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Chiral quasiparticle tunneling between quantum Hall edges in proximity with a superconductor
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We study a two-terminal graphene Josephson junction with contacts shaped to form a narrow constriction,

less than 100 nm in length. The contacts are made from type-II superconducting contacts and able to withstand

magnetic fields high enough to reach the quantum Hall regime in graphene. In this regime, the device

conductance is determined by edge states, plus the contribution from the constricted region. In particular,

the constriction area can support supercurrents up to fields of ∼2.5 T. Additionally, enhanced conductance

is observed through a wide range of magnetic fields and gate voltages. This additional conductance and the

appearance of supercurrent is attributed to the tunneling between counterpropagating quantum Hall edge states

along opposite superconducting contacts.
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In the past few years, there has been a renewed interest

in quantum Hall (QH) states supported along superconduct-

ing (SC) materials. Experimentally, this was prompted by

several groups successfully making high-transparency type-

II superconducting contacts to both encapsulated graphene

and III-V semiconductor heterostructures [1–10]. Meanwhile,

theoretical works have predicted multiple exciting phenomena

in structures combining the quantum Hall effect and supercon-

ductivity [11–30]. In particular, it is expected that Andreev

edge states (AES)—hybrid modes involving a linear superpo-

sition of electron and hole states—should be formed at these

QH-SC interfaces [9,14–17]. Experimental observation of the

interference of such states has been recently reported [31].

Furthermore, these structures have been predicted to support

Majorana zero modes and parafermions when the symmetry-

breaking QH edge states are coupled to SC [19–22]. Here,

we explore AES and tunneling between two superconducting

contacts across a narrow region of graphene in the quantum

Hall regime.

Our device design is shown in Fig. 1. A graphene crystal

of 1 μm × 1 μm is contacted on two sides by the super-

conductor molybdenum rhenium (MoRe). The contacts are

asymmetric, with one interface being flat, and the other having

a “T” shape. The 350-nm-wide leg of the T extends into the

graphene, such that the shortest separation between contacts

is l ∼ 90 nm. The graphene device is assembled by a stan-

dard stamping technique [32], where monolayer graphene is

sandwiched by hexagonal boron nitride (hBN) and placed

onto a graphite back gate [Fig. 1(b)]. The back gate-graphene

distance is ∼40 nm (confirmed by atomic force microscopy),

and metal leads of Cr/Au (5 nm/110 nm) are used to make
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contact with the back gate. Carefully calibrated etching of the

stack allows us to avoid shorting to the graphite back gate.

The sample was measured with a pseudo-four-probe setup

in a Leiden Cryogenics dilution refrigerator with a base

electron temperature of ∼50 mK (at zero field) to ∼60 mK (at

high fields). A dc bias current along with a small ac excitation

is supplied by a combination of an NI USB-6363 digital acqui-

sition device and a lock-in amplifier. The measured voltage is

initially amplified by a home-made, low-frequency, low-noise

amplifier. Three-stage RC filtering, a stainless steel powder

filter, and resistive lines were all employed to lower the high-

frequency noise that can suppress the supercurrent. Carrier

density in the graphene was tuned via a back gate voltage

applied to the graphite layer, where the gate capacitance is

CG ≈ 70 nF/cm2. Magnetic fields are applied perpendicular

to the plane of the graphene sheet.

The differential resistance R = dV/dI is shown in Fig. 1(c)

as a function of the dc bias current Idc and back gate voltage

VG, taken at magnetic field B = 2 T (sufficient to place the

device firmly in the QH regime for VG < 1.5 V as seen in

Fig. 3). Near zero bias, areas of suppressed resistance can

be clearly observed, indicating the presence of supercurrent

[Fig. 1(d)]. Pockets of supercurrent are seen at multiple lo-

cations in VG. The majority of superconducting pockets are

found at areas corresponding to transitions between two QH

plateaus, consistent with previous works [4–6]. (It appears

that regions where the filling factor is not well defined lead

to favorable conditions in forming an Andreev bound state.)

