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Abstract

We study methods for aggregating pairwise comparison data in order to estimate outcome
probabilities for future comparisons among a collection of n items. Working within a flexible
framework that imposes only a form of strong stochastic transitivity (SST), we introduce an
adaptivity index defined by the indifference sets of the pairwise comparison probabilities. In
addition to measuring the usual worst-case risk of an estimator, this adaptivity index also
captures the extent to which the estimator adapts to instance-specific difficulty relative to an
oracle estimator. We prove three main results that involve this adaptivity index and different
algorithms. First, we propose a three-step estimator termed Count-Randomize-Least squares
(CRL), and show that it has adaptivity index upper bounded as \/n up to logarithmic factors.
We then show that that conditional on the hardness of planted clique, no computationally
efficient estimator can achieve an adaptivity index smaller than /n. Second, we show that
a regularized least squares estimator can achieve a poly-logarithmic adaptivity index, thereby
demonstrating a /n-gap between optimal and computationally achievable adaptivity. Finally,
we prove that the standard least squares estimator, which is known to be optimally adaptive in
several closely related problems, fails to adapt in the context of estimating pairwise probabilities.

1 Introduction

There is an extensive literature on modeling and analyzing data in the form of pairwise comparisons
between items, with much of the earliest literature focusing on applications in voting, social choice
theory, and tournaments. The advent of new internet-scale applications, particularly search engine
ranking [RKJ08], online gaming [HMGO7], and crowdsourcing [SBB*15], has renewed interest in
ranking problems, particularly in the statistical and computational challenges that arise from the
aggregation of large data sets of paired comparisons.

The problem of aggregating pairwise comparisons, which may be inconsistent and/or noisy,
presents a number of core challenges, including: (i) how to produce a consensus ranking from the
paired comparisons [BM08, RGLA15, SW15]; (ii) how to estimate a notional “quality” for each of
the underlying objects [NOS12, HOX14, SBB*15]; and (iii) how to estimate the probability of the
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outcomes of subsequent comparisons [Chal4, SBGW15]. In this paper, we focus on the third task—
that is, the problem of estimating the probability that one object is preferred to another. Accurate
knowledge of such pairwise comparison probabilities is useful in various applications, including (in
operations research) estimating the probability of a customer picking one product over another,
or (in sports bookmaking and tournament design) estimating the probability of one team beating
another.

In more detail, given a set of n items {1,...,n}, the paired comparison probabilities can be
described by an (nxn) matrix M* in which the (i, j)*" entry corresponds to the probability that item
i beats item j. From this perspective, problem of estimating the comparison probabilities amounts
to estimating the unknown matrix M*. In practice, one expects that the pairwise comparison
probabilities exhibit some form of structure, and in this paper, in line with some past work on the
problem, we assume that the entries of the matrix M* satisfy the strong stochastic transitivity (SST)
constraint. It is important to note that the SST constraint is considerably weaker than standard
parametric assumptions that are often made in the literature—for instance, that the entries of M*
follow a Bradley-Terry-Luce [BT52, Luc59] or Thurstone [Thu27] model. The SST constraint is
quite flexible and models satisfying this constraint often provide excellent fits to paired comparison
data in a variety of applications. There is also a substantial body of empirical work that validates
the SST assumption—for instance, see the papers [ML65, DM59, BW97] in the psychology and
economics literatures.

On the theoretical front, some past work [Chal4d, SBGW15] has studied the problem of esti-
mating SST matrices in the Frobenius norm. These works focus exclusively on the global minimax
error, meaning that the performance of any estimator is assessed in a worst-case sense globally over
the entire SST class. It is well-known that the criterion of global minimax can lead to a poor un-
derstanding of an estimator, especially in situations where the intrinsic difficulty of the estimation
task is highly variable over the parameter space (see, for instance, the discussion and references in
Donoho et al. [DJKP95]). In such situations, it can be fruitful to benchmark the risk of an estimator
against that of a so-called oracle estimator that is provided with side-information about the local
structure of the parameter space. Such a benchmark can be used to show that a given estimator is
adaptive, in the sense that even though it is not given side-information about the problem instance,
it is able to achieve lower risk for “easier” problems (e.g., see the papers [Can06, Kolll, CL11]
for results of this type).! In this paper, we study the problem-specific difficulty of estimating a
pairwise comparison matrix M* by introducing an adaptivity index that involves the size of the in-
difference sets in the matrix M*. These indifference sets, which arise in many relevant applications,
correspond to subsets of items that are all equally desirable.

In addition, our work makes contributions to a growing body of work (e.g., [BR13, MW15,
Wail4]) that studies the notion of a computationally-constrained statistical risk.

The term “adaptivity” in this paper derives its meaning from the literature on statistics, and refers to the property
of an estimator of automatically adapting its performance to the complexity of the problem. It should not be confused
with the notion of “adaptive sampling” used in the context of sequential design or adaptive learning, which refers to
the ability to obtain samples one at a time in a sequential and data-dependent manner.



In more detail, we make the following contributions in this paper:

e We show that the risk of estimating a pairwise comparison probability matrix M* depends
strongly on the size of its largest indifference set. This fact motivates us to define an adaptivity
index that benchmarks the performance of an estimator relative to that of an oracle estimator that
is given additional side information about the size of the indifference sets in M*. By definition,
an estimator with lower values of this index is said to exhibit better adaptivity, and the oracle
estimator has an adaptivity index of 1.

e We characterize the fundamental limits of adaptivity, in particular by proposing a regularized
least squares estimator with a carefully chosen regularization function. With a suitable choice of
regularization parameter, we prove that this estimator achieves an (5(1) adaptivity index, which
matches the best possible up to poly-logarithmic factors.

e We then show that conditional on the planted clique hardness conjecture, the adaptivity index
achieved by any polynomial-time algorithm must be lower bounded as ﬁ(\/ﬁ) This result ex-
hibits an interesting gap between the adaptivity of polynomial-time versus statistically optimal
estimators.

e We propose a computationally-efficient three-step “Count-Randomize-Least squares” (CRL) es-
timator for estimation of SST matrices, and show that its adaptivity index is upper bounded
as (5(\/5) Due to the aforementioned lower bound, the CRL estimator has the best possible
adaptivity among all possible computationally efficient estimators.

e Finally, we investigate the adaptivity of the standard (unregularized) least squares estimator.
This estimator is found to have good, or even optimal adaptivity in several related problems, and
is also minimax-optimal for the problem of estimating SST matrices. We prove that surprisingly,
the adaptivity of the least squares estimator for estimating SST matrices is of the order é(n),
which is as bad as a constant estimator that is independent of the data.

The remainder of this paper is organized as follows. We begin in Section 2 with background
on the problem. Section 3 is devoted to the statement of our main results, as well as discussion of
their consequences. In Section 4, we provide the proofs of our main results, with the more technical
details deferred to appendices. Finally, Section 5 presents concluding remarks.

2 Background and problem setting

In this section, we provide background and a more precise problem statement.

2.1 Estimation from pairwise comparisons

Given a collection of n items, suppose that we arrange the paired comparison probabilities in
a matrix M* € [0,1]"*", where MZ’; is the probability that item ¢ is preferred to item j in a
paired comparison. Accordingly, the upper and lower halves of M™* are related by the shifted-skew-
symmetry condition M}; =1 — M for all 7, j € [n], where we assume that M;; = 0.5 for all i € [n]
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for concreteness. In other words, the shifted matrix M™* — %11T is skew-symmetric. Here we have
adopted the standard shorthand [n] : = {1,2,...,n}.

Suppose that we observe a random matrix Y € {0, 1}"*" with (upper-triangular) independent
Bernoulli entries, in particular, with

PlY;; = 1] = M;; for every 1 <i < j <mn, (1)

and Yj; = 1 —Yj; except on the diagonal. We take the diagonal entries Yj; to be {0,1} with
equal probability, for every ¢ € [n]. The focus of this work is not to evaluate the effects of the
choice of the pairs compared, but to understand the effects of the noise models. Consequently, we
restrict attention to the case of a single observation per pair, but keeping mind in that one may
extend the result to other observation models via techniques similar to those proposed in our past
work [SBB115, SBGW15]. Based on observing Y, our goal in this paper is to recover an accurate
estimate, in the squared Frobenius norm, of the full matrix M*.

