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Abstract—This research focuses on the planning and scheduling
of restoration efforts provided by infrastructure networks in the
aftermath of disruptive events. Two mathematical formulations
are presented to assign restoration crews to disrupted components
and maximize network resilience progress in any given time
horizon. In the first formulation, the number of assigned
restoration crews to each component can vary to increase the
flexibility of models in the presence of different disruption
scenarios. Along with considering the assumptions of the first
formulation, the second formulation models the condition where
the disrupted components can be partially active during the
restoration process. We test the efficacy of our formulations on the
realistic data set of 400-kV French electric transmission network
and 32 realistic size data sets illustrating scale-free, small-world,
lattice, and random networks. The results indicate that the
proposed formulations can be used for a wide variety of
infrastructure networks and for real-time restoration process
planning.

Index Terms— Infrastructure networks, network resilience,
scale-free networks, small-world networks, scheduling

I. INTRODUCTION AND MOTIVATION

HE United States, as well as many countries around the

globe, have increasingly emphasized resilience planning
for critical infrastructure networks. Presidential Policy
Directive 21! states that such networks “must be secure and
able to withstand and rapidly recover from all hazards.” The
combination of withstanding and recovering these critical
infrastructure networks is generally referred to as resilience,
formally defined as the “ability to withstand, adapt to, and
recover from a disruption”?!, Examples of critical infrastructure
networks include water, gas, communication, transportation,
and the electric power grid.

U.S. resilience planning documents highlight terrorist
attacks, natural disasters, and manmade hazards, all of which
could exacerbate our aging and vulnerable infrastructure
systems. The state of these critical infrastructure networks,
combined with the fact that climate change will likely result in
more frequent, severe, and complicated catastