-aware com-

puting model coupled with high-parallel architecture proposed

in [20] provide significant system performance improvement

compared with previous accelerators designed for general

CNNs [19].

Transfer Learning Accelerator

Transfer Learning [27] recently emerges as a more practical

and efficient training paradigm that re-utilizes a developed

neural network onto a different domain/task, significantly

reducing the extensive efforts in training and data labeling

in supervised learning. Chen et al. [26] proposed EMAT to

accommodate the heterogeneous computing phases involved in

transfer learning: the transferred CNN layers are fixed and exe-

cute only the feed-forward function; while the newly added FC

layers are trained through back propagation. Similar with pre-

vious works, EMAT utilizes the energy-efficiency of ReRAM

array for MVM and realizes a hierarchical reconfigurable

design to incorporate the data patterns in transfer learning. As

demonstrated in Fig. 6, two types of computation components,

647

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

� � � � � � � 	

��
 ��
��

����������

�

����������
������

�������� �������� �������� ��������

��������
��������
��������
���������

�������!����"

#��$��$���%&��'(��))��
�������!����"��

*���������������!����" *���������������!����"

�
�
�
�
�
�
�
	

Fig. 7: (a) The elements in the feature map are converted

into a vector in processing, (b) the nonzero-neuron oriented

computation, (c) the nonzero-neuron and nonzero-weight ori-

ented computation, and (d) the computation in accelerators

for structural compression [29]. The performed computation

is marked by triangles.

namely CNN-CELL and FC-CELL, are specialized designed

according to the computation and storage characteristics of

CNNs and FCs, respectively. In real-life scenario, it often

desires the real-time execution of multiple tasks and dynamic

adaptation capability [28]. Hence, EMAT also introduced a

time-multiplexed training flow for efficiently executing multi-

tasks that share a same trained CNN.

B. Parallelism in Accelerators for DNN Inference

DNN accelerators for inference are usually constrained

by hardware resources and stringent power budgets. Model

compression methods such as weight sparsity and connection

pruning can significant reduce the scale of model size and

hence, reduce the computation for DNN inference. However,

conventional element-wise compression and pruning is not

helpful for inference acceleration because of the irregularity of

the indexing and accessing of the element-wisely compressed

data. Accelerators for structural compression with regular,

sequential and light memory accessing are needed.

Accelerator for Structural Compression
The acceleration of DNN inference takes the benefit from

zero-element skipping. Two element wise skipping schemes

are (1) nonzero-neuron oriented computation where the com-

putation is performed only when the neuron element is

nonzero, and (2) nonzero-neuron and nonzero-weight oriented

computation where the computation is performed only when

both the neuron element and the weight element are nonzero,

as shown in Fig. 7 (b) and (c). However, because data

are element-wisely compressed in the two schemes, massive

irregular and random memory accessing is incurred, which

significantly hinders the memory level parallelism. At the

same time, element-wisely compression requires index pro-

cessing for every element, which increase the computation.

Thus, structural compression is required for memory efficient

DNN inference, as shown in Fig. 7 (d). For the structurally

compressed weight, within a weight chunk, elements are

placed continuously thus the accessing is sequential. Because

�	 �� �� ��

�� �	 �� ��

�� �� �	 ��

�� �� �� �	

	

�

�

�

= ×

�	

��

��

��

Mapping

Shift

�	

��

��

��

��

��

��

�	

��

��

�	

��

��

�	

��

��

	
�
�
�
Cyc 1Cyc 2Cyc 4 Cyc 3

W� �

�	

��

��

��

BL1

WL1

WL2

WL3

WL4

Fig. 8: Shift method and overall mapping scheme [30].

the chunks usually have the same size, thus prefetching and

parallel memory accessing can be utilized. Furthermore, the

structural compression chunks can be set to fit the hard-

ware buffer, thus high memory bandwidths utilization can be

achieved.

