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ABSTRACT
Deep neural network (DNN) accelerators as an example of
domain-specific architecture have demonstrated great success
in DNN inference. However, the architecture acceleration
for equally important DNN training has not yet been fully
studied. With data forward, error backward and gradient cal-
culation, DNN training is a more complicated process with
higher computation and communication intensity. Because
the recent research demonstrates a diminishing specialization
return, namely, “accelerator wall”, we believe that a promis-
ing approach is to explore coarse-grained parallelism among
multiple performance-bounded accelerators to support DNN
training. Distributing computations on multiple heteroge-
neous accelerators to achieve high throughput and balanced
execution, however, remaining challenging.

We present ACCPAR, a principled and systematic method
of determining the tensor partition among heterogeneous ac-
celerator arrays. Compared to prior empirical or unsystematic
methods, ACCPAR considers the complete tensor partition
space and can reveal previously unknown new parallelism
configurations. ACCPAR optimizes the performance based
on a cost model that takes into account both computation
and communication costs of a heterogeneous execution en-
vironment. Hence, our method can avoid the drawbacks of
existing approaches that use communication as a proxy of the
performance. The enhanced flexibility of tensor partitioning
in ACCPAR allows the flexible ratio of computations to be dis-
tributed among accelerators with different performances. The
proposed search algorithm is also applicable to the emerging
multi-path patterns in modern DNNs such as ResNet. We
simulate ACCPAR on a heterogeneous accelerator array com-
posed of both TPU-v2 and TPU-v3 accelerators for the train-
ing of large-scale DNN models such as Alexnet, Vgg series
and Resnet series. The average performance improvements
of the state-of-the-art “one weird trick” (OWT) and HYPAR,
and ACCPAR, normalized to the baseline data parallelism
scheme where each accelerator replicates the model and pro-
cesses different input data in parallel, are 2.98×, 3.78×, and
6.30×, respectively.

1. INTRODUCTION
Advances in deep learning (DL) have become the main

drivers of revolutions in various commercial and enterprise ap-

plications, such as computer vision [1–3], social network [4–
6], financial data analysis [7–9], healthcare [10–12] and sci-
entific computing [13–15]. Due to the high demand of com-
puting power in DL applications, we have recently witnessed
a phenomenal trend in which the landscape of computing has
shifted from general-purpose processors to domain-specific
architectures [16–110]. By sacrificing some flexibility, such
domain-specific accelerators are specialized for executing
kernels of modern DL algorithms and therefore, are capable
to deliver high performance with low power budget.

While the latest advances are pushing the envelope of DL
acceleration for higher performance and energy efficiency,
a recent study of chip specialization [111] has predicted an
ultimate accelerator wall. More specifically, due to the con-
straints in the exploration of mapping computational prob-
lems (e.g., DL) onto hardware platforms with fixed hardware
resources, the optimization space of chip specialization is
limited by a theoretical roofline. Combining with recent slow
CMOS technology scaling, the gains from specific accelerator
designs will gradually diminish and the execution efficiency
will eventually hit an upper-bound. On the other hand, the
computational demands of emerging DL applications con-
tinue increasing in order to adapt to more complex models
with deeper structures [112, 113] or more sophisticated learn-
ing methods [114, 115].

To address the mismatch between the diminishing perfor-
mance gains in hardware accelerators and the ever-growing
computational demands, it is imperative to explore coarse-
grained parallelism among multiple performance-bounded
accelerators to support large-scale DL applications. In gen-
eral, a deep neural network (DNN) model is a parametric
function that takes a high-dimensional input and makes use-
ful predictions (i.e., inference), such as a classification la-
bel. Model parameters, i.e., kernels or weights, are obtained
through a large number of iterations in training process in-
volving data forward, error backward and gradient calculation
phases. The trained model can be used to perform inference
function through only the data forward phase. Compared
to inference, training is much more complicated and com-
putational intensive. Hence, typically training is offloaded
to high-end CPUs/GPUs and then the trained models are
deployed to end/user devices. It is a natural need to have
multi-accelerator architectures specialized for DNN training.

Given the high complexity of modern DNN models, find-
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ing the best distribution of computations on multiple accelera-
tors is nontrivial. Moreover, due to the inherent performance
difference of accelerators and the discrepancy of the commu-
nication bandwidth between them, ensuring high throughput
and balanced execution is extremely challenging. The prob-
lem can be formulated as partitioning the model and data ten-
sors among accelerators to enable parallel processing. There
are two approaches: data parallelism, where each accelerator
replicates the model and processes different input data in
parallel before applying the calculated gradients to update the
model; and model parallelism, where each accelerator keeps
part of the model and performs a part of computation based
on the same input. The choice between the two parallelism
configurations affects the overall performance since it incurs
different communication patterns between the accelerators.

The current solutions to this problem are either purely em-
pirical or incomplete — both lacking optimal guarantee. For
example, for a given DNN, “One Weird Trick” (OWT) [107]
empirically suggests to use data parallelism for convolutional
(CONV) layers and model parallelism for fully-connected
(FC) layers. HYPAR [108] proposes a principled approach
to search for the optimized parallelism configuration to mini-
mize data communication. Although it can achieve a much
better result than OWT, HYPAR suffers from several limita-
tions: 1) the search is based on an incomplete design space;
2) it can only handle DNN architectures with linear structure;
3) it lacks a cost model and uses only communication as the
proxy for performance optimization; and most importantly
4) it assumes an homogeneous execution environment — the
performance of each accelerator and the bandwidth between
them are all the same. A truly optimal solution for this critical
problem still does not exist yet.

The combination of model and data parallelism is explored
in deep learning accelerator architectures [60, 90] multi-GPU
training systems [107,116–119]. Recursive methods [74,118]
are proposed for tensor partitioning on multiple devices and
dynamic programming methods [116, 118] are proposed for
tensor partitioning layer-wisely. Inspired by those previous
works [74, 107, 116–119], we present ACCPAR — a princi-
pled and systematic method of determining the tensor parti-
tion among heterogeneous accelerator arrays. Our solution
is composed of several key innovations. First, we consider
a complete tensor partition space in all three dimensions:
batch size, input data size, and output data size. Hence, our
solution is able to reveal previously unknown parallelism con-
figuration. The completeness and optimality of the searching
algorithm is also guaranteed. Second, in order to better opti-
mize performance, we propose a cost model considering both
computation and communication cost of a heterogeneous ex-
ecution environment, instead of using communication as the
proxy for performance as in HYPAR. Third, ACCPAR of-
fers flexible tensor partition ratio between the accelerators to
match their unique computing power and network bandwidth.
Finally, we propose a technique to handle the emerging multi-
path patterns in modern DNNs such as ResNet [113]. AC-
CPAR significantly outperform the state-of-the-art solutions,
offering the first complete solution for tensor partitioning on
heterogeneous accelerator arrays.

We simulate ACCPAR on a heterogeneous accelerator ar-
ray composed of both TPU-v2 and TPU-v3 accelerators for

Notation Description

Fl
Input feature map to Layer l (output feature map of
Layer l −1).

El+1 Input error to Layer l (output error of Layer l +1).

Wl Kernel of Layer l.
�Wl Gradient of Kernel in Layer l.

B Mini-batch size.

Di,l Input data size(channel number) of Layer l.
Do,l Output data size(channel number) of Layer l.
ci The computation density of Accelerator i.
pi,l The partitioning of Accelerator i at Layer l.
bi The network bandwidth of Accelerator i.

A(·) Function to return the size of a tensor.

C(·) Function to return the amount of computation to be
performed by an accelerator.

α , β Partitioning ratios.

Table 1: Notations and descriptions.

training of large-scale DNN models such as Alexnet [112],
Vgg series [120] and Resnet series [113]. The average per-
formance of “one weird trick” (OWT) [107], HYPAR [108]
and ACCPAR, normalized to the baseline data parallelism on
the heterogeneous accelerator array is 2.98×, 3.78×, 6.30×,
respectively. For Vgg series, ACCPAR can achieve a speedup
up to 16.14×, while the highest speedup of OWT and HYPAR

are 8.24× and 9.46×, respectively. For Resnet series, ACC-
PAR can achieve performance speedup from 1.92× to 2.20×,
while the ranges of speedup achieved by OWT and HYPAR

are 1.22× to 1.38× and 1.03× to 1.04×, respectively.

2. BACKGROUND AND MOTIVATION

2.1 DNN Training
DNN training involves three tensor computing phases at

each layer: forward, backward and gradient. The notations
and descriptions are listed in Table 1. In the forward phase,
at layer l, the input feature map tensor (Fl) from a previous
layer and the kernel/weight tensor (Wl) are multiplied in
fully-connected (FC) layers or convolved in convolutional
(CONV) layers to generate the output feature map tensor,
which is used as the input feature map tensor for the next layer
(Fl+1). Usually a non-linear activation f (·) is performed on
each scalar of the feature map. Thus, the forward phase
can be represented as Fl+1 = f (Fl ⊗Wl), where ⊗ is either
multiplication or convolution. In the backward phase, at layer
l, the error tensor (El) is computed by El =

(
El+1 ⊗W�

l

)�
f ′(Fl), where El+1 is the error tensor from layer l +1, � is
an element-wise multiplication, and f ′(·) is the derivative
function of f (·). In the gradient phase, the gradient to the

kernel/weight is computed by �Wl = F�
l ⊗El+1.

The three tensor computation phases capture the common
flow in many popular training algorithms, such as Gradient
Descent, Stochastic Gradient Descent, Mini-batch Gradient
Descent, Momentum [121] and Adaptive Moment Estimation
(Adam) [122]. For example, Momentum method updates the
parameter using vt = γ ·vt−1 +η ·∇θ J(θ),θ = θ −vt , where
θ is the parameter (weight), ∇θ J(θ) is the gradient of a loss
function J(·) with respect to θ , v is the velocity to record the
historic gradient, γ is the momentum hyper parameter and η
is the learning rate, respectively.
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Segment DNN Accelerators & Architectures
Neuro Co-processor SpiNNaker [16], Neuromorphic Acc. [17], TrueNorth [18–20], MT-spike [21], PT-spike [22]

DNN Co-processor NPU [23], DianNao-family [24–27], Cambricon [28], Cambricon-x [29], TPU [30, 31], ScaleDeep [32], Stripes [33],
Neural Cache [123, 124], Diffy [125]

FPGA FPGA-DCNN [34], Embedded-FPGA-CNN [35], FPGA-Exploration [36], OpenCL-FPGA-CNN [37] [126], Caf-
feine [38], DeepBurning [39], FPGA-DPCNN [40], TABLA [41], DNNWEAVER [42], FP-DNN [43], FPGA-
LSTM [44], ESE [45], FPGA-Dataflow [46], FPGA-BNN [47], FPGA-Utilization [48], FFT-CNN [49], VIBNN [50],
iSwitch [127], Shortcut-Mining [128], FA3C [129], E-RNN [130]

Dataflow Neuflow [51], Eyeriss [52–54], Flexflow [55], Fused-CNN [56], CNN-Paritition [57], GANAX [58], UCNN [59],
TANGRAM [131], Sparse-Systolic [132], MAERI [133]

PIM Neurocube [60], XNOR-POP [61], DRISA [62], 3DICT [63], NAND-NET [134], SCOPE [135], Promise [136]

Light Models EIE [64], SC-DCNN [65], SCNN [66], Escher [67], LookNN [68], Bit-Pragmatic DNN [69], Bit Fusion [70], Cn-
vlutin [99], TIE [137], Laconic [138], ADM-NN [139], Gist [140]

Co-Design DPS-CNN [71], Minerva [72], MoDNN [73], MeDNN [74], AdaLearner [75], Stitch-X [76], PIM-DNN [77],
Scalpel [78], CirCNN [79], CoSMIC [80], SnaPEA [81], OLAcce [82], Prediction-based DNN [83], PERMDNN [84],
MnnFast [141], DNN Computation Reuse [142], vDNN [143], Compressing-DMA-Engine [144], AxTrain [145], Eager
pruning [146], Bit-Tactical [147], GENESYS [148]

Emerging Tech. TETRIS [85], RENO [88], PRIME [86], ISAAC [87], Memristive Boltzmann Machine [89], PipeLayer [90], Atom-
layer [91], ReCom [92], ReGAN [93], ReRAM ACC. [94], EMAT [95], ReRAM-BNN [96], ZARA [97], SNrram [98],
Sparse ReRAM Engine [149], RedEye [150], Quantum-SC-NN [151], FloatPIM [152], PUMA [153], FPSA [154]

Toolset/Framework Data Parallelism [106], OWT [107], NEUTRAMS [100], Perform-ML [101], Adaptive-Classifier [102],
DNNBuilder [103], Group Scissor [104], FFT-CNN [105], HyPar [108], NNest [155]

Table 2: Landscape of DNN accelerators (accelerators highlighted in cyan are designed for training).

2.2 Deep Learning Accelerator Architectures
Domain-specific computing architectures [156–159] are

considered as a promising solution to accommodate the ever-
growing intensive computing in various deep learning ap-
plications. This view has also been confirmed by a flurry
of DNN accelerators [16–110] that have emerged in recent
years. Compared with general-purposed CPUs/GPUs, these
custom architectures achieved better performance and higher
energy efficiency.

As summarized in Table 2, many designs include a verti-
cal integration practice across algorithm and hardware lev-
els [71–84] where DNN models are typically optimized prior
to being deployed for inference. Some designs investigate the
dataflow (or data reuse pattern) in DNN workloads [51–59],
among which Eyeriss [52–54] is a representative design that
explores many data reuse opportunities existed in DNN exe-
cution. Processing-in-memory (PIM) based designs are also
proposed to reduce costly off-chip memory accesses [60–63].
Lightweight models are also introduced [64–70] to reduce
computational effort. Many designs based on emerging mem-
ory technologies, such as resistive random access memory
(ReRAM) technology [86–98, 160] with 3D stacking technol-
ogy [60, 63, 85], are also proposed.

2.3 Motivation
Although domain-specific architectures have effectively ad-

dressed the challenges of the ending of Moore’s law [161], the
recent study of chip specialization [111] has clearly demon-
strated the diminishing specialization returns and the ultimate
accelerator wall. In other words, it is unlikely to further
achieve fine-grained optimizations on a single accelerator. To
satisfy the computation and memory requirement for large
DNN models and datasets that typically cannot be satisfied by
a single accelerator, a natural solution is coarse-gained DNN
execution on an accelerator array. On the other hand, as high-
lighted in cyan in Table 2, only a few of the existing DNN
accelerators are designed for training. Among these designs,
strict constraints are often applied to the models that can be

supported. For example, [106–108] only considered homoge-
neous platforms, where the computation capability and the
network bandwidth for each accelerator are identical. In real-
ity, however, it is more important to explore solutions for an
array of heterogeneous accelerators with various computation
capacity and network bandwidth. For example, though a more
powerful TPU-v3 was released, the early deployed TPU-v2
may not retire immediately considering the deployment cost
and the need for supporting various acceleration workloads.
They are in fact both available off-the-shelf [162]. It is impor-
tant to optimize large-scale DNN training acceleration when
both TPU versions are used simultaneously. To achieve high
throughput and balanced execution, we need to efficiently
distribute data and model tensors among accelerators with
the awareness of heterogeneous computation capability and
network bandwidth. A principled and systematic approach is
needed to overcome the challenge of handling the complex-
ity of DNN models and heterogeneous hardware execution
environment,

3. TENSOR PARTITIONING SPACE
Compared with DNN inference, DNN training is more

complicated because of the three computation phases in-
volved in training, i.e., forward, backward and gradient. The
tensors and computations in the three phases are closely cou-
pled together. We need first construct a complete set of the
basic tensor partitioning types.

3.1 Problem Statement
We first consider FC layers and later show that the solution

can be naturally extended to CONV layers. In FC layers,
DNN training involves three tensor computing phases:

Forward: Fl+1 = f (Fl ×Wl),
Backward: El =

(
El+1 ×W�

l

)� f ′(Fl),
Gradient: �Wl = F�

l ×El+1.
Using the notations in Table 1, the shape of the tensors in

the above three phases are as below. Here we do not include
the element-wise multiplications � in the space relations
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since they can be performed in place.
Forward: (B,Do,l)← (B,Di,l)× (Di,l ,Do,l),
Backward: (B,Di,l)← (B,Do,l)× (Do,l ,Di,l),
Gradient: (Di,l ,Do,l)← (Di,l ,B)× (B,Do,l).
For illustration purpose, this section considers a simple

case of an array with two accelerators. The problem is to
exhaustively and systematically enumerate all possible parti-
tions of the tensors involved in the three phases among the two
accelerators, and understand the corresponding data commu-
nication and replication requirements. This is critical because
the partition will determine the communication between the
accelerators and affect overall training performance. We will
also explain why the current solutions [107, 108] failed to
provide a complete and comprehensive solution.

3.2 Partitioning in Three Dimensions
We note that the two matrices in each of the pairs (Fl ,El)

and (Fl+1,El+1) have the same shape. We assume that Fl and
El (also Fl+1 and El+1) are partitioned in the same manner.
This constraint is intuitive since otherwise additional com-
munication will be unnecessarily incurred, contradicting our
goal of minimizing communication between the accelerators.

We see only three dimensions appear in the three tensor
computing phases: B (batch size), Do,l (output data size of
layer l), and Di,l (input data size of layer l). Therefore, we
can naturally focus on the partition in these three dimensions.
For the partitions in one dimension, we assume that the same
partition parameter is used for this dimension in every tensor
to avoid additional communication.

Key observation: The dimensions are not independent. In
fact, only one dimension can be “free” in a partition.

We explain observation using an example: consider the
forward phase and the partition in B dimension, Since we
will have only two partitions, for (B,Di,l) (Fl), the Di,l di-
mension should not be partitioned. This also determines that
(Di,l ,Do,l) (Wl) should not be partitioned in Di,l dimension,
otherwise the matrix multiplication cannot be performed. The
only case left is the Do,l dimension of Wl . Suppose we par-
tition that, the combination of multiplication of the local
partitions in each accelerator does not lead to a complete
result of Fl with shape (B,Di,l). Specifically, depending on
the partition, only the upper left and lower right sub-matrix,
or upper right and lower left sub-matrix are computed. There-
fore, Do,l dimension of Wl cannot be partitioned. In fact,
the whole Wl needs to be replicated on the two accelera-
tors to compute the complete Fl . The other scenarios can be
considered similarly.

With the assumption that Fl and El (also Fl+1 and El+1)
use the same partition, and the fact that only one dimension
is free in a partition, there are only three partition types. We
discuss them one by one in the following.

3.2.1 Type-I: Partitioning B Dimension
In Type-I, we partition the B dimension in the three tensor

computing phases, as shown in Figure 1(a).
In forward phase, Fl+1 =Fl ×Wl . The element Fl+1[b,qo]

in Fl+1 can be computed as

Fl+1[b,qo] = ∑
qi∈{1,··· ,Di,l}

Fl [b,qi]×Wl [qi,qo], (1)

where b ∈ {1,2, · · · ,B},qo ∈ {1,2, · · · ,Do,l}. We assume the
ratio of computation to be assigned to one accelerator is α ,
0 ≤ α ≤ 1, and the ratio for the other is β , β = 1−α . The
set {1,2, · · · ,B} is partitioned into two subsets {1,2, · · · ,αB}
and {αB+1,2, · · · ,B}. Specifically, Fl [1 : αB, :] is assigned
to one accelerator and Fl [αB+1 : B, :] is assigned to the other.
The two accelerators process disjoint subsets of the batch,
and perform the computation indexed by the corresponding b
of the two subsets.

As discussed before, to ensure the validity of matrix multi-
plication and to get the complete results of Fl+1, Wl is repli-
cated in the two accelerators. After matrix multiplication,
each accelerator produces a portion of results based on the
same partition in B dimension. Specifically, Fl+1[1 : αB, :]
is produced by one accelerator and Fl+1[αB+1 : B, :] is pro-
duced by the other.

In backward, an element El [b,qi] in El can be computed
as

El [b,qi] = ∑
qo∈{1,··· ,Do,l}

El+1[b,qo]×W�
l [qo,qi]. (2)

Due to the constraint that Fl and El (also Fl+1 and El+1)
use the same partition, one accelerator keeps El+1[1 : αB, :]
and produces El+1[1 : αB, :] with replicated W�

l . The other
accelerator handles the other portion: El [αB+ 1 : B, :] and
El+1[αB+1 : B, :].

