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Introduction

Freight transportation infrastructures, including ports, intermodal
stations, interstate highways, and railways as basic structures and
facilities, enable commodity flows and facilitate the productivity of
industries. In the past decades, numerous disruptive events, whether
natural hazards, common failures, or possibly malevolent attacks,
have threatened the operation of multiple modes of this infrastruc-
ture system and consequently adversely impacted economic pro-
ductivity. A few examples of these disruptive events include the
flooding of the Mississippi and Missouri rivers in 1993, where sev-
eral railroads experienced delays and cancelations (Haefner et al.
1996); Hurricane Katrina that caused damage to the US highway
system in Louisiana, Mississippi, and Alabama in 2005 (Shen and
Aydin 2014); and Hurricane Sandy, as a multistorm that hit the East
Coast of the US in 2012, which closed all port terminal facilities
and the harbor at the Port of New York and New Jersey area
(Fialkoff et al. 2017). A local disruption (i.e., port closure) can
have effects that propagate through the system of interdependent
infrastructure and industry sectors resulting in major reductions

in regional or nation-wide economic efficiency (Pant and Barker
2011; Arnold et al. 2006). A protective approach could include
hardening key industries to lessen the shocks from disruptive
events (DHS 2013) [e.g., including emergency debris removal from
transportation routes and temporary reconstitution of emergency
services (Bye et al. 2013)]. This paper provides an approach to
measure such hardening in terms of the effectiveness of investing
in resilience from the perspective of a central decision maker across
several interdependent industries.

Several definitions of resilience have been proposed, including
the ability to withstand, adapt to, and recover from a disruption. A
definition with which many would largely agree (The White House
2011). Vugrin and Camphouse (2011) defines the resilience capac-
ity of a system as a function of the following: (1) absorptive capac-
ity, or the extent to which a system is able to absorb shocks from
disruptive events, (2) adaptive capacity, or the extent to which a
system can quickly adapt after a disruption by temporary means,
and (3) restorative capacity, or the extent to which the system can
recover from a disruption or be reconstructed in the long term.
Barker et al. (2013) highlights that the collection of absorptive
and adaptive capacities addresses vulnerability mitigation, or to
what extent an infrastructure withstands a disruptive event. The re-
storative capacity is analogous to recoverability, or the ability of
the infrastructure to recover to a desired level of performance in
a timely manner. The capacities contributing to resilience, as well
as the dimensions of vulnerability and recoverability, are character-
istics exhibited by resilient systems and could be measured in a
number of context-specific ways.

As such, absorptive, adaptive, and restorative capacities can be
viewed as first, second, and third lines of defense, respectively
(Hosseini and Barker 2015, Hosseini et al. 2016). Fig. 1 highlights
the temporal relationship among absorptive, adaptive, and restor-
ative capacities. In this figure, we measure system performance
in each time period with φðtÞ (e.g., customers with power, travel
time in a transportation network, and total flow reaching to demand
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nodes). In an example of improving absorptive capacity, Bienstock
and Mattia (2007) developed an optimization model to increase
powerline capacities to prevent large scale cascading blackouts
in a power network. An example of adaptive capacity included
robust strategies to respond to the dramatic climate change in water
management systems in which simulation models of several disrup-
tion scenarios assess options to ameliorate vulnerabilities in the
short term (Lempert and Groves 2010). Finally, debris removal
from a transportation network after a natural disaster was an exam-
ple of restorative capacity (Çelik et al. 2015).

This paper focuses on reducing vulnerability via absorptive
capacity. The idea of absorptive capacity has also been referred to
as static resilience, or “the ability of the system to maintain func-
tionality when shocked” (Rose 2007). However, this term has
evolved into absorptive capacity integrating into the newly defined
concept of resilience (Vugrin and Camphouse 2011). Mathemati-
cally, static resilience is measured in terms of the difference be-
tween the maximum potential drop in system performance and
the estimated performance drop (Rose 2004). That is, no notion
of recovery is considered, only the ability to withstand the initial
disruption. This is depicted graphically in Fig. 2 and mathemati-
cally in Eq. (1), where %ΔDY and %ΔDYmax are calculated with
100% × ½φðteÞ − φ 0ðtdÞ�=φðteÞ, and %ΔDY = actual percentage

change in the performance of the system following a disruptive
event when a number of limited resources are allocated in proac-
tively to fortify industry sectors before disruptions; %ΔDYmax =
maximum percentage change given the worst-case level of perfor-
mance (Rose 2009). This quantitative approach is used in this study
to define a performance measure for the system’s ability to absorb
shocks (%ΔDYmax −%ΔDY) from disruptive events, though we
prefer the term absorptive capacity rather than static resilience.

While Fig. 2, from Pant et al. (2014), represents changes in sys-
tem performance in a general sense, Rose (2009) provides a more
specific application, where%ΔDY and%ΔDYmax refer to changes
in total performance, after infrastructure fortification, and in a
worst-case situation, respectively, in a set of interconnected indus-
tries. In this sense, these measures are analogous to the concept of
inoperability, a well-studied topic in the literature of interdependent
industries and infrastructures (Santos and Haimes 2004; Barker and
Haimes 2009; Barker and Santos 2010a, b). Inoperability (q) quan-
tifies the proportional extent to which a system does not function
in an as-planned manner. That is, where other measures quantify
system performance in application-specific terms (e.g., flow capac-
ity, connectivity, production output), inoperability provides a more
general proportional metric of performance relative to an as-
planned value. As such, we adopt %ΔDY ¼ q; %ΔDYmax ¼ qmax
in this work, and we relate absorptive capacity to these inoperabil-
ity measures

absorptive capacity ¼ %ΔDYmax −%ΔDY
%ΔDYmax ð1Þ

This paper seeks to answer: how should limited resources are
allocated to harden individual industries effectively to enhance
absorptive capacity with total economic impacts in mind? These
economic impacts are realized due to freight disruptions. Freight
transportation infrastructure disruptions lead not only to physical
damage but also to an interruption of economic productivity across
multiple industries due to infrastructure inoperability (Ham et al.
2005; Park et al. 2011). Arnold et al. (2006) analyzed the economic
impacts of disruptions in container traffic in the ports of Los
Angeles and Long Beach, California. Pant et al. (2011), using the
inoperability input-output model (IIM), and (Santos and Haimes
2004) showed how a local disruption in the Port of Catoosa in
Tulsa, Oklahoma, would affect multiple industries within the
state and neighboring states that trade with Oklahoma. IIM is a
data-driven interdependent disruption evaluation model that has
been widely used to analyze interdependent connections among in-
dustry sectors (Pant et al. 2014). The model proposed a balance

Fig. 1. Relationship between the vulnerability and recoverability dimensions of resilience and the components of absorptive capacity with respect to
system performance φðtÞ.