Accelerator for Block-Circulant Neural Networks
The recent proposed block-circulant DNNs [31] provide a

candidate solution for efficient deployment DNNs on edge de-

vices with controllable compression ratio and storage savings.

The key idea is to approximate the original weight matrix

by a circulant matrix defined by a representative vector. In

this way, the original O(n2) storage complexity is reduced to

O(nlogn). The state-of-the-art accelerators for block-circulant

DNNs relied on the the Fast Fourier Transform (FFT) and

Inverse Fast Fourier Transform (IFFT) for the computation.

The memory level parallelism is realized by simultaneously

processing massive FFT/IFFT. REBOC [30] make an im-

portant observation that FFT-base approach does not always

leads to practical computation reduction. In this work, the

processing of block-circulant DNNs is directly performed in

ReRAM based on a novel mapping scheme with shift method

as shown in Fig. 8. To fully utilize the massive parallelism for

MVM in ReRAM, a block-circulant DNN model is mapped

onto ReRAM crossbar with horizontal weight slicing and

intro-crossbar weight duplication to achieve high crossbar

utilization.

IV. ACCELERATOR LEVEL PARALLELISM

The scales of deep learning applications are becoming

larger because the network model contains a larger number of

parameters and the size of the data set increases to terabyte-

level. As a result, computation and the data for the weight and

feature map generated in the processing are no longer capable

for only one accelerator. For a higher system performance,

we need to consider to deploy multiple accelerators for the

processing of a large-scale deep learning application. Thus,

we need to propose accelerator level parallelism for the

deployed multiple accelerators. In large-scale deep learning

with multiple accelerators, the data communication between

accelerators becomes the bottleneck. We are focusing to design

an accelerator level parallelism to reduce the communication

of weight and the feature map transferred between accelerators

in [32].

In DNN training, there are three tensor computation for

each layer, i.e., forward, backward and gradient. In forward,

the input feature map tensor Fl is multiplied with the weight

tensor Wl and then an element-wise activation is applied to

get the output feature map tensor Fl+1 = f(Fl ⊗ Wl). In

backward, the error tensor El+l the transposed weight tensor

648

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

16
70

70

100

16
100

16
70

100

70

16
100

Forward

Backward

Gradient
Computation 70

16

70

100

16
100

32

35
35

100

32

100

Forward

Backward

Gradient
Computation

35

32

100

32

35

100

35

32

100

35

32

100

(a) data parallelism (b) model parallelism

⊕

⊕

F�
l F�

l

Fl FlWl Wl

�Wl �Wl

W�
l

W�
l

Fl+1 Fl+1

El+1

El+1

El+1

El+1El El

Fig. 9: Forward, Backward and Gradient Computation in (a) data parallelism and (b) model parallelism, and intra-layer

communication is marked by a ⊕ [32].

TABLE I: Intra-layer communication in data parallelism and

model parallelism [32].

data parallelism model parallelism
A(�Wl) A(Fl+1)

Wl and the feature map tensor Fl are used to calculate the er-

ror tensor in a previous layer as El =
(
El+1 ⊗W�

l

)�f ′(Fl),
where f ′(·) is the derivative function of f(·). In gradient

computation, the partial derivatives to the weight is computed

by �Wl = F�
l ⊗El+1. Since f(·), f ′(·) and � are element-

wise operation and performed in-place, we focus on the three

tensor multiplications, Fl+1 = Fl ⊗Wl, El = El+1 ⊗W�
l

and �Wl = F�
l ⊗El+1.

Fig. 9 shows the tensor shapes and computations in the basic

data parallelism and model parallelism for two accelerators.

The white tensors are assigned to one accelerator and the

shadow tensors are assigned to the other. In data parallelism,

we can see that there is no communication in forward and

backward, but there is communication in gradient computa-

tion because each accelerator calculates the partial sum and

need the partial sum from the other accelerator to get the

final results. In model parallelism, we can see that there is

no communication in backward and gradient computation,

but there is communication in forward for the partial sum

accumulation for the output feature map tensor. We call the

above described data transfer as intra-layer communication.

