

Cu_xIr_{1-x} Nanoalloy Catalysts Achieve Near 100% Selectivity for Aqueous Nitrite Reduction to NH₃

Hao Li^{1,2‡}, Chenxu Yan^{3,‡}, Hongyu Guo^{1,‡}, Kihyun Shin¹, Simon M. Humphrey^{1,*}, Charles J. Werth^{3,*}, and Graeme Henkelman^{1,2,*}

¹ Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Stop A1590, Austin, Texas 78712, United States

² The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, USA

³ Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Stop C1786, Austin, Texas 78712, USA

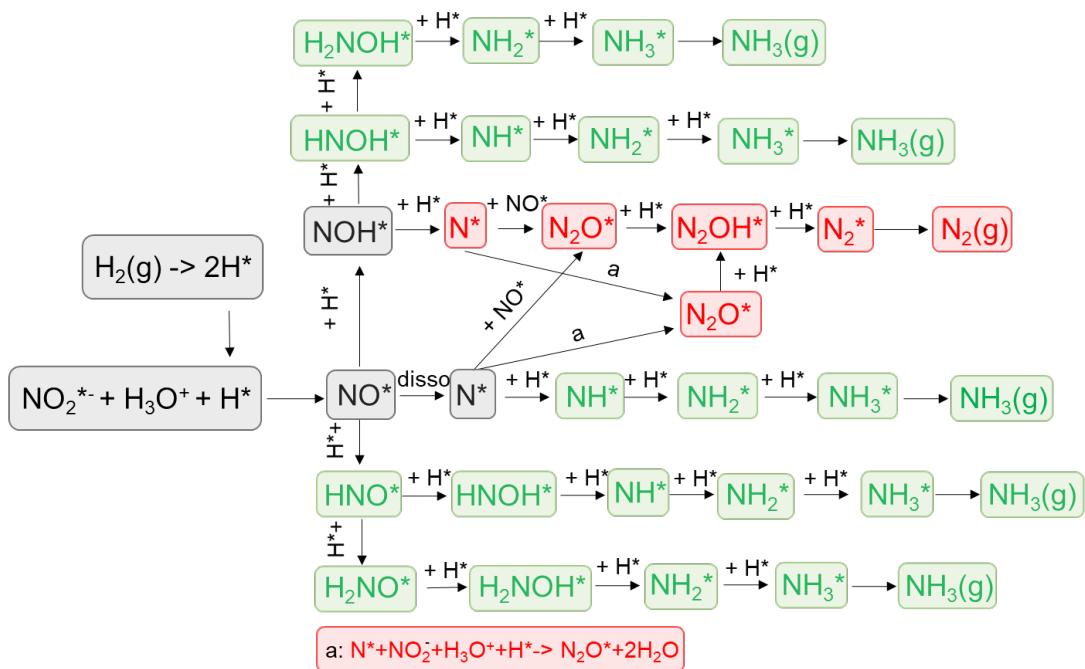
‡ These authors contributed equally.

*Corresponding Authors:

smh@cm.utexas.edu (S.M.H.);

werth@utexas.edu (C.J.W.);

henkelman@utexas.edu (G.H.);


ABSTRACT

Nitrite (NO_2^-) is an abundant contaminant in nature that threatens human health. A catalytic process that converts NO_2^- to less harmful products has been proven to be an effective strategy for NO_2^- removal. Most previous studies, however, targeted selectivity towards N_2 using Pd catalysts, which severely limits the potential for the recovery of value-added byproducts from the catalytic process. Here, we report experimental and theoretical evidence that both Ir and $\text{Cu}_x\text{Ir}_{(100-x)}$ nanoparticles possess near 100% NH_3 selectivity for NO_2^- reduction compared to the <1% NH_3 selectivity achieved by nano-Pd. These NH_3 -selective catalysts could be useful for both water purification and ammonia production.

Keywords: Nitrite reduction; iridium; ammonia selectivity; density functional theory; Cu-Ir alloy; nanoparticles.

Main Text

Nitrite (NO_2^-) is a harmful contaminant widely found in water and soil.¹⁻³ Anthropogenic sources of NO_2^- accumulate in crops and other foods, and in drinking water. Ingestion of NO_2^- leads to the generation of *N*-nitrosamine byproducts, which are proven carcinogens and also damage hemoglobin, leading to cellular degradation and even brain damage in infants.^{4,5} Many countries, therefore have strict regulations on the maximum NO_2^- level in drinking water. However, few cost-effective methods have been identified thus far to effectively abate NO_2^- contamination on an industrial scale.

Figure 1. Catalytic reaction pathways for nitrite reduction with hydrogen gas as the reducing agent. The formation of water in the reactions is not shown.

Catalytic reduction has proven to be a powerful strategy for denitrification in water.⁶ Compared to conventional NO_2^- removal methods (*e.g.*, ion exchange⁷), catalytic degradation holds a number of significant advantages including, less secondary waste, shorter industrial-scale startup times, lower overall energy consumption, and higher NO_2^- removal efficiency.^{6,8,9} However, given the complicated reaction network of nitrite reduction (**Figure 1**), the design and scalable synthesis of NO_2^- reduction catalysts presents a major and as-yet unsolved challenge.⁶

In recent years, several studies have reported effective NO_2^- reduction catalysts for water treatment (**Table 1**). For example, Seraj *et al.* showed that PdAu alloy nanoparticles (NPs) have enhanced nitrite reduction activity as compared to pure Pd NPs.⁸ Qian *et al.* found that Pd precursors directly reduced on pure AuNPs had a much greater activity per gram of Pd for NO_2^- reduction.¹⁰ Recently, a combined theoretical and experimental strategy was employed by our group to design a series of bimetallic core@shell structures (*e.g.*, Au@Pd) that led to a high density of optimized reaction sites on the NP surfaces, leading to a corresponding enhancement in NO_2^- reduction activity.⁹ Until now, Pd-based NPs have been the most commonly studied catalysts for NO_2^- reduction due to their high activities and selectivities toward dinitrogen (N_2) formation, as observed in both experiments^{8,10,11} and calculations^{9,12} (**Table 1**).

