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ABSTRACT

Recently, deep neural networks (DNN) have been widely used
in speaker recognition area. In order to achieve fast response
time and high accuracy, the requirements for hardware re-
sources increase rapidly. However, as the speaker recogni-
tion application is often implemented on mobile devices, it is
necessary to maintain a low computational cost while keep-
ing high accuracy in far-field condition. In this paper, we
apply structural sparsification on time-delay neural networks
(TDNN) to remove redundant structures and accelerate the
execution. On our targeted hardware, our model can remove
60% of parameters and only slightly increasing equal error
rate (EER) by 0.18% while our structural sparse model can
achieve more than 1.5x speedup.

Index Terms— structural sparsification, far-field speaker
recognition, time-delay neural network

1. INTRODUCTION

Far-field speaker recognition has gained much interest in the
research community, with its prevalent applications in con-
sumer devices such smart speakers and smartphones. The
far-field condition presents additional challenges in speaker
recognition, due to the severity of reverberation and back-
ground noise. Similar to automatic speech recognition, deep
learning acoustic features have shown great improvements
in these conditions compared to prior techniques. A num-
ber of speaker recognition systems based on deep neural
network (DNN) embeddings have been reported in the liter-
ature [1][2][3]. More recently, SRI developed the VOiCES
dataset [4] specifically for far-field speaker recognition, and
showed their DNN embeddings significantly outperformed
the i-vector systems [5].

The objective of our work is to develop a speaker recog-
nition system robust to the far-field channel conditions, using
advanced model training methodology. Furthermore, we de-
signed the system to be simple to perform inference using
ultra-low power accelerators such as the Intel ® GNA [6]. In
contrast to the popular approach of using probabilistic linear
discriminant analysis (PLDA) [7] in the back-end, our system

only relies on the simple cosine distance for scoring. This
allows for the computations to be performed end-to-end on
the accelerator. Finally, to get the best model size efficiency,
the crux of the paper will focus on the application of struc-
tural sparsification to our DNN model. Applying suitable
sparse granularity on the model could reduce the latency of
the model inference and improve the performance of the real-
time speech recognition.

There have been extensive studies on accelerating DNN
models. Pruning [8] and sparsity methods [9] can effectively
reduce the size of CNN models while keeping the perfor-
mance similar to the original models. However, randomly
distributed zeros in models do not have benefit for execution
on hardware. [10] elaborates the benefit of structural sparsity
over non-structural sparsity on locality and parallelism dur-
ing hardware execution. To force zero parameters to form a
regular arrangement, structural sparsity [11] is proposed for
CNN:s to learn sparse structures like channel and filter.

In order to reduce the model size and the inference time,
we apply a structural sparsity learning method to speaker
recognition models. The sparse structure we achieve is com-
putationally friendly to specific hardware. Specifically, we
add a group Lasso [12] penalty to the loss function, where
the group is the structure desired to be sparse. The sparse
model performance is the same or even better compared to
the baseline with fewer non-zero parameters. Also, we test
our method on three different sparse granularity levels and
found that under the same number of non-zero parameters,
models with smaller granularity achieve lower equal error
rate (EER) than models with larger granularity. Sparse model
performance exceeds that of dense models regardless of the
granularity with the same number of non-zero parameters.

2. RELATED WORK

Computational acceleration methods have been heavily ex-
plored for the past years. Pruning and sparsification have
proven effective at removing redundant parameters and struc-
tures. In [8][13], pruning connections of fully connected lay-
ers was proved effective at reducing the size of Alexnet and



VGG-16. However, most of the computation and parameters
are from convolution layers. From this perspective, Wei et
al. [11] propose a framework that can reduce model size by
eliminating redundant structures in CNNs such as filters or
channels. They claimed to achieve 3.1x speedup on Alexnet
on GPU while keep the accuracy the same.

