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We propose a general method for constructing confidence sets
and hypothesis tests that have finite-sample guarantees without
regularity conditions. We refer to such procedures as “univer-
sal.” The method is very simple and is based on a modified
version of the usual likelihood-ratio statistic that we call “the split
likelihood-ratio test” (split LRT) statistic. The (limiting) null distri-
bution of the classical likelihood-ratio statistic is often intractable
when used to test composite null hypotheses in irregular statis-
tical models. Our method is especially appealing for statistical
inference in these complex setups. The method we suggest works
for any parametric model and also for some nonparametric mod-
els, as long as computing a maximum-likelihood estimator (MLE)
is feasible under the null. Canonical examples arise in mixture
modeling and shape-constrained inference, for which construct-
ing tests and confidence sets has been notoriously difficult. We
also develop various extensions of our basic methods. We show
that in settings when computing the MLE is hard, for the pur-
pose of constructing valid tests and intervals, it is sufficient to
upper bound the maximum likelihood. We investigate some con-
ditions under which our methods yield valid inferences under
model misspecification. Further, the split LRT can be used with
profile likelihoods to deal with nuisance parameters, and it can
also be run sequentially to yield anytime-valid P values and con-
fidence sequences. Finally, when combined with the method of
sieves, it can be used to perform model selection with nested
model classes.
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he foundations of statistics are built on a variety of generally

applicable principles for parametric estimation and infer-
ence. In parametric statistical models, the likelihood-ratio test
and confidence intervals obtained from asymptotically Gaussian
estimators are the workhorse inferential tools for constructing
hypothesis tests and confidence intervals. Often, the validity of
these methods relies on large sample asymptotic theory and
requires that the statistical model satisfy certain regularity condi-
tions; see Section 2 for precise definitions. When these conditions
do not hold, there is no general method for statistical inference,
and these settings are typically considered in an ad hoc manner.
Here, we introduce a universal method which yields tests and
confidence sets for any statistical model and has finite-sample
guarantees.

We begin with some terminology. A parametric statistical
model is a collection of distributions {Py: 6 € ©} for an arbi-
trary set ©. When the aforementioned regularity conditions hold,
there are many methods for inference. For example, if © C R4,

the set
< Ca,d} [1]

is the likelihood-ratio confidence set, where c. 4 is the upper «
quantile of a x3 distribution, £ is the likelihood function, and
0 is the maximum-likelihood estimator (MLE). It satisfies the
asymptotic coverage guarantee
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as n — 0o, where Py« denotes the unknown true data-generating
distribution.

Constructing tests and confidence intervals for irregular
models—where the regularity conditions do not hold—is very
difficult (1). An example is mixture models. In this case we
observe Yi,..., Y, ~ P and we want to test

Ho: Pe My, versus Hi: PeMy,, 121

where M, denotes the set of mixtures of & Gaussians, with an
appropriately restricted parameter space © (see for instance ref.
2) and with ko < k;. Finding a test that provably controls the
type I error at a given level has been elusive. A natural candi-
date is to base the test on the likelihood-ratio statistic but this
turns out to have an intractable limiting distribution (3). As we
discuss further in Section 3, developing practical, simple tests for
this pair of hypotheses is an active area of research (refs. 4-6
and references therein). However, it is possible that we may
be able to compute an MLE using variants of the expectation—
maximization (EM) algorithm. In this paper, we show that there
is a remarkably simple test based on the MLE with guaranteed
finite-sample control of the type I error. Similarly, we construct a
confidence set for the parameters of a mixture model with guar-
anteed finite-sample coverage. These tests and confidence sets
can in fact be used for any model. In regular statistical models
(those for which the usual LRT is well behaved), our methods
may not be optimal, although we do not yet fully understand
how close to optimal they are beyond special cases (uniform,
Gaussian). Our test is most useful in irregular (or singular)
models for which valid tests are not known or require many
assumptions. Going beyond parametric models, we show that our
methods can be used for several nonparametric models as well
and have a natural sequential analog.

1. Universal Inference

Let Yi,..., Y2, be an independent and identically distributed
(iid.) sample from a distribution Pg~ which belongs to a
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collection (Py: 6 € O). Note that §* denotes the true value of
the parameter. Assume that each distribution Py has a density
pe With respect to some underlying measure y (for instance, the
Lebesgue or counting measure).

A Universal Confidence Set. We construct a confidence set for 6*
by first splitting the data into two groups Dy and D; . For simplic-
ity, we take each group to be of the same size n but this is not
necessary. Let 6; be any estimator constructed from D ; this can
be the MLE, a Bayes estimator that utilizes prior knowledge, a
robust estimator, etc. Let

= H po(Y,
ie Do

denote the likelihood function based on Dy. We define the split
likelihood-ratio statistic (split LRS) as

T, (0) = ﬁL‘,OO((é)Gl)) : 3]

Then, the universal confidence set is
O,L:{Ge@: Tn(e)gé}. [4]

Similarly, define the cross-fit LRS as
Sn(0) = (Tn(0) + T:(0)) /2, (5]

swap -

where T,  is formed by calculating 7', after swapplng the roles
of Dy and D;. We can also define C,, with S, in place of T,.

Theorem 1. C,, is a finite-sample valid (1 — &) confidence set for
0", meaning that P+ (0" € Cp,) > 1 —

If we did not split the data and 6, was the MLE, then T,.(0)
would be the usual likelihood-ratio statistic and we would typi-
cally approximate its distribution using an asymptotic argument.
For example, as mentioned earlier, in regular models, —2 times
the log-likelihood-ratio statistic has, asymptotically, a x3 distri-
bution. But, in irregular models this strategy can fail. Indeed,
finding or approximating the distribution of the likelihood-ratio
statistic is highly nontrivial in irregular models. The split LRS
avoids these complications.