In contrast, only a handful of studies have targeted the selectivity of nitrite reduction toward ammonia (NH_3),^{13,14} primarily because of its environmental and human health toxicity (**Table 1**).⁶ Yet, NH_3 is also a crucial precursor to fertilizer production for agriculture (*i.e.*, the Haber-Bosch process¹⁵); NH_3 is also an emerging energy storage material for use in fuel cell technologies.¹⁶⁻¹⁸ Haber-Bosch plants are notoriously energy-intensive, utilizing 1% of total global energy to achieve the necessarily forcing reaction conditions (*i.e.*, $T \sim 450 \text{ }^\circ\text{C}$ & $p \sim 300 \text{ bar}$).¹⁹ Alternative

NH_3 production methods could therefore greatly help to produce this valuable product from waste streams. To the best of our knowledge, no prior studies have reported non-Pd based catalysts that select almost exclusively for NH_3 . One exception is work on electrocatalytic nitrate/nitrite reduction, which has emerged as a promising process for NH_3 production with the goal of using electricity supplied by renewable energy such as solar and wind in order to achieve on-demand production of fertilizers.^{20,21} However, since the hydrogen evolution reaction (HER) is more facile than electrochemical nitrate/nitrite reduction, H_2 gas is lost from these reactors and the Faradic efficiencies are low; as a result, this process has not yet met the requirements for industrial-scale applications.²² Another exception is a recently developed Rh/ Al_2O_3 catalyst, but it was only evaluated at $\text{pH} = 11.5$.²³ Higher pH favors NH_3 selectivity due to competitive adsorption of OH^- over nitrite that lowers the N:H ratio on the catalyst surface, making N-N pairing less likely and therefore selecting towards NH_3 .²⁴ Additionally, the use of an Al_2O_3 support could also contribute to the NH_3 selectivity.²⁵ Therefore, alternative heterogeneous catalysts that can selectively form NH_3 from NO_2^- at near-circumneutral pH with high H_2 gas utilization are currently unknown and have not been investigated in detail.

Table 1. Summary of nitrite reduction catalysts reported in recent years.

Catalyst	Activity	NH_3 Selectivity	Temperature	Reference
Au NPs (~4.4 nm)	Not Active	N/A	22 ± 1 °C	Seraj <i>et al.</i> ⁸
Pd NPs (~14.8 nm)	$1.99 \text{ L g}_{\text{metal}}^{-1} \text{ min}^{-1}$	< 2%	22 ± 1 °C	Seraj <i>et al.</i> ⁸
$\text{Pd}_{53}\text{Au}_{47}$ NPs ^a (~2.2 nm)	$5.12 \text{ L g}_{\text{metal}}^{-1} \text{ min}^{-1}$	< 2%	22 ± 1 °C	Seraj <i>et al.</i> ⁸
$\text{Pd}_{80}\text{Cu}_{20}$ Colloids (~5.0 nm)	$9.8 \text{ L mmol}^{-1} \text{ M h}^{-1}$	0.8%	Room Temperature	Guy <i>et al.</i> ¹¹
80 sc% Pd-on-Au NPs (~4.3 nm)	$576 \text{ L g}_{\text{Pd}}^{-1} \text{ min}^{-1}$	0.4%	N/A	Qian <i>et al.</i> ¹⁰
$\text{Au}@\text{Pd}_{\text{monolayer}}$ NPs (~4.4 nm)	$246 \text{ L g}_{\text{Pd}}^{-1} \text{ min}^{-1}$	2.5%	Room Temperature	Li <i>et al.</i> ⁹
$\text{Pd}@\text{MIL-101}$ ^b (~2.4 nm)	$1.252 \text{ mg}^{0.3} \text{ L}^{-0.3} \text{ min}^{-1}$	7.48%	Room Temperature	Zhang <i>et al.</i> ¹³
Pd-ethanol@MIL-101 ^c	$0.894 \text{ mg}^{0.3} \text{ L}^{-0.3} \text{ min}^{-1}$	0.31%	Room Temperature	Zhang <i>et al.</i> ¹³
Pd-1-dodecanethiol@MIL-101 ^d	$0.546 \text{ mg}^{0.3} \text{ L}^{-0.3} \text{ min}^{-1}$	10.18%	Room Temperature	Zhang <i>et al.</i> ¹³
CNFs/Ni ^e	N/A	~70%	Room Temperature	Espinosa and Lefferts ¹⁴

Rh/Al ₂ O ₃ ^f	~3-24 L g _{metal} ⁻¹ min ⁻¹	~68%-95%	Room Temperature	Clark <i>et al.</i> ²³
--	--	----------	------------------	-----------------------------------

a: Composition measured from inductively coupled plasma optical emission spectrometry (ICP-OES).

b: Pd NPs prepared on a type of metal-organic framework (MIL-101).

c & d: Pd@MIL-101 chelated with (c) ethanol and (d) 1-dodecanethiol, respectively.

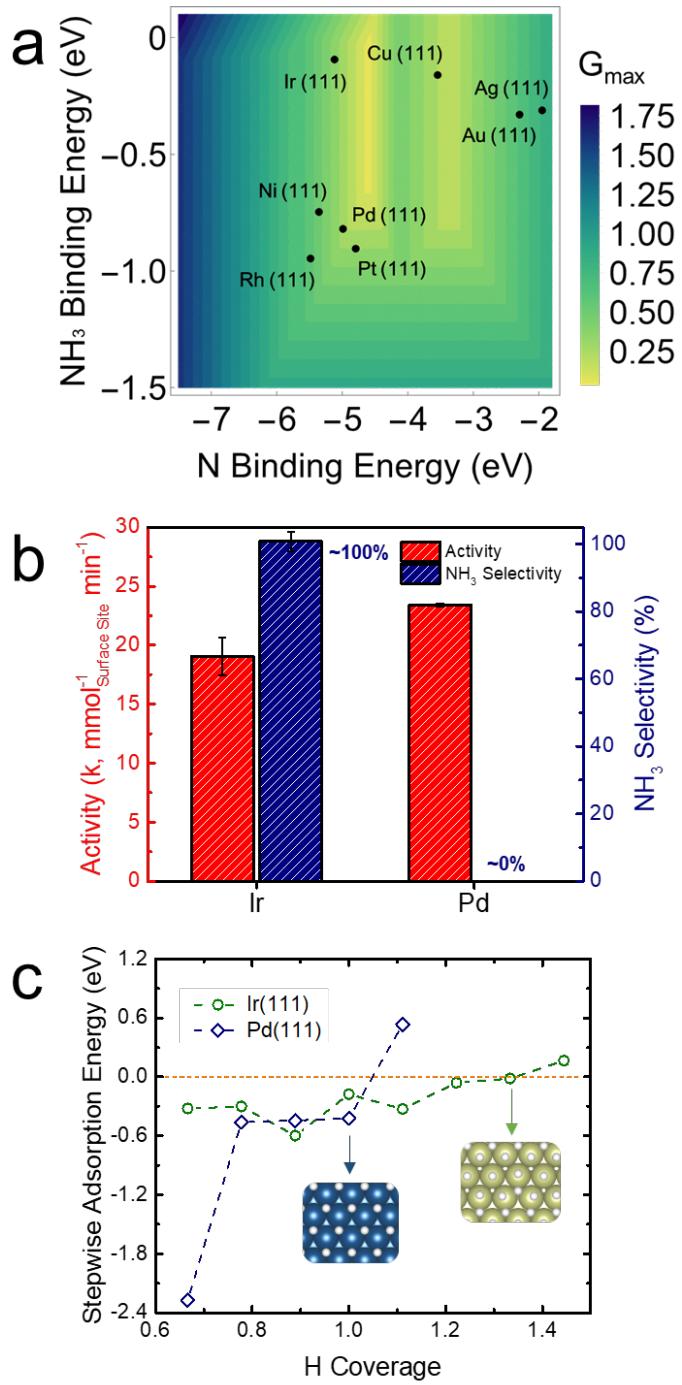
e: Carbon nanofibers (CNFs) grown on the surface of polycrystalline Ni foam.