For speech recognition tasks, recurrent neural network
(RNN) and long short-term memory (LSTM) models are
widely used. It is more difficult to learn sparse structures for
these models because the structures usually contain informa-
tion on time sequences. Eliminating those structures would
have more impact on performance. Narang et al. [14] con-
ducted Connection Pruning for RNNs and reduced 90% of
connections. Wei et al. [15] further applied group Lasso reg-
ularization on LSTMs and achieved 10.59 x speedup without
perplexity loss. Zhang et al. [10] also extended the struc-
tural sparsity learning method to LSTM models for speech
recognition and removed 72.5% parameters with negligible
accuracy loss.

3. METHODOLOGY

3.1. Model topology

This work is based the x-vector model structure [3], with
some simplifications. Compared to the original x-vector
model, our architecture, shown on Table 1, has increased the
input feature dimension from 24 to 40, reduced the pool-
ing dimension from 1500 to 512, removed a fully-connected
layer between the embedding and speaker output layers, and
reduced the embedding dimension from 512 to 256. In our
testing, these modifications did not degrade recognition per-
formance and had much lower complexity. We use this topol-
ogy as the baseline for structural sparsity learning. Also, in
this particular case, TDNN can be written as a one-dimension
convolution, so we implemented the model as a 5-layer CNN.
The softmax output is only used for model training pur-
poses; for speaker enrollment and verification, the DNN
embedding is taken at the output of Segment6 on Table 1.
One speaker embedding is computed for an entire utterance,
regardless of length. We use cosine distance of this 256-
dimension embedding vectors between enrollment and test
utterances to produce the speaker recognition score.

3.2. Loss function

While the conventional softmax loss works reasonably well
for training speaker embeddings, it is specifically designed
for classification, not verification tasks. Speaker recognition
systems trained with softmax loss typically use PLDA in the
backend to improve separation between speakers. The triplet
loss function, which is designed to reduce intra-speaker and
increase inter-speaker distance, has shown to be more effec-
tive for speaker recognition [2]. Likewise, the end-to-end
loss [1] has better performance than softmax. The downside

Table 1: Model configuration

layer context| Affine |Convolution
Layerl [t-2,t42] 200x512 | 51240x5
Layer2 {t-2,6,t42} | 1536x512 | 512 512%3
Layer3 {t-2,t,t+2} | 1536x512 | 512512%3
Layer4 {t} 512x512 | 512512x1
Layer5 {t} 512x512 | 512512x1
Stats pooling [0,T) 512Tx 1024 N/A
Segment6 {0} 1024 %256 N/A
Softmax {0} 256xN N/A

N denotes the number of training speakers.

to these kinds of losses is that the training infrastructure is
significantly more complicated than one used for supervised
learning with softmax. In a prior study [16], we explored
the use of several recently proposed loss functions that were
first introduced in face recognition research. These loss func-
tions are drop-in replacements for softmax, thus modifica-
tion to training code is simple with little overhead in training
speed. We found Additive Margin Softmax (AM-softmax)
[17] to perform best in the far-field test set, and incorporating
PLDA did not improve performance against the simpler co-
sine distance. The elimination of the PLDA in the inference
pipeline makes the entire model easy to deploy to target hard-
ware, with the help of tools such as the Intel® Distribution
of OpenVINO™ toolkit [18].

3.3. Training details
We describe our training pipeline as a three step process:

1. Baseline model training: We find that we get signif-
icantly better results when we start the sparsification
process with a well-trained dense model. We train the
model with AM-softmax loss, SGD optimizer learning
rate decaying from 0.01 to 0.0001 in 30 epochs with co-
sine annealing. The weight decay and batch size are set
to le-6 and 256, respectively. For each batch, we select
random segments of training utterances between 2.5 to
3.0 seconds. These settings, except for the number of
epochs, are used in subsequent steps. The output of this
step is the best dense model we can produce, and it also
serves as a baseline to measure EER against.