The common pattern for forward and backward phases is
that after replicating Wl , accelerators can perform computa-
tion locally and produce disjoint parts of the result matrix,
which can be combined to obtain the complete result. How-
ever, this pattern does not exist in gradient phase as the two
accelerators are not able to complete the computation indi-
vidually. In gradient phase, an element �Wl [qi,qo] in �Wl
can be computed as

�Wl [qi,qo] = ∑
b∈{1,··· ,B}

F�
l [qi,b]×El+1[b,qo]. (3)

Based on the same partition of B dimension in F�
l and El+1,

the two accelerators can perform local matrix multiplica-
tions. Each of them will produce the result matrix of shape
(Di,l ,Do,l), the same as �Wl . To get the final results in
Equation (3), element-wise additions need to be performed
to combine the partial results:

�Wl [qi,qo] = ∑
b∈{1,··· ,αB}

F�
l [qi,b]×El+1[b,qo]

+ ∑
b∈{αB+1,··· ,B}

F�
l [qi,b]×El+1[b,qo].

(4)

The computation pattern in gradient phase implies that
communication is needed to obtain the final results of �Wl ,
because one of the accelerators needs to perform the partial
sum. We call it as intra-layer communication. We can see that
such communication happens at different phases for different
types of partition.

3.2.2 Type-II: Partitioning Di,l Dimension
The partition in Di,l dimension is shown in Figure 1(b). To

perform matrix multiplication, Di,l dimension of Fl is parti-
tioned in the same way. Based on this, in forward phase, each
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Figure 1: Three basic tensor partitioning types. The partitioning ratio for one accelerator is α and the partitioning
ratio for the other accelerator is β = 1−α . Shadow tensors are assigned to one accelerator and non-shadow tensors are
assigned to the other accelerator. ⊗ denotes element-wise addition of two tensors.

accelerator will compute a result matrix of shape (B,Do,l).
Similar to the case of �Wl in Type-I, computing the com-
plete Fl+1 requires element-wise addition in this partitioning:

Fl+1[b,qo] = ∑
qi∈{1,··· ,αDi,l}

Fl [b,qi]×Wl [qi,qo]

+ ∑
qi∈{αDi,l+1,··· ,Di,l}

Fl [b,qi]×Wl [qi,qo].
(5)

Since Fl+1 and El+1 follow the same partition, in backward
phase, El+1 is replicated in the two accelerators. This allows
each of the accelerators produces a disjoint part of result of
El . The partition and replication are similar to that used in
gradient phase. A key difference between Type-I and Type-II
is that the intra-layer communication incurs at forward phase,
instead of gradient phase.

3.2.3 Type-III: Partitioning Do,l Dimension
The partitioning Do,l dimension is shown in Figure 1(c). Fl

needs to be replicated to compute complete Fl+1 in forward
phase. It is the case overlooked by all previous solutions.
Essentially, it means that the input feature maps of the same
batch are replicated into the two accelerators, instead of
partitioning B. It may sound not intuitive since we want
to have accelerators process the same data. However, we
show that it is an important partition in the design space that
presents the same trade-off in terms of communication just
as in Type-I and Type-II.

Similar to gradient phase of Type-I and forward phase of
Type-II, the backward phase of Type-III requires element-
wise addition of partial results:

El [b,qi] = ∑
qo∈{1,··· ,αDo,l}

El+1[b,qo]×W�
l [qo,qi]

+ ∑
qo∈{αDo,l+1,··· ,Do,l}

El+1[b,qo]×W�
l [qo,qi].

(6)

3.3 Extension to CONV

In the previous sessions, we used matrix-matrix multipli-
cation in FC to illustrate the three types of partitions, which
can be conceptually visualized in Figure 1. For CONV, the
three partitioning types are still valid. However, Fl [b,qi],
Fl+1[b,qo], El [b,qi] and El+1[b,qo] are no longer scalars
but are 2-dimensional matrices. Therefore, Fl , Fl+1, El and
El+1 are 4-dimensional tensors, i.e., (batch, channel)×(width,
height). Similarly, �Wl [qi,qo] and Wl [qi,qo] are also 2-
dimensional matrices rather than scalars. Thus, �Wl and
Wl are 4-dimensional tensors, i.e., (input channel, output
channel)×(kernel width, kernel height). The multiplication
(×) in Equation (1), (2), (3), (4), (5), (6) then become convo-
lution (⊗). The additional dimensions (4D vs. 2D) and more
complex operations (× vs. ⊗) only imply different amount
of computation but not affect the partition types based on
existing dimensions (B, Di,l , and Do,l).

3.4 Completeness
In the three phases, only three dimensions appear and we

have shown that only one dimension can be partitioned at a
time. Thus, the three types we derived constitute the complete
partition space. Table 3 summarized the key features of
the partitions. The LHS Shape and RHS Shape respectively
indicate the shapes of the metrics on the left-hand and right-
hand side of the equation for each phase. The Psum Shape
is the shape of the matrices containing partial results in two
accelerators that need to be combined using element-wise
additions. It happens when the matrix appear on the LHS.
This is also the shape of the matrix that needs to be replicated
if it appears on the RHS. From Table 3, we can observe a
rotational symmetry on each column.

3.5 Problems of “One Weird Trick” & HyPar
Two solutions were recently proposed to address the same

problem that is addressed by this paper, — communication
and parallelism between accelerators. However, neither of
these two solutions is complete.

Krizhevsky [107] proposed “one weird trick” (OWT) to
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Multiplication L Shape R Shape Partition Dim Psum Shape Basic Type
Fl+1 = Fl ×Wl (B,Do,l) (B,Di,l), (Di,l ,Do,l) Di,l (B,Do,l) Type-II

El = El+1 ×W�
l (B,Di,l) (B,Do,l), (Di,l ,Do,l) Do,l (B,Di,l) Type-III

�Wl = F�
l ×El+1 (Di,l ,Do,l) (B,Di,l), (B,Do,l) B (Di,l ,Do,l) Type-I

Table 3: Rotational Symmetry of the Three Tensor Multiplications.

configure CONV layers with data parallelism and FC layers
with model parallelism to get a higher performance. It is
certainly better than just using data parallelism for all layers,
however it does not provide any insight on why this trick
works and whether it is the best we can do. Therefore, this
solution is fundamentally empirical.

HyPar [108] is a more recent and principled approach to op-
timize the parallelism configurations also by partitioning the
layers based on the intra-layer and inter-layer communication.
However, it only considers the same two basic partitions in
OWT, — data parallelism and model parallelism. In fact, they
correspond to Type-I and Type-II in Figure 1, respectively.
Therefore, the parallelism setting in HyPar is not complete.
Even if it is based on a more systematic approach to explore
the partition space, it cannot find the optimal solution based
on incomplete basic partition types. Specifically, HyPar will
miss one intra-layer communication pattern (Type-III) and
five inter-layer communication patterns (see more details in
Section 4.1). Moreover, HyPar always partitions the tensors
equally, so it cannot capture the performance heterogeneity
among accelerators.