f: Commercial Rh/Al₂O₃ in a solution with pH measured from 7.5-11.5.

Considering the aforementioned limitations of current NH₃ synthesis methods and the abundance of NO₂⁻ and its parent compound NO₃⁻ in the environment, we are motivated to discover new nitrite reduction catalysts that favor NH₃ over N₂ formation to treat agricultural run-off or groundwater affected by this run-off for ammonia recovery as fertilizer. Although nitrite concentration in these streams might be too low for an economical direct treatment,²⁶⁻²⁹ a selective catalyst that converts NO₂⁻ to NH₃ could be valuable in a two-stage catalytic process which converts the more abundant parent compound NO₃⁻ to NO₂⁻ in the first stage and selectively reduce nitrite to ammonia for recovery in the second stage.³⁰ The NH₃ selective catalyst with the two-stage process could be even more useful to treat high nitrate/nitrite waste brine from current state-of-the-art technologies for nitrate and nitrite removal (*e.g.*, ion exchange and reverse osmosis), which are costly to dispose of.³¹ This process would simultaneously alleviate NO₂⁻ contamination and reduce the cost of agricultural fertilizer and brine disposal. In a previous combined theoretical and experimental study, Shin *et al.*¹² proposed a catalyst design guideline; they suggested that higher NO₂⁻ concentration promotes selectivity toward N₂, whereas a facile supply of H₂ favors selectivity towards NH₃ formation. Inspired by this hypothesis, we have undertaken a systematic search for new nanocatalysts with high H coverages, which should favor NH₃ production from aqueous NO₂⁻. Using a volcano activity model to represent NO₂⁻ reduction towards NH₃ selectivity as a function of catalyst-reagent binding strength, we theoretically

identified for a number of potential NH₃-selective catalysts from a range of transition-metal surfaces that achieve high NO₂⁻ reduction activities and correspondingly high H-coverage at workable H₂ pressures.

More specifically, we have employed density functional theory (DFT) calculations to generate a catalytic model to estimate the activity of NO₂⁻ reduction towards NH₃, where the relative NH₃ selectivity was derived using N and NH₃ binding energies at the catalytic surfaces as reactivity descriptors (**Figure 2a**).⁹ Based on linear scaling realtionships³² between the binding energies of N and other adsorbates (*e.g.*, HNO* and NH*) in this reaction network, it was found that all binding energies of reaction intermediates can be estimated through linear relationships with the N binding energy. Therefore, the reaction free energies can be estimated using the N and NH₃ binding energies together with linear relationships between the binding energy of N and the other relevant adsorbates.⁹ The two peaks found in the volcano plot represent the highest theoretical activity of two pathways (*i.e.*, those with the lowest estimated reaction free energies): the left peak corresponds to the NH₃ formation through a NO dissociative pathway, while the right peak corresponds to the NO associative pathways where the activation of N-O bond occurs after NO hydrogenation (**Figure 1**). Note that the volcano plot of N₂ formation selectivity has the same trend as the NH₃ selectivity volcano,⁹ due to the fact that both reactions have the same rate-determining step. Additionally, while we note that considering the transition states and reaction kinetics in the model can help to acquire a more precise volcano activity plot. However, due to the high computation cost of the energy barrier calculations for nitrite reduction with such a complicated reaction network, and the proven predictive power of the use of reaction free energy for evaluating nitrite reduction activity,^{8,9,11,12,33} the use of reaction free energy is expected to