2. Learning sparse structure: We use the model from
step 1 to initialize the dense model, and trained 20
epochs with the group Lasso regularization together
with the AM-softmax loss:

K
E(w) = Ep(w) + A+ [[wglfs, (1)
k=1

where the first term FEp(w) is the original AM-softmax
loss function, and the second term is the contribution
from the group Lasso loss function. The group Lasso



loss is essentially the summation of K (the total num-
ber of groups) L2 norm of group weights wj, in prede-
fined groups (e.g. chunks of 8 or 16, or entire convolu-
tion filter). It rewards to total loss function for forcing
low values to group weights. The coefficient A controls
the balance between AM-softmax loss and group Lasso
loss. This step produces sparse structures by training
on the new loss function E(w). Groups with L2 val-
ues below a threshold are set to 0, and discarded in the
learning process for the next step.

3. Fine-tuning: Lastly, we fine-tune the training for 20
epochs on the sparse model produced by step 2 using
only AM-softmax loss.

More detail on step 2 and step 3 can be found in [10].

4. EXPERIMENTAL SETUP

4.1. Datasets and augmentation

We use VoxCeleb 1 and 2 [19] [20] to train the system. These
datasets have 7323 identities combined. We perform 9x data
augmentation plus original clean speech to produce 12.7 mil-
lion training utterances. For each data augmentation, we ran-
domly choose from 2000 room impulse responses generated
from Pyroomacoustics [21], and add randomly selected back-
ground noise from MUSAN [22] and AudioSet [23]. For
the test set, we used the VOICES far-field dataset [4], which
we believe captures the essence of challenging channel condi-
tions. For all speech utterances, we use 40-dimension log-mel
filterbanks, with 3-second sliding window mean subtraction.

4.2. Hardware implementation

This work is targeting TDNN inference on the Intel®) Gaus-
sian & Neural Accelerator (GNA) [24]. Intel®) GNA is de-
signed for continuous inference with neural networks on edge
devices with high performance and very low power consump-
tion. Since Intel® GNA fetches weight matrices in 16-byte
chunks of int8 or int16 weights, we investigated struc-
tural sparsity on chunks of 8 int16 elements or 16 int8
elements. Inference measurements were made on an Intel®)
Celeron®) Processor J4005 with Intel® GNA inside.

5. RESULTS

In the experiments, the sparsity of filters is defined as the
number of zero filters over all filters, while the sparsity of
chunks is defined as the the number of zero chunks over all
chunks. We applied the sparsity learning only to layers 1-4.
Our experiments showed that layers 5 and above were reluc-
tant to achieve sparsity. We suspect that this is because near
the output of the network, the hidden representations con-
tain high density of information for speaker recognition. This
seems to happen at the input of the stats pooling layer.

5.1. Result analysis

The experimental results are shown in Table 2. We applied
the structural sparsity on filters and chunks. Filter sparsity
can be deployed on all hardware without any special modi-
fication. While applying sparsity on chunk-8 and chunk-16
are targeted at Intel® GNA. Also, we run experiments on
dense models to compare the performance of sparse models
and dense models.

Figure 1 is the visualization of the relationship between
the coefficient A and sparsity in each layer. Y-axis denotes
the overall percentage of sparsity in four layers. It is shown
clearly when X increases, the sparsity increases. However, the
sparsity growth in each layer is different. Filter sparsity shows
a different growth trend from chunk sparsity. In Figure 1(a),
sparse filters in the first layer (blue bar) account for much of
the overall sparsity. However, in Figure 1(b) and (c), the first
layer is not very sparse while layers 2 and 3 have a majority of
chunks learned to be zero. We suspect that the low sparsity in
layer 1 is due to the denser spectral input dimension compared
to other layers; and that in layer 4 the output representation is
becoming more relevant for the speaker recognition task, thus
having making the network sparse here would result in higher
penalty on the AM-softmax loss.