We consider matrices M* that satisfy the constraint of strong stochastic transitivity (SST),
which reflects the natural transitivity of any complete ordering. Formally, suppose that the set of
all items [n] is endowed with a complete ordering 7*. We use the notation 7*(i) = 7*(j) to indicate
that item i is preferred to item j in the total ordering 7*. We say that the M™ satisfies the SST
condition with respect to the permutation 7*—or is 7*-SST for short—if

k> M, for every triple (i, j, k) such that 7*(i) = 7*(j). (2)

The intuition underlying this constraint is as follows: since ¢ dominates j in the true underlying
order, when we make noisy comparisons, the probability that ¢ is preferred to k should be at least
as large as the probability that j is preferred to k. The class of all SST matrices is given by

Cosr : = {M €[0,1]™" | My, =1— My ¥ (a,b) and 3 7 such that M is W—SST}. (3)

The goal of this paper? is to design estimators that can estimate the true underlying matrix
M* € Cgy from the observed matrix Y.

2.2 Indifference sets

We now turn to the notion of indifference sets, which allows for a finer-grained characterization of
the difficulty of estimating a particular matrix. Suppose that the set [n] of all items is partitioned
into the union of s disjoint sets {P;};_; of sizes k = (k1,. .., ks) such that 7, k; = n. For reasons
to be clarified in a moment, we term each of these sets as an indifference set. We write i ~ i’ to
mean that the pair ¢ and 7’ belong to the same index set, and we say that a matrix M* € R"*"
respects the indifference set partition {P;};_ if

My = M, for all quadruples (i,,4',j') such that i ~i" and j ~ j". (4)

2We note that an accurate estimate of M* leads to an accurate estimate of the underlying permutation as
well [SBGW15].



For instance, in the special case of a two-contiguous-block partition, the matrix M* must have a
(2 x 2) block structure, with all entries equaling 1/2 in the two diagonal blocks, all entries equaling
a € [0,1] in the upper right block, and equaling (1 — «) in the lower left block. Intuitively, matrices
with this type of block structure should be easier to estimate.

Indifference sets arise in various applications of ranking: for instance, in buying cars, frugal
customers may be indifferent between high-priced cars; or in ranking news items, people from a
certain country may be indifferent to the domestic news from other countries. Block structures of
this type are also studied in other types of matrix estimation problems, in which contexts they have
been termed communities, blocks, or level sets, depending on the application under consideration.
For instance, see the papers [AS15, MW15, CGS15] as well as references therein for more discussion
in such structures.

Given the number of partitions s and their size vector k = (kq, ..., ks), we let Cg;(s,k) denote
the subset of Cg; comprising all SST matrices that respect some indifference set partition {P;};_;
of sizes k. The size of the largest indifference set kmax : = ||k|lcc = max k; plays an important

goeoy

role in our analysis. We also use the notation Cyy(kmax) to denote all SST matrices that have at
least one indifference set of size at least kpyax, that is,

(CSS'l‘(kmax) L= U (CSST(Sv k)7 .
Ik |loo >Emax

Finally, with a minor abuse of notation, for any matrix M € Cyy, we let kpax(M) denote the size
of the largest indifference set in M.

2.3 An oracle estimator and the adaptivity index

We begin by defining a benchmark based on the performance of the best estimator that has side-
information that M* € Cg(s,k), along with the values of (s,k). We evaluate any such estimator
M (s,k) based on its mean-squared Frobenius error

n
T * T * 2
E[IM (s,k) = M2 = E| > (My(s,k) - M55)°] (5)
i,j=1
where the expectation is taken with respect to the random matrix Y € {0, 1}"*" of noisy compar-
isons. With this notation, the (s,k)-oracle risk is given by

Ry (s,k) := _inf sup  E[|M(s, k) — M*[|2], (6)
M(S,k) M* E(CSST(S,k)

where the infimum is taken over all measurable functions M (s,k) of the data Y.

For a given estimator M that does not know the values of (s,k), we can then compare its
performance to this benchmark via the (s, k)-adaptivity index

L E[[] A — M)
o (M5, k) 1= —— (R) (s,k) ' (72)




The global adaptivity index an(]\/J ) of an estimator M is then given by

—

an(M):= max an(M;s,Kk). (7b)
s, ki|[kl|co<n
In this definition, we restrict the maximum to the interval ||k||o, < n since in the (degenerate) case
of ||k|lcc = m, the only valid matrix M* is the all-half matrix and hence the estimator with the
knowledge of the parameters trivially incurs an error of zero.

Given these definitions, the goal is to construct estimators that are computable in polynomial
time, and possess a low adaptivity index. Finally, we note that an estimator with a low adaptivity
index also achieves a good worst-case risk: any estimator M with global adaptivity index an(]\/J ) <~
is minimax-optimal within a factor ~.

3 Main results

In this section, we present the main results of this paper on both statistical and computational
aspects of the adaptivity index. We begin with an auxiliary result on the risk of the oracle estimator
which is useful for our subsequent analysis.

3.1 Risk of the oracle estimator

Recall from Section 2.3 that the oracle estimator has access to additional side information on the
values of the number s and the sizes k = (k, ..., ks) of the indifference sets of the true underlying
matrix M*. The oracle estimator is defined as the estimator that incurs the lowest possible risk (6)
among all such estimators.

The following result provides tight bounds on the risk of the oracle estimator.

Proposition 1. There are positive universal constants ¢y and c,, such that the (s,k)-oracle risk (6)
s sandwiched as

co(n — kmayx) < Ru(s,k) < cu(n — kmax + 1)(logn)2. (8)

Proposition 1 provides a characterization minimax risk of estimation under various subclasses of
Cgsr- Remarkably, the minimax risk depends on only the size kyax : = || k|00 of the largest indiffer-
ence set: given this value, it is not affected by the number of indifference sets s nor their sizes k.
This property is in sharp contrast to known results [CGS15] for the related problem of bivariate
isotonic regression, in which the number s of indifference sets does play a strong role.

Note that when k. < n, we have %(n — kmax + 1) < (n — kmax), and consequently the lower

bound in (8) can be replaced by & (n — Emax + 1).



3.2 Fundamental limits on adaptivity

Proposition 1 provides a sharp characterization of the denominator in the adaptivity index (7a).
In this section, we investigate the fundamental limits of adaptivity by studying the numerator but
disregarding computational constraints. The main result of this section is to show that a suitably
regularized form of least-squares estimation has optimal adaptivity up to logarithmic factors.

More precisely, recall that kpax (M) denotes the size of the largest indifference set in the matrix
M. Given the observed matrix Y, consider the M-estimator
Mype € arg min (]”M — Y2 = Emax(M)(log n)3> 9)
MeCsgsr
Here the inclusion of term —kpyax(M), along with its logarithmic weight, serves to “reward” the
estimator for returning a matrix with a relatively large maximum indifference set. As our later
analysis in Section 3.5 will clarify, the inclusion of this term is essential: the unregularized form of
least-squares has very poor adaptivity properties.

The following theorem provides an upper bound on the estimation error and the adaptivity of
the estimator Mypc.
Theorem 1. There are universal constants ¢, and ¢, such that for every M* € Cgy, the reqularized
least squares estimator (9) has squared Frobenius error at most

n — kmax(M*) + 1
n2

\M* — Mpwa||2 < cu (logn)?, (10a)

1
-
with probability at least 1 — ¢~ 3(logn)?, Consequently, its adaptivity indez is upper bounded as

an(]\/ZREG) < d,(logn)?. (10b)

Since the adaptivity index of any estimator is at least 1 by definition, we conclude that the
regularized least squares estimator Mggc is optimal up to logarithmic factors.

The reader may notice that the optimization problem (9) defining the regularized least squares
estimator ]\/ZREG is non-trivial to solve; it involves both a nonconvex regularizer, as well as a non-
convex constraint set. We shed light on the intrinsic complexity of computing this estimator in
Section 3.4, where we investigate the adaptivity index achievable by estimators that are computable
in polynomial time.

3.3 Adaptivity of the CRL estimator

In this section, we propose a polynomial-time computable estimator termed the Count- Randomize-
Least-Squares (CRL) estimator, and prove an upper bound on its adaptivity index. In order to
define the CRL estimator, we requre some additional notation. For any permutation 7 on n items,
let Cysr(m) € Cgygr denote the set of all SST matrices that are faithful to the permutation 7—that is

Casr(m) :={M € [0, 1]™" | My =1— MgV (a,b), My, > Mjp ¥V i,j, k € [n] s.t. w(i) > m(j) }.
(11)



One can verify that the sets {Cgy(7)} for all permutations 7 on n items form a partition of the
SST class Cggr.