Now we explain why C,, has coverage at least 1 — «, as claimed
by Theorem 1. We prove it for the version using T',, but the proof
for S, is identical. Consider any fixed ¢) € © and let A denote the
support of Py«. Then,

50(9*) B HiEDO pG*(Y')

Iliep, Pe(yi) pw(yL
i€ Do

Ey- {LO(W]_EG* [Hiepo P (Vi)

i€ Do
/ H pdl Yi dyl dyn
i€ Do
<JI Upw yi dyz]
1€ Do

Since 6, is fixed when we condition on D;, we have

Lo(61)

Eo-[Tn(07) | D1] =Eo- |:£0(9*) D

1| <L [6]
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Now, using Markov’s inequality,

Py« (0" ¢ C,,) = Py~ (Tn(Q*) > é)ﬁaEQ*[an*)} [7]
_ o(61) Lo(6))
=0 | ooy | T OB <E [£o<9*> o )
<a.

Remark 2: The parametric setup adopted above generalizes easily
to nonparametric settings as long as we can calculate a likeli-
hood. For a collection of densities P, and a true density p* € P,
suppose we use D; to identify D1 € P and Dy to calculate

p1

1€ Do

We then define C,,:={peP: T.(p)<1/a}, and our previous
argument ensures that Py« (p* € Cp) >1—«

A Universal Hypothesis Test. Now we turn to hypothesis testing.
Let ©¢ C © be a possibly composite null set and consider testing

Hy:0"€0©¢ versus 0" ¢ 0. [8]

The alternative above can be replaced by 0* € ©, for any ©; C ©
or by 6" € ©:\0¢. One way to test this hypothesis is based on
the universal confidence set in Eq. 4. We simply reject the null
hypothesis if C,, [ ©o = 0. It is straightforward to see that if this
test makes a type I error, then the universal confidence set must
fail to cover 6™, and so the type I error of this test is at most .
We present an alternative method that is often computation-

ally (and possibly statistically) more attractive. Let 0, be any
estimator constructed from Dy, and let

50 := argmax Lo(0)
(SIS

be the MLE under Hy constructed from Dy. Then the universal
test, which we call the split likelihood-ratio test (split LRT), is
defined as

reject Hy if U, > 1/, where U, = Eo(ﬂl). [9]
Lo(00)
Similarly, we can define the cross-fit LRT as
swap
reject Ho if W, > 1/, where W,, = %, [10]

where, as before, Uy i

roles of Dy and D;.

is calculated like U, after swapping the

Theorem 3. The split and cross-fit LRTS control the type I error at
Q; i.€., SUPg« e @, Por (Un >1/a) <a.

The proof is straightforward. We prove it for the split LRT,
but once again the cross-fit proof is identical. Suppose that Hy is
true and 6* € ©q is the true parameter. By Markov’s inequality,
the type I error is

Py (Up > 1/a) = P (Lo(él) /Lo(00) > 1 /a)
Lo(61) | ® Lo(6y) | @
fo = offo- [50(9*)]§a

Above, inequality (i) uses the fact that Eo(é\o) > Lo(0") which

Lo(6o)
is true when 6o is the MLE, and inequality (ii) follows by
conditioning on D; as argued earlier in Eq. 7.

< QEQ*
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Remark 4. We may drop the use of ©, ©g, ©1 above and extend
the split LRT to a general nonparametric setup. Both tests can be
used to test any null Hy : p* € Py against any alternative H; : p* €
‘P1. Importantly, no parametric assumption is needed on Py, P1,
and no relationship is imposed whatsoever between Py, P1. As
before, use D to identify p1 € P1, use Dy to calculate the MLE

Po € Po, and define Uy, =TT, ,, 253

We call these procedures universal to mean that they are valid
in finite samples with no regularity conditions. Constructions like
this are reminiscent of ideas used in sequential settings where
an estimator is computed from past data and the likelihood is
evaluated on current data; we expand on this in Section 7.

We note in passing that another universal set is the following.
Define C = {0: [, L(¢)dII(y))/L(6) <1/a}, where L is the full
likelihood (from all of the data) and II is any prior. This also
has the same coverage guarantee but requires specifying a prior
and doing an integral. In irregular or nonparametric models, the
integral will typically be intractable.

Perspective: Poor Man's Chernoff Bound. At first glance, the reader
may worry that Markov’s inequality seems like a weak tool to use,
resulting in an underpowered conservative test or confidence
interval. However, this is not the right perspective. One should
really view our proof as using a “poor man’s Chernoff bound.”

For a regular model, we would usually compare the log-
likelihood ratio to the (1 — «) quantile of a x* distribution (with
degrees of freedom related to the difference in dimensionality
of the null and alternate models). Instead, we compare the log-
split-likelihood ratio to log(1/«), which scales like the (1 — «)
quantile of a x? distribution with one degree of freedom.

In any case, instead of finding the asymptotic distribution of
log U, (usually having a moment-generating function, like a x*),
our proof should be interpreted as using the simpler but non-
trivial fact that Eg«[e!°5(U»)] < 1. Hence we are really using the
fact that log U,, has an exponential tail, just as an asymptotic
argument would.

A true Chernoff-style bound for a x> random variable would
have bounded Eg-~ [¢®'°8(Y")] by an appropriate function of a and
then optimized over the choice of a > 0 to obtain a tight bound.
Our methods correspond to choosing a = 1, leading us to call the
technique a poor man’s Chernoff bound. The key point is that
our methods should be viewed as using Markov’s inequality on
the exponential of the random variable of interest.

Perspective: In-Sample versus Out-of-Sample Likelihood. We may
rewrite the universal set as

Cn= {96@: 2log 6:00(((9\91)) <210g(1/a)}.

For a regular model, it is natural to compare the above expres-
sion to the usual LRT-based set A,, from Eq. 1. At first, it may
visually seem like the LRT-based set uses the threshold cq,q,
while the universal set uses 2log(1/a) which is much smaller
in high dimensions. However, a key point to keep in mind is
that comparing the numerators of the test statistics in both cases,
the classical likelihood-ratio set uses an in-sample likelihood and
the split LRS confidence set uses an out-of-sample likelihood.
Hence, simply comparing the thresholds does not suffice to draw
a conclusion about the relative sizes of the confidence sets. We
next check that for regular models, the size of the universal set
indeed shrinks at the right rate.

2. Sanity Check: Regular Models

Although universal methods are not needed for well-behaved
models, it is worth checking their behavior in these cases. We

16882 | www.pnas.org/cgi/doi/10.1073/pnas.1922664117

expect that C,, would not have optimal size but we would hope
that it still shrinks at the optimal rate. We now confirm that this
is true.