Fig. 2. Performance components of static resilience. (Reprinted from
Reliability Engineering & System Safety, Vol. 125, R. Pant, K. Barker,
and C. W. Zobel, “Static and dynamic metrics or economic resilience
for interdepended infrastructure and industry sectors,” pp. 92–102,
© 2014, with permission from Elsevier.)
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supply-demand equilibrium for interacting industries. Understand-
ing the absorptive capacities of affected industries could assist
in preparedness planning against disruptions. In particular, prepar-
edness plans could enhance the ability of the industries to absorb
shocks from the disruptive events and lessen the maximum eco-
nomic inoperability that the series of interdependent industries
would experience.

This paper establishes inoperability through the IIM as a means
to measure absorptive capacity in interdependent industries. This
research addresses (1) defining a measure of absorptive capacity
to invest for resilience in an interdependent economic system;
and (2) planning for absorptive capacity under uncertainty; while
(3) addressing some of the uncertainties of the model.

Methodological Background

The IIM is an extension of the economic input-output model
(Leontief 1986). The input-output model has been widely used in
analyzing the interdependent connections among industries (Santos
and Haimes 2004).

In a system of n interacting industries under a static equilibrium,
the total output of the ith industry is distributed to all other indus-
tries and satisfies external demand. This equilibrium condition is
described with xi ¼

P
n
j¼1 zij þ ci, where xi = output; ci = external

demand for industry i; and zij describes the flow of commodities
output from industry i and is used as input to production in indus-
try j. The flow of commodities zij is assumed to be proportional to
the output of industry j, expressed as zij ¼ aijxj. The common
form of the Leontief input-output model is expressed in Eq. (2),
where x is an n × 1 vector of industry production outputs, A is an
n × n industry-by-industry matrix of interdependency coefficients,
and c is a n × 1 vector of final demands. The model shows that total
production is made up to satisfy industry-to-industry intermediate
production (Ax) and final demands (c)

x ¼ Axþ c ⇒ x ¼ ½I −A�−1c ð2Þ

Instead of describing the connections between the interdepend-
ent industries in terms of commodity flow in monetary units
(e.g., dollars), the IIM illustrates how normalized production losses
propagate through all interconnected industries. The IIM is pro-
vided in Eq. (3) (Santos and Haimes 2004), which describes the
relationships among n infrastructure and industry sectors, resulting
in matrices of size n × n and vectors of length n

q ¼ A⋆qþ c⋆ ⇒ q ¼ ½I −A⋆�−1c⋆ ð3Þ

Vector q here is a vector of infrastructure and industry inoper-
abilities describing the extent to which ideal functionality is not
realized following a disruptive event. Inoperability for sector i is
defined in Eq. (4), where the as-planned total output is represented
with x̂i and degraded total output resulting from a disruption is rep-
resented with ~xi. An inoperability of 0 suggests that an industry
is operating at normal production levels, while an inoperability
of 1 means that the industry is not producing at all

qi ¼ ðx̂i − ~xiÞ=x̂i ⇔ q ¼ ½diagðx̂Þ�−1ðx̂ − ~xÞ ð4Þ

Normalized interdependency matrix A⋆ is a modified version
of the original A matrix describing the extent of economic inter-
dependence among a set of infrastructure and industry sectors.
Shown in Eq. (5), the row elements of A⋆ indicate the proportions
of additional inoperability that are contributed by a column sector
to the row sector

a⋆ij ¼ aijðx̂j=x̂iÞ ⇔ A⋆ ¼ ½diagðx̂Þ�−1A½diagðx̂Þ� ð5Þ

Eq. (6) provides the calculation of c⋆, a vector of normalized
demand reduction. The elements of c⋆ represent the difference in
as-planned demand ĉi and perturbed demand ~ci divided by as-
planned production, quantifying the reduced final demand for
sector i as a proportion of total as-planned output

c⋆i ¼ ðĉi − ~ciÞ=x̂i ⇔ c⋆ ¼ ½diagðx̂Þ�−1ðĉ − ~cÞ ð6Þ

As is evident from Eq. (3), the IIM, like the economic input-
output model of Eq. (2), is a demand-driven model. Specifically,
in the IIM, disruptions are translated to demand perturbations giv-
ing direct economic losses, following which the indirect economic
losses can be estimated through Eq. (3). An example of a demand
perturbation, as discussed subsequently in the case study, would
include unsatisfied demand in the petroleum and coal products
industry resulting from a closure of an inland waterway port.

Total economic losses, the combination of direct and indirect
losses, can be calculated by multiplying each industry’s production
level by its inoperability level: for industry i, Qi ¼ xiqi, or for the
entire economy of industries, Q ¼ xTq. As such, planning deci-
sions can be made with respect to inoperability or economic impact
at the sector level or with respect to economic impact at the
multisector level.