The intra-layer communication for data parallelism (dp) and

model parallelism (mp) are listed in Table I.

There is another data transfer between tensors which we

call it inter-layer communication. Since we have dp and mp

as the two basic parallelism, we will have four inter-layer

communication patterns, i.e., dp-dp, dp-mp, mp-mp, mp-dp, as

shown in Fig. 9. The inter-layer communication is caused by

the remote accessing for a part of tensors that one accelerator

requires to calculate feature map tensor for next layer of error

tensor for previous layer but the accelerator does not have for

this layer. The inter-layer communication for dp-dp, dp-mp,

mp-mp and mp-dp are listed in Table II.

To minimize the total amount of communication, we can

use a layer-wise dynamic programming method to search for

(a) dp-dp (b) dp-mp

(c) mp-mp (d) mp-dp

R Fl+1 L Fl+1

L El+1R El+1

R Fl+1 L Fl+1R Fl+1 L Fl+1

R Fl+1 L Fl+1

L El+1R El+1

L El+1R El+1L El+1R El+1

Fig. 10: Inter-layer communication for (a) dp-dp, (b) dp-mp,

(c) mp-mp and (d) mp-dp [32].
TABLE II: Inter-layer communication for the transition of dp-

dp, dp-mp, mp-mp and mp-dp [32].

dp-dp 0
dp-mp 0.25A(Fl+1) + 0.25A(El+1)
mp-mp 0.5A(El+1)
mp-dp 0.5A(El+1)

the partitions for each layer. A hierarchical partition is used to

recursively partition tensors to two sub-groups of accelerators

until there is only one accelerator in a sub-group. We illustrate

the hybrid parallelisms for VGG-A and AlexNet in Fig. 11.

The data parallelism and model parallelism are interleaved

across layers at one hierarchy and hierarchies of the same

layer for a hybrid parallelism.

conv1_1
conv2_1
conv3_1
conv3_2
conv4_1
conv4_2
conv5_1
conv5_2
fc1
fc2
fc3

H1
H2
H3
H4 conv1

conv2
conv3
conv4
conv5
fc1
fc2
fc3

Fig. 11: The hybrid parallelism for (a) VGG-A and (b)

AlexNet in [32].

649

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we systematically and constructively summa-

rize the latest developments in the field of machine learning

accelerator research. Previous works are classified into three

categories based on the levels of parallelism in deep learning

models being exploited in the proposed designs, namely

processing engine-level parallelism, memory-level parallelism,

and accelerator-level parallelism. The readers will understand

the concept and design considerations of different parallelism

levels, be able to identify and evaluate the effectiveness of

different DNN hardware implementations, and apply these

concepts to future DNN accelerator designs and accelerator

designs in other areas such as graph processing [33], [34],

[35] and genome sequencing [36], [37], [38].

ACKNOWLEDGMENTS

This work is supported in part by DOE DE-SC0018064,

NSF-1910299 and NSF CSR-1717885.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision, pp. 21–37, Springer, 2016.

[4] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, “Dpatch:
An adversarial patch attack on object detectors,” arXiv preprint
arXiv:1806.02299, 2018.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99, 2015.

[6] T. Ching et al., “Opportunities and obstacles for deep learning in biology
and medicine,” Journal of The Royal Society Interface, vol. 15, no. 141,
p. 20170387, 2018.

[7] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, “Deep
learning for healthcare applications based on physiological signals: A
review,” Computer methods and programs in biomedicine, vol. 161,
pp. 1–13, 2018.

[8] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2017.

[9] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature communications,
vol. 5, p. 4308, 2014.

[10] G. B. Goh, N. O. Hodas, and A. Vishnu, “Deep learning for computa-
tional chemistry,” Journal of computational chemistry, vol. 38, no. 16,
pp. 1291–1307, 2017.

