QIS: Automated Refactoring for Scratch

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab
Dept. of Computer Science, Virginia Tech
{tpeerad, tilevich} @cs.vt.edu

Abstract—Recent studies have demonstrated that the code
quality of Scratch projects impacts this learning environment’s
educational effectiveness. For example, novice programmers are
less willing to remix and continue modifying those projects whose
code quality is low. This showpiece demonstrates QIS (pro-
nounced as /chéz/), a novice-friendly refactoring tool for Scratch
3.0. Integrated with the latest Scratch environment, QIS analyzes
on-the-fly the code quality of an edited project, displaying the
refactorable quality problems as actionable improvement hints.
Programmers can then decide to act by carrying out the suggested
refactoring to improve the quality of the project’s code. QIS
not only empowers novice programmers to easily and effectively
improve their code, but also educates them about the benefits
and importance of code quality and its improvement practices.

I. INTRODUCTION

The extraordinary success of Scratch as an introductory
computing environment [1] stems not only from its novice-
friendly block-based programming interface, but also from its
immense global learning community!, in which community
members continuously learn from and build off each oth-
ers’ projects. Nevertheless, recent systematic studies indicate
that poor code quality can negatively impact the educational
effectiveness of Scratch. Poor quality projects are hard to
understand and modify [2], thus stifling the motivation of
introductory learners to continue developing increasingly com-
plex and useful projects over time. Furthermore, the communal
learning value of a Scratch project diminishes, as it becomes
increasingly difficult for others to understand and remix [3].
Recent studies confirm that code quality problems in the
Scratch codebase are highly prevalent [4], [5].

The Lehman’s Law of Declining Software Quality states
that software systems evolve into a state of disrepair unless
maintaining their quality extends into a concerted effort over
time [6]. Applying this law to Scratch entails that the quality of
Scratch projects would continue deteriorating, in the absence
of a concerted quality improvement effort. Hence, to prevent
the Scratch codebase’s quality from deteriorating over time, we
introduce QIS (Quality Improvement for Scratch). QIS (plural
of qi): in Chinese philosophy and medicine, gi is vital energy,
whose balance is believed to be essential for good health and
well-being. By analogy, QIS seeks to balance the form (i.e.,
code quality) and function of Scratch code. QIS’s beginner-
friendly user interface empowers novice programmers to im-
prove the code quality of a worked-on project.

IScratch has close to 41 million users and 42 million shared projects
https://scratch.mit.edu/statistics/ (accessed June 2019)

978-1-7281-0810-0/19/$31.00 (©2019 IEEE

Software refactoring is a semantics-preserving program
transformation that typically improves code quality. Having
become part and parcel of modern software development
practices, refactoring is a standard feature of modern IDEs for
a variety of languages. Thus far, block-based programming
has been a notable omission. Indeed, programming environ-
ments for blocks lack automated refactoring support, with
the exception for the most rudimentary refactoring: renaming
of program elements (e.g., variables). Conversely, our exper-
iments have identified 4 Scratch-specific refactorings (3 of
them eliminate code duplication and the other reduces variable
scope) that are highly applicable and as such can be valuable
for Scratch programmers to improve the code quality of their
programs [7]. QIS renders these refactorings accessible to all
Scratch programmers, thus enabling and encouraging them to
start improving code quality, so as to avoid the prevalence of
recurring quality problems in the Scratch codebase as per prior
findings [3].

II. QIS: QUALITY IMPROVEMENT FOR SCRATCH

QIS tightly integrates visual hints that inform programmers
about potential quality problems and the automated refactor-
ings that can address these problems. The design of QIS is
inspired in part by code quality analyzers in IDEs for text-
based languages, such as SonarLint?—an IDE extension that
helps programmer detect and fix code quality issues. Our
code smell analysis infrastructure builds on QualityHound,
a web-based smell analyzer for Scratch [8], presented as
a VL/HCC 2017 showpiece. QIS is a research prototype,
originally developed to use in the user study evaluation for the
paper, accepted for presentation in the main technical program
of the VL/HCC 2019 conference. The preliminary findings
show that QIS can effectively help novice programmers to
identify code improvement opportunities and motivate them
to engage in improving code quality [7].

QIS accommodates novice programmers in performing the
following two cognitively demanding tasks, particularly for
beginners: (1) identifying refactorable code smells and (2)
transforming the code to remove the identified code smells. To
render QIS’s user interface amenable to the target audience of
novice programmers, the following design principles guide our
user interface design: 1) Code smells as improvement opportu-
nities: Frame a detected smell as an improvement hint to help
programmers identify code smells while maintaining a positive

Zhttps://www.sonarlint.org/

RIN?

e et~ ty @) gy ks €@ €2 AWM NI
cnango xby ek random (@) 10 @) crargey by (I 2) right-click hint icon to see the

associated refactoring menu option
change y by pick random ° 1o .