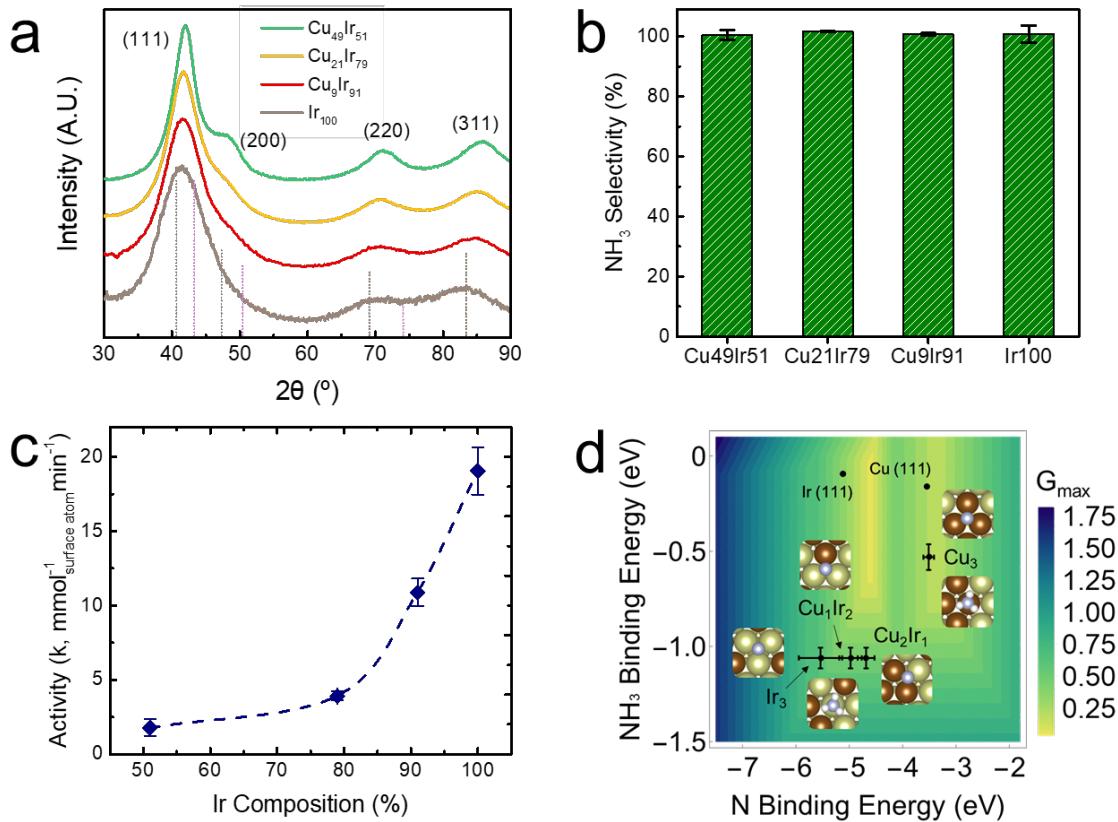

provide an inexpensive descriptor for nitrite reduction catalyst design. By adding the calculated N and NH₃ binding energies of the catalysts on to the volcano plot, we found that some monometallic catalysts have promising NO₂⁻ reduction activities that are close to one of the volcano peaks. It can be clearly seen that, in addition to the well-studied Pd catalysts, there are other promising candidates, such as Ir, that should also have high activities for NO₂⁻ reduction, as they are also close to the volcano peak. It should be noted that this volcano model was not used to predict the competing product selectivities between NH₃ and N₂ due to a lack of information about the complicated co-adsorbate coverage. Instead, the reaction selectivities here are evaluated independently using the models developed by Shin *et al.*¹² Specifically, compared to Pd, Ir has 5d electrons which were found to give rise to different hydrogen adsorption properties on the surface;^{9,34,35} thus, we expect that this difference should lead to a different selectivity in nitrite reduction. To test these predictions, we then used experiments to validate the predictions (*vide infra*).

Based on the predictions gleaned from the volcano model, we first prepared monometallic IrNPs and PdNPs with a similar size (~ 2 nm) and supported them on amorphous silica (*a*-SiO₂) for use in model batch NO₂⁻ reduction experiments. To do so, a 0.1 M phosphate buffer solution (pH = 6.4 ± 0.1) containing 1.25 g L⁻¹ catalyst in a sealed, well-mixed serum bottle was purged with H₂ at 120 cm³ min⁻¹ for 1 h. Next, a small aliquot of nitrite stock solution was spiked into the serum bottle to start the reaction and samples were taken regularly for analysis of NO₂⁻ and NH₃ concentrations using ion chromatography and Hach colorimetric kits. The apparent *pseudo*-first-order rate constants were obtained from the slopes of the linear regression of the natural log of NO₂⁻ concentration *versus* time plots for up to 80% NO₂⁻ conversion. The data were then

normalized to the number of surface metal atoms in each catalyst (using transmission electron microscopy (TEM) data and assuming all NPs have a cuboctahedral shape). The resulting NH₃ selectivity was defined as the percentage of reduced NO₂⁻ that was converted to NH₃. The experimental activity (red bars) and NH₃ selectivity (blue bars) for both IrNPs and PdNPs are shown in **Figure 2b**. The NO₂⁻ reduction activity of IrNPs was 19.1 mmol⁻¹_{surface atom} min⁻¹, similar to that of PdNPs (23.5 mmol⁻¹_{surface atom} min⁻¹). Excitingly, however, despite the close activities of the two metal NPs, the IrNPs exhibited ~100% selectivity towards NH₃ while the NH₃ selectivity of PdNPs was negligible and below the detection limit of the analytical method used (< 0.07%). The slightly higher overall reduction activity of the PdNPs compared to the IrNPs is in good agreement with the theoretical predictions from the volcano model (**Figure 2a**). TEM images of the as-prepared catalysts indicated a homogenous distribution of NPs on the *a*-SiO₂ support (**Figure S1**). The IrNPs and PdNPs were all found to be approximately cuboctahedral in shape with narrow size distributions (1.7 ±0.2 nm (Ir); 2.4 ±0.5 nm (Pd)) (**Figure S2**). The slight size difference between the IrNPs and PdNPs originated from an intrinsic difficulty to obtain larger IrNPs;³⁵⁻³⁷ but the normalized activities shown in **Figure 2b** reflect the surface to bulk atom ratio, providing qualitatively comparable trends between Ir and Pd. We also attempted to alter the H₂ flow rates and the initial concentration of NO₂⁻ in the reduction experiments using both Ir and Pd catalysts; only significantly lower initial NO₂⁻ concentrations were found to improve the NH₃ selectivity on PdNPs (*e.g.*, an initial NO₂⁻ concentration of 10 ppm led to an NH₃ selectivity of *ca.* 2.3%). This result is in good agreement with our expectation that lowering the NO₂⁻ concentration promotes NH₃ selectivity due to a higher coverage of hydrogen on the surface.

The theory proposed by Shin *et al.* indicates that a higher H coverage promotes NH₃ selectivity by providing a higher chance of hydrogenation reactions (**Figure 1**).¹² To understand the significantly higher NH₃ selectivity on IrNPs compared to PdNPs observed in our work, we evaluated the relative H coverage on different catalysts by calculating stepwise adsorption energies of H on the Ir(111) and Pd(111) surfaces (**Figure 2c**, with the calculation methods described in the **Supporting Information**).³⁸ It can be seen that the theoretical maximum H coverage (the coverage before the stepwise adsorption energy becomes greater than zero) of Ir(111) is ~1.3, which is higher than that of Pd(111) (= 1). This indicates that Ir(111) can thermodynamically accommodate more H on the surface than Pd(111).³⁹ These results can be further generalized with our previous conclusions: 5d transition metals have larger orbitals compared to 4d transition metals,⁴⁰ which leads to stronger interactions with H and correspondingly higher theoretical H surface coverages under ambient conditions.^{35,41} This qualitatively explains why PdNPs have slightly better activity for NO₂⁻ reduction as shown on the volcano plot (**Figure 2a**) because IrNPs has higher NH₃ selectivity due to the stronger capacity of accommodating H on the catalyst surfaces. This also helps to explain why other 5d transition metals catalysts such as Pt also have relatively high NH₃ selectivity, as found in previous studies.^{42,43} Although the hydrogen coverages at both Pd and Ir(111) appear relatively high, these calculations are done without considering competition of other adsorbates. According to our previous calculations,⁹ N and many N-related species of nitrite reduction have stronger binding strengths than H. Therefore, the actual coverage of H will be significantly lower when the nitrite reduction reaction reaches equilibrium; the trend, however, is not expected to change. These results are in good agreement with our previous combined experimental and computational study