Criticisms of the basic IIM include its linear nature and its treat-
ment of interactions of industries as constant after a disruption
(Kujawski 2006). However, the linear nature of the model enables
it to be easily used in an optimization formulation (e.g., relative to a
nonlinear computable general equilibrium model to describe the
interactions among industries) as is proposed in this paper. And
the constant nature of the parameters of the model is assumed here
due to the short-term nature of the analysis, as changes in the
economy over time (e.g., substitution among industries) do not
affect the proposed formulation. Further, while data describing
the parameters of the IIM are published annually by the US Bureau
of Economic Analysis (BEA) and many other countries worldwide,
an obvious benefit of the IIM enterprise, we instead propose a ro-
bust formulation to account for any uncertainty that may be present
in these parameters. Our proposed formulation also accounts for
disruptions driven by unsatisfied demand at demand nodes and
residual supply at supply nodes both of which can be represented
with the IIM, which is demand-driven in nature.

Absorptive Capacity Measures

As discussed previously, the interdependent impacts of a disruption
are calculated using the IIM, and subsequently, a measure of ab-
sorptive capacity is defined based on the concept of static economic
resilience (Rose 2009; Pant et al. 2014). We propose an optimiza-
tion model to devise a strategy to allocate limited budget to indus-
tries to enhance absorptive capacity. Epistemic data uncertainty in
the IIM is considered, and as such, decision-making under uncer-
tainty is discussed.

Defining Absorptive Capacity with Inoperability

As suggested previously, the percentage change in the performance
of a system (%ΔDY) is analogous to the measure of inoperability
(q), which represents the proportional extent to which a system is
not properly functioning. If we define qmax as the maximum pos-
sible inoperability that could be experienced after a disruptive
event, a measure of absorptive capacity is provided in Eq. (7).
Absorptive capacity of sector i is referenced with convention ЯS

i ,

© ASCE 04019032-3 J. Infrastruct. Syst.
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adopting the Я notation of Whitson and Ramirez-Marquez (2009)
because R often refers to reliability

ЯS
i ¼

%ΔDYmax −%ΔDY
%ΔDYmax ¼ qi;max − qi

qi;max
ð7Þ

Using the convention D⋆ ¼ ½d⋆ij� ¼ ½I −A⋆�−1, Eq. (3) can be
written as q ¼ D⋆c⋆. As such, inoperability in sector i can be
represented with Eq. (8)

qi ¼
Xn
j¼1

d⋆ijc⋆j ð8Þ

As shown in Eq. (9), using the demand-driven paradigm,
the absorptive capacity for sector i can be written as a function of
maximum and expected demand perturbation levels, c⋆j;max and c⋆j ,
respectively. The proportional “savings” in inoperability is mea-
sured by ЯS

i when a priori planning can stave off the worst-case
inoperability outcome in favor of reduced inoperability

ЯS
i ¼

P
n
j¼1 d

⋆
ijc

⋆
j;max −

P
n
j¼1 d

⋆
ijc

⋆
jP

n
j¼1 d

⋆
ijc

⋆
j;max

¼
P

n
j¼1 d

⋆
ijðc⋆j;max − c⋆j ÞP

n
j¼1 d

⋆
ijc

⋆
j;max

ð9Þ

To capture absorptive capacity across the entire set of inter-
dependent infrastructures and industry sectors, a more appropriate
economic resilience metric would account for the widespread
ability of sectors to collectively maintain operability following a
disruptive event. As such, individual sector inoperability is multi-
plied by sector output in dollar terms. In summation form, this is
represented with Qi ¼

P
n
j¼1 xid

⋆
ijc

⋆
j . The resulting absorptive

capacity metric is provided in Eq. (10)

ЯS
total ¼

P
n
i¼1

P
n
j¼1 xid

⋆
ijc

⋆
j;max −

P
n
i¼1

P
n
j¼1 xid

⋆
ijc

⋆
jP

n
i¼1

P
n
j¼1 xid

⋆
ijc

⋆
j;max

¼
P

n
i¼1

P
n
j¼1 xid

⋆
ijðc⋆j;max − c⋆j ÞP

n
i¼1

P
n
j¼1 xid

⋆
ijc

⋆
j;max

ð10Þ

Planning for Absorptive Capacity

Resource allocation requires developing strategies that reduce
demand perturbations effectively, leading to economic resilience.
This demand-driven model is consistent with the idea that absorp-
tive capacity (i.e., to what extent the system can withstand the
disruptions), along with investments on expanding the redundancy
in infrastructure networks, is the efficient utilization of resources
and not system repair (Rose 2007).

Assume that a disruptive event perturbs demand [perhaps di-
rectly, or perhaps as a forced demand reduction because of a supply
shortage (Darayi et al. 2017)] in m ≤ n sectors. The worst-case
demand perturbations in each of these m sectors are given by
c⋆l;max, l ¼ f1; : : : ;mg. The implementation of preparedness, or
resilience-building, activities is concerned with reducing c⋆l;max

through efficient resource allocation. If rl is a preparedness strategy
adopted to reduce the initial sector l demand perturbation impact,
the effectiveness of rl is measured in terms of the new resulting
demand perturbation in Eq. (11). All sector demand perturbations
are governed by Eq. (12)

c⋆l ¼ flðc⋆l;max; rlÞ ð11Þ

c⋆i ¼
�
c⋆l if i ∈ l

0 otherwise
ð12Þ

Assuming a numerically higher value for rl results in a more
effective preparedness strategy, some candidate graphical relation-
ships between c⋆l and rl are conceptually depicted in Fig. 3 with the
upper bound being c⋆l;max.