— 3) click the suggested refactoring to q
—— immediately apply the transformation ——— == 1

&
define DoSomething25 paramo
wor @D €D

DoSomething25 °

Fig. 1: Duplicate Code hint and Extract Custom Block refactoring

outlook, so as to avoid the negativity typically associated with
highlighting quality problems. 2) Refactoring should be imme-
diately actionable: Associate refactoring suggestions and pre-
computed transformations with the presented hint to allow the
programmer to immediately apply the suggested refactoring.
This design principle favors simplicity over versatility. That
is, it would be quite unrealistic to expect that someone new
to programming would be capable of selecting the correct
refactoring targets and providing the necessary parameters.

QIS performs analysis in the background to provide on-
the-fly improvement hints and refactoring suggestions. Its
server-side refactoring engine powers the front-end compo-
nent, which enhances the Scratch programming environment
that runs in a Web browser. The front-end refactoring facility
periodically sends the edited program to the server and present
the analysis results to the programmer in a form of hints and
the associated refactorings.

Fig.1 shows an example of how QIS presents the detected
DuPLICATE CODE smell as a quality improvement hint and the
suggested EXTRACT CusTOM BLOCK refactoring. QIS detects
the DUPLICATE CODE smell when two or more code frag-
ments containing more than one statement, share an identical
structure except for small variations in identifiers and literals.
The suggested refactoring is EXTRACT CUSTOM BLOCK; it
transforms the program to put the repeated sequences of
statement blocks into a new custom block definition script,
whose invocations replace the repeated sequences.

The aforementioned design principles have inspired certain
implementation choices that we demonstrate by example. Our
improvement hints are contextualized using code highlights or
abstract visual representations of non-visual program elements
to intuitively convey to programmers what and where the

1) mouse over hint icon (light bulb) to see
duplicate parts and explanation in a tooltip :

problem is. When describing a quality problem, QIS makes
use of positive language to reframe the problem as a quality
improvement opportunity. Finally, QIS refrains from asking
programmers to specify refactoring parameters (e.g., when a
refactoring requires a name, QIS uses a placeholder name,
followed by another hint that suggests an opportunity to
meaningfully rename the placeholder).

III. RELEVANCE

We expect that presenting QIS would generate an interesting
discussion in the VL/HCC community, as it raises a largely
unexplored question: How can programming environments
encourage the adherence of beginners to principled software
engineering practices? This showpiece demonstrates how a
popular mainstream programming environment can be seam-
lessly enhanced with an automated refactoring facility, as a
use case of rendering automated refactoring accessible to pro-
gramming environments for novices. We seek this opportunity
to present our tool as an avenue to receive feedback from
fellow researchers and explore opportunities for collaboration.

AVAILABILITY

Our custom Scratch programming editor with QIS is avail-
able at: https://q4blocks.appspot.com/editor. While our back-
end refactoring engine is capable of detecting and refactoring
all four smells, our front-end user interface currently supports
the presentation of the improvement hint for the DUPLICATE
CobE smell and the associated EXTRACT CUSTOM BLOCK refac-
toring. We plan to roll out the support for the remaining hints
and their associated refactorings by the time of the showcase.

ACKNOWLEDGEMENTS

This research is supported by the National Science Founda-
tion through the Grant DUE-1712131.

REFERENCES

[1] M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60-67, 2009.

[2] F. Hermans and E. Aivaloglou, “Do code smells hamper novice program-
ming? A controlled experiment on Scratch programs,” in 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), May 2016,
pp. 1-10.

[3] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in 2017
1IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct 2017, pp. 43-51.

[4] G. Robles, J. Moreno-Ledn, E. Aivaloglou, and F. Hermans, “Software
clones in Scratch projects: On the presence of copy-and-paste in compu-
tational thinking learning,” in Software Clones (IWSC), 2017 IEEE 11th
International Workshop on. 1EEE, 2017, pp. 1-7.

[5] E. Aivaloglou and F. Hermans, “How kids code and how we know:
An exploratory study on the Scratch repository,” in Proceedings of the
2016 ACM Conference on International Computing Education Research.
ACM, 2016, pp. 53-61.

[6] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060-1076, Sep. 1980.

[7] P. Techapalokul and E. Tilevich, “Code quality improvement for all:
Automated refactoring for Scratch,” in 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct 2019.

, “Quality hound an online code smell analyzer for Scratch pro-

grams,” in 2017 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), Oct 2017, pp. 337-338.

(8]