Throughout this example we treat the dimension as a fixed
constant before subsequently turning our attention to an exam-
ple where we more carefully track the dependence of the confi-
dence set diameter on dimension. In this and subsequent sections
we use standard stochastic order notation for convergence in
probability o, and boundedness in probability O, (7). We make
the following regularity assumptions (see for instance ref. 7 for a
detailed discussion of these conditions):

1) The statistical model is identifiable; i.e., for any 6 # 0~ it is
the case that Py # Py~. The statistical model is differentiable
in quadratic mean (DQM) at 6%; i.e., there exists a function
s+ such that

=0(||0—0"|), as 6 — 6.

2) The parameter space © CR? is compact, and the log-
likelihood is a smooth function of ; i.e., there is a measurable
function ¢ with sup, Pyf? < oo such that for any 6;, 0> € ©

| log po, (z) —log pe, (z) < £(z)[|61 — b2 -

3) A consequence of the DQM condition is that the Fisher
information matrix

](9*) =g~ [59* 897;]

is well defined, and we assume it is nondegenerate.

Under these conditions the optimal confidence set has
(expected) diameter O(1/4/n). Our first result shows that the
same is true of the universal set, provided that the initial esti-
mate 8 is \/n consistent; i.e., ||6; — 8%|| = O,(1/1/n). Under the
conditions of our theorem, this consistency condition is satisfied
when 6, is the MLE but our result is more generally applicable.

Theorem 5. Suppose that 0, is a \/n-consistent estimator of 6.
Under the assumptions above, the split LRT confidence set has
diameter O, (+/log(1/a)/n).

A proof of this result is in ST Appendix. At a high level, to
bound the diameter of the split LRT set it suffices to show that
for any 6 sufficiently far from 6~, it is the case that

Lo(0)

— < a.
Lo(01)

To establish this, note that we can write this condition as

Lo(0) Lo(60%)
lo +lo — <log(a).
B Lol0) T8 7 D S g(c)

Bounding the first term requires showing if we consider any 6
sufficiently far from 6, its likelihood is small relative to the
likelihood of 6*. We build on the work of Wong and Shen (8)
who provide uniform upper bounds on the likelihood ratio under
technical conditions which ensure that the statistical model is not
too big. Conversely, to bound the second term we need to argue

that if 8, is sufficiently close to 6*, then it must be the case that
their likelihoods cannot be too different. This in turn follows by
exploiting the DQM condition.

Wasserman et al.
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Analyzing the Nonparametric Split LRT. While our previous result
focused on the diameter of the split LRT set in parametric prob-
lems, similar techniques also yield results in the nonparametric
case. In this case, since we have no underlying parameter space,
it will be natural to measure the diameter of our confidence set
in terms of some metric on probability distributions. We consider
bounding the diameter of our confidence set in the Hellinger
metric. Formally, for two distributions P and @ the (squared)
Hellinger distance is defined as

n(P.Q)= [ (Var-Vaa),

We will also require the use of the x? divergence given by

(P, Q):/(%—QW,

assuming that P is absolutely continuous with respect to Q.
Roughly, and analogous to our development in the parametric
case, to bound the diameter of the split LRT confidence set, we
need to ensure that our statistical model P is not too large and
further that our initial estimate p; is sufficiently close to p*.

To measure the size of P we use its Hellinger bracket-
ing entropy. Denote by log N(u,F) the Hellinger bracketing
entropy of the class of distributions F where the bracketing func-
tions are separated by at most u in the Hellinger distance (we
refer to ref. 8 for a precise definition). We suppose that the
bracketing entropy of P is not too large; i.e., for some €, >0
we have that for some constant ¢ > 0,

/6" VIog(N(w, P))du < ev/ne. [11]

Although we do not explore this in detail, we note in passing
that the smallest value ¢, for which the above condition is sat-
isfied provides an upper bound on the rate of convergence of the
nonparametric MLE in the Hellinger distance (8). To character-
ize the quality of 71 we use the x? divergence. Concretely, we
suppose that

X (0", P1) < Op(12). [12]

Theorem 6. Under conditions Eqgs. 11 and 12, the split LRT confi-
dence set has Hellinger diameter upper bounded by Oy, (1, + €5 +

Vlog(1/a)/n).

Comparing LRT to Split LRT for the Multivariate Normal Case. In the
previous calculation we treated the dimension of the parame-
ter space as fixed. To understand the behavior of the method
as a function of dimension in the regular case, suppose that
Yi,..., Vi~ Ng(0, 1), where 6 € R%. Recalling that we use cq,q
and z, to denote the upper o quantiles of the x2 and standard
Gaussian, respectively, the usual confidence set for 6 based on
the LRT is

—Jo. 116 - 7I? < Coud
An={0:10-7)" < 22}
:{9: |6’_Y|2<d—&—\/dea—i—o(\/g)}7

n

where the second form follows from the normal approximation
of the x?3 distribution. For the universal set, we use the sample

average from D, as our initial estimate 0:. Denoting the sample
means Y1 and Yo we see that

Cn={0: log Lo(Y1) —log Lo(#) <log(1/a)},

Wasserman et al.

which is the set of 6 such that

(%) 7o —271||2 H(2) ||0—270||2 <log (é)

In other words, we may rewrite

_ 4 1 .
an{ﬁ: 16— Yol” < = log (7>+||y0— y1||2}.
n (0%

Next, note that |[Yo — V1||” = O,(d/n), so both sets have radii
0, (d/n). Precisely, the squared radius R2 of C,, is

g2 4 4log(l/a) + x5
" n

4log(1/a)+4 d++v32d Z + 0,(Vd)

’
n

1ES

where Z is an independent standard Gaussian. So both their
squared radii share the same scaling with d and n, and for large d
and constant «, the squared radius of C,, is about 4 times larger
than that of A4,,.

3. Examples

Mixture Models. As a proof of concept, we do a small simulation
to check the type I error and power for mixture models. Specifi-
cally, let Y3, ..., Y2, ~ P, where Y; € R. We want to distinguish
the hypotheses in Eq. 2. For this brief example, we take ky =1
and k =2.