Since implementing preparedness strategies comes at a cost,
there is a finite budget that governs the maximum possible values
taken by rl. If glðrlÞ expresses the cost of implementing strategy rl,
then this budget is an upper bound. For the entire set of inter-
dependent infrastructure and industry sectors, if at most budget b
is available, then Eq. (13) limits a fixed budget

Xm
l¼1

glðrlÞ ≤ b ð13Þ

The collection of Eqs. (10), (11), and (13) results in the resource
allocation optimization problem in Eq. (14)

max
c⋆l ;rl

P
n
i¼1

P
m
l¼1 xid

⋆
ilðc⋆l;max − c⋆l ÞP

n
i¼1

P
m
l¼1 xid

⋆
ilc

⋆
l;max

s:t: c⋆l ¼ flðc⋆l;max; rlÞ; ∀ l ∈ f1; 2; : : : ;mg
Xm
l¼1

glðrlÞ ≤ b

glðrlÞ ≥ 0; ∀ l ∈ f1; 2; : : : ;mg ð14Þ

Eq. (14) represents a generalized formulation of the resource
allocation to maximize absorptive capacity. The functional forms
of flð·Þ and glð·Þ govern the solution to the absorptive capacity
planning problem. For macrolevel planning, the rl value might de-
note the amount of capital that can be invested in purchasing and
substituting for the lost demand (c⋆l ). Assuming c⋆l;max is the maxi-
mum economic loss in industry sector l, Eq. (15) would govern how
planning for absorptive capacity can improve c⋆l , where αl is a mea-
sure of the effectiveness of investment rl, which also shows the
return for substituting for lost demand for sector l. The inclusion
of αl into the absorptive capacity enhancement calculation in
Eq. (15) is motivated by Barker and Santos (2010a) and Jonkeren
and Giannopoulos (2014)

c⋆l ¼ c⋆l;maxe
−αlrl ð15Þ

For this special case, the absorptive capacity planning optimi-
zation problem can be written as Eq. (16), given that Eq. (15) is a

Fig. 3. Candidate functional relationships between c⋆l and rl.
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strict equality constraint. Note that rl represents an investment
made to improve absorptive capacity; therefore, the sum of the cost
of strategy rl must satisfy the budget constraint

max
rl

P
n
i¼1

P
m
l¼1 xid

⋆
ilðc⋆l;max − c⋆l;maxe

−αlrlÞP
n
i¼1

P
m
l¼1 xid

⋆
ilc

⋆
l;max

s:t:
Xm
l¼1

glðrlÞ ≤ b

glðrlÞ ≥ 0; ∀ l ∈ f1; 2; : : : ;mg ð16Þ

Note that the duration of disruption of the infrastructure com-
ponent impacts system performance, and a lengthy duration of
disruption of a rather noncritical component might result in a con-
siderable economic loss. However, the focus of this paper is on
optimizing the allocation of limited resources that leads to an im-
proved ability to withstand a disruption prior to its occurrence, as
measured with multi-industry inoperability. In this paper, the model
prioritizes industry sectors according to their criticality for the
entire economy considering economic interdependency. The pro-
posed model captures the unsatisfied demands together with their
economic value in terms of the maximum loss (demand perturba-
tion) to be avoided. For example, due to a port closure, the unde-
livered demand in each industry (e.g., food) multiplied by its effect
on the economy of that corresponding industry could be considered
as the maximum demand perturbation. In general, the duration of
port closure and frequency of the closures would only affect the
maximum demand perturbation proportionally for all the industries
under study. As such, the model captures these two attributes of
provisional disruptions. The model proposes a proactive resource
allocation strategy at a strategic and tactical level, but not neces-
sarily an operational level, meaning that the model allocates resour-
ces to multiple industries before a disruptive event (i.e., strategic
level) and not during the disruption or dynamically after the dis-
ruption, which changes the allocation procedure immediately after
the models sees the changes in the behavior of disruptive events
(i.e., operational level). The maximum demand perturbation could
be modeled by multiplying the average port closure frequency and
the average duration of the closure such that the average port
closure duration is sufficiently long [e.g., Pant and Barker (2011)
studied a two-week closure with the IIM].

Decision-Making Under Uncertainty

Decision makers with interdependent economic impacts in mind
and planning for absorptive capacity to harden industries facing
disruption must consider an uncertain environment (e.g., relation-
ships among industries after a disruption).

In this paper, data uncertainty in the integrated model in
Eq. (16), consisting of data used to parameterize the IIM and re-
source allocation, is considered. As the coefficients of the A⋆ ma-
trix derived from the technical coefficient matrixA, they are subject
to uncertainties arising from the interindustry data collection efforts
by the BEA. The BEA collects annual input-output records for
a group of 15 aggregated industries and more detailed records for
65 industries every 5 years. As the x vector is derived from the
same BEA data, it is prone to the same uncertainties as A⋆. Hence,
the economic input-output model, and subsequently the IIM, is
prone to uncertainties arising from parameterizing interdependency
coefficients matrix A (and A⋆) and x vector of total output because
of statistical errors in compiling massive data bases and the variant
nature of these parameters over time (Bullard and Sebald 1977;

West 1986). Assuming the values of matrix A⋆ are deterministic
and time invariant, the derivation from the accurate data can cause
the violation of this assumption. Therefore, Barker and Haimes
(2009) developed an approach to evaluate the uncertainty in infra-
structure interdependencies, minimizing the sensitivity of infra-
structure interdependency parameters according to unspecified
substitution changes. The inexactness in quantifying the effective-
ness of investments within the resource allocation model should
also be recognized (MacKenzie and Zobel 2016). Hence, the opti-
mization model formulated in Eq. (16) contains epistemic data un-
certainty (Pate-Cornell 1996) in the estimation of (1) the A⋆ matrix
and magnitude of x vector; and (2) αl as the measure of the
effectiveness of investment rl in industry l.

Bullard and Sebald (1977) studied inherent uncertainties in the
coefficients of A, x, and ½I −A�−1 as bounded within a small
interval of the published values. Similarly, our approach considers
small random noise in the model data point uncertainties in x and
D⋆ ¼ ½I −A⋆�−1, whose elements are d⋆ij. Furthermore, to model
uncertainty in αl, the investment effectiveness for industry l, we
propose a probabilistic treatment considering the optimistic,
pessimistic, and most likely estimates of αl.