However, smaller pockets exist on top of conductance plateaus

as well, notably at VG ≈ 0.44 V in Fig. 1(c). Outside of the

superconducting pockets, at zero bias one can observe an

enhanced resistance, as shown in Fig. 1(e). This is associated

with conduction via tunneling, revealing the presence of a

superconducting gap. Note that for B = 2 T and VG > 1.5 V
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FIG. 1. (a) Schematic of the graphene Josephson junction with

asymmetric contacts, measured with a four-probe current-biased

setup. The finger of the T-shaped contact is separated from the

opposing contact by about 90 nm. (b) Three-dimensional (3D)

representation of the T-shaped junction illustrating the graphene-

hBN stack with the graphite back gate. (c) Differential resistance

R = dV/dI vs dc bias current Idc and gate voltage VG taken at

a perpendicular magnetic field of B = 2 T. Pockets of suppressed

resistance (superconductivity) are observed at several gate voltages

through the region including on the quantum Hall plateaus, at the

transition between two filling factors, and in the semiclassical region.

The arrows at the top edge denote transitions between the different

filling factors ν, while the white, dashed line denotes VG at which

the cyclotron radius becomes equal to half the constriction width l

(the onset of the semiclassical region). (d), (e) Resistance vs Idc for

selected gate values. (d) shows enhanced zero-bias resistance, a sig-

nature of the superconducting gap. (e) demonstrates the observance

of supercurrent.

the cyclotron radius satisfying 2rc > 90 nm places the sample

in the semiclassical regime at the constriction [1].

Figure 2(a) shows this same differential resistance versus

δB and VG at zero bias, as the magnetic field is varied only

slightly to investigate the periodicity of the observed super-

current [4,5,18]. [Figure 2(a) presents data at B = 2.5 T, the

highest measured field where supercurrent was still observed.]

Low resistances at Idc = 0 again show the supercurrent, which
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FIG. 2. The dependence of differential resistance R on magnetic

field: B = 2.5 T + δB as a function of gate voltages VG and bias

current. (a) Resistance dips at Idc = 0 nA indicate pockets of su-

percurrent. (b) Superconducting signatures are fully suppressed at

Idc = 5 nA. (c) The resistance difference �R between Idc = 5 and

0 nA. No periodic oscillations of supercurrent in field are observed.

This suggests that the supercurrent is not mediated by the QH

states along the graphene edges, as a superconducting quantum

interference device (SQUID)-like pattern would be expected to

emerge.

is contrasted by Fig. 2(b) taken at a dc bias of Idc = 5 nA.

Such Idc is sufficient to suppress all superconducting fea-

tures, while preserving plateau quantization. The suppression

of resistance can be quantified by subtracting the zero-bias

resistance from the high-bias resistance �R = R5 nA − R0 nA,

shown in Fig. 2(c), where high �R indicate regions of super-

current [5]. Note that previous works showed a full suppres-

sion of supercurrent for devices of length longer than 1 μm,

suggesting that the observed supercurrent is mediated by the

constriction [5].

Indeed, unlike previous works, these pockets of supercur-

rent do not show periodic oscillations with magnetic field

[4,5]. For a Josephson junction of area A ≈ 0.7 μm2 with

supercurrent supported along the circumference, oscillations

with a period of �B ≈ 0.5 mT are expected [4,5,33]. Instead,

the observed features evolve slowly and aperiodically on the

scale of �B ∼ 10 mT, suggesting that the supercurrent does

not flow along the graphene-vacuum edges. Previous works

showed (but did not discuss) that the observed supercurrent

envelope evolved on a similar scale [4,5]. Recent work access-

ing the AES states directly has showed that a single trapped

vortex in the superconductor can dramatically alter the phase

of the AES [31]. Moreover, the measured normal resistance

(resistance at Idc large enough to suppress all superconducting

features) of the QH plateaus is lower than the expected quan-

tized fractions of h/2e2. This strongly suggests the existence

of additional conducting channels beyond the standard QH

edge states.

We next measure the sample conductance using only a

dc bias of Idc = 5 nA (suppressing the features associated

with superconductivity) without any ac excitation in or-

der to avoid measurement errors due to stray capacitance.

Figure 3(a) shows the fan diagram of conductance versus back

gate voltage and magnetic field up to 7 T. Above 4 T, we see

the ν = 1 plateau developing in addition to the ν = 2, 6, 10
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FIG. 3. Field-dependent conductance. (a) The fan diagram of

measured conductance from 0 to 7 T. The blue dashed line represents

the boundary at which the cyclotron radius is half the constriction

length r = 45 nm. The magenta dashed lines follow the centers of

the ν = 2, 6 plateaus. (b) The measured conductance as a function

of back gate voltages VG taken at several magnetic fields from 2 to

7 T. (c) Schematic of the QH edge states at the constriction. Each

edge state is statistically distributed around a central location (blue

lines). At the constriction, a significant overlap in the distributions of

the opposing edge states is expected, mediating tunneling. (d) En-

hancement in the measured conductance �G for the marked line

cuts in (a) at ν = 2, 6 along the center of the QH plateaus. The dots

are the measured data, while the solid lines are fitted conductances

simulating the contribution due to tunneling via overlapping QH

states running along the graphene-superconductor interface.