[11] L. Song, F. Chen, S. R. Young, C. D. Schuman, G. Perdue, and T. E.
Potok, “Deep learning for vertex reconstruction of neutrino-nucleus
interaction events with combined energy and time data,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3882–3886, IEEE, 2019.

[12] M. M. Waldrop, “The chips are down for moore’s law,” Nature News,
vol. 530, no. 7589, p. 144, 2016.

[13] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in 2011
38th Annual international symposium on computer architecture (ISCA),
pp. 365–376, IEEE, 2011.

[14] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb
recall function using memristor crossbar arrays,” in Proceedings of the
49th Annual Design Automation Conference, pp. 498–503, ACM, 2012.

[15] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.

[16] M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-
gramming 1t1m crossbar to accelerate matrix-vector multiplication,” in
DAC, p. 19, ACM, 2016.

[17] X. Liu et al., “Reno: A high-efficient reconfigurable neuromorphic
computing accelerator design,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2015.

[18] X. Liu, M. Mao, B. Liu, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu,
J. Yang, H. Li, et al., “Harmonica: A framework of heterogeneous
computing systems with memristor-based neuromorphic computing ac-
celerators,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 5, pp. 617–628, 2016.

[19] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 541–
552, IEEE, 2017.

[20] F. Chen, L. Song, and Y. Chen, “Regan: A pipelined reram-based
accelerator for generative adversarial networks,” in 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 178–183,
IEEE, 2018.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, pp. 2672–2680,
Curran Associates, Inc., 2014.

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
CoRR, vol. abs/1511.06434, 2016.

[23] B. Li, L. Song, F. Chen, X. Qian, Y. Chen, and H. H. Li, “Reram-
based accelerator for deep learning,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018.

[24] Z. Fan, Z. Li, B. Li, Y. Chen, and H. H. Li, “Red: A reram-based
deconvolution accelerator,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2019.

[25] F. Chen, L. Song, and Y. Chen, “Zara : A novel zero-free dataflow accel-
erator for generative adversarial networks in 3d reram,” in Proceedings
of the 56th annual design automation conference, ACM, 2019.

[26] F. Chen and H. Li, “Emat: An efficient multi-task architecture for
transfer learning using reram,” in ICCAD, 2018.

[27] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in CVPR, June 2014.

[28] S. Han et al., “Mcdnn: An approximation-based execution framework
for deep stream processing under resource constraints,” in Proceedings
of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’16, (New York, NY, USA), pp. 123–
136, ACM, 2016.

[29] H. Ji, L. Song, L. Jiang, H. H. Li, and Y. Chen, “Recom: An efficient
resistive accelerator for compressed deep neural networks,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 237–240, IEEE, 2018.

[30] Y. Wang, F. Chen, L. Song, R. Shi, H. Li, and Y. Chen, “Reboc:
Accelerating block-circulant neural networks in reram,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2020.

[31] C. Ding et al., “CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-Circulant Weight Matrices,” in MICRO, 2017.

[32] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar: Towards
hybrid parallelism for deep learning accelerator array,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2019.

[33] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105–117, 2016.

[34] G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “Graphsar: a
sparsity-aware processing-in-memory architecture for large-scale graph
processing on rerams,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, pp. 120–126, ACM, 2019.

[35] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 531–543,
IEEE, 2018.

[36] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable
dimm based near data processing accelerator for dna seeding algorithm,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 587–599, ACM, 2019.

[37] F. Zokaee, M. Zhang, and L. Jiang, “Finder: Accelerating fm-index-
based exact pattern matching in genomic sequences through reram tech-
nology,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 284–295, IEEE, 2019.

[38] F. Chen, L. Song, H. Li, and Y. Chen, “Parc: A processing-in-cam
architecture for genomic long read pairwise alignment using reram,”
in 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), ACM, 2020.

650

9B-2

Authorized licensed use limited to: Duke University. Downloaded on July 30,2020 at 14:28:41 UTC from IEEE Xplore. Restrictions apply.