We propose a robust formulation of the optimization problem
of Eq. (16). This robust formulation is shown in Eq. (17), where
D, X, and Ψ are uncertainty sets that contain more anticipated real-
izations of respective matrices and vectors. It is assumed that the
sets D and X contain bounded random variations (e.g., �5%) of
the values of D⋆ and x, respectively. A triangular distribution
represents the set Ψ

max f

s:t:

�Pn
i¼1

P
m
l¼1 xid

⋆
ilðc⋆l;max − c⋆l;maxe

−αlrlÞP
n
i¼1

P
m
l¼1 xid

⋆
ilc

⋆
l;max

�
≥ f

Xm
l¼1

glðrlÞ ≤ b

glðrlÞ ≥ 0; ∀ l ∈ f1; : : : ;mg
D� ∈ D; x ∈ X;α ∈ Ψ ð17Þ

The nonlinearity and stochasticity of the proposed model
make it difficult to solve analytically. As such, rather than guaran-
teeing a certain level of absorptive capacity, we want to make
sure that the proposed model suggests a resource allocation set
such that the probability that maximum absorption capacity
(i.e., the disruptions have minimum effect on the system perfor-
mance) is reached, Pr

��P
n
i¼1

P
m
l¼1 xid

⋆
ilðc⋆l;max − c⋆l;maxe

−αlrlÞ=P
n
i¼1

P
m
l¼1 xid

⋆
ilc

⋆
l;max

� ≥ f
�
, is equal or greater than 1 − ε for

small ε > 0. The term ε is referred to as value-at-risk in portfolio
optimization and has been widely used in “soft” robust optimiza-
tion (Shapiro et al. 2009; Ben-Tal et al. 2009; Rockafellar and
Uryasev 2000). The final formulation is presented in Eq. (18)

max f

s:t: Pr

	�Pn
i¼1

P
m
l¼1 xid

⋆
ilðc⋆l;max − c⋆l;maxe

−αlrlÞP
n
i¼1

P
m
l¼1 xid

⋆
ilc

⋆
l;max

�
≥ f



≥ 1 − ϵ

Xm
l¼1

glðrlÞ ≤ b

glðrlÞ ≥ 0; ∀ l ∈ f1; : : : ;mg
D� ∈ D; x ∈ X;α ∈ Ψ ð18Þ
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Illustrative Example: Inland Waterway Port
Infrastructure Disruption

The proposed planning model for absorptive capacity is applied to a
case study of the Port of Catoosa in Tulsa, Oklahoma. The Port of
Catoosa is connected to the US inland waterway network through
the McClellan-Kerr Arkansas River Navigation System, which is
part of the Mississippi River Navigation System. There are approx-
imately 70 companies using the port and an annual freight volume
of 2.2 million tons is sent and received through the port (US Army
Corps of Engineers 2011; Tulsa Port of Catoosa 2011). As defined
by the North American Industry Classification System (NAICS),
62 industry sectors operate in Oklahoma, therefore the A⋆ matrix
regionalized for Oklahoma is 62 × 62. We focus on six industry
sectors, shown in Table 1, which represent the port’s largest export-
ers in terms of commodity flows due to high trade figures (Tulsa
Port of Catoosa 2011). This study focuses on improving the absorp-
tive capacities of these six industry sectors. It is assumed that a port
disruption (a two-week port closure) is sufficiently local when,
without loss of generality, no other industry sectors are directly im-
pacted. It is further assumed that the occurrence of natural disaster
is infrequent, and the analyses do not account for expected losses
given some frequency of disruption (although such could be
included in future work).

The exports through the Port of Catoosa contribute to the exter-
nal demand of the industries in Oklahoma. As such, in case of a
disaster at the port resulting in the loss of exports, there is a demand
perturbation in the industries that use the port. Because of the
interdependence among industries, the cascading of the demand
perturbations causes losses to all the other state industries. Assum-
ing that, in the case of a disruptive event, the only losses in the state
economy are because of the loss of exports through the port, we can
obtain estimates of the maximum demand perturbations (c⋆l;max) for
the six primary industries using the port. These are found for each
industry as the ratio of that industry’s mean estimate of exports to
its total economic output, which are all provided in Table 2. It is
further assumed that industries not using the port have zero demand
perturbations, although they could suffer from interdependent
inoperability.

A policymaker caring about the economy of the state of
Oklahoma [e.g., The Oklahoma Department of Transportation
(ODOT)] may seek the best way to allocate a limited budget to
individual industries allowing them to invest in absorptive capacity
improvements to avoid the maximum demand perturbation during
the port closure. Depending on the industry faced with the disrup-
tive event, this resource could describe: (1) maintaining additional
inventory to maintain productivity, and (2) setting short-term co-
ordination contracts with distributors to be ready for alternative
transportation modes other than the port.

The model assumes that allocating resources reduces the impact
exponentially. As more resources are allocated to an industry, the
impacts on an industry decline at a constantly decreasing rate, and
investing an additional dollar to reduce risk returns less benefit
than investing the first dollar. For each directly impacted industry,
the exponential function, shown in Eq. (16) requires estimating
an investment effectiveness parameter, αl. This parameter can be
assessed if rl, the amount of resources needed to reduce the direct
impacts on industry l by a fraction c⋆l =c⋆l;max, is known or can be
estimated, since αl ¼ −½logðc⋆l =c⋆l;maxÞ=rl�. While the value of αl is
always non-zero and positive with no upper bound, it is expected
that αl would be small for large-scale disruptions where millions of
dollars are necessary to reduce the impact.