that the slightly higher H coverage on $5d$ transition metal leads to significantly different hydrogenation activity, as compared to $4d$ transition metals.³⁴ Additionally, as shown in the previous results by Shin *et al.*,¹² a minor increase in the hydrogen supply can significantly improve the NH_3 selectivity in experiments. Based on these results, and given the fact that the H coverage on Ir(111) is $> 30\%$ higher than that on Pd(111), we consider this is a significant difference in the hydrogen accommodation capacity that contributes to the observed difference in the resulting NH_3 selectivity. It should be noted that there are other factors that could be used to tune the NO_2^- reduction selectivity including the use of an active support/substrate or increasing the solution pH.^{24,44,45} Notably, some previous studies have shown that NH_3 selectivity increases with a higher solution pH.²³ A pH higher than the pH_{ZPC} ($\text{ZPC} =$ zero point of charge) of the metallic surface will promote a negatively charged catalyst surface, resulting in electrostatic repulsion of NO_3^- and NO_2^- ions and therefore a higher H:N ratio on the catalytic surface that favors NH_3 formation.^{24,44} Despite the fact that NH_3 selectivity can be improved by raising the solution pH, to the best of our knowledge, the IrNP catalyst is the only current example to have achieved near 100% NH_3 selectivity under very mildly acidic conditions ($\text{pH} = 6.4 \pm 0.1$). Such a moderate pH is environmentally-relevant, meaning that the IrNPs could operate effectively under realistic conditions, while achieving NH_3 selectivity values that are superior to other NO_2^- reduction catalysts.


Figure 2. (a) Volcano activity plot for nitrite reduction through the NH₃ formation pathway with the close-packed monometallic surfaces indicated (black marks). (b) Nitrite reduction activities and their NH₃ selectivities on pure Pd and Ir NPs. The measured selectivity that is slightly higher

than 100% was due to statistical uncertainty in the measurements of the NO_2^- and NH_3 components. (c) Calculated stepwise adsorption energy of H on Pd and Ir (111) surfaces. Insets show the saturated H adsorption on the surfaces. Blue, yellow, and white spheres represent Pd, Ir, and H, respectively. More computational and experimental details can be found in the **Supporting Information**.

Since IrNPs were found to be highly selective towards NH_3 formation, we then performed similar batch kinetics experiments for nitrite reduction using as-synthesized $\text{Cu}_x\text{Ir}_{(100-x)}$ alloy NPs. Ir-based alloys, especially those containing earth-abundant 3d metals are attractive for several reasons: (a) alloying cheaper Cu with Ir can reduce the overall dependence on Ir; (b) from a theoretical perspective, a theoretical line joining Cu and Ir in the volcano plot in **Figure 2a** is found to cross the volcano peak, which suggests that homogeneous Cu-Ir alloys (*i.e.*, solid-solutions) can further tune the binding energies of N and NH_3 and also the catalytic activity of the alloy (**Figure S3**),^{8,9,11,46} (c) alloying more noble and therefore less reactive metals (*e.g.*, Cu, Ag, and Au) with more reactive metals can reduce sulfur poisoning in practical water treatment due to beneficial atomic ensemble effects (**Figure S4**);^{8,41,47} and, (d) Ir-based alloy catalysts are rarely explored because many are only accessible as metastable structures on the nanoscale.^{35,36} Here, bimetallic $\text{Cu}_x\text{Ir}_{(100-x)}$ NPs with various target compositions ($x = 10, 25$, and 50) were prepared using our previously developed methods.³⁷ The alloy $\text{Cu}_x\text{Ir}_{(100-x)}$ NPs were deposited on α - SiO_2 and their catalytic activities for nitrite reduction were measured. Powder X-ray diffraction (PXRD) patterns confirmed the random solid-solution structure of the alloy NPs, as the reflections showed a consistent shift to a higher angle with increasing Cu content (**Figure 3a**). Further, 2D

energy dispersive spectroscopy (EDS) mapping of the NPs showed a homogenous distribution of Cu and Ir across the NPs.³⁷ The actual composition of the as-synthesized alloy NPs was found to be close to the nominal ratio, as indicated by inductively-coupled plasma optical emission spectroscopy of bulk samples (ICP-OES) (**Table S1**). Corresponding TEM images showed that the alloy NPs have an average size of around 2 nm, similar to the monometallic Ir NPs (**Figure S5**). It should be noted that Cu is more easily oxidized by atmospheric oxygen during synthesis and storage, since the standard reduction potential of Cu²⁺/Cu⁰ (0.34 V) is much lower than that of Ir³⁺/Ir⁰ (1.16 V).⁴⁸ A combined Cu 2p X-ray photoelectron spectroscopy (XPS) spectrum and Cu LMM Auger spectrum confirmed that the majority (~74%) of the copper was in the metallic state, with slight (~26%) Cu(II) oxide on the surface (**Figure S6**). Using similar catalytic tests as described above for the PdNPs and IrNPs, the Cu_xIr_(100-x)NPs showed a NH₃ selectivity of ~100% (**Figure 3b**). Surprisingly, instead of having improved activities, our experimental results show that alloying Cu into Ir leads to a monotonic decrease in the activity (**Figure 3c**). For example, the activity of pure IrNPs was about five times the activity of Cu₄₉Ir₅₁ NPs (19.06 mmol⁻¹_{surface atom min⁻¹} vs 3.92 mmol⁻¹_{surface atom min⁻¹}). Using DFT calculations, the activity trends found on the Cu_xIr_(100-x) NPs could be adequately explained by the volcano activity plots with the calculated average N and NH₃ binding energies at different triatomic ensembles on the alloyed Cu_xIr_(100-x) surfaces: although the N binding energy is tunable with the increased ratio of Ir in a triatomic ensemble, the average binding of NH₃ is not altered on the Ir sites of Cu_xIr_(100-x) surfaces, since NH₃ is adsorbed at Ir-atop sites instead of at three-fold hollow sites (**Figure 3d, inset**).^{9,49} Due to the significant electronic and strain effects induced in the Cu-Ir alloys,^{41,47,50,51} NH₃ tends to become over-bound at Ir-atop sites, which in turn breaks the well-known scaling relationship of