4. ACCPAR COST MODEL
To search the optimal partition of layers, we propose a cost

model for multiple accelerators. We consider the computation
by individual accelerator and the communication between ac-
celerators as two major affecting DNN training performance.
Compared to HYPAR [108], which uses communication cost
as the proxy for performance, the cost model of ACCPAR

takes both communication cost Ecm and computation cost Ecp

into consideration. The optimization target is to minimize
overall cost.

4.1 Communication Cost Model
Assuming the network bandwidth for accelerator i is bi,

and T is the accessed tensor needs to be transferred from one
to the other, we define the communication cost Ecm for the
tensor transfer as

Ecm =
A(T)

bi
. (7)

The tensor size A(T) is defined as the product of the lengths
of all dimensions. For example, the size of a 4-by-5 matrix
is 20, and the size of a kernel whose input channel is 16,
kernel window width is 3, kernel window length is 3 and
output channel is 32, is 4,608 = 16×3×3×32. Next, we
will determine what the remotely-accessed tensor T is.

4.1.1 Intra-layer Communication Cost
As discussed in Section 3, for each of the three basic tensor

partitioning types, there is one and only one computation
phase requires remote accessing.

Basic Type Intra-layer Communication Cost

Type-I
A(Wl)

bi

Type-II
A(Fl+1)

bi

Type-III
A(El)

bi

Table 4: Intra-layer communication cost of the three ba-
sic tensor partitioning types. Note that intra-layer com-
munication cost is not dependable on the partitioning ra-
tio α because intermediate results are accumulated lo-
cally and partial sum tensors are accessed remotely.

In Type-I, the gradient phase requires remote accessing
(Equation (4)). For the accelerator whose partitioning ratio
is α , for each b ∈ {1, · · · ,αB}, the intermediate tensor size

is A(F�
l [:,b]×El+1[b, :]) = Di,l ·Do,l = A(�Wl) = A(Wl).

Those intermediate tensors (∀b ∈ {1, · · · ,αB}) are accumu-
lated locally (∑qi∈{1,··· ,αDi,l}(·)) by the accelerator i to reduce

remote accessing by the other accelerator j. Also, the accel-
erator j performs local accumulation ∑qi∈{αDi,l+1,··· ,Di,l}(·).
Thus, the size of the tensor remotely accessed by accelerator
i from accelerator j is A(Wl) rather than (1−α) ·B ·A(Wl).
With Equation (7), we get the intra-layer communication cost
for accelerator i to remotely access the partial sum tensor in

accelerator j is
A(Wl)

bi
.

For Type-II and Type-III, readers can follow the similar
idea to get the intra-layer communication cost for the two
basic tensor partitioning types. We list the intra-layer com-
munication cost of the three basic tensor partitioning types in
Table 4.

4.1.2 Inter-layer Communication Cost
Since each layer is assigned a basic tensor partitioning

type, when switching content from one layer to the next layer,
an accelerator may require remote accessing. That is the inter-
layer communication. There are two tensor conversions may
require remote accessing, i.e., (1) the conversion of the output
feature map tensor Fl+1 in layer l to the input feature map
tensor Fl+1 in layer l+1 and (2) the conversion of the output
error tensor El+1 in layer l +1 to the input error tensor El+1

in layer l. As we have three basic tensor partitioning types,
there are nine inter-layer communication patterns between
the basic types, as shown in Figure 2. Tensors in layer l are
colored in green and Tensors in layer l + 1 are colored in
blue.

(a) Type-I to Type-I, (f) Type-II to Type-III and (h)
Type-III to Type-II. In the tensor conversion of the three
patterns, since the (green) tensors in layer l and the (blue)
tensors in layer l + 1 has the same partitioning, there is no
conversion, and the inter-layer communication cost is 0.

(c) Type-I to Type-III, (d) Type-II to Type-I, (e) Type-
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(a) Type-I to Type-I

Fl+1 Fl+1Fl+1 Fl+1

El+1El+1

(b) Type-I to Type-II

Fl+1 Fl+1

El+1

(c) Type-I to Type-III

Fl+1 Fl+1

El+1

(d) Type-II to Type-I

Fl+1 Fl+1

El+1

(e) Type-II to Type-II

Fl+1 Fl+1

El+1

(f) Type-II to Type-III

Fl+1 Fl+1

El+1

(g) Type-III to Type-I

Fl+1 Fl+1

El+1

(h) Type-III to Type-II

Fl+1 Fl+1

El+1

(i) Type-III to Type-IIII
α

β

β

β
α

α
α

β

β

β

β

β

1

1

1

1

El+1

El+1

El+1 El+1
El+1

El+1El+1

El+1
El+1

Figure 2: Inter-layer communication patterns between three basic tensor partitioning types. Shadow tensors are held
by one accelerator (whose partitioning ratio is α) and non-shadow tensors are held by the other accelerator (whose
partitioning ratio is β ).

Layer l +1
Type-I Type-II Type-III

Type-I 0
αβA(Fl+1)+αβA(El+1)

bi

βA(Fl+1)
bi

Layer l Type-II
βA(El+1)

bi

βA(El+1)
bi

0

Type-III
αβA(Fl+1)+αβA(El+1)

bi
0

βA(Fl+1)
bi

Table 5: Inter-layer communication cost between the three basic tensor partitioning types.

II to Type-II and (i) Type-III to Type-III. We take Figure
2(c) as an example. In the tensor conversion from Type-I to
Type-III, in the forward phase, the accelerator i (whose parti-
tioning ratio is α) holds green shadow tensor Fl+1 in layer l,
but in the next layer l+1, the accelerator need the whole blue
shadow tensor Fl+1. The difference is the black part, and
the black tensor incurs remote accessing to the other accel-
erator j (whose partitioning ratio is β ). Thus the inter-layer
communication amount is (βB)×Do,l = βA(Fl+1), and the
inter-layer communication cost by accelerator i to remotely

access the black tensor in accelerator j is
βA(Fl+1)

bi
. Reversely,

the inter-layer communication cost for the accelerator j is
αA(Fl+1)

b j
in this case. Note that the inter-layer communica-

tion cost for (c) Type-I to Type-III, (d) Type-II to Type-I, (e)
Type-II to Type-II and (i) Type-III to Type-III are the same,
but the shapes of conversion tensors are not the same.

(b) Type-I to Type-II and (g) Type-III to Type-I. We
take Figure 2(b) as an example. In the tensor conversion
from Type-I to Type-II, in the forward phase, the accelerator

i (whose partitioning ratio is α) holds green shadow tensor
Fl+1 (αB,Do,l) in layer l, but in the next layer l +1, the ac-
celerator need the whole blue shadow tensor Fl+1 (B,αDo,l).
The difference is the black part, and again the black tensor
incurs remote accessing to the other accelerator j (whose
partitioning ratio is β ). Thus the inter-layer communica-
tion amount is (βB)×αDo,l = αβA(Fl+1), and the inter-
layer communication cost by accelerator i to remotely access

the black tensor in accelerator j is
αβA(Fl+1)

bi
. Reversely,

the inter-layer communication cost for the accelerator j is
(1−α)(1−β )A(Fl+1)

b j
=

βαA(Fl+1)
b j

in this case. Note that the inter-

layer communication cost for (b) Type-I to Type-II and (g)
Type-III to Type-I are the same, but the shapes of conversion
tensors are not the same.