Table 3 lists parameter estimates for the effectiveness of invest-
ments (αl) in planning for absorptive capacity in different industries
considering the consequences on reducing the maximum demand
perturbation by 50% (i.e., setting c⋆l =c⋆l;max ¼ 0.5). Food and bev-
erage products would be affected dramatically by the closure of
the Port of Catoosa considering estimates for the cost per ton-mile
for a barge at $0.97, compared to $2.53 for rail, and $5.35 for
trucking (Arkansas Waterway Commissions 2014), together with
the distances to the general customers for the products of this in-
dustry, it is assumed that on average $7 million should be invested
to avoid the maximum demand perturbation in this industry by
50% (MacKenzie et al. 2012; Aydin and Shen 2012; Richards
and Patterson 1999). Direct impacts for petroleum and coal prod-
ucts is much less than food and beverage products, but the nature
of this industry’s products makes it difficult to look for alterna-
tive transport modes. Also, long-term investments in increasing
domestic demand by developing refining facilities, pipelines,
and alternate transportation infrastructures could be effective and
result in a higher absorptive capacity (Davarzani et al. 2011;
Halkin et al. 2017). As such, α2 is calculated assuming that an
almost $5 million investment is needed to decrease the maximum
demand perturbation in petroleum industries by half (Alizadeh
and Nomikos 2004; Nealer et al. 2011). The investment effec-
tiveness for the other four industries are estimated considering the
maximum loss in each industry and the options to increase the
absorptive capacity with potential contracts for alternative transpor-
tation modes.

Table 1. Six primary industries using the Port of Catoosa, along with their
NAICS codes

Industry name NAICS code

Food, beverage, and tobacco products 311
Petroleum and coal products 324
Chemical products 325
Nonmetallic mineral products 327
Machinery 333
Miscellaneous manufacturing 339

Table 2.Maximum demand perturbation for the major industries using the
Port of Catoosa in 2007 (output and exports given in million USD)

Industry name Exports Output c⋆l;max

Food, beverage, and tobacco products 140.0 5,578.5 0.0251
Petroleum and coal products 57.0 12,644.0 0.0045
Chemical products 89.0 1,327.3 0.0671
Nonmetallic mineral products 3.0 2,026.2 0.0015
Machinery 108.0 7,174.4 0.0151
Miscellaneous manufacturing 6.0 746.6 0.0080

Table 3. Estimates for the cost-effective parameter αl (given as per million
USD)

l Industry name αl

1 Food, beverage, and tobacco products 0.046
2 Petroleum and coal products 0.063
3 Chemical products 0.342
4 Nonmetallic mineral products 0.201
5 Machinery 0.084
6 Miscellaneous manufacturing 0.426
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Planning for Absorptive Capacity

The proposed model in Eq. (16) is implemented to optimize the
budget allocation among the six important industries that trade
through the Port of Catoosa. Four different total budget amounts
are considered for allocations across the six industries: $10 million,
$20 million, $30 million, and $40 million. To solve the model, we
use the Frontline Solvers simulation optimization plug-in solver
engine, which is an optimization and simulation application for
Microsoft Excel (Olson and Wu 2013).

Table 4 shows the results from solving Eq. (16), in terms of the
budgets rl allocated to individual sectors. We see that to maximize
the absorptive capacity of the whole interdependent economy, cer-
tain budget allocations will give the following results: (1) at the
smallest budget allocation of $10 million, most of the resources
are distributed to miscellaneous manufacturing (339) and chemical
products (325); (2) as the budget allocation is increased toward
$40 million, the resources get distributed toward food and beverage
and tobacco products (311) and machinery (333); (3) petroleum
and coal products (324) comparatively require some resource allo-
cations when budgets are increased to $30 million and beyond; and
(4) nonmetallic mineral products (327) comparatively require very
little resource allocations. These results make sense because, based
on Table 2 data, food and beverage and tobacco products (311) and
machinery (333) are the two highest exporters through the port, so
to progressively maximize the absorptive capacity of the economy
most of the budget allocations will be distributed toward restoring
economic flows in these sectors. Miscellaneous manufacturing
(339) and chemical products (325) have high initial resource
allocation values because the cost effectiveness parameters αl from
Table 3 are high. But this means there is a fast stabilization of
absorptive capacities in these sectors at the initial investment of
$10 million, and subsequently, these sectors require smaller

increments of the resource allocations to further maximize the
absorptive capacity of the economic system. Table 5 confirms this
conclusion above, as indicated by the values of the absorptive
capacities of individual sectors as budget allocations are increased.

Also shown in Table 5 are the values of the total economic losses
avoided and the level of absorptive capacity achieved [value of the
objective function of Eq. (16)] corresponding to each level of
budget allocation. We see that if no budget allocations were made
then, there is an economic loss of $95.2 million to the six industries,
which is estimated from Table 5 by summing the economic loss
values for these sectors. Overall, the whole economy has a loss
of $146.6 million. These results show the interdependent effects
of the IIM in Eq. (3). A budget allocation of $10 million results
in decreasing economic losses by $37.9, which is a 25.8% resto-
ration of absorptive capacity. Similarly, a budget allocation of
$40 million decreases the economic losses by $84.8, thereby
restoring absorptive capacity by 57.8%.

We note from the results in Table 5 that for every subsequent
$10 million increment of budget allocation results in diminishing
returns in terms of the value of economic loss avoided or absorptive
capacity restored. For example, Table 5 shows that as budget allo-
cation is increased from $10 million to $20 million, the changes in
total loss avoided is $19.8 million, whereas an increment of budget
allocation from $30 million to $40 million results in changing the
amount of losses avoided by $12.2 million. Hence, the decision
maker has to make a trade-off between increasing budget alloca-
tions and the changing amount in losses avoided. A point to stop
would be when the increment in budget allocation is more than the
value by which the loss is reduced.

As shown in Table 5, investment of $30 million to harden the
five industries among the six most important to the port can avoid
the maximum economic loss in Oklahoma by up to 50%, and it
indirectly protects nonmetallic mineral products (327), although
the policy maker does not devote resources directly to this industry.
Furthermore, for example, nearly $40 million in economic losses
across the Oklahoma economy can be avoided with a $10 million
investment in absorptive capacity in the six key industries, accord-
ing to the model.

Fig. 4 shows the extent, as a ratio between 0 and 1, to which
each industry and the Oklahoma economy are able to absorb shocks
from a port disruption by allocating a defined amount of budget to
harden the most important industries in the area. In comparison to
the results of Table 5, where the magnitudes of losses based on
budget allocations are shown, this result shows that the level ab-
sorptive capacity achieved by the chemical products (325) sector
is the highest even though its allocated budget might be lower.