The CRL estimator acts on the observed matrix Y and outputs an estimate ]\/ZCRL € Cyr via a
three step procedure:
Step 1 (Count): For each i € [n], compute the total number N; = 2?21 Y;; of pairwise comparisons

that it wins. Order the n items in terms of {N;}?_;, with ties broken arbitrarily.
Step 2 (Randomize): Find the largest subset of items S such that |N; — N;| < y/nlogn for all
i,7 € S. Using the order computed in Step 1, permute this (contiguous) subset of items uniformly

at random within the subset. Denote the resulting permutation as mcgy,-
Step 3 (Least squares): Compute the least squares estimate assuming that the permutation 7cgy, is

the true permutation of the items:

Mep, € argmin Y — M|2. (12)
MeCssr(mcrL)
The optimization problem (12) corresponds to a projection onto the polytope of bi-isotone matrices
contained within the hypercube [0, 1]", along with skew symmetry constraints. Problems of the
form (12) have been studied in past work [BDPR84, RWDR&8, Chal4, KRS15|, and the estimator
]\/ZCRL is indeed computable in polynomial time. By construction, it is agnostic to the values of
(s, k).

To provide intuition for the second step of randomization, it serves to discard “non-robust”
information from the order computed in Step 1. Any such information corresponds to noise due
to the Bernoulli sampling process, as opposed to structural information about the matrix. If we
do not perform this second step—effectively retaining considerable bias from Step 1—then then
isotonic regression procedure in Step 3 may amplify it, leading to a poorly performing estimator. To
clarify our choice of threshold T' = y/nlog(n), the factor y/n corresponds to the standard deviation
of a typical win count N; (as a sum of Bernoulli variables), whereas the logn serves to control
fluctuations in a union bound.

The following theorem provides an upper bound on the adaptivity index achieved by the CRL
estimator.

Theorem 2. There are universal constants ¢, and c,, such that for every M* € Cgy, the CRL
estimator Mog;, has squared Frobenius norm error

N — kmax(M™) +1
n3/2

| Mon, — M¥||2 < ey (logn)%, (13a)

1
-l
with probability at least 1 — n=20. Consequently, its adaptivity index is upper bounded as

an(Mop,) < yv/n(logn)®. (13Db)

It is worth noting that equation (13a) in yields an upper bound on the minimax risk of the
CRL estimator—namely

1 — . logn)®
sup SB[ Tens — M) < 6,180

)
M*eCsgr T \/ﬁ



with this worst-case achieved when ky.x(M*) = 1. Up to logarithmic factors, this bound matches
the best known upper bound on the minimax rate of polynomial-time estimators [SBGW15, The-
orem 2.

3.4 A lower bound on adaptivity for polynomial-time algorithms

By comparing the guarantee (13b) for the CRL estimator with the corresponding guarantee (10b)
for the regularized least-squares estimator, we see that (apart from log factors and constants), their
adaptivity indices differ by a factor of y/n. Given this polynomial gap, it is natural to wonder
whether our analysis of the CRL estimator might be improved, or if not, whether there is another
polynomial-time estimator with a lower adaptivity index than the CRL estimator. In this section,
we answer both of these questions in the megative, at least conditionally on a certain well-known
conjecture in average case complexity theory.

More precisely, we prove a lower bound that relies on the average-case hardness of the planted
clique problem [Jer92, Kuc95]. The use of this conjecture as a hardness assumption is widespread
in the literature [JP00, AAKT07, Dugl4], and there is now substantial evidence in the literature
supporting the conjecture [Jer92, FK03, MPW15, DM15]. It has also been used as a tool in proving
hardness results for sparse PCA and related matrix recovery problems [BR13, MW15].

In informal terms, the planted clique conjecture asserts that it is hard to detect the presence of
a planted clique in an Erdés-Rényi random graph. In order to state it more precisely, let G(n, k)
be a random graph on n vertices constructed in one of the following two ways:

Hy: Every edge is included in G(n, k) independently with probability %

Hy: Every edge is included in G(n, k) independently with probability % In addition, a set of k
vertices is chosen uniformly at random and all edges with both endpoints in the chosen set
are added to G.

The planted clique conjecture then asserts that when x = o(y/n), then there is no polynomial-time
algorithm that can correctly distinguish between Hy and H; with an error probability that is strictly
bounded below 1/2.

Using this conjectured hardness as a building block, we have the following result:
Theorem 3. Suppose that the planted clique conjecture holds. Then there is a universal constant

cy > 0 such that for any polynomial-time computable estimator ]\/4\, its adaptivity index is lower
bounded as

an(M) > cpv/n(logn) .

Together, the upper and lower bounds of Theorems 2 and 3 imply that the estimator ]\/ZCRL
achieves the optimal adaptivity index (up to logarithmic factors) among all computationally efficient
estimators.



3.5 Negative results for the least squares estimator

In this section, we study the adaptivity of the (unregularized) least squares estimator given by

Mg € arg min ||Y — M||2. (14)
MeCsgsr
Least squares estimators of this type are known to possess very good adaptivity in various other
problems of shape-constrained estimation; for instance, see the papers [C*T11, CGS13, CL15,
CGS15, Bell6] and references therein for various examples of such phenomena. From our own
past work [SBGW15], the estimator (14) is known to be minimax optimal for estimating SST
matrices.

Given this context, the following theorem provides a surprising result—namely, that the least-
squares estimator (14) has remarkably poor adaptivity:

Theorem 4. There is a universal constant cg > 0 such that the adaptivity index of the least squares
estimate (14) is lower bounded as

an(MLS) > ¢;n (logn)™2 (15)

In order to understand why the lower bound (15) is very strong, consider the trivial estimator M)
that simply ignores the data, and returns the constant matrix My = %11T. It can be verified that
we have

* 1 *
A — 511T|||§ < 3n(n — kmax(M*) + 1)

for every M* € Cgyg. Thus, for this trival estimator My, we have oy, (My) < ¢,n. Comparing to the
lower bound (15), we see that apart from logarithmic factors, the adaptivity of the least squares
estimator is no better than that of the trivial estimator M.

4 Proofs

In this section, we present the proofs of our results. We note in passing that our proofs ad-
ditionally lead to some auxiliary results that may be of independent interest. These auxiliary
results pertain to the problem of bivariate isotonic regression—that is, estimating M* when the
underlying permutation is known—an important problem in the field of shape-constrained estima-
tion [RWDRS88, THT11, Chald4]. Prior works restrict attention to the expected error and assume
that the underlying permutation is correctly specified; our results provide exponential tail bounds
and also address settings when the permutation is misspecified.

A few comments about assumptions and notation are in order. In all of our proofs, so as to
avoid degeneracies, we assume that the number of items n is greater than a universal constant.
(The cases when n is smaller than some universal constant all follow by adjusting the pre-factors
in front of our results suitably.) For any matrix M, we use kpmax(M) to denote the size of the
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largest indifference set in M, and we define k* = kpax(M*). The notation c,cq,cy,cp ete. all
denote positive universal constants. For any two square matrices A and B of the same size, we
let (A, B)) = trace(AT B) denote their trace inner product. For an (n x n) matrix M and any
permutation 7 on n items, we let (M) denote an (n X n) matrix obtained by permuting the rows
and columns of M by w. For a given class C of matrices, metric p and tolerance € > 0, we use
N(e,C, p) to denote the e covering number of the class C in the metric p. The metric entropy is
given by the logarithm of the covering number—namely log N (¢, C, p).

It is also convenient to introduce a linearized form of the observation model (1). Observe that
we can write the observation matrix Y in a linearized fashion as

Y =M"+W, (16a)

where W € [—1,1]"*" is a random matrix with independent zero-mean entries for every i > j, and
and W;; = —W;; for every i < j. For ¢ > j, its entries follow the distribution

W ~ {1 — Mj; with probability Mj; o

—Mi’;- with probability 1 — M;;
In summary, all entries of the matrix W above the main diagonal are independent, zero-mean, and

uniformly bounded by 1 in absolute value. This fact plays an important role in several parts of our
proofs.

4.1 A general upper bound on regularized M-estimators

In this section, we prove a general upper bound that applies to a relatively broad class of regularized
M-estimators for SST matrices. Given a matrix Y generated from the model (16a), consider an
estimator of the form

M € arg min {H\Y — M|+ )\(M)} (17)
MeC

Here X : [0, 1]™*™ — Ry is a regularization function to be specified by the user, and C is some subset
of the class Cy; of SST matrices. Our goal is to derive a high-probability bound on the Frobenius
norm error |||]\/4\ — M*||g. As is well-known from theory on M-estimators [vdG00, BBM05, Kol06],
doing so requires studying the empirical process in a localized sense.