Finding a test that provably controls the type I error at a given
level has been elusive. A natural candidate is the likelihood-ratio
statistic but, as mentioned earlier, this has an intractable limit-
ing distribution. To the best of our knowledge, the only practical
test for the above hypothesis with a tractable limiting distribu-
tion is the EM test due to ref. 4. This very clever test is similar
to the likelihood-ratio test except that it includes some penalty
terms and requires the maximization of some of the parame-
ters to be restricted. However, the test requires choosing some
tuning parameters and, more importantly, it is restricted to one-
dimensional problems. There is no known confidence set for
mixture problems with guaranteed coverage properties. Another
approach is based on the bootstrap (5) but there is no proof of
the validity of the bootstrap for mixtures.

Fig. 1 shows the power of the test when n =200 and 0, is
the MLE under the full model M. The true model is taken
to be (1/2)¢(y; —p, 1)+ (1/2)p(y; p, 1), where ¢ is a normal
density with mean g and variance 1. The null corresponds to
©=0. We take a=0.1 and the MLE is obtained by the EM
algorithm, which we assume converges on this simple problem.
Understanding the local and global convergence (and noncon-
vergence) of the EM algorithm to the MLE is an active research
area but is beyond the scope of this paper (refs. 9-11 and refer-
ences therein). As expected, the test is conservative with type I
error near 0 but has reasonable power when > 1.

Fig. 1 also shows the power of the bootstrap test (5). Here,
the P value is obtained by bootstrapping the LRS under the esti-
mated null distribution. As expected, this has higher power than
the universal test since it does not split the data. In this simu-
lation, both tests control the type I error, but unfortunately the
bootstrap test does not have any guarantee on the type I error,
even asymptotically. The lower power of the universal test is the
price paid for having a finite-sample guarantee. It is also worth
noting that the bootstrap test requires running the EM algorithm
for each bootstrap sample while the universal test requires only
one EM run.

Model Selection Using Sieves. Sieves are a general approach to
nonparametric inference. A sieve (12) is a sequence of nested

PNAS | July21,2020 | vol. 117 | no.29 | 16883
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Fig. 1. The plot shows the power of the universal/bootstrap (black/red)
tests for a simple Gaussian mixture, as the mean-separation p varies (u =0
is the null). The sample size is n =200 and the target level is « =0.1.

models Py C P2 C - - -. If we assume that the true density p™ is in
‘P; for some (unknown) j, then universal testing can be used to
choose the model. One possibility is to test H;: p* € P; one by
one for j=1,2,.... We reject H; if

A] 1}/1',
I 5wy >

1€ Do

where p; is the MLE in model P;. Then we take j to be the
first j such that Hj is not rejected and proclaim that p* € P; for
some j > j. Even though we test multiple different hypotheses

and stop at a random 7, this procedure still controls the type I
error, meaning that

Py« (p* 67)571) <a,

meaning that our proclamation is correct with high probability.
The reason we do not need to correct for multiple testing is
because a type I error can occur only once we have reached the
first 5 such that p* € P;.

A simple application is to choose the number of mixture
components in a mixture model, as discussed in the previous
example. Here are some other interesting examples in which
the aforementioned ideas yield valid tests and model selection
using sieves: 1)testing the number of hidden states in a hidden
Markov model (the MLE is computable using the Baum-Welch
algorithm), 2) testing the number of latent factors in a factor
model, and 3) testing the sparsity level in a high-dimensional
linear model Y =X B+ ¢ (under Hy: S is k sparse, the MLE
corresponds to best-subset selection).

Whenever we can compute the MLE (specifically, the likeli-
hood it achieves), then we can run our universal test, and we can
do model selection using sieves. We will later see that an upper
bound of the maximum likelihood suffices and is sometimes
achievable by minimizing convex relaxations of the negative
log-likelihood.

Nonparametric Example: Shape-Constrained Inference. A density p
is log-concave if p = e? for some concave function g. Consider

16884 | www.pnas.org/cgi/doi/10.1073/pnas.1922664117

testing Ho: p is log-concave versus H;: p is not log-concave.
Let P be the set of log-concave densities and let po denote
the nonparametric maximum-likelihood estimator over Py com-
puted using Do (13) which can be computed in polynomial time
(14). Let p; be any nonparametric density estimator such as
the kernel density estimator (15) fitted on D;. In this case, the
universal test is to reject Hy when

I1

i€Dg

(Y 1
o)

Dol a

To the best of our knowledge this is the first test for this problem
with finite-sample guarantee. Under the assumption that p € Po,
the universal confidence set is

Cn—{pe%: H p(Yi)>a H ﬁl(Yi)}

1€ Dy i€ Do

While the aforementioned test can be efficiently performed, the
set C, may be hard to explicitly represent, but we can check
whether a distribution p € C, efficiently.

Positive Dependence (Multivariate Total Positivity of Order 2). The
split LRT solves a variety of open problems related to testing
for a general notion of positive dependence called multivariate
total positivity of order 2 (MTP3) (16). The convex optimization
problem of maximum-likelihood estimation in Gaussian mod-
els under total positivity was recently solved (17), but in ref.
17, example 5.8 and the following discussion, they state that the
testing problem is still open. Given data from a multivariate dis-
tribution p, consider testing Ho:p is Gaussian MTP» against
H, : p is Gaussian (or an even more general alternative). Since
proposition 2.2 in ref. 17 shows that the MLE under the null can
be efficiently calculated, our universal test is applicable.

In fact, calculating the MLE in any MTP> exponential fam-
ily is a convex optimization problem (ref. 18, theorem 3.1), thus
making a test immediately feasible. As a particularly interesting
special case, ref. 18, section 5.1 provides an algorithm for com-
puting the MLE for MTP; Ising models. Testing Hp : p is Ising
MTP; against H; : p is Ising is stated as an open problem in ref.
18, section 6, and is solved by our universal test. (We remark that
even though the MTP, MLE is efficiently computable, evaluat-
ing the maximum likelihood in the Ising case may still take O(2)
time for a d-dimensional problem.)

Finally, MTP, can be combined with log-concavity, unit-
ing shape constraints and dependence. General existence and
uniqueness properties of the MLE for totally positive log-
concave densities have been recently derived (19), along with
efficient algorithms to compute the MLE. Our methods imme-
diately yield a test for Hy : p is MTP3 log-concave against H; : p
is log-concave.