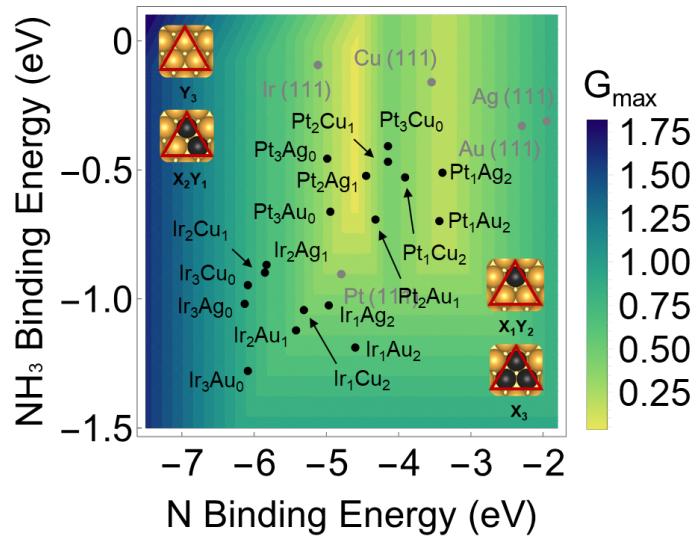

adsorbs on transition metal surfaces⁵² and leads to lower activities on the Cu_xIr_(100-x) alloy NPs. This effect of alloying can be further evaluated by the projected density of states (PDOS) of *d*-electrons of the surface Ir sites and the observed up-shift of the calculated *d*-band center (average energy of *d*-electrons)⁵³ after alloying (**Figure S7**). According to the *d*-band center theory,⁵³ an up-shift of *d*-band center pushes more anti-bonding states above the Fermi level, which in turn strengthens the NH₃ binding. These results are similar to our previous studies on PtAu and AgIr alloy NPs for hydrogenation:^{34,35} although the line between Pt and Au (or Ir and Ag) on the C=C hydrogenation volcano plot goes across the volcano peak, alloying Au into Pt (or Ag into Ir) does not lead to an improved performance for C=C hydrogenation since their binding energy descriptors at the alloyed ensembles are located far from the volcano peak, which in turn leads to lower activity with the increased ratio of inert metallics.^{34,41} Meanwhile, as Cu-Ir was found to be less tunable for H adsorption on Ir-related sites due to the intrinsic properties on the active 5*d* transition metals (**Figure S8**),³⁷ the H coverage at those Ir-sites of the alloys are expected to remain similar to that of Ir(111), leading to the superior NH₃ selectivity similar to pure Ir NPs (**Figure 2**).

Figure 3. (a) PXRD patterns of $\text{Cu}_x\text{Ir}_{(100-x)}$ alloy NPs with different compositions. The theoretical reflection positions of Cu (pink dash lines, JCPDS card # 04-0836) and Ir (brown dash lines, JCPDS card # 006-0598) are shown for reference. (b) The NH_3 selectivity and (c) the measured reaction rate constants of nitrite reduction on $\text{Cu}_x\text{Ir}_{(100-x)}$ NPs. The measured selectivity slightly higher than 100% was due to uncertainties in the measurements of the NO_2^- and NH_3 contents. (d) Volcano activity plot for nitrite reduction through the NH_3 formation pathways, with points indicating Ir(111), Cu(111), and the four triatomic ensembles (Ir₃, Cu₁Ir₂, Cu₂Ir₁, and Cu₃) sampled on more than fifteen randomly generated alloyed Cu₂₅Ir₇₅(111) surfaces. The error bars indicate the standard deviation of adsorption energies calculated from ten binding sites. Insets show the adsorption geometries of N and NH_3 at typical binding sites. Teal, brown, white, and

blue spheres represent Ir, Cu, H, and N, respectively. Calculations on other Cu-Ir compositions can be found in **Figure S9**.

To generalize our conclusions and enable further useful structure-function predictions, we also screened the surface alloys of some other inert metallic surfaces (Cu, Ag, and Au(111)) doped with catalytically active *5d* transition metals included in **Figure 2a** (Ir and Pt) (**Figure 4**). It can be clearly seen that alloying Ir onto an inert surface leads to over-binding of NH₃ at the Ir-atop site, resulting in a low nitrite conversion rate. However, some of the Pt-based alloys show good activity, with their binding energies at the triatomic ensembles close to the volcano peak. In addition to the Ir-based catalysts, other active *5d* transition metals including Pt are also expected to have good NH₃ selectivity.^{42,43} Due to the predicted high activity of Pt alloys from the volcano model (**Figure 4**), we predict that alloying Pt and other inert transition metal (*e.g.*, Ag) could guarantee both high activity for NO₂[−] reduction and a promising NH₃ selectivity.

Figure 4. Volcano activity plot for nitrite reduction through the NH₃ formation pathways, with triatomic ensembles indicated (Y₃, X₁Y₂, and X₂Y₁; X = Ir and Pt and Y = Cu, Au, and Ag) of the

surface alloys on X (111). The X_1Y_2 , X_2Y_1 , and X_3 triatomic ensembles were modeled as an X (111) surface respectively replaced by 1, 2 (2-fold), and 3 (3-fold) Y atoms. Insets show the surface alloy models considered for the calculations: yellow and black spheres represent the Y and X atoms, respectively. The red triangles represent the triatomic ensembles as the binding sites.

In summary, we report that pure IrNPs and alloyed $Cu_xIr_{(100-x)}$ NPs possess outstanding NH_3 selectivity (~100%) for aqueous nitrite reduction in near-neutral pH solution. Additionally, pure IrNPs are found to have a nitrite reduction activity that is close to Pd NPs, which are used industrially. Compared to those N_2 -selective catalysts including Pd and Pd alloys, we expect that the use of the NH_3 -selective catalysts can help to expand the potential applications of NO_2^- removal as well as in NH_3 production.

Supporting Information

Detailed computational, modeling, and experimental methods and additional computational, catalytic, and characterization results.

Acknowledgment

Funding was provided by the National Science Foundation (CHE-1764230; CHE-1807847; CHE-1706797) and the Welch Foundation (F-1841 and F-1738). The calculations were done at the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center.

References

(1) Elmi, A. A.; Madramootoo, C.; Egeh, M.; Hamel, C. Water and Fertilizer Nitrogen Management to Minimize Nitrate Pollution from a Cropped Soil in Southwestern Quebec, Canada. *Water. Air. Soil Pollut.* **2004**, *151* (1–4), 117–134.

(2) Pye, V. I.; Patrick, R. Ground Water Contamination in the United States. *Science*. 1983, pp 713–718.

(3) Zhu, X.; Zeng, X. C.; Chen, X.; Wu, W.; Wang, Y. Inhibitory Effect of Nitrate/Nitrite on the Microbial Reductive Dissolution of Arsenic and Iron from Soils into Pore Water. *Ecotoxicology* **2019**, *28* (5), 528–538.