In order to do so, it is convenient to consider sets of the form
Come(M*,1,0,C) i ={a(M — M") | M € C,x € [0,1], bla(M — M")[|e < bt},

where t € [0,n], and b € {0,1}. The binary flag b controls whether or not the set is localized around
M*, and the radius t controls the extent to which the set is localized.
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In the analysis to follow, we assume that for each € > n =8, the e-metric entropy of Cpyy (M*, ¢, b, C)
satisfies an upper bound of the form

2b *))2
log N (e, Cone (M, 1,5, 0), 11 - 1) < I a2, (150)

where g : R"*™ — R, and h : R"*™ — R, are some functions. In the sequel, we provide concrete
examples of sets C and functions (g, h) for which a bound of this form holds.

Given (g, h, \), we can then define a critical radius d,, > 0 as

62 = c((g(M*) log n)1+b + (h(M*))2 + A(M*) + n_7), (18b)

n

where ¢ > 0 is a universal constant. The following result guarantees that the Frobenius norm can
be controlled by the square of this critical radius:

Lemma 1. For any set C satisfying the metric entropy bound (18a), the Frobenius norm of the
M -estimator (17) can be controlled as

P[W — M| > ua,%] <e"h forallu>1, (19)
where 0y, is the critical radius (18b).

The significance of this claim is that it reduces the problem of controlling the error in the M-
estimator to bounding the metric entropy (as in equation (18a)), and then computing the critical
radius (18b). The remainder of this section is devoted to the proof of this claim.

4.1.1 Proof of Lemma 1

Define the difference A = M — M* between M* and the optimal solution M to the constrained
least-squares problem. Since M is optimal and M™* is feasible, we have

Y = M2+ AM) <)Y — MF[Z + A7),
Following some algebra, and using the assumed non-negativity condition A(-) > 0, we arrive at the
basic inequality

SIAI < (B, W) + M),

where W € [0,1]"*" is the noise matrix in the linearized observation model (16a), and (A, W)

denotes the trace inner product between A and W.

Now define the supremum Z(t) : = sup (D, W)). With this definition, we find that
DeCpirp(M*,t,b,C)
the error matrix A satisfies the inequality

%HWH? < (A W)+ M) < Z(JA]le) + AL (20)
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Thus, in order to obtain a high probability bound, we need to understand the behavior of the
random quantity Z(t).

By definition, the set Cppe(M*,t, b, C) is star-shaped, meaning that aD € Cpyr(M*,¢,b,C) for
every a € [0,1] and every D € Cpyr(M*,t,b,C). Using this star-shaped property, it is straightfor-
ward to verify that Z(t) grows at most linearly with ¢, ensuring that there is a non-empty set of
scalars ¢ > 0 satisfying the critical inequality:

E[Z(t)] + A(M™) < g (21)

Our interest is in an upper bound on the smallest (strictly) positive solution d,, to the critical

inequality (21). Moreover, our goal is to show that for every ¢ > §,, we have |A||2 < ctd, with
cotdn

probability at least 1 — cje™
Define the “bad” event

A= {38 € Coe(M*,) | AL > V8, and (A, W)+ AM°) > 2)A /i, )} (22)

Using the star-shaped property of Cpyp(M*,¢,b,C) and the fact that A(-) > 0, it follows by a
rescaling argument that

PlA;] < P[Z(6n) + MM™*) > 25,1/t0y] for all t > §,,.

The entries of W lie in [—1,1], have a mean of zero, are i.i.d. on and above the diagonal, and
satisfy skew-symmetry. Moreover, the function W +— Z(u) is convex and Lipschitz with parameter
u. Consequently, by Ledoux’s concentration theorem [Led01, Theorem 5.9], we have

P[Z(8,) > E[Z(3n)] + V/t0,0,] < e @ for all t > 5,

for some universal constant c;. By the definition of d,,, we have E[Z(6,)] + A(M*) < 62 < 6,1/t6,,
for any t > d,, and consequently

P[A;] < P[Z(6,) + MM*) > 25,1/t5,] < e 1 for all t > §,.

Consequently, cither [|Allz < v/%3,, or we have ||Ally > v/0,. In the latter case, conditioning on
the complement Af, the basic inequality (20) implies that 1[|A[|2 < 2[|Al|x+/%5,. Putting together
the pieces yields that

IAlle < 4v/t6y,
with probability at least 1 — e~ 1% for every t > §,,. Substituting u = %, we get
P(IAR > cpud?) < emfh, (23)

for every u > 1.

In order to determine a feasible §,, satisfying the critical inequality (21), we need to bound the
expectation E[Z(d,)]. To this end, we introduce an auxiliary lemma:

13



Lemma 2. There is a universal constant ¢ such that for any set C satisfying the metric entropy
bound (18a), we have

E[Z(t)] < ¢ {tbg(M*) logn +th(M*) + n_7} for all t > 0. (24)

See Section 4.1.2 for the proof of this claim.

Using Lemma 2, we see that the critical inequality (21) is satisfied for

3o = cof o0 oz ) h) /AT 47T

for a positive universal constant ¢g. With this choice, our claim follows from the tail bound (23),
absorbing the constants ¢; and ¢y into cg.

It remains to prove Lemma 2.

4.1.2 Proof of Lemma 2

By the truncated form of Dudley’s entropy inequality, we have

t
E[Z(t) <c inf {ni+ / V108 N (e, Conr (O1°1,5,0), [ e
6€[0,n] %

t
<efon s [ Vg N Con O 15,0, 1T e (25)

where the second step follows by setting § = 2n~8. Combining our assumed upper bound (18a) on
the metric entropy with the earlier inequality (25) yields

E[Z(t)] < cf{2n™ 7 + t°g(M*) log(nt) + th(M*)} < 2¢{2n™" + tg(M*)logn + th(M*)},

where the final step uses the upper bound ¢ < n. We have thus established the claimed bound (24).

4.2 Proof of Proposition 1

We are now equipped to prove bounds on the risk incurred by the oracle estimator from equation (6).

4.2.1 Upper bound

Let k* = ||k[|c denote the size of the largest indifference set in M*, and recall that the oracle
estimator knows the value of £*. For our upper bound, we use Lemma 1 from the previous section
with

C = Cyr(E"), AM)=0, and b=0.

14



With these choices, the estimator (17) for which Lemma 1 provides guarantees is equivalent to the
oracle estimator (6). We then have

Coner (M*, , Cogy (E¥)) = {a(M ~ M) | MeC,ac, 1]}.

In order to apply the result of Lemma 1, we need to compute the metric entropy of the set Cpyp.
For ease of exposition, we further define the set

Caer(k) 1= {aM | M € Cyu(k), a € [0,1]}.

Since M* € Cyr(k*), the metric entropy of Cpyp is at most twice the metric entropy of @ggl(k‘*)
The following lemma provides an upper bound on the metric entropy of the set Cyy(k):

Lemma 3. For every e > 0 and every integer k € [n|, the metric entropy is bounded as

(n—k+1)2<1 n

~ 2
log N (e, Cosr(k), I1I1) < e— 0g =) +ecln—k+1)logn, (26)

where ¢ > 0 is a universal constant.

With this lemma, we are now equipped to prove the upper bound in Proposition 1. The
bound (26) implies that

(n—k*+1)2

logN(67CDIFF(M*7t7(cSST(k*))7 HHHF) < d 2

(logn)?+ ¢ (n — k* +1)logn,

for all ¢ > n~8. Consequently, a bound of the form (18a) holds with g(M*) = v/c/(n — k* + 1) logn
and h(M*) = /d(n — k* +1)logn. Applying Lemma 1 with u = 1 yields

P(IF(s,k) = MY > c(n — k* + 1)(log m)?) < e Ak +108n)?,

where ¢ > 0 is a universal constant. Integrating this tail bound (and using the fact that the
Frobenius norm is bounded as ||M (s, k) — M*||z < n) gives the claimed result.

4.2.2 Lower bound

We now turn to proving the lower bound in Proposition 1. By re-ordering as necesseary, we may
assume without loss of generality that k1 > --- > kg, so that kyn.x = k1. The proof relies on the
following technical preliminary that establishes a lower bound on the minimax rates of estimation
when there are two indifference sets.

Lemma 4. If there are s = 2 indifference sets (say, of sizes k1 > ko), then any estimator M has
error lower bounded as

1

n — ki
n? ’

n2

sup E[|M — M*[2] =

M*€Cssr(2,(k1,k2))

(27)
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See Section 4.2.4 for the proof of this claim.