All of the above models were singular, and hence the LRS
has been hard to study. In some cases, its asymptotic null dis-
tribution is known to be a weighted sum of x* distributions,
where the weights are rather complicated properties of the dis-
tributions (usually unknown to the practitioner). In contrast, the
split LRT is applicable without assumptions, and its validity is
nonasymptotic.

Independence versus Conditional Independence. Consider data that
are trivariate vectors of the form (X1, X2,, X3;) which are mod-
eled as trivariate normal. The goal is to test Hy: X; and X»
are independent versus H; : X; and X, are independent given
Xs. The motivation for this test is that this problem arises in
the construction of causal graphs. It is surprisingly difficult to
test these nonnested hypotheses. Indeed, Guo and Richardson
(20) study carefully the subtleties of the problem and they show
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that the limiting distribution of the LRS is complicated and can-
not be used for testing. They propose a new test based on a
concept called envelope distributions. Despite the fact that the
hypotheses are nonnested, the universal test is applicable and can
be used quite easily for this problem. Further, one can also flip
Hj and H; and test for conditional independence in the Gaussian
setting as well. We leave it to future work to compare the power
of the universal test and the envelope test.

Cross-Fitting Can Beat Splitting: Uniform Distribution. In all previ-
ous examples, the split LRT is a reasonable choice. However,
in this example, the cross-fit approach easily dominates the
split approach. Note that this is a case where we would not
recommend our universal tests since there are well-studied stan-
dard confidence intervals in this model. The example is just
meant to bring out the difference between the split and cross-fit
approaches.

Suppose that pg is the uniform density on [0, §]. Let us take
51 to be the MLE from D;. Thus, 51 is tlie maximurE of the
data points in D;. Now Lo(0) =0""1(0 > 6y), where 6y is the
maximum of the data points in Dy. It follows that C,, = [0, co)
whenever 6, < 6, which happens with probability 1/2. The set
Cn has the required coverage but is too large to be useful. This
happens because the densities have different support. A similar
phenomenon occurs when testing Hy:0 < A versus Hy :0 € RT
for some fixed A >0, but not when testing against H; : 0 > A.
One can partially avoid this behavior by choosing 6, to not be
the MLE. However, the simplest way to avoid the degeneracy is
to use the cross-fit approach, where we swap the roles of Dy and
Dy, and average the resulting test statistics. Exactly one of two
test statistics will be 0, and hence the average will be nonzero.
Further, it is easy to show that this test and resulting interval
are rate optimal, losing a constant factor due to data splitting
over the standard tests and interval constructions. In more detail,
the classical (exact) pivotal 1 — « confidence interval for 6 is

Csy = [5 5(1/@)1/(2">] where 8 is the maximum of all of the data
points. On the other hand, for 01,90 defined above, assuming
without loss of generality that 0o < 0y a direct calculation shows

that the cross-fit interval takes the form C, = [00, 91(2/a)1/"].
Ignoring constants, both these intervals have expected length
O(flog(1/a)/n).

4. Derandomization

The universal method involves randomly splitting the data and
the final inferences will depend on the randomness of the split.
This may lead to instability, where different random splits pro-
duce different results; in a related context, this has been called
the “P-value lottery” (21).

We can get rid of or reduce the variability of our infer-
ences, at the cost of more computation by using many splits,
while maintaining validity of the method. The key property
that we used in both the universal confidence set and the split
LRT is that Eg«[T,] <1, where T, :.co@)/co(é). Imagine
that we obtained B such statistics Th,1 ..., T, p With the same
property. Let

Then we still have that Eg«[T,] <1 and so inference using our
universal methods can proceed using the combined statistic T,.
Note that this is true regardless of the dependence between the
statistics.

Using the aforementioned idea, we can immediately design
natural variants of the universal method:
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e K-fold. We can split the data once into 2 < K < n folds. Then
repeat the following K times: Use K — 1 folds to calculate

6, and evaluate the likelihood ratio on the last fold. Finally,
average the K statistics. Alternatively, we could use onefold

to calculate 6; and evaluate the likelihood on the other K — 1
folds.

e Subsampling. We do not need to split the data just once into
K folds. We can repeat the previous procedure for repeated
random splits of the data into K folds. We expect this to reduce
variance that arises from the algorithmic randomness.

e All splits. We can remove all algorithmic randomness by
considering all possible splits. While this is computationally
infeasible, the potential statistical gains are worth studying.

We remark that all these variants allow a large amount of

flexibility. For example, in cross-fitting, 9 need not be used the
same way in both splits: It could be the MLE on one split, but a
Bayesian estimator on another split. This flexibility could be use-
ful if the user does not know which variant would lead to higher
power in advance and would like to hedge across multiple natu-
ral choices. Similarly, in the K-fold version, if a user is confused
whether to evaluate the likelihood ratio on onefold or on K — 1
folds, then the user can do both and average the statistics.

Of course, with such flexibility comes the risk of an analyst
cherry picking the variant used after looking at which form of
averaging results in the highest LR (this would correspond to
taking the maximum instead of the average of multiple variants),
but this is a broader issue. For this reason (and this reason alone),
the cross-fitting LRT proposed initially may be a useful default
in practice, since it is both conceptually and computationally
simple. We have already seen that (twofold) cross-fit inference
improves over split inference drastically in the case of the uni-
form distribution discussed in the previous section. We leave a
more detailed theoretical and empirical analysis of the power of
these variants to future work.

5. Extensions

Profile Likelihood and Nuisance Parameters. Suppose that we are
interested in some function ¢ = ¢(6). Let

B.={v: .9 () #0},

where we define g~ '(v)) ={6: g(6) =¢}. By construction, B,
is a 1 — a confidence set for . Defining the profile-likelihood
function

Li)= sup Lo(0), [13]
6: g(6)=v
we can rewrite B,, as
Lo(6y) 1
B,=<1v: <= 5. [14]
{ Li() a}

In other words, the same data-splitting idea works for the pro-
file likelihood too. As a particularly useful example, suppose
6= (0.,0,), where 6, is a nuisance component; then we can
define ¢(0) = 0, to obtain a universal confidence set for only the
component §,, we care about.