We list the inter-layer communication cost for the nine
patterns of the tensor conversion between the three basic
partitioning types in Table 5.

4.2 Computation Cost Model
We assume the tensor computation density of an accel-
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Multiplication # FLOP
Fl+1 = Fl ×Wl A(Fl+1) · (Di,l +Di,l −1)

El = El+1 ×W�
l A(El) · (Do,l +Do,l −1)

�Wl = F�
l ×El+1 A(Wl) · (B+B−1)

Table 6: The amount of floating point operations (FLOP)
in the three multiplications.

erator i is ci and the amount of floating point operations to
perform the multiplication of the multiplication of two tensors
T1 ×T2 is C(T1 ×T2). For an accelerator with a partition-
ing ratio α , the effective amount floating point operations
performed is α ·C(T1 ×T2). We can define the computation
cost Ecp for an accelerator i to perform the computation as

Ecp =
α ·C(T1 ×T2)

ci
. (8)

The most important step to get the computation cost is to
calculate the number of floating point operations (FLOP) of a
tensor multiplication. In the forward phase, to get the output
tensor Fl+1, the number of FLOP is (B ·Do,l) · (Di,l +Di,l −
1) = A(Fl+1) · (Di,l +Di,l − 1). The numbers of FLOP for
the three multiplications are listed in Table 6.

4.3 Discussion on Convolutions
We can easily expand the communication cost and compu-

tation cost from fully-connected layers to convolutional lay-
ers. In convolutions, Fl , Fl+1, El and El+1 are 4-dimensional
tensors, i.e., (batch, channel, height, width). We can view
the four dimensional tensors as three dimensional tensors,
but the third and fourth dimension is a meta dimension, i.e.,
(batch, channel, [height, width]). The kernel Wl are also
4-dimensional tensors, i.e., (input channel, output channel,
kernel height, kernel width), and we can also view it as a
three dimensional tensor, and the second dimension is a meta
dimension, i.e., (input channel, [kernel height, kernel width],
output channel). Thus, the communications costs listed in
Table 4 and 5 keep the same formats.

In a matrix-matrix multiplication MC = MA×MB, assume
the shape of MC, MA, MB is (MC,NC), (MC,P), (P,NC) re-
spectively. The idea to to calculate the number of floating
points performed is to multiply the number of output ele-
ments and the the number of floating points for each element.
In the matrix-matrix multiplication, the number of output
elements is MC ×NC =A(MC). For each output element, the
number of multiplications performed is P and the number of
additions performed is P−1. So the total number of FLOP is
A(MC) ·(P+P−1). To find the number of FLOP for a convo-
lutional layers, we need only to find the number of FLOP for
the convolution for one element in the output tensor because
the number of elements of a tensor Tout is always A(Tout)
no matter what the dimension it is. The number of multi-
plications performed is (input channel) × (kernel height) ×
(kernel width) and number of additions performed is ((input
channel) × (kernel height) × (kernel width) - 1). Note that
(input channel) is Di,l , Do,l or B in the three multiplications
respectively, and (kernel height) × (kernel width) is actually
the 2D feature map or kernel size, i.e., the size of the feature
map or kernel except the input and output channel. So for

Type-I

Type-II

Type-III

Li Li+1

Figure 3: Layer-wise partitioning is determined by dy-
namic programming to minimize the computation cost
and the communication cost.

convolutional layers, the number of floating point operations
is the entries in Table 6 multiply the 2D feature map or kernel
size.

5. ACCPAR PARTITIONING ALGORITHM
In this section, we explain the ACCPAR partitioning method.

Like recent work HyPar [108], we determine the partitioning
for each layer in a DNN model by a layer-wise dynamic par-
titioning scheme. However, ACCPAR is much more general
for three reasons: 1) the algorithm considers the complete
search space discussed in Section 5; 2) it can be parameter-
ized with arbitrary partitioning ratio based on heterogeneous
compute, communication cost and effective bandwidth be-
tween accelerator groups; 3) it can handle multiple paths in
DNNs. As a result, we will see in Section 6 that ACCPAR

achieves considerable speedups over HYPAR.

5.1 Layer-wise Partitioning
To find the best partitioning for each layer in a DNN to

minimize communication and improve performance, an intu-
itive way is to enumerate all possible configurations by brute
force. Unfortunately, it will result in a O(3N) complexity for
a DNN with N layers — not a practical solution. Following
the dynamic programming approaches [108, 116, 118], we
reduce search complexity to O(N) by dynamic programming.

Figure 3 illustrates the layer-wise partitioning procedure.
For each layer, we determine the minimum cost based on
the three basic partitioning types from the first layer till the
current layer. We denote the accumulative cost up to layer Li
when it is in state (Li, t) as c(Li, t) — layer Li chooses a basic
partitioning type t ∈ T ={Type-I, Type-II, Type-III}. Based
on the cost model in Section 4, the accumulative cost given
partition choice t of the current layer Li+1 (c(Li+1, t)) can be
calculated inductively with the cost of the previous layer Li
(c(Li, tt)):

c(Li+1, t) = min
tt∈T

{c(Li, tt)+Ecp(t)+Ecm(tt, t)}. (9)

Here, Ecp(t) is the computation cost for the current layer
Li+1 for a type t, and Ecm(tt, t) is the sum of the intra-layer
communication cost for a type t and the inter-layer com-
munication cost when transition from state (Li, tt) to state
(Li+1, t). For each basic partitioning type, during the algo-
rithm execution we need to record the path to a previous layer
for backtracking after going through all layers, shown as the
black arrows in Figure 3. In this manner, after we compute
the accumulative cost of the last layer, we have obtained the
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(a) 

P1 P2

Li

Li+1

P1

P2

(b) (c) 

Li Li+1

P1

P2

Li Li+1

(d) 

P1

P2

Li Li+1

Figure 4: (a) Layer Li and Li+1 are connected by path P1 and path P2. (b) Partitioning for (Li, t = Type-I) to (Li+1, t =
Type-I), (c) Partitioning for (Li, t = Type-II) to (Li+1, t = Type-I), and (d) Partitioning for (Li, t = Type-III) to (Li+1, t =
Type-I).

cost state of the last layer and all previous layers with back-
tracking. The algorithm starts by initializing c(L0, t) for the
three basic partitioning types in layer L0 to 0.

We employ a hierarchical (recursive) partition for multiple
hierarchies similar to [74, 108, 118]. The idea is to apply the
layer-wise partitioning recursively on a partitioned hierarchy
to partition on an accelerator array.