(4) Weyer, P. J.; Cerhan, J. R.; Kross, B. C.; Hallberg, G. R.; Kantamneni, J.; Breuer, G.; Jones, M. P.; Zheng, W.; Lynch, C. F. Municipal Drinking Water Nitrate Level and Cancer Risk in Older Women: The Iowa Women’s Health Study. *Epidemiology* **2001**, *12* (3), 327–338.

(5) Tamme, T.; Reinik, M.; Roasto, M. Nitrates and Nitrites in Vegetables: Occurrence and Health Risks. In *Bioactive Foods in Promoting Health*; 2010; pp 307–321.

(6) Yin, Y. B.; Guo, S.; Heck, K. N.; Clark, C. A.; Coonrod, C. L.; Wong, M. S. Treating Water by Degrading Oxyanions Using Metallic Nanostructures. *ACS Sustain. Chem. Eng.* **2018**, *6* (9), 11160–11175.

(7) Kapoor, A.; Viraraghavan, T. Nitrate Removal From Drinking Water. *J. Environ. Eng.*

1997, *123* (4), 371–380.

(8) Seraj, S.; Kunal, P.; Li, H.; Henkelman, G.; Humphrey, S. M.; Werth, C. J. PdAu Alloy Nanoparticle Catalysts: Effective Candidates for Nitrite Reduction in Water. *ACS Catal.* **2017**, *7* (5), 3268–3276.

(9) Li, H.; Guo, S.; Shin, K.; Henkelman, G.; Wong, M. S. Design of a Pd-Au Nitrite Reduction Catalyst by Identifying and Optimizing Active Ensembles. *ACS Catal.* **2019**, *9* (9), 7957–7966.

(10) Qian, H.; Zhao, Z.; Velazquez, J. C.; Pretzer, L. A.; Heck, K. N.; Wong, M. S. Supporting Palladium Metal on Gold Nanoparticles Improves Its Catalysis for Nitrite Reduction. *Nanoscale* **2014**, *6* (1), 358–364.

(11) Guy, K. A.; Xu, H.; Yang, J. C.; Werth, C. J.; Shapley, J. R. Catalytic Nitrate and Nitrite Reduction with Pd-Cu/PVP Colloids in Water: Composition, Structure, and Reactivity Correlations. *J. Phys. Chem. C* **2009**, *113* (19), 8177–8185.

(12) Shin, H.; Jung, S.; Bae, S.; Lee, W.; Kim, H. Nitrite Reduction Mechanism on a Pd Surface. *Environ. Sci. Technol.* **2014**, *48* (21), 12768–12774.

(13) Zhang, Z.; Shi, W.; Wang, W.; Xu, Y.; Bao, X.; Zhang, R.; Zhang, B.; Guo, Y.; Cui, F. Interfacial Electronic Effects of Palladium Nanocatalysts on the By-Product Ammonia Selectivity during Nitrite Catalytic Reduction. *Environ. Sci. Nano* **2018**, *5* (2), 338–349.

(14) Brunet Espinosa, R.; Lefferts, L. Ni in CNFs: Highly Active for Nitrite Hydrogenation. *ACS Catal.* **2016**, *6* (8), 5432–5440.

(15) Leigh, G. J. Haber-Bosch and Other Industrial Processes. In *Catalysts for Nitrogen Fixation*; 2004; p 1.

(16) Spokas, K. A.; Novak, J. M.; Venterea, R. T. Biochar's Role as an Alternative N-Fertilizer: Ammonia Capture. *Plant Soil* **2012**, *350* (1–2), 35–42.

(17) Pelletier, L.; McFarlan, A.; Maffei, N. Ammonia Fuel Cell Using Doped Barium Cerate Proton Conducting Solid Electrolytes. *J. Power Sources* **2005**, *145* (2), 262–265.

(18) Zamfirescu, C.; Dincer, I. Using Ammonia as a Sustainable Fuel. *J. Power Sources* **2008**, *185* (1), 459–465.

(19) Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. *Nat. Geosci.* **2008**, *1* (10), 636.

(20) Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for Nitrogen Reduction to Ammonia. *Nat. Catal.* **2018**, *1* (7), 490.

(21) Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical Ammonia Synthesis - The Selectivity Challenge. *ACS Catalysis*. 2017, pp 706–709.

(22) Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A.; et al. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. *Nature*. 2019, pp 504–508.

(23) Clark, C. A.; Reddy, C. P.; Xu, H.; Luo, G.; Senftle, T. P.; Wong, M. S. Mechanistic Insights into PH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium Mechanistic Insights into PH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. *ACS Catal.* **2019**, *10* (1), 494–509.

(24) Chaplin, B. P.; Reinhard, M.; Schneider, W. F.; Schüth, C.; Shapley, J. R.; Strathmann, T. J.; Werth, C. J. Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. *Environmental Science and Technology*. 2012, pp 3655–3670.

(25) Hörold, S.; Vorlop, K. D.; Tacke, T.; Sell, M. Development of Catalysts for a Selective Nitrate and Nitrite Removal from Drinking Water. *Catal. Today* **1993**, *17* (1–2), 21–30.

(26) Dubrovsky, N. M.; Burow, K. R.; Clark, G. M.; Gronberg, J. A. M.; Hamilton, P. A.; Hitt, K. J.; Mueller, D. K.; Munn, M. D.; Nolan, B. T.; Puckett, L. J.; et al. *Nutrients in the Nation's Streams and Groundwater, 1992 – 2004*; 2010.

(27) Jordan, T. E.; Whigham, D. F.; Hofmockel, K. H.; Pittek, M. A. Nutrient and Sediment Removal by a Restored Wetland Receiving Agricultural Runoff. *J. Environ. Qual.* **2003**, *32* (4), 1534–1547.

(28) Huett, D. O.; Morris, S. G.; Smith, G.; Hunt, N. Nitrogen and Phosphorus Removal from Plant Nursery Runoff in Vegetated and Unvegetated Subsurface Flow Wetlands. *Water Res.* **2005**, *39* (14), 3259–3272.

(29) Headley, T. R.; Huett, D. O.; Davison, L. The Removal of Nutrients from Plant Nursery Irrigation Runoff in Subsurface Horizontal-Flow Wetlands. In *Water Science and*

Technology; 2001; pp 77–84.

(30) Pintar, A.; Batista, J. Catalytic Stepwise Nitrate Hydrogenation in Batch-Recycle Fixed-Bed Reactors. *J. Hazard. Mater.* **2007**, *149* (2), 387–398.