Let us now complete the proof of the lower bound in Proposition 1. We split the analysis into
two cases depending on the size of the largest indifference set.

Case I: First, suppose that k1 > 5. We then observe that Cg:(2, (k1,n — k1)) is a subset of Cysr(k):
indeed, every matrix in Cgr(2, (k1,m — k1)) can be seen as a matrix in Cgy(k) which has identical
values in entries corresponding to all items not in the largest indifference set. Since the induced
set Cysr(2, (k1,m — k1)) is a subset of Cy(k), the lower bound for estimating a matrix in Cgr(k)
is at least as large as the lower bound for estimating a matrix in the class Cy (2, (k1,n — k1)).

Now applying Lemma 4 to the set Cy(2, (k1,n — k1)) yields a lower bound of CZW. Since

k1 > 3, we have ki > "_2]“. As a result, we get a lower bound of 0—2‘";—2]“

Case II: Alternatively, suppose that k1 < 5. In this case, we claim that there exists a value
u € [n/3,2n/3] such that Cg:(2, (u,n —u)) is a subset of the set Cy(k) with k1 < 5. Observe that
for any collection of sets with sizes k with k; < 7, there is a grouping of sets into two groups, both
of size between n/3 and 2n/3. This is true since the largest set is of size at most n/3. Denoting
the size of either of these groups as u, we have established our earlier claim.

As in the previous case, we can now apply Lemma 4 to the subset Cgs (2, (u,n — u)) to obtain

n—ki
3n2 *

a lower bound of czgin > ¢y

4.2.3 Proof of Lemma 3

In order to upper bound the metric entropy of @SST(k;), we first separate out the contributions of
the permutation and the bivariate monotonicity conditions. Let Cg(id)(k) denote the subset of
matrices in @ggl(k’) that are faithful to the identity permutation. With this notation, the e-metric
entropy of @ggl(k:*) is upper bounded by the sum of two parts:

(a) the e-metric entropy of the set Cy (id)(k); and
(b) the logarithm of the number of distinct permutations of the n items.

Due to the presence of an indifference set of size at least k, the quantity in (b) is upper bounded
by log(Z—!!) < (n — k)logn.

We now upper bound the e-metric entropy of the set @SST(id)(k). We do so by partitioning the
n? positions in the matrix, computing the e-metric entropy of each partition separately, and then
adding up these metric entropies. More precisely, letting Sy C [n] denote some set of k items that
belong to the same indifference set, let us partition the entries of each matrix into four sub-matrices
as follows:

(i) The (k x k) sub-matrix comprising entries (¢, j) where both i € Sy and j € Sk;
(ii) the (k x (n — k)) sub-matrix comprising entries (7, 7) where i € Sy and j € [n]\Sk;

(iii) ((n — k) x k) sub-matrix comprising entries (i,j) where i € [n]\Sk and j € Si; and
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(iv) the ((n—k) x (n—k)) sub-matrix comprising entries (i, j) where both i € [n]\Sk and j € [n]\Sk.

By construction, the metric entropy of Cg(id)(k) is at most the sum of the metric entropies of
these sub-matrices.

The set of sub-matrices in (i) comprises only constant matrices, and hence its metric entropy is
at most log 2. Any sub-matrix from set (ii) has constant-valued columns, and so the metric entropy
of this set is upper bounded by (n—k)log Z. An identical bound holds for the set of sub-matrices in
(iii). Finally, the set of sub-matrices in (iv) are all contained in the set of all ((n—k) x (n—k)) SST
matrices. The metric entropy of the SST class is analyzed in Theorem 1 of our past work [SBGW15],
where we showed that the metric entropy of this set is at most 2 ("T_k)2 (log "T_k)2 + (n — k) logn.
Summing up each of these metric entropies, some algebraic manipulations yield the claimed result.

4.2.4 Proof of Lemma 4

For the first part of the proof, we assume ky is greater than a universal constant. (See the analysis
of Case 2 below for how to handle small values of k3.) Under this condition, the Gilbert-Varshamov
bound [Gil52, Var57] guarantees the existence of a binary code B of length k9, minimum Hamming
distance cokz, and number of code words card(B) = T = 22, (As usual, the quantities ¢ and ¢y

are positive numerical constants.)

We now construct a set of T' matrices contained within the set Cg(2, (k1,k2)), whose con-
stituents have a one-to-one correspondence with the 7' codewords of the binary code constructed
above. Let items S = {1,...,k;} correspond to the first indifference set, so that the complementary
set S¢:={k1 +1,...,n} indexes the second indifference set.

Fix some § € (0, %], whose precise value is to be specified later. Define the base matrix M (0)
with entries
ifi,j € SorijesS©
M;;(0) =i +6 ifieSandjese
%— ifie S°and j € S.

D=

For any other codeword z € B, the matrix M (z) is defined by starting with the base matrix M (0),
and then swapping row/column ¢ with row/column (k; + i) if and only if z; = 1. For instance,
if the codeword is z = [1 1 0 --- 0], then the new ordering in the matrix M (z) is given by
(k1 +1), (k1 +2),3,...,k1,1,2,(k1 +3),...,n, which is obtained by swapping the first two items
of the two indifference sets.

We have thus constructed a set of 7' matrices that are contained within the set Cgs; (2, (K1, k2)).
We now evaluate certain properties of these matrices which will allow us prove the claimed lower
bound. Consider any two matrices My and M> in this set. Since any two codewords in our binary
code have a Hamming distance at least cypko, we have from the aforementioned construction:

clk2n52 S |||M1 — Mg”@ S 2]{72’1152,
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for a constant ¢; € (0,1).

Let Py, and Py, correspond to the distributions of the random matrix ¥ based on Bernoulli
sampling (1) from the matrices M; and Ms, respectively. Since 6 € (0, %], all entries of the matrices
M; and M lie in the interval [1/3,2/3]. Under this boundedness condition, the KL divergence may
be sandwiched by the Frobenius norm up to constant factors. Applying this result in the current
setting yields

02k2n52 < DKL(]P)MI ||PM2) < 63k2n52,
again for positive universal constants co and c3. An application of Fano’s inequality to this set
gives that the error incurred by any estimator M is lower bounded as

clk2n52 1— 03k2n(52 + log2
Ck‘Q '

sup E[|M — M*[] >

(28)
M*eCssr(2,(k1,k2)) 2

From this point, we split the remainder of the analysis into two cases.

Case 1: First suppose that ko is larger than some suitably large (but still universal) constant. In
this case, we may set 62 = %” for a small enough universal constant ¢, and the Fano bound (28)
then implies that
sup [ M~ M7 > k.
M*€Cssr(2,(k1,k2))
for some universal constant ¢ > 0. Since ks = n — kq, this completes the proof the claimed lower
bound (27) in this case.

Case 2: Otherwise, the parameter ks is smaller than the universal constant in the above part of
the proof. In this case, the claimed lower bound (27) on E[|||J\7 — M*||2] is just a constant, and we
can handle this case with a different argument. In particular, suppose that the estimator is given
partition forming the two indifference sets, and only needs to estimate the parameter §. For this
purpose, the sufficient statistics of the observation matrix Y are those entries of the observation
matrix that correspond to matches between two items of different indifference sets; note that there
are ki ko such entries in total. From standard bounds on estimation of a single Bernoulli probability,

any estimator & of § must have mean-squared error lower bounded as E[(6 — 6)?] > i, Finally,

observe that the error in estimating the matrix M* in the squared Frobenius norm is at least 2k ko
times the error in estimating the parameter §. We have thus established the claimed lower bound
of a constant.

4.3 Proof of Theorem 1

We now prove the upper bound (10a) for the regularized least squares estimator (9). Note that it
has the equivalent representation

Miyge € arg min {WY — M2 + (1 = kmax (M) + 1><logn>3}. (29)
M eCssr

18



Defining k* : = kmax(M™*), it is also convenient to consider the family of estimators

Fie amgmin {1 - M+ (1 b (M) + )llogn)?), (30)
M eCsst(k)UCsst(k*)

where k ranges over [n]. Note that these estimators cannot be computed in practice (since the value

of k* is unknown), but they are convenient for our analysis, in particular because ]\/ZREG = ]\/4\1@ for
some value k € [n].

We first show that there exists a universal constant ¢y > 0 such that
P[0 — M I > con — K + 1) (log n)? | < e~ (o8 (31)
for each fixed k € [n]. Since ]\/ZREG = ]\/Zk for some k, we then have
B[ nes — M1} > cofn — k* + 1)(logn)*] < B[ max | — M > coln — k" + 1) (log n)’]

(Z<),’,Le—(logn)2 < e—%(logn)?

where step (i) follows from the union bound. We have thus established the claimed tail bound (10a).
In order to prove the bound (10b) on the adaptivity index, we first integrate the tail bound (10a).