Table 4. Resource allocation for absorptive capacity in different industries
(in million USD)

Industry name

Resources allocated to each
industry for each total budget

10 20 30 40

Food, beverage and tobacco products 0.31 5.88 10.95 14.92
Petroleum and coal products 0.00 0.00 0.92 3.81
Chemical products 3.88 4.63 5.31 5.84
Nonmetallic mineral products 0.00 0.00 0.00 0.00
Machinery 2.78 5.85 8.64 10.82
Miscellaneous manufacturing 3.03 3.63 4.18 4.61

Table 5. Economic loss under different total budget plans (budgets and losses in million USD)

Industry name
Economic loss
(no investment)

Economic losses for each total budget

10 20 30 40

Food, beverage, and tobacco products 25.90 25.38 19.68 15.54 12.95
Petroleum and coal products 12.59 11.71 11.46 10.70 8.94
Chemical products 16.46 4.61 3.62 2.96 2.47
Nonmetallic mineral products 1.04 0.95 0.87 0.81 0.77
Machinery 20.32 16.05 12.40 9.96 8.33
Miscellaneous manufacturing 18.88 7.74 6.23 4.91 4.15
Total loss in port sectors 95.19 66.44 54.26 44.88 37.61
Total macroeconomic loss 146.63 108.74 88.88 73.98 61.79
Total economic loss avoided — 37.90 57.70 72.60 84.80
Total absorptive capacity (ratio) — 0.26 0.39 0.49 0.58
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Decision-Making Under Uncertainty

As discussed previously, epistemic uncertainty in estimating A⋆
and αl should be accounted for in this paper. Small amounts of
perturbations are considered when modeling data uncertainties
in x and D⋆. It is assumed that the elements insets X and D related
to the six industries contain bounded random variations to the
amount of �5% of the (deterministic) values of x and D⋆, respec-
tively. Furthermore, a probabilistic treatment considering the opti-
mistic, pessimistic, and most likely estimates of αl with a triangular
distribution is assumed to model uncertainty in the investment
effectiveness for industry l. The parameters of these triangular dis-
tributions are shown in Table 6. We model the uncertainty in this
problem and obtain an exact solution using Frontline Solvers, an
optimization and simulation application for Microsoft Excel. This
application makes it easy to replicate simulation runs and includes
the ability to correlate variables, expeditiously select from standard
distributions, aggregate and display output, and other useful func-
tions (Olson and Wu 2013). The solution is bounded by the total
available budget, and both deterministic and stochastic solutions
are shown in Table 7.

Table 7 and Fig. 5 show how epistemic data uncertainty simu-
lated with 1,000 replications affects the total economic losses re-
sulting from each total budget, which are allocated based on the
solutions of Eq. (16). The differences between 5th and 95th per-
centiles of simulated results is $9 and $12 million in the cases
of the four different budget limits. Also, as the standard deviation
shows, the amount of variation or data dispersion because of the
uncertainty is at least $3 million, highlighting the importance of
accounting for uncertainty in decision-making. The budget alloca-
tion based on the deterministic model cannot address the epistemic
uncertainty in the model. Hence, we consider the data uncertainty
in decision-making for allocating the limited budget to harden the
six industries within the state of Oklahoma.

Implementing the proposed soft-robust optimization model in
Eq. (18), ε ¼ 0.05 is considered to guarantee an absorbability that
holds with probability of (1 − ε ¼ 95%). When comparing the
resource allocation resulting from the data uncertainty shown in
Table 8 with the results from the deterministic model shown in
Table 4, the allocation differences are generally less than 10%.
Some exceptions include food and beverage and tobacco products
(311), which experience a 100% decrease when the total budget is
$10 million and subsequently has lesser budget allocations com-
pared to the values in Table 4. Similarly, petroleum and coal prod-
ucts (324) encounter decreases in allocated resources, which vary
for different total budget amounts. Comparatively, chemical products
(325), miscellaneous manufacturing (339), and machinery (333) see
increases in budget allocations in that order. These changes, though
small, show how uncertainty can alter the resource allocations.

Fig. 6 shows the 95% confidence interval estimates for total
losses in the Oklahoma economy expected when each total budget
is allocated across the six industries.

A measure of the effectiveness of investment αl is considered to
monitor the effects of changes in the data uncertainty of budget
allocation. Fig. 7 illustrates the changes in the resulting allocated
budget to each industry when the interval in probabilistic treatment
of αl is increased by 25%, 50%, and 75%. These three incremental
levels of uncertainty are deployed by changing the upper and lower
limits shown in Table 6, while the mode values are kept constant.
The percentage of changes in budget allocation when compared
with the results of the deterministic model for different budget lim-
its are plotted. As shown in Fig. 7, the different behaviors in the
percentage of the changes in allocating budget to the six industries
are monitored based on the total budget limits and the magnitude of
the change in the uncertainty interval. For example, significant de-
creases are seen in the budget that should be allocated to food and
beverage and tobacco products (311) when the total budget is less
than $20 million, which is comparable to the results from the deter-
ministic model. Relatively small changes are seen for the allocated
budget to chemical products (325). Also, a recognizable change
exists in petroleum and coal products (324) when the total budget
limit is more than $20 million, where an increase in the uncertainty
interval decreases the budget that should be allocated. In general,
it can be seen that the larger uncertainty interval for investment
effectiveness caused more changes in budget allocation for higher
budget limits.

Concluding Remarks

Freight transportation infrastructure plays an important role as a
facilitator of economic productivity by connecting industries of
multiple regions. Large-scale disruptive events can cause failures
within the system that propagate through the multiple intercon-
nected industries. Investing in hardening both the infrastructure

Fig. 4. Absorptive capacity at different budget limits.