5.2 Handling Multiple Paths
Different from HYPAR, ACCPAR is able to determine the

partition for the multi-path typologies that are common in
Resnet [113]. Figure 4 shows an example where there are
two paths between layer Li and Li+1. Path P1 consists of one
weighted layer and Path P2 consists of two weighted layers.
The key idea for multi-path partitioning is to (1) enumerate
the partition state of layer Li+1 (Li+1, t), t ∈T , (2) enumerate
the partition state of layer Li (Li, tt), tt ∈ T , (3) perform indi-
vidual layer-wise partitioning for each path between the two
states (Li, tt) and (Li+1, t) for each combination, (4) determine
the lowest cost for the state (Li+1, t).

We need to determine the lowest cost for each state, i.e.,
enumerate the three colored circles in Figure 4 in Layer Li+1.
For example, (Li+1, t = Type-I) is one of the three possible
states shown as the yellow circle at Layer Li+1 in Figure
4. We then enumerate the three colored circles at Layer Li.
Figure 4(b) starts from (Li, t = Type-I), we search the three
paths in P1 and the three paths in P2 between the two states
(Li, t = Type-I) and (Li+1, t = Type-I). We then select the
lowest-cost path in P1, and the the lowest-cost path in P2
to (Li+1, t = Type-I), and combine them as the lowest-cost
path from (Li, t = Type-I) to (Li+1, t = Type-I). Similarly,
we compute the lowest-cost path from (Li, t = Type-II) to
(Li+1, t =Type-I) as shown in Figure 4(c), and the lowest-cost
path from (Li, t = Type-III) to (Li+1, t = Type-I) as shown in
Figure 4(d). With the three paths, i.e., the lowest-cost paths
(1) from (Li, t =Type-I) to (Li+1, t =Type-I), (2) from (Li, t =
Type-II) to (Li+1, t = Type-I) and (3) from (Li, t = Type-III)
to (Li+1, t = Type-I), we can finally determine the lowest cost
to reach state (Li+1, t = Type-I) and record the lowest-cost
path from Layer Li to state (Li+1, t = Type-I). Following the
similar procedure, we can determine the lowest-cost path to
state (Li+1, t = Type-II) and state (Li+1, t = Type-III). Since
we have searched the optimal states for Layer Li+1, the opti-
mal states in the last layer of the DNN model will be satisfied.

TPU-v2 TPU-v3
Cores 4×2 4×2

FLOPS 180T 420T
HBM Memory 64GB 128GB

Memory Bandwidth 2400GB/s 4800GB/s
# Accelerators 128 128

Table 7: The specifications of the accelerators.

5.3 Partitioning Ratio
ACCPAR allows the partition ratio to be adjusted for hetero-

geneous accelerators to balance the communication and com-
putation costs of the individual accelerators For an accelerator
with a partitioning ratio α , the computation and communica-
tion cost are both a function of α and a partitioning pi,l , i.e.,
Ecp(α, pi,l) and Ecm(α, pi,l). To calculate the partition ratio
for achieving the best performance, we need to find the ratio
to balance the sum of computation cost and communication
cost among two accelerator groups. From Equation (7), (8)
and Table 4, 5 we can see that computation and communi-
cation cost are both linear with respect to the partition ratio:
Ecp(α, pi,l) = α · Ecp(pi,l) and Ecm(α, pi,l) = α · Ecm(pi,l).
For the accelerator with a partitioning ratio β and a parti-
tioning p j,l , we can get β ·Ecp(p j,l) and β ·Ecm(p j,l). To
determine the partitioning ratio, we just need solve the linear
equation

α ·Ecp(pi,l)+α ·Ecm(pi,l)

= β ·Ecp(p j,l)+β ·Ecm(p j,l).
(10)

6. EVALUATION

6.1 Evaluation Setup
We use nine DNNs to evaluate ACCPAR: Lenet [163],

Alexnet [112], Vgg11, Vgg13, Vgg19 [120], and Resnet18,
Resnet34, Resnet50 [113]. We train Lenet on MNIST [164]
dataset and other eight DNN models are trained with Ima-
geNet [165].

We build a in-house simulator to model the performance
of the accelerator array in tensor processing unit TPU-v2 and
TPU-v3. In the simulation, we derive the tensor accessing
traces (loading and storing) and partial sum computation
(MULT and ADD) traces for the simulation and then we
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calculate the time consuming for the computation and data
accessing. The trace granularity for FC layer is element-wise
(i.e., 1) and for CONV is kernel-wise (e.g., 3x3). While TPU-
v1 is designed for DNN inference [31], TPU-v2 and TPU-v3
target DNN training. Table 7 lists the specifications for these
two accelerators. An accelerator is a board that holds the
processing units — 2 cores per chip and 4 chip per board.
The peak floating point operations per second (FLOPS) are
180T for TPU-v2 and 420T for TPU-v3, and the memory
for the two accelerators are 64GB high bandwidth memory
(HBM) and 128GB HBM [162]. The memory bandwidth
for TPU-v2 is 2400GB/s. Since the memory bandwidth for
TPU-v3 is not available, we assume a 4800GB/s memory
bandwidth for TPU-v3. For the network, the maximum data
rate per core is 2Gb/s [166]. We set the network data rate
for TPU-v2 as 8Gb/s and that for TPU-v3 as 16Gb/s. The
number of accelerators for TPU-v2 and TPU-v3 are both 128.
The data format used in the DNN training is bfloat, Google’s
16-bit floating point data format for training. We also set the
mini batch size to be 512.

To evaluate the effectiveness of ACCPAR, we compare
it against data parallelism (DP) [106], “One Weird Trick”
(OWT) [107] and HYPAR [108]. In DP, each accelerator
maintains a local copy of DNN model, while training sam-
ples are partitioned among these accelerators. In OWT, the
CONV layers in a DNN model is configured for data paral-
lelism, and the FC layers are configured for model parallelism.
In HYPAR, both CONV and FC layers can be configured for
data parallelism or model parallelism to minimize overall
communication. Data communication, operational compu-
tation and hardware heterogeneity are jointly considered in
ACCPAR for collaborative optimization. Here we use DP as
the baseline, and the performance and training throughput
of OWT, HYPAR and ACCPAR are all normalized to the DP
design.

6.2 Heterogeneous Array
We fist evaluate the performance for a heterogeneous accel-

erator array using same number of accelerators with different
performance: 128 TPU-v2 accelerators and 128 TPU-v3 ac-
celerators.

The normalized performance of DP, OWT and HYPAR

are shown in Figure 5. The geometric mean of speedup (the
throughput improvement) in DP, OWT, HYPAR and ACCPAR

are 1.00×, 2.98×, 3.78×, 6.30×, respectively. For Vgg
series, ACCPAR can get a speedup up to 16.14×, while the
highest speedup of OWT and HYPAR are 8.24× and 9.46×.
For Resnet series, ACCPAR can get speedups from 1.92× to
2.20×, while the ranges of speedup achieved by OWT and
HyPar are 1.22× to 1.38× and 1.03× to 1.04×, respectively.