Since all entries of M* and Myg all lie in [0,1], we have || M* — Mg I < n?, and so this integration
step yields an analogous bound on the expected error:

E[|M* — MyeclF] < cu(n — kmax(M*) + 1) (log n)°.
Coupled with the lower bound on the risk of the oracle estimator established in Proposition 1, we

obtain the claimed bound (10b) on the adaptivity index of ]\/ZREG.

It remains to prove the tail bound (31). We proceed via a two step argument: first we use
the general upper bound given by Lemma 1 to derive a weaker version of the required bound; and
second, we then refine this weaker bound so as to obtain the bound (31).

Establishing a weaker bound: Beginning with the first step, let us apply Lemma 1 with the
choices

b=0, C=Cu(k)UCx(k*), and M) = (n— kmax(M)+ 1)(logn)>.
With these choices, the Cppr(M*,t) in the statement of Lemma 1 takes the form
Coue(M*,1) € {a(M — M*) | o € [0, 1], M € Car() U Cr (7).
Lemma 3 implies that

(n — min{k, k*} + 1)2
2
€

log N (€, Coer (M*,8), ||-llr) < ¢ (logn)? + ¢(n — min{k,k*} + 1) logn

for all € > n=8. Applying Lemma 1 with « = 1 then yields
P(Hym ~ M| > e(n — min{k, k*} + 1)(log n)2) < e—cllogn)?, (32)
Note that this bound is weaker than the desired bound (31), since min{k, k*} < k*. Thus, our next

step is to refine it.
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Refining the bound (32): Before proceeding with the proof, we must take care of one subtlety.
Recall that the set Cyy (k™) consists of all matrices in Cy, that have an indifference set containing
at least (but not necessarily exactly) k* items. If & > k*, then the bound (32) is equivalent to the
bound (31). Otherwise, we evaluate the estimator ]\/4\1@ for the choices kK = 1,...,k* — 1 (in this
particular order). For any k € {1,...,k* — 1} under consideration, suppose k‘max(]\?k) =k < k.
Then the estimate under consideration is either also an optimal estimator for the case of M}/, or
it is suboptimal for the aggregate estimation problem (29). In the former case, the error incurred
by this estimate is already handled in the analysis of M}/, and in the latter case, it is irrelevant.
Consequently, it suffices to evaluate the case when kmax(]\/jk) = k.

Observe that the matrix Mj, is optimal for the optimization problem (30) and the matrix M*
lies in the feasible set. Consequently, we have the basic inequality:

Y = Myl + (n — k + 1)(logn)® < |Y = M| + (n— k* + 1)(log n)®.
Using the linearized form of the observation model (16a), some simple algebraic manipulations give
1 —~ —~
Iy = M7 < (M = M, W) = (n— k +1)(log n)” + (n — k" + 1)(log n)?, (33)

where W is the noise matrix (16b) in the linearized form of the model. The following lemma
helps bound the first term on the right hand side of inequality (33). Consistent with the notation
elsewhere in the paper, for any value of ¢ > 0, let us define a set of matrices Cpyp(M™*,t) C Cyyy as

Comr(M*,t) :={a(M — M*) | M € Csr(k), a € [0,1], |la(M — M™*)||x < t}.
With this notation, we then have the following result:

Lemma 5. For any M* € Cgy, any fized k € [n], and any t > 0, we have

sup (D, W) < cty/(n —min{k, k*} +1)logn + c(n — min{k, k*} +1)(logn)?  (34)
DeCprpp(M*,t)

with probability at least 1 — e~ (08 n)?,

See Section 4.3.1 for the proof of this lemma.

From our weaker guarantee (32), we know that |||]\/4\k —M*||p < ¢+/(n —min{k, k*} + 1)(logn)2,
with high probability. Consequently, the term (M — M*, W) is upper bounded by the quan-
tity (34) for some value of ¢ < ¢/y/(n — min{k, k*} + 1)(log n)2, and hence

(M — M*, W) < " (n — min{k, k*} + 1)(log n)?,

with probability at least 1 — ¢~ (logn)? Applying this bound to the basic inequality (33) and
performing some algebraic manipulations yields the claimed result (31).
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4.3.1 Proof of Lemma 5

Consider the function ¢ : [0,n] — Ry given by ((t) : = sup (D, W). In order to control
DeCprrr(M*,t)
the behavior of this function, we first bound the metric entropy of the set Cpr(M*,t). Note that

Lemma 3 ensures that
n — min{k, k*} + 1)?

€2

log N (&, Cope (M*, ), || - [Ir) < c( (log %)2 + c¢(n — min{k, k*} + 1) log n.

Based on this metric entropy bound, the truncated version of Dudley’s entropy integral then guar-
antees that

E[¢(t)] < c¢(n — min{k, k*} + 1)(log n)* + ct\/(n — min{k, k*} + 1) log n.

It can be verified that the function ((¢) is ¢t-Lipschitz. Moreover, the random matrix W has
entries (16b) that are independent on and above the diagonal, bounded by 1 in absolute value,
and satisfy skew-symmetry. Consequently, Ledoux’s concentration theorem [Led01, Theorem 5.9]
guarantees that

P[¢(t) > E[¢(t)] + tv] < eV for all v > 0.

Combining the pieces, we find that

]P’[C(t) > c(n — min{k, k*} + 1)(logn)? + cty/(n — min{k,k*} + 1) logn + tv] <e?,

valid for all v > 0. Setting v = \/(n — min{k, k*} + 1) log n yields the claimed result.

4.4 Proof of Theorem 2

We now prove the upper bound for the CRL estimator, as stated in Theorem 2. In order to simplify
the presentation, we assume without loss of generality that the true permutation of the n items is
the identity permutation id. Let megy, = (71,...,7,) denote the permutation obtained at the end
of the second step of the CRL estimator. The following lemma proves two useful properties of the
outcomes of the first two steps.

Lemma 6. With probability at least 1 —n=2°, the permutation Tep;, obtained at the end of the first
two steps of the estimator satisfies the following two properties:

(@) mavsicly) iy (M5 — M3, o < Vlogn)?, and
(b) the group of similar items obtained in the first step is of size at least k* = kypax(M™).

See Section 4.4.1 for the proof of this claim.

Given Lemma 6, let us complete the proof of the theorem. Let II denote the set of all permuta-
tions on n items which satisfy the two conditions (a) and (b) stated in Lemma 6. Given that every
entry of M* lies in the interval [0,1], any permutation 7 € 1I satisfies

I — 2 = 3 S f00? < S0 My - Mz, |- (35)

1€[n] L€[n] i€[n] L€[n]
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Now consider any item i € [n]. Incorrectly estimating item i as lying in position 7 (i) contributes a
non-zero error only if either item ¢ or item 7 (i) lies in the (n — k*)-sized set of items outside the
largest indifference set. Consequently, there are at most 2(n — k*) values of i in the sum (35) that
make a non-zero contribution. Moreover, from property (a) of Lemma 6, each such item contributes
at most y/n(logn)? to the error. As a consequence, we have the upper bound

I = 7(M)|J7 < 2(n — k*)v/n(logn)?. (36)

Let us now analyze the third step of the CRL estimator. The problem of bivariate isotonic
regression refers to estimation of the matrix M* € Cy; when the true underlying permutation of
the items is known a priori. In our case, the permutation is known only approximately, so that we
need also to track the associated approximation error. In order to derive a tail bound on the error
of bivariate isotonic regression, we call upon the general upper bound proved earlier in Lemma 1
with the choices b =1, C = Cgy(id), and A = 0. Now let

Coue(M*, 1) 1= {a(M — M*) | M € Ceu(id)}.

The following lemma uses a result from the paper [CGS15] to derive an upper bound on the met-
ric entropy of Cpyp(M*,t). For any matrix M* € Cgygr, let s(M™*) denote the number of indifference
sets in M*.