Figure 2 is the visualization of the relationship of non-
zero parameters and EER or min detection cost function
(minDCF) at Pygrger = 0.01 (consistent with the VOiCES
evaluation protocol). The X-axis represents the number of
non-zero parameters and Y-axis is the EER and minDCF. We
compared the filter sparsity, chunk-8 sparsity, and chunk-16
sparsity with dense models of different sizes. It is shown
in Figure 2(a) that when the number of parameters is large,
sparse models achieve lower EER than dense models of the
same size. However when the number of non-zero param-
eters is small, dense models have better performance. In
our experimental setting, the turning point is around 0.7 mil-
lion parameters. For example, with EER around 2.0%, it is
clear that models with smaller granularity have lower size.
Chunk-8 models can reach 1.99% EER with 0.99 million
parameters and chunk-16 has 1.96% EER under 1.07 million
parameters. Comparing with baseline, smaller dense models
reach 2.03% EER with 1.73 million parameters, chunk-8 and
chunk-16 both reach lower EER with less than 60% of the
parameters. Also, when non-zero parameter count is larger
than 1.5 million, there is a tendency that chunk-8 has the
best performance while filter sparsity has higher EER under
the same non-zero parameter count. As for the relationship
of minDCEF, as is shown in Figure 2(b), we observe similar
patterns as seen in EER.

A somewhat surprising finding in these results is that, fil-
ter_1, chunk8_1, and chunkl16_1 with less parameters have
slightly lower EER, 1.76%, 1.61%, and 1.68%, respectively,
compared to the baseline of 1.81%. We believe this is because
the group Lasso loss is an effective regularizer, and when used



Table 2: Model performance with different sparsity levels

Method A size EER min | Method A size EER min
dense M) (%) DCF| filter (e-2) M) (%) DCF
baseline - 2.47 1.81 0.23| baseline - 2.47 1.81 0.23
dense_1 - 173 2.03 0.25]| filter.1 0.2 2.14 1.76 0.22
dense_2 - 142 2.12 0.25] filter2 0.5 1.70 1.88 0.24
dense_3 - 1.15 220 0.27| filter.3 0.75 1.27 2.07 0.26
dense_4 - 091244 0.30| filter 4 1 1.04 2.24 0.27
dense_5 - 0.70 2.51 0.30]| filter.5 1.5 0.79 2.49 0.31
dense_6 - 0.54 279 0.35] filter .6 2 0.69 2.55 0.31
dense_7 - 041362 041 filter.7 4 0.50 3.49 0.38
Method A\ size EER min | Method A size EER min
chunkl6 (e-4) M) (%) DCF| chunk8 (e-4) M) (%) DCF
baseline - 247 1.81 0.23| baseline - 2.47 1.81 0.23
chunk16_1 0.25 2.28 1.68 0.22|chunk8_1 0.2 2.29 1.61 0.21
chunk162 0.5 1.73 1.86 0.24|chunk82 0.5 1.33 1.93 0.25
chunk16.3 1 1.33 1.90 0.25|chunk8_3 0.75 0.99 1.99 0.27
chunkl6.4 1.5 1.07 1.96 0.26|chunk8 4 1 0.85 2.29 0.28
chunkl16.5 2 0.84 2.28 0.29|chunk8.5 1.5 0.65 2.57 0.33
chunkl6.6 3 0.70 2.49 0.32|chunk8 6 2 0.57 3.10 0.36
chunkl16.7 4 0.56 3.13 0.37|chunk8_7 4 0.43 3.62 0.42
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in a small dose, helps produce more generalized models.

5.2. Measurements on Intel ® GNA

We also measured the actual inference time to find out how
much speedup sparse models could achieve on Intel® GNA.
We measured all the models we get in table 2 and found the
relationship between the hardware speedup and EER. As is
shown in Figure 3, four lines represent three different sparse
granularity and one dense model and they all start at the base-
line point. Generally, dense models always have higher EER
when speedups are the same, which confirms our expectation.
It means that under the same EER, structural sparse models
are always faster than the dense model. It is also important to
point out that when speedup is small, around 1.2x speedup,
sparse models have speedup even with lower EER, which is
a free-meal. However, there may exist some oscillation when
measuring the inference time in hardware so the results may
not be precise. This may explain why sparse models show no
benefit when speedup is around 1.9x and the trend is consis-
tent.
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6. CONCLUSION

In this paper, we applied structural sparsification for speaker
recognition models. By using pretrained models and group
Lasso regularization, we kept the good performance of the
original model while reducing the number of parameters and
accelerating the actual execution. For structural sparse mod-
els that are only slight smaller than the full size dense model,
we achieved better performance on both EER and minDCF
metrics.
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