We see that the speedups achieved by ACCPAR is signif-
icantly higher than OWT and HYPAR. In Figure 5, on the
four Vgg series, the speedups of OWT range from 5.33×
to 8.25×, and the speedups of HYPAR range from 5.92×
to 9.46×. However, the speedups of ACCPAR range from
9.75× to 16.14×, which are significantly higher than OWT
and HYPAR. The improvements of ACCPAR come from:
(1) the complete partitioning type search space, which in-
cludes all three types of tensor partitioning settings to reduce
communication; and (2) the communication and computa-
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Figure 5: The speedup of data parallelism (DP), “one
weird trick” (OWT) [107], HyPar [108] and AccPar in
a heterogeneous accelerator array.

tion joint optimization considering heterogeneity. With the
communication and computation by different accelerators
balanced by certain partitioing ratio, the idle time due to
heterogeneous communication/computation capability under
equal partitioning in OWT [107] and HyPar [108] are greatly
alleviated.

From Figure 5, we also notice that the the speedups of
Resenet series are lower than that of Vgg series. Between the
two series, the main difference is that the model sizes of Vgg
series are larger than those of Resnet series, while the com-
putation densities of Resnet series are higher than those of
Vgg series. Among the three basic tensor partitioning types,
Type-II and Type-III partitions the weight of layers, i.e., the
model, while Type-I partitions the feature maps, i.e., the data.
In data parallelism, all layers are configured by Type-I. Thus,
for DNNs with a large model size, such as Vgg series, Type-II
and Type-III are favored due to the potential greater reduction
of communication when partitioning the model. On the other
side, for DNNs with higher computation density, Type-I is
favored for greater potential reduction of the communication
when partitioning feature maps. Moreover, because the dif-
ference of mode sizes among different layers is smaller than
the difference of feature maps, the relative benefits achieved
by Type-II and Type-III are smaller than those of Type-I. The
above analysis explains the reason why speedups of Resenet
series are lower than that of Vgg series, since DNNs in former
series mainly benefit from Type-II and Type-III — model par-
tition, the trend is true for not only ACCPAR but also HYPAR

and OWT. However, even for Resnet series, the speedups of
ACCPAR are considerably higher than OWT and HYPAR: the
highest speedup by OWT and HyPar on the Resnet series are
1.04× and 1.38× respectively, but the highest speedup by
ACCPAR is 2.20×. This means that ACCPAR is 112% better
than OWT and 59% better than HYPAR.

6.3 Homogeneous Array
We then evaluate the performance for a homogeneous ac-

celerator array, where 128 accelerators employed are of the
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Figure 6: The speedup of data parallelism (DP), “one
weird trick” (OWT) [107], HyPar [108] and AccPar in
a homogeneous accelerator array.

same type, i.e., TPU-v3. The speedups of data parallelism
(DP), “one weird trick” (OWT), HYPAR and ACCPAR are
shown in Figure 6. The results are normalized to data par-
allelism. The geometric mean of DP, OWT, HYPAR and
ACCPAR are 1.00×, 2.94×, 3.51×, 3.86×, respectively. For
Resent series, the DNNs are very “deep” (i.e., the number
of layers is very large), and all layers except the last fully-
connected layer are convolutional layers. While OWT, HY-
PAR, and ACCPAR all try to explore other parallelism settings
or partitions rather than static data/model parallelism, we
observe in the results that these three schemes evantually con-
figure most of layers in Resnet series with data parallelism or
Type-I partition. This is the reason why they achieve lower
speedups on Resnet series than Vgg series. In comparison,
the DNNs in Vgg series contain a variety of layers, so OWT,
HYPAR, and ACCPAR can effectively explore larger search
space with more diverse parallelism/partition settings. With
homogeneous accelerator array, for a specific DNN model,
we observe the increasing speedups of DP, OWT, HyPar
and ACCPAR. It is the direct consequence of the increasing
flexibility.

In Figure 7, we also show the selected partitioning types by
ACCPAR for the weighted layers in Alexnet. In the three fully-
connected layers, i.e., fc1, fc2 and fc3, Type-II and Type-
III partitions are used to minimize the communication by
maintaining a part of weight locally and communicating the
feature maps. In the convolutional layers, i.e., cv1 to cv5, we
can see that Type-I partition are mostly but not solely selected.
ACCPAR allows all Type-I, Type-II and Type-III to be selected
to reduce the total communication further. Especially, with
the increase of hierarchy level, more layers are configured
with Type-II or Type-III. This illustrates the importance of
having a complete search space as in ACCPAR.

6.4 Scalability with Hierarchy Levels
In this section, we study the scalability of ACCPAR on

various hierarchies on the heterogeneous accelerator array.
Figure 8 shows the speedups of DP, OWT, HYPAR and AC-
CPAR on Vgg19 for hierarchy level from h = 2 to h = 9.
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Figure 7: The selected partitioning types for the
weighted layers in Alexnet. The number of hierarchies
is 7 and the batch size is 128.
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Figure 8: The speedup of data parallelism (DP), “one
weird trick” (OWT) [107], HyPar [108] and AccPar un-
der various partitioning hierarchies on Vgg19.

With the increase of hierarchy level, we partition the ten-
sor for a finer-grained level. From Figure 8 we see that the
speedups of OWT and HYPAR tend to be saturated, while the
speedups of ACCPAR continue to increase with the increase
of the partitioning hierarchies. For OWT, the convolutional
layers are always configured with data parallelism and the
fully-connected layers are always configured with model par-
allelism. While it provides more flexible than configuring all
layers with data parallelism in DP, it is still a static config-
uration. HYPAR and ACCPAR are dynamic configurations
because they do not statically set a class of layer to be a
specific parallelism or partition, instead they dynamically
explore the possible configuration to minimize the commu-
nication or cost. Compared with HYPAR, ACCPAR benefits
from a complete partitioning type sets and the heterogeneity-
aware configuration. The flexibility of the four schemes from
low to high is: DP ≺ OWT ≺ HyPar ≺ ACCPAR. Table 8
shows the comparison of DP, OWT, HYPAR, and ACCPAR.
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DP OWT HyPar ACCPAR

Static Static Dynamic Dynamic
Low −−−−−−−−−−−−−−−−−−−−→ High

Table 8: The caparison of flexibility of DP, OWT, HyPar
and ACCPAR.

7. CONCLUSION
In this paper we present ACCPAR, a principled and sys-

tematic method to determining the tensor partition among
heterogeneous accelerator arrays for achieving optimal per-
formance. ACCPAR considers the complete tensor partition
space and reveals a new and previously unknown parallelism
configuration. It optimizes performance based on a cost
model considering both computation and communication
cost of heterogeneous execution environment. The general
search algorithm is applicable for the emerging multi-path
patterns in modern DNNs such as ResNet. We simulate ACC-
PAR on a heterogeneous accelerator array composed of both
TPU-v2 and TPU-v3 accelerators for training of large-scale
DNN models such as Alexnet, Vgg series and Resnet series.
The average performance of ACCPAR and previous state-of-
the-art “one weird trick” (OWT) and HYPAR normalized
to data parallelism in the heterogeneous accelerator array is
6.30×, 2.98×, 3.78×, respectively.
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