Lemma 7. For every e >n~8 and t € (0,n], we have the metric entropy bound

. t2(s(M*))?(log n)®
log N (e, (M, 1), 111) < L08R
where ¢ > 0 is a universal constant.
With this bound on the metric entropy, an application of Lemma 1 with u = (7(’ (k Jr)if gives

that for every M* € Cg(id), the least squares estimator Miq € arg min IM —Y|? incurs an error
MeCgsr(id)
upper bounded as

IMia = M| < e(n — k" +1)*(log n)®,

—(n—k*+1)2(logn)®

with probability at least 1 —e . Note that this application of Lemma 1 is valid since

s(M*) <n—k*+1 and hence u > 1. Furthermore, it follows from a corollary of Theorem 1 in the
paper [SBGW15] that

|Miq — M*|2 < en(logn)?,

with probability at least 1 — e™“". Combining these upper bounds yields

—~ (@)
[Mia — M7 < emin{(n — &* +1)*, n}(logn)® < c(n —k* + 1)v/n(logn)®, (37)
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with probability at least 1 — e—c(n—k*+1)*(log ”)8, where c is a positive universal constant. Inequality
(i) makes use of the bound min{u?,v?} < uv for any two non-negative numbers u and v.

Let us put together the analysis of the approximation error (36) in the permutation obtained
in the first two steps and the error (37) in estimating the matrix in the third step. To this end,
consider any permutation & € II. For clarity, we augment the notation of MCRL (defined in (12))
and use MCRL(Y 7) to represent the estimator MCRL under the permutation 7 for the observation
matrix Y, that is,

Mo, (Y, 7) : = arg min |M — Y2
MeCssr(7t)

Consider any matrix M* € Cgq(id) under the identity permutation. We can then write
Mo (M + W, 7) — M|}
= | Mone (M* + W, ) = Mogs, (7 (M*) + W, %) + More (F(M*) + W, 7) — M|}
< 2| Mege (M* + W, ) — Mgy (R(M*) + W, 7)1 + 2] Mege (R(M*) + W, 7)) — MF|2. - (38)

We separately bound the two terms on the right hand side of equation (38). First observe that the
least squares step of the estimator Mcg;, (for a given permutation 7 in its second argument) is a
projection onto the convex set Cy;(7), and hence we have the deterministic bound

[ Mors (M + W, 7t) = Moy (R(M*) + W, 7)|[2 < [|M* = #(M*)]2. (39a)
In addition, we have
[ Mon (7R(M*) + W, 7t) = M¥|I < 2| Moy (R(M*) + W, 7) = & (M7 + 2[|7(M*) = M*[|7. (39b)

From our earlier bound (37), we have that for any fized permutation 7 € ﬁ, the least squares
estimate satisfies

I More, (F(M*) + W, ) — 7#(M*)[2 < cu(n — k* + 1)v/n(log n)®, (40)

with probability at least 1 — e~¢(n—k"+1)*(logn)*
In conjunction, the bounds (36), (38), (39a), (39b) and (40) imply that for any fired # € II,

P (| Mg (M* + W, 7) = MY2 < ey(n— K+ 1)Vllogn)®) > 1 — e~elnb%oen? (47

Although we are guaranteed that meg, € ﬁ, we cannot apply the bound (41) directly to it, since
Tere 1S a data-dependent quantity. In order to circumvent this issue, we need to obtain a uniform
version of the bound (41), and we do so by applying the union bound over the data-dependent
component of Tegy.

In more detail, let us consider Steps 1 and 2 of the CRL algorithm as first obtaining a total
ordering of the n items via a count of the number of pairwise victories, then converting it to a
partial order by putting all items in the subset identified by Step 2 in an equivalence class, and
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then obtaining a total ordering by permuting the items in the equivalence class in a data-independent

manner. Lemma 6 ensures that the size of this equivalence class is at least k*. Consequently, the

number of possible (data-dependent) partial orders obtained is at most ,;1!! < en=k")logn Taking

e(n—k*) logn

a union bound over each of these cases, we get that

P Mo (M* + Wi mere) = M2 < culn = k* +1)v/n(logn)® | momy € TI| - 21— ¢=008m)",

Recalling that Lemma 6 ensures that P[WCRL € ﬁ] > 1 —n"20 we have established the claim.

It remains to prove the two auxiliary lemmas stated above.

4.4.1 Proof of Lemma 6

We first prove that for any fixed item ¢ € [n], the inequality of part (a) holds with probability at
least 1 — n~22. The claimed result then follows via a union bound over all items.

Consider any item j > ¢ such that

n n
> My =Y M, > v/n(logn)®. (42)
=1 =1
An application of the Bernstein inequality then gives (see the proof of Theorem 1 in the pa-
per [SW15] for details) that

n n 1
P(Y Yje>) Yu) < —.
=1 =1

Likewise, for any item j < i such that >y, M7, — 375 M > y/n(log n)?, we have P(Y_)_, Yie >
Iy Yﬂ) = 7715

Now consider any j > 7. In order for item 7 to be located in position j in the total order given
by the row sums, there must be at least (j — ¢) items in the set {i + 1,...,n} whose row sums are
at least as big as the sum of the i*" row of Y. In particular, there must be at least one item in the
set {j,...,n} such that its row sum is as big as the sum of the i"* row of Y. It follows from our
results above that under the condition (42), this event occurs with probability no more than %
Likewise when j < i, thereby proving the claim.

We now move to the condition of part (b). Observe that for any two items i and j in the
same indifference set, we have that M;, = M, for every { € [n]. An application of the Bernstein
inequality now gives that

n n
1
P(Y_Yje— Y Yie > vnlogn) < —.
=1

=1
A union bound over all pairs of items in the largest indifference set gives that all k* items in

the largest indifference set have their row sums differing from each other by at most y/nlogn.
Consequently, the group must be of at least this size.
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4.4.2 Proof of Lemma 7

For the proof, it is be convenient to define a class Cgr(; [-1,1]) that is similar to the class Cyyr(id),
but contains matrices with entries in [—1,1]:

Cosr(t; [-1,1]) : = {M € [-1,1]"" | |M||e < ¢, My > M;; whenever k < i and £ > j}.

We now call upon Theorem 3.3 of the paper [CGS15]. It provides the following upper bound on
the metric entropy of bivariate isotonic matrices within a Frobenius ball:

log N (e, Cose(t; [=1,1]), || - lr) < o

21 4 1
t*(log n) (logt ogn)z‘
€2 €

Substituting € > nSandt<n yields

2 6
log N (e, Cun (15[ 1, 1) - ) < o8 (43)
We now use this result to derive an upper bound on the metric entropy of the set Cpe(M*, ).
Consider the following partition of the entries of any (n x n) matrix into (s(M*))? submatrices.
Submatrix (i,7) € [s(M*)] x [s(M™)] in this partition is the (k; x k;) submatrix corresponding
to the pairwise comparison probabilities between every item in the i*" indifference set with every
item in the j* indifference set in M*. Such a partition ensures that each partitioned submatrix
of M* is a constant matrix. Consequently, for any M € C,:(M*,t), each partitioned submatrix
belongs to the set of matrices Cysr(t;[—1,1]) (where we slightly abuse notation to ignore the size
of the matrices as long as no dimension is greater than (n x n)). The metric entropy of the set of
matrices in Cpyr(M™*,t) can now be upper bounded by the sum of the metric entropies of each set

of submatrices. Consequently, we have

log N (€, Coue (M*, 1), || - ls) < (s(M*))*log N (e, Csa(t; [=1,1]), | - Ix)

E(s(M*))(log )’
< )

)

where the final inequality follows from our earlier bound (43).

4.5 Proof of Theorem 3

We now turn to the proof of the lower bound for polynomial-time computable estimators, as stated
in Theorem 3. We proceed via a reduction argument. Consider any estimator that has Frobenius
norm error upper bounded as
sup E[|M — M*|I] < cuv/n(n — kmax(M*) + 1) (log n) ™. (44)
M*eCsst
We show that any such estimator defines a method that, with probability at least 1 — ﬁ, is able

to identify the presence or absence a planted clique with vertices. This result, coupled with

_vn
loglogn
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the upper bound on the risk of the oracle estimator established in Proposition 1 proves the claim
of Theorem 3.

Our reduction from the bound (44) proceeds by identifying a subclass of Cg;, and showing that
any estimator satisfying the bound (44) on on this subclass can be used to identify a planted clique
in an Erdés-Rényi random graph. Naturally, in order to leverage the planted clique conjecture, we
need the planted clique to be of size o(y/n).

Our construction involves a partition with s = 3 components, maximum indifference set size

kmax = k1 = n — 2k, with the remaining two indifference sets of size ks = k3 = k. We choose the

Vvn
loglogn

planted clique (for sufficiently large values of n). Now let M be a matrix with all ones in the

parameter k : = so that any constant multiple of it will be within the hardness regime of

(k x k) sub-matrix in its top-right, zeros on the corresponding sub-matrix in the bottom-left and
all other entries set equal to % By construction, the matrix M belongs to the class Cgsr(kmax)
with kpax = n — 2k.