Upper Bounding the Null Maximum Likelihood. Computing the
MLE and/or the maximum likelihood (under the null) is some-
times computationally hard. Suppose one could come up with a
relaxation Fy of the null likelihood Lo. This should be a proper
relaxation in the sense that

max Fo(0) > max Lo(6).
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For example, £y may be defined as —oo outside its domain, but
Foy could extend the domain. As another example, instead of
minimizing the negative log-likelihood which could be noncon-
vex and hence hard to minimize, we could minimize a convex
relaxation. In such settings, define

Oy := argmax Fy(0).
9

If we define the test statistic

Lo(61)

T, =
Fo(65)

then the split LRT may proceed using T, instead of T,. This is
because Fy(63) > Lo(6o), and hence T, < T),.

One particular case when this would be useful is the fol-
lowing. While discussing sieves, we had mentioned that testing
the sparsity level in a high-dimensional linear model involves
solving the best subset selection problem, which is nondeter-
ministic polynomial-time hardness in the worst case. There exist
well-known quadratic programming relaxations that are more
computationally tractable. Another example is testing whether a
random graph is a stochastic block model, for which semidefinite
relaxations of the MLE are well studied (22); similar situa-
tions arise in communication theory (23) and angular synchroni-
zation (24).

The takeaway message is that it suffices to upper bound the
maximum likelihood to perform inference.

Robustness via Powered Likelihoods. It has been suggested by
some authors (25-29) that inferences can be made robust by
replacing the likelihood £ with the power likelihood £7 for some

0 <n < 1. Note that
Lo(6: ) ] 1 /
yz
( EO( i€ Do
and hence all of the aforementioned methods can be used with

the robustified likelihood as well. (The last inequality follows
because the n-Renyi divergence is nonnegative.)

0 yz)dy, <1,

Smoothed Likelihoods. Sometimes the MLE is not consistent or
it may not exist since the likelihood function is unbounded, and
a (doubly) smoothed likelihood has been proposed as an alter-
native (30). For simplicity, consider a kernel k(z, y) such that
[ k(z,y)dy =1 for any z, for example a Gaussian or Laplace
kernel. For any density py, let its smoothed version be denoted

Po(y) = /k(x,y)pe(x)dz.

Note that py is also a probability density. Denote the smoothed
empirical density based on Dy as

P = |Do| 2 K

1€ Do

Define the smoothed maximum-likelihood estimator as the
Kullback-Leibler (KL) projection of p,, onto {Ps }oco,,

0o := arg min K (n, Po),

where K (P, Q) denotes the KL divergence between P and Q. If
we define the smoothed likelihood on Dy as

Lo(6 H exp/k Xi,y)log po(y)dy,

1€ Do

16886 | www.pnas.org/cgi/doi/10.1073/pnas.1922664117

then it can be_checked that 6y maximizes the smoothed likeli-
hood; that is, 0o = arg maxeco, Lo(0). As before, let 6, € © be
any estimator based on D;. The smoothed split LRT is defined
analogous to Eq. 9 as

reject Hy if U > 1/, where Un= ﬁ. [15]

Lo(6o)

™

We now verify that the smoothed split LRT controls type I error.
First, for any fixed ¢ € ©, we have

£ [go@ O, C:o(l/})}
50(90) L (9*)

Py (y) () da

-1/ exp</ o) ton ZE L) o (0

2 (J B

-/ (—f'f O ),

o= (y)
— [ oyt

Above, step (i) is because 6y maximizes the smoothed likelihood,
and step (ii) follows by Jensen’s inequality. An argument mimick-
ing Egs. 6 and 7 completes the proof. As a last remark, similar to
the unsmoothed case, note that upper bounding the smoothed
maximum likelihood under the null also suffices.

Conditional Likelihood for Non-i.i.d. Data. Our presentation so far
has assumed that the data are drawn i.i.d. from some distribution
under the null. However, this is not really required (even under
the null) and was assumed for expositional simplicity. All that
is needed is that we can calculate the likelihood on Dy condi-
tional on D, (or vice versa). For example, this could be tractable
in models involving sampling without replacement from an urn
with M > n balls. Here 6 could represent the unknown num-
ber of balls of different colors. Such hypergeometric sampling
schemes result in non-i.i.d. data, but conditional on one sub-
set of data (for example how many red, green, and blue balls
were sampled from the urn in that subset), one can evaluate the
conditional likelihood of the second half of the data and max-
imize it, rendering it possible to apply our universal tests and
confidence sets.

6. Misspecification and Convex Model Classes

There are some natural examples of convex model classes (31,
32), including 1) all mixtures (potentially infinite) of a set of
base distributions, 2) distributions with the first moment spec-
ifiled/bounded and possibly other moments bounded (e.g., first
moment equals zero, second moment bounded by one), 3) the set
of (coordinate-wise) monotonic densities with the same support,
4) unimodal densities with the same mode, 5) densities that are
symmetric about the same point, 6) distributions with the same
median or multiple quantiles (e.g., median = 0, 0.9 quantile = 2),
7) the set of all K-tuples (P41, ..., Pk) of distributions satisfying
a fixed partial stochastic ordering (e.g., all triplets (P1, P2, Ps3)
such that P; < P> and P; < Ps3, where < is the usual stochas-
tic ordering), and 8) the set of convex densities with the same
support. Some cases like 6) and 7) also result in weakly closed
convex sets, as does case 2) for a specified mean. (Several of
these examples also apply in discrete settings such as constrained
multinomials.)
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It is often possible to calculate the MLE over these convex
model classes using convex optimization; for example see refs.
33 and 34 for case 7). This renders our universal tests and confi-
dence sets immediately applicable. However, in this special case,
it is also possible to construct additional tests, and the univer-
sal confidence set has some nontrivial guarantees if the model is
misspecified.