Table 6. Probabilistic treatment estimating the cost-effective parameter αl

l Industry name

αl

Min Mode Max

1 Food, beverage, and tobacco products 0.024 0.046 0.057
2 Petroleum and coal products 0.040 0.063 0.070
3 Chemical products 0.100 0.342 0.400
4 Nonmetallic mineral products 0.090 0.201 0.300
5 Machinery 0.060 0.083 0.090
6 Miscellaneous manufacturing 0.200 0.426 0.500

Table 7. Total economic loss (in million USD) considering deterministic
and epistemic data uncertainty for different budget amounts (in million
USD)

Budget

Total economic loss

Deterministic

Epistemic uncertainty

Mean SD 5th percentile 95th percentile

10 108.74 111.49 3.00 107.21 116.95
20 88.88 93.27 3.22 88.55 99.08
30 73.98 78.93 3.60 73.50 85.45
40 61.79 67.14 3.79 61.53 73.74
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(e.g., backup equipment) and industries themselves (e.g., on hand
inventory) can lessen the effects of disruptions. The interdependent
nature of industries must be considered when evaluating such re-
source allocation. This paper discusses modeling and analysis on
the absorptive capacity of resource allocation.

The interdependent adverse effects of a disruption are measured
using an interdependency model, and an exponential resource
allocation model is introduced to formulate the risk reduction.
Considering the three components of resilience capacity identified
by Vugrin and Camphouse (2011) and the notion of static resilience
proposed by Rose (2009), a measure of absorptive capacity as the
ability of the system to absorb the effects of a disruption is pro-
posed. Finally, in an integrated optimization model, we maximize
the whole system’s absorbability by allocating a limited budget to
harden different industries. Furthermore, sources of epistemic data
uncertainty in the interdependency model have been considered
when developing a soft-robust optimization model to help policy
makers to allocate resources under uncertainty.

The proposed modeling and analysis are implemented in a case
study developed from the six important industries at the Port of
Catoosa that use the inland waterway to send out commodities
to their consumers out of the state of Oklahoma. Results show
how increasing the budget limit affects allocated budget to each
industry. Although miscellaneous manufacturing (339) and chemi-
cal products (325) receive the largest share with the $10 million
budget, food and beverage and tobacco products (311) and machi-
nery (333) receive the largest share as the budget allocation is in-
creased to $40 million. We see that when considering bounded
random variations to the amount of �5% of the (deterministic) val-
ues of x and D⋆ together with a probabilistic treatment [i.e., incor-
porating epistemic uncertainty in the calculation of Eq. (18)], the

Fig. 5. Distributions of total economic loss considering epistemic data uncertainty given total budgets of (a) $10 million; (b) $20 million;
(c) $30 million; and (d) $40 million.

Table 8. Resource allocation for absorptive capacity in different industries
considering uncertainty (in million USD)

Industry name

Resources allocated to each
industry for each total budget

10 20 30 40

Food, beverage, and tobacco products 0.00 5.34 10.71 14.56
Petroleum and coal products 0.00 0.00 0.23 3.07
Chemical products 4.10 4.96 5.83 6.43
Nonmetallic mineral products 0.00 0.00 0.00 0.00
Machinery 2.71 5.84 8.73 10.98
Miscellaneous manufacturing 3.19 3.85 4.50 4.95

Fig. 6. 95% confidence interval estimates of total economic loss
(million USD) under different budget limits (thousand USD).
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optimistic, pessimistic, and most likely estimates of αl cause dra-
matic variations in the economic loss as a result of the allocated
budget. Also, analysis done on the measure of effectiveness shows
that when the interval in the probabilistic treatment of αl is in-
creased by 25%, 50%, and 75%, the changes in the allocated budget
varies in different budget limits. For example, while food and
beverage and tobacco products (311) experience a significant de-
crease in the allocated budget when the total budget is less than
$20 million, it faces at most a 30% decrease when the total budget
is $40 million.

The real-world application of this work lies in informing a cen-
tral planner to invest more effectively in port resilience to maintain
the continuity of service for businesses using the docks. The Port of
Catoosa, where our case-study applies, is a public entity overseen
by a nine-member board, representing the central planner in our
case (Business View Magazine 2016). The investment into the
macroeconomic sectors here refers to the investment into port dock
operations that facilitate a faster continuity of service flowing
through the port for the businesses associated with these sectors.
For example, the freight of miscellaneous manufacturing and ma-
chinery is handled at the General Dry Cargo dock, which handles
the largest tonnage in the port [see Pant et al. (2015) for a variety of
tonnages]. Hence, preferring these sectors for different levels of
investment reflects the importance of the General Dry Cargo dock
for the real-world operations of the port. Similarly, the importance
of other sectors like chemical products and food and beverage and
tobacco products emerges from the significance of Liquid Bulk and
Grains docks, respectively. It is acknowledged here that individual
businesses that depend on the port might have different preferences
relative to the port operators, whose decisions are informed by the
larger-scale macroeconomic impacts on the state and regional
economy. The Port of Catoosa is a major industrial hub in the Tulsa
metropolitan statistical area (MSA), which contributes to 33.4% of
the economy of the state of Oklahoma (Tulsa Regional Chamber
2018); therefore, the options here are aimed at benefiting the wider

state and regional economy through the port. Although it can be
said that for small tonnage disruptions individual businesses can
use alternative suppliers and options such as road and railway trans-
port, when the tonnage disruptions are substantial, their interests
would align with the port’s as both can benefit from the business
preference for the cheaper mode of barge transport. Evidence
shows that the port received $6.25 million in 2011 through the fed-
erally funded Transportation Infrastructure Generating Economic
Recovery (TIGER) grant [now called Better Utilizing Investments
to Leverage Development (BUILD)] (DoT 2018) and additional
investments through private companies, which resulted in the port
investing $13 million in renovating a 45-year old dock (Business
View Magazine 2016). This suggests an interest of aligned public
and private initiatives in the improvement of port operations. The
analysis presented here aims to inform such spending decisions.

The proposed model can be implemented in a freight infrastruc-
ture network, and the multiregional impacts of the disruption can be
considered in both modeling the failure propagation and investing
for absorptive capacity. Further developments of this work will
explore such options.
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