For any permutation m on § items and any (n x n) matrix M, define another (n x n) matrix

P.(M) by applying the permutation 7 to:
e the first 5 rows of M*, and the last § rows of M*
e the first 5 columns of M™, and to the last § columns of M™.
We then define the set Cggy : = {PF(MS) | for all permutations 7 on [n/ 2]} By construction, it is
a subset of Cygr(n — kmax)-

For any estimator M that satisfies the bound (44), we have

— * n
Csp B[N - M < ok
M*G(CSSTU{%IIT} ogmn

On the other hand, Markov’s inequality implies that

— N ky/m
E[|M — M*||2] > c—2=P|||M — M*||? > :
I I3 > e—re=e|l I} 2 e

Combining the two bounds, we find that

7 a2 Ckvn 1
P -0 < o 21 - (45)

_Consider the set of (3 x 3) matrices comprising the top-right (3 x 3) sub-matrix of every matrix
in Cggr. We claim that this set is identical to the set of all possible matrices in the planted clique
problem with 5 vertices and a planted clique of size k. Indeed, the set contains the all-half matrix
corresponding to the absence of a planted clique, and all symmetric matrices that have all entries
equal to half except for a (k x k) all-ones submatrix corresponding to the planted clique.

Now consider the problem of testing the hypotheses of whether M* is equal to the all-half
matrix (“no planted clique”) or if it lies in Cgsr (“planted clique”). Let us consider a decision rule
that declares the absence of a planted clique if \H]\/j — 31172 < LK%, and the presence of a planted
clique otherwise.
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Null case: On one hand, if there is no planted clique (M* = 117, then the bound (45) guar-
antees that

= 1 Vi
M— 1172 <k 46
e Togn (46)

. .1 . 1 . .
with probability at least 1 Tosn Recalling that k& =

detect the absence of the planted clique with probability at least 1 —

we find that our decision rule can

1
Viogn®

VAL
loglogn?

Case of planted clique: On the other hand, if there is a planted clique (M* € (ESST), then we
have

1 1, . 1 B L
INT — SUTJ2 2 S0 — S1TIE — 3 - Y2 = o — AT — M

Thus, in this case, the bound (45) guarantees that

—~ 1 1 kv/n
M— 1172 > 2k — ,
I 511 e = Tozn

Since k =

L o g‘{oﬁgn, our decision rule successfully detects the

Viegn®
presence of a planted clique with probability at least 1 — \/li@'

with probability at least 1 —

In summary, given the planted clique conjecture, our decision rule cannot be computed in
polynomial time. Since it can be computed in polynomial-time given the estimator M, it must also
be the case that M cannot be computed in polynomial time, as claimed.

4.6 Proof of Theorem 4

We now prove lower bounds on the standard least-squares estimator. A central piece in our proof
is the following lemma, which characterizes an interesting structural property of the least-squares
estimator.

Lemma 8. Let M* = %HT and consider any matriz Y € {0,1}"*™ satisfying the shifted-skew-
symmetry condition. Then the least squares estimator Mpg from equation (14) must satisfy the
quadratic equation

1Y — M*[2 = |V — Mps|2 + |M* — Mgl

See Section 4.6.1 for the proof of this claim.

Let us now complete the proof of Theorem 4 using Lemma 8. Our strategy is as follows: we
first construct a “bad” matrix M € Cg, that is far from M™* but close to Y. We then use Lemma 8
to show that the least squares estimate Mg must also be far from M*.
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In the matrix Y, let item ¢ be an item that has won the maximum number of pairwise

comparisons—that is ¢ € arg max 2?21 Y;;. Let S denote the set of all items that are beaten
i€[n]

by item ¢(—that is, S := {j € [n]\{¢} | Ys; = 1}. Note that card(S) > 251. Now define a matrix

M € Cg, with entries My ; = 1 =1~ M, , for every j € S, and all remaining entries equal to %

Some simple calculations then give

IV — M*| =Y — M|2 + [|M* — M||7,  and (47a)
n—1

4

M — M|? > (47D)

Next we exploit the structural property of the least squares solution guaranteed by Lemma 8.
Together with the conditions (47) and the fact that [|Y — My s||? < | — M||2, some simple algebraic
manipulations yield the lower bound

— n—1
R (48)

This result holds for any arbitrary observation matrix Y, and consequently, holds with probability
1 when the observation matrix Y is drawn at random. For k.« = n — 1, Proposition 1 yields an
upper bound of ¢(log n)? on the oracle risk. Combining this upper bound with the lower bound (48)
yields the claimed lower bound on the adaptivity index of the least squares estimator.

4.6.1 Proof of Lemma 8

From our earlier construction of M in Section 4.6, we know that [|Y — M, Lslle < 1Y = Mle <
Y — M*||z, which guarantees that Mpg # M*. Consequently, we may consider the line

L(M*, Mps) := {0M* + (1 — 0)Mps | 6 € R}
that passes through the two points M* and M 5. Given this line, consider the auxiliary estimator

M;:= argmin [[Y — M. (49)
MeL(M*,Mys)

Since ]\/4\1 is the Euclidean projection of Y onto this line, it must satisfy the Pythagorean relation
IY = M2 = Iy = My[J7 + [|M* — My 3. (50)

Let TIjpq : R™™ — [0,1]"*" denote the Euclidean projection of any (n x n) matrix onto the
hypercube [0, 1]"*™. This projection actually has a simple closed-form expression: it simply clips
every entry of the matrix M to lie in the unit interval [0, 1]. Since projection onto the convex set
[0,1]™*"™ is non-expansive, we must have

1Y = M2 = o1y (Y) — oy (M) = Y — o,y (M) I2. (51)
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Here the final equation follows since Y € [0,1]"*", and hence IIjo 11(Y) =Y.

Furthermore, we claim that I (]\/4\1) € Cgqr. In order to prove this claim, first recall that the
matrix ]\71 can be written as ]\71 =(1- 9)(]\/J\LS — %11T) + %11T for some 6 € R, and ]\/ZLS € Cygr.
Consequently, if # < 1, then the rows/columns of the projected matrix H[o,u(]\/]l) obey the same
monotonicity conditions as those of M 1s; conversely, if § > 1, the rows/columns obey an inverted
set of monotonicity conditions, again specified by the rows/columns of M. 1. Moreover, since the two
matrices M, s and %HT satisfy shifted-skew-symmetry, so does the matrix ]\71. One can further
verify that any two real numbers a > b must also satisfy the inequalities

min(a,1) > min(b,1), and max(a,0) > max(b,0).

If in addition, the pair (a,b) satisfy the constraint, a + b = 1, then we have max(min(a,1),0) +
max(min(b,1),0) = 1. Using these elementary facts, it can be verified that the monotonicity and
shifted-skew-symmetry conditions of any matrix are thus retained by the projection Iljg ).

The arguments above imply that H[O,l](l\/il) € Cqr and hence the matrix H[()’H(]\/J\l) is feasible
for the optimization problem (14). By the optimality of Mg, we must have Iy — H[071}(]\71)|||§ >
Y — Mps||2. Coupled with the inequality (51), we find that

Iy — Millg > Y — Misllz.

On the other hand, since M s is feasible for the optimization problem (49) and ]\71 is the
optimal solution, we must actually have

Y = Ml = 1Y - Mislz,

so that M, Ls is also optimal for the optimization problem (49). However, the optimization prob-
lem (49) amounts to Euclidean projection on to a line, it must have a unique minimizer, which
implies that M, LS = ]\71. Substituting this condition in the Pythagorean relation (50) yields the
claimed result.

5 Conclusions

We proposed the notion of an adaptivity index to measure the abilities of any estimator to auto-
matically adapt to the intrinsic complexity of the problem. This notion helps to obtain a more
nuanced evaluation of any estimator that is more informative than the classical notion of the worst-
case error. We provided sharp characterizations of the optimal adaptivity that can be achieved in
a statistical (information-theoretic) sense, and that can be achieved by computationally efficient
estimators.

The logarithmic factors in our results arise from corresponding logarithmic factors in the metric
entropy results of Gao and Wellner [GW07], and understanding their necessity is an open ques-
tion. In statistical practice, we often desire estimators, that perform well in a variety of different
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senses. We believe that estimating SST matrices at the minimax-optimal rate in Frobenius norm,

as studied in more detail in the paper [SBGW15], is also computationally difficult. We hope to

formally establish this in future work. Finally, developing a broader understanding of fundamental

limits imposed by computational considerations in statistical problems is an important avenue for

continued investigation.
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