Model Misspecification. Suppose the data come from a distribu-
tion @ with density g ¢ Pe = {p¢ }sco, meaning that the model
is misspecified and the true distribution does not belong to
the considered model. In this case, what does the universal
set C, defined in Eq. 4 contain? We will answer this question
when the set of measures/densities Pe is convex. Define the
Kullback-Leibler divergence of ¢ from Pe as

K(q,Pe):= GiggK(q,pe)-

Following definition 4.2 in Li’s (31) PhD thesis, a function p* =
P,—e is called the reversed information projection (RIPR) of ¢
onto Pe if for every sequence p, with K (g, prn) = K(g,Pe), we
have log p,, — log p* in L'(Q). Theorem 4.3 in ref. 31 proves that
p* exists and is unique, satisfies K (¢, p*) = K (g, Pe ), and

po(Y)
V0eO, Ey., |:p*(Y):|§1. [16]

The above statement can be loosely interpreted as “if the data
come from ¢ ¢ Pe, its RIPR p* will have higher likelihood
than any other model in expectation.” We discuss this condition
further at the end of this subsection.

It might be reasonable to ask whether the universal set con-
tains p*. For various technical reasons (detailed in ref. 31) it is
not the case, in general, that p* belongs to the collection Pe.
Since the universal set considers densities in Pe only by con-
struction, it cannot possibly contain p* in general. However,
when p* is a density in Pe, then it is indeed covered by our
universal set.

Proposition 7. Suppose that the data come from q ¢ Pe. If Pe is
convex and there exists a density p* € Po such that K(q,p*) =
infoco K(q, po), then we have Py(p* € Cp) >1—cu

The proof is short. Examining the proof of Theorem 1, we must
simply verify that for each ¢ € Doy, we have

g, (Yi)
p*(Yi)

q

=

which follows from Eq. 16. Here is a heuristic argument for why
Eq. 16 holds when p* € Pe. For any 6 € ©, note that K (¢, Pe) =
K(q,p") =minge,1) K(q,ap™ 4 (1 —a)ps) since Pe is con-
vex. The Karush-Kuhn-Tucker condition for this optimization
problem is that gradient with respect to « is negative at a =1
(the minimizer). Exchanging derivative and integral immediately
yields Eq. 16. This argument is formalized in ref. 31, chap. 4.

An Alternate Split LRT (RIPR Split LRT). We return back to the well-
specified case for the rest of this paper. First note that the fact in
Eq. 16 can be rewritten as

q(Y)
Vo€ O, Eynp, [p*(y)}g, [17]

which is informally interpreted as “if the data come from pg, then
any alternative ¢ ¢ Pe will have lower likelihood than its RIPR
p* in expectation.” This motivates the development of an alter-
nate RIPR split LRT to test composite null hypotheses that is
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defined as follows. As before, we divide the data into two parts,

Do and Ds, and let 0, € ©; be any estimator found using only D;.
Now, define pg to be the RIPR of pj; onto the null set {po oco,-

The RIPR split LRT rejects the null if

g, (Vi)
R, = H pe*(Yz) >1/a.

ieDy ©0

The main difference from the original MLE split LRT is that

earlier we ignored 0, and simply calculated the MLE 8o under
the null based on Dy.

Proposition 8. If {pyg}eco is a convex set of densities, then
SUPg, e, oo (Rn >1/a) <o

The fact that pg is potentially not an element of {pg }oco, does
not matter here. The validity of the test follows exactly the same
logic as the MLE split LRT, observing that Eq. 17 implies that
for any true 6 € ©¢, we have

pg, (Vi)
po (Vi)

Po*

Without sample splitting and with a fixed alternative distribution,
the RIPR LRT has been recently studied (35). When Pg is con-
vex and the RIPR split LRT is implementable, meaning that it
is computationally feasible to find the RIPR or evaluate its like-
lihood, then this test can be more powerful than the MLE split
LRT. Specifically, if the RIPR is actually a density in the null
set, then

g, (Vi) g, (Vi)
R, = *1 > L = U,
igo P (Vi) igﬁ P, (Vi)

since @y maximizes the denominator among null densities.
Because of the restriction to convex sets, and since there exist
many more subroutines to calculate the MLE over a set than to
find the RIPR, the MLE split LRT is more broadly applicable
than the RIPR split LRT.

7. Anytime P Values and Confidence Sequences

Just like the sequential likelihood-ratio test (36) extends the
LRT, the split LRT has a simple sequential extension. Sim-
ilarly, the confidence set can be extended to a “confidence
sequence” (37).

Suppose the split LRT failed to reject the null. Then we are
allowed to collect more data and update the test statistic (in a
particular fashion) and check if the updated statistic crosses 1/c.
If it does not, we can further collect more data and reupdate the
statistic, and this process can be repeated indefinitely. Impor-
tantly we do not need any correction for repeated testing; this
is primarily because the statistic is upper bounded by a nonnega-
tive martingale. We describe the procedure next in the case when
each additional dataset is of size one, but the same idea applies
when we collect data in groups.

The Running MLE Sequential LRT. Consider the following, more
standard, sequential testing/estimation setup. We observe an
iid. sequence Y1, Y2,... from Py-. We want to test the
hypothesis in Eq. 8. Let ;.1 be any nonanticipating estima-
tor based on the first ¢ —1 samples, for example the MLE,
argmaxycg, [1'Z} pe(Y3), or a regularized version of it to avoid
misbehavior at small sample sizes. Denote the null MLE as
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t

é\o,t = argmax H po(Ys).
0€0

At any time t, reject the null and stop if

H::1 Pgy 4 (Yi)

Mt = s
ITio. pgw(Yi)

>1/a.

This test is computationally expensive: We must calculate é\“,l
and 6y, at each step. In some cases, these may be quick to cal-

culate by warm starting from é\“,g and é\o’t,l. For example, the
updates can be done in constant time for exponential families,
since the MLE is often a simple function of the sufficient statis-
tics. However, even in these cases, the denominator takes time
O(t) to recompute at step ¢.

The following result shows that with probability at least 1 — «,
this test will never stop under the null. Let 75 denote the stopping
time when the data are drawn from Py, which is finite only if we
stop and reject the null.