(31) Jensen, V. B.; Darby, J. L. Brine Disposal Options for Small Systems in California’s Central Valley. *J. Am. Water Works Assoc.* **2016**, *108* (5), E276–E289.

(32) Ferrin, P.; Simonetti, D.; Kandoi, S.; Kunkes, E.; Dumesic, J. A.; Nørskov, J. K.; Mavrikakis, M. Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Brønsted-Evans-Polanyi Relations. *J. Am. Chem. Soc.* **2009**, *131* (16), 5809–5815.

(33) Troutman, J. P.; Li, H.; Haddix, A. M.; Kienzle, B. A.; Henkelman, G.; Humphrey, S. M.; Werth, C. J. PdAg Alloy Nanocatalysts: Toward Economically Viable Nitrite Reduction in Drinking Water. **2020**, *Submitted*.

(34) Luo, L.; Duan, Z.; Li, H.; Kim, J.; Henkelman, G.; Crooks, R. M. Tunability of the Adsorbate Binding on Bimetallic Alloy Nanoparticles for the Optimization of Catalytic Hydrogenation. *J. Am. Chem. Soc.* **2017**, *139*, 5538–5546.

(35) Guo, H.; Li, H.; Jarvis, K.; Wan, H.; Kunal, P.; Dunning, S. G.; Liu, Y.; Henkelman, G.; Humphrey, S. M. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. *ACS Catal.* **2018**, *8*, 11386–11397.

(36) Guo, H.; Fang, Z.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S. M.; Yu, G. Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for

Acidic Oxygen Evolution. *ACS Nano* **2019**, *13* (11), 13225–13234.

(37) Guo, H.; Li, H.; Fernandez, D.; Willis, S.; Jarvis, K.; Henkelman, G.; Humphrey, S. M. Stabilizer-Free CuIr Alloy Nanoparticle Catalysts. *Chem. Mater.* **2019**, *31* (24), 10225–10235.

(38) Wang, T.; Li, Y. W.; Wang, J.; Beller, M.; Jiao, H. Dissociative Hydrogen Adsorption on the Hexagonal Mo₂C Phase at High Coverage. *J. Phys. Chem. C* **2014**, *118* (15), 8079–8089.

(39) Kobayashi, H.; Yamauchi, M.; Ikeda, R.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Double Enhancement of Hydrogen Storage Capacity of Pd Nanoparticles by 20 At% Replacement with Ir; Systematic Control of Hydrogen Storage in Pd-M Nanoparticles (M = Ir, Pt, Au). *Chem. Sci.* **2018**, *9* (25), 5536–5540.

(40) Fierro, C. Ammonia Adsorption on a Model Pt(111) Surface: A Molecular Orbital Approach. *J. Phys. Chem.* **1988**, *92* (15), 4401–4405.

(41) Li, H.; Shin, K.; Henkelman, G. Effects of Ensembles , Ligand , and Strain on Adsorbate Binding to Alloy Surfaces. *J. Chem. Phys.* **2018**, *149* (17), 174705.

(42) D’Arino, M.; Pinna, F.; Strukul, G. Nitrate and Nitrite Hydrogenation with Pd and Pt/SnO₂ Catalysts: The Effect of the Support Porosity and the Role of Carbon Dioxide in the Control of Selectivity. *Appl. Catal. B Environ.* **2004**, *53* (3), 161–168.

(43) Marchesini, F. A.; Irusta, S.; Querini, C.; Miró, E. Spectroscopic and Catalytic Characterization of Pd-In and Pt-In Supported on Al₂O₃ and SiO₂, Active Catalysts for

Nitrate Hydrogenation. *Appl. Catal. A Gen.* **2008**, *348* (1), 60–70.

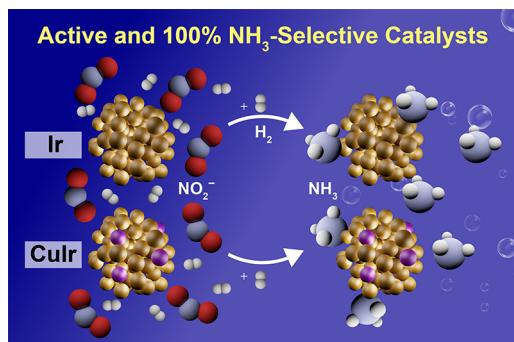
(44) Prusse, U.; Vorlop, K. D. Supported Bimetallic Palladium Catalysts for Water-Phase Nitrate Reduction. *J. Mol. Catal. A Chem.* **2001**, *46* (7), 3655–3670.

(45) Chinthaginjala, J. K.; Lefferts, L. Support Effect on Selectivity of Nitrite Reduction in Water. *Appl. Catal. B Environ.* **2010**, *101* (1–2), 144–149.

(46) García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave Synthesis of Classically Immiscible Rhodium-Silver and Rhodium-Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts. *ACS Nano* **2014**, *8* (11), 11512–11521.

(47) Li, H.; Chai, W.; Henkelman, G. Selectivity for Ethanol Partial Oxidation: The Unique Chemistry of Single-Atom Alloy Catalysts on Au, Ag, and Cu(111). *J. Mater. Chem. A* **2019**, *7*, 23868–23877.

(48) Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. *Chem. Rev.* **2016**, *116* (18), 10414–10472.


(49) García-Hernández, M.; López, N.; Moreira, I. D. P. R.; Paniagua, J. C.; Illas, F. Ab Initio Cluster Model Approach to the Chemisorption of NH₃ on Pt(111). *Surf. Sci.* **1999**, *430* (1–3), 18–28.

(50) Mavrikakis, M.; Hammer, B.; Nørskov, J. Effect of Strain on the Reactivity of Metal Surfaces. *Phys. Rev. Lett.* **1998**, *81* (13), 2819–2822.

(51) Liu, P.; Nørskov, J. K. Ligand and Ensemble Effects in Adsorption on Alloy Surfaces. *Phys. Chem. Chem. Phys.* **2001**, 3 (17), 3814–3818.

(52) Fernndez, E. M.; Moses, P. G.; Toftlund, A.; Hansen, H. A.; Martínez, J. I.; Abild-Pedersen, F.; Kleis, J.; Hinnemann, B.; Rossmeisl, J.; Bligaard, T.; et al. Scaling Relationships for Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces. *Angew. Chemie - Int. Ed.* **2008**, 47 (25), 4683–4686.

(53) Hammer, B.; Norskov, J. K. Why Gold Is the Noblest of All the Metals. *Nature* **1995**, 376 (6537), 238.

TOC