plateaus previously studied. Figure 3(b) shows selected cross

sections of the conductance as a function of back gate voltage

at magnetic fields from 2 to 7 T, compared to the expected

value of each plateau (horizontal black lines). It is apparent

that the height of each plateau decays monotonically with

increasing magnetic field, though without fully reaching the

expected value of QH conductance. Note that this decreasing

conductance with increasing field cannot be attributed to the

growing finite resistance of the superconductor near its critical

field (as in the case of niobium in Ref. [34]) because MoRe

alloys do not exhibit a finite resistance for the magnetic fields

used here [2].

The existence of nonperiodic supercurrents at 2.5 T and

field-dependent conductance can both be attributed to the

coupling of QH edge states across the short 90-nm channel.

For lower magnetic fields, when the cyclotron radius r =
h̄
√

nπ/eB > l/2 ≈ 45 nm [blue dashed line in Fig. 3(a)], the

short channel is in the semiclassical regime [1]. (Here, n is

the carrier density.) As such, supercurrent can be supported

by conventional Andreev bound states. When r � 45 nm,

the supercurrents could be mediated via quantum mechani-

cal tunneling between QH edge modes [35–39]. In the nor-

mal conduction regime, the enhanced conductance �G ap-

proaching νe2/h suggests that the overall conductance can be

written as

Gtotal = GQH + Gtunneling,

where GQH is the expected quantized QH conductance of

the edge channels along the vacuum edges and Gtunneling =
�G is the additional conductance from the T-shaped short

channel.

Demonstrated schematically in Fig. 3(c), the lines repre-

sent the centers of the counterpropagating edge states. The

overlap between these wave functions propagating along each

contact in the short channel is what mediates the supercurrent

by tunneling. Note that such scheme of conduction is similar

to tunneling across a point contact constriction in the quan-

tum Hall regime [35–39]. Here, however, the constriction is

defined by the superconductors which simultaneously act as

the source and drain electrodes. The constriction is tuned by

the back gate instead of the point contact split gates.

The measured enhanced conductance �G taken along the

red dashed lines shown in Fig. 3(a) for ν = 2 and ν = 6 is

plotted in Fig. 3(d) as dots. [The red dashed lines in Fig. 3(a)

represent the center of the quantized plateau.] The solid lines

of Fig. 3(d) are a fit of the data to

�G = A

∫ ∞

−∞
exp

−(x − X0)2

2W 2
0

exp
−(x − l + X0)2

2W 2
0

dx.

Here, we take the collective opposing edge states to have

Gaussian distributions that are centered at a distance X0

from the graphene-superconductor edge, and have a width

of W0 = lB [40] (where lB ≈ 26 nm/
√

B is the magnetic

wavelength). The two edges themselves are separated by a

length l = 90 nm. The enhanced normal conduction �G is

then proportional to the amount of overlap between the two

distributions with a proportionality factor A. We use A ≈ 0.72

(for ν = 2) and 0.77 (for ν = 6), and X0 ≈ 33 nm as the fitting

parameters.

Thus, the above fit represents a situation where the collec-

tive edge states become narrower with increasing magnetic

field, but remain separated by a constant distance. For an

individual, regular QH edge state, however, one expects X0 to

scale with magnetic field as X0 = kxl2
B ∝ 1/B [40]. Including

a field dependence into the variable X0 does not produce a

desirable fit. Unlike for the case of graphene-vacuum edges,

the filling factor at the graphene-superconductor interface may

not be well defined as the presence of the MoRe contacts

locally n-dopes the graphene. This effect becomes more pro-

nounced at the constriction where the contact doping may

screen the back gate. The shape of the constriction itself may

play a role in the amount of overlap (and the population of)

the opposing edge states. Thus it is difficult to quantitatively

determine the exact wave functions at play in the constriction.

Nevertheless, the strong but aperiodic supercurrent as well

as enhanced conduction in the normal regime (supported by

our fitting scheme) leads us to conclude that we observe a

supercurrent that is mediated via tunneling between the two

edge states at the constriction.

In our device, we expect the conductance of the QH edge

states to reach their theoretically expected values by B ≈
10 T. Knowing both the amount of overlap and the strength

of interactions between two QH edge states is important

when coupling them to produce topological states such as
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