Theorem 9. The running MLE LRT has type I error at most «,
meaning that sup« g, Po+ (Tox < 00) <

The proof involves the simple observation that under the null,
M, is upper bounded by a nonnegative martingale L. with initial
value one. Specifically, define the (oracle) process starting with
Lo:=1 and

T g, (Yi) _
HE:l Po~ ( Yi)

pg,_, (Y1)

L= _— .
' po~ (Y1)

(18]

t—1

Note that under the null, we have M; < L; because é\o,t and
0" both belong to ©g, but the former maximizes the null like-
lihood (denominator). Further, it is easy to verify that L; is
a nonnegative martingale with respect to the natural filtration
Fi=o0(Y1,..., Y:). Indeed,

.7:z1:|

H::l p§z_1 ( Yz)
]:t—l:| = Lt—l,

H;:1 e~ (Vi)
pg,_, (Y1)
where the last equality mimics Eq. 6. To complete the proof, we
note that the type I error of the running MLE LRT is simply
bounded as

Eg«[Li| Fi—1] =Eog= [

=L; 1Eg«

po (Vi

Po«(3teN: My >1/a) < Po«(IteN: Ly > 1/a)
(0]
SEG*[LO] =

where step (i) follows by Ville’s inequality (38, 39), a time-
uniform version of Markov’s inequality for nonnegative super-
martingales.

Naturally, this test does not have to start at ¢ = 1 when only one
sample is available, meaning that we can set Mo=M; =---=
M;, =1 for the first ¢ steps and then begin the updates. Simi-
larly, ¢t need not represent the time at which the ¢th sample was
observed; it can just represent the ¢th recalculation of the esti-
mators (there may be multiple samples observed between ¢t — 1
and t).

Anytime-Valid P Values. We can also get a P value that is uni-

formly valid over time. Specifically, both p; =1/M; and p: =
min,<; 1/ M, may serve as P values.

16888 | www.pnas.org/cgi/doi/10.1073/pnas.1922664117

Theorem 10. For any random time T, not necessarily a stopping
time, supgs cg, Po+ (pr <) <w for z €0, 1].

The aforementioned property is equivalent to the statement
that under the null P(3t € N: p; < a) < «, and its proof follows
by substitution immediately from the previous argument. Natu-
rally p: < p;, but from the perspective of designing a level « test
they are equivalent, because the first time that p, falls below « is
also the first time that p; falls below «. The term “anytime-valid”
is used because, unlike typical P values, these are valid at (data-
dependent) stopping times or even random times chosen post
hoc. Hence, inference is robust to “peeking,” optional stopping,
and optional continuation of experiments. Such anytime P val-
ues can be inverted to yield confidence sequences, as described
below.

Confidence Sequences. A confidence sequence for 6* is an infi-
nite sequence of confidence intervals that are all simultaneously
valid. Such confidence intervals are valid at arbitrary stopping
times and also at other random data-dependent times that are
chosen post hoc. In the same setup as above, but without requir-
ing a null set O, define the running MLE likelihood-ratio
process

T Py 4 (Vi)
H::l pG(Yi) .

Then, a confidence sequence for 6" is given by

Ct = {HRt(O) S 1/0(}

Rt (9) =

In fact, the running intersection Cy=",., C; is also a confi-
dence sequence; note that C; C C;.

Theorem 11. C; and C; are confidence sequences for 6, meaning
that Pe« (3t € N:0" ¢ C;) < o Equivalently, Po= (0" € Cr) >1—
« for any stopping time T, and also Py~ (0" € Cr) > 1 — « for any
arbitrary random time T. ~

The proof is straightforward. First, note that 6* ¢ C; for some
t if and only if 6* ¢ C; for some ¢. Hence,

Po-(3tEN:0" ¢ Cy) = Po- (3t EN: Ri(6°) > 1/a) < a,

where the last step uses, as before, Ville’s inequality for the mar-
tingale R;(6*)= L, from Eq. 18. The fact that the other two
statements in Theorem 11 are equivalent to the first one follows
from recent work (40).

Duality. It is worth remarking that confidence sequences are
dual to anytime P values, just like confidence intervals are dual
to standard P values, in the sense that a (1 —«) confidence
sequence can be formed by inverting a family of level a sequen-
tial tests (each testing a different point in the space), and a level
a sequential test for a composite null set ©¢ can be obtained by
checking whether the (1 — «) confidence sequence intersects the
null set Oq.

In fact, our constructions of p; and C; (without running
minimum/intersection) obey the same property: p: <a only
if CtNOy=10, and the reverse implication follows if O is
closed. To see the forward implication, assume that there exists
some element 6’ € C,NOy. Since 0’ € C,, we have R;(0") <
1/a. Since 0’ € ©g, we have info-co, R:(0*) <1/a. This last
condition can be restated as M;<1/a, which means that
Pt > a.

It is also possible to obtain an anytime P value from a family of
confidence sequences at different «, by defining p; as the smallest
« for which C; = Ci(«) intersects Og.

Extensions. All of the extensions from Section 5 extend immedi-

ately to the sequential setting. One can handle nuisance parame-
ters using profile likelihoods; this for example leads to sequential
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t tests (for the Gaussian family, with the variance as a nui-
sance parameter), which also yield confidence sequences for the
Gaussian mean with unknown variance. Non-i.i.d. data, such as
in sampling without replacement, can be handled using condi-
tional likelihoods, and robustness can be increased with powered
likelihoods. In these situations, the corresponding underlying
process L; may not be a martingale, but a supermartingale.
Also, as before, we may also use upper bounds on the maxi-
mum likelihood at each step (perhaps minimizing convex relax-
ations of the negative log-likelihood) or smooth the likelihood if
needed.

Such confidence sequences have been developed under very
general nonparametric, multivariate, matrix, and continuous-
time settings using generalizations of the aforementioned
supermartingale technique (39-41). The connections between
anytime-valid P values, e values, safe tests, peeking, confidence
sequences, and the properties of optional stopping and con-
tinuation have been explored recently (35, 40, 42, 43). The
connection to the present work is that when run sequentially,
our universal (MLE or RIPR) split LRT yields an anytime-valid
P value, an e value, and a safe test, which can be inverted
to form universal confidence sequences and are valid under
optional stopping and continuation, and these are simply because
the underlying process of interest is bounded by a nonnegative
(super)martingale. This line of research began over 50 y ago
by Darling and Robbins (37), Robbins (44), Robbins and Sieg-
mund (45), and Lai (46, 47). In fact, for testing point nulls, the
running MLE (or nonanticipating) martingale was suggested in
passing by Wald (ref. 48, equation 10:10) and analyzed in depth
by refs. 45 and 49 where connections were shown to the mixture
sequential probability-ratio test. These ideas have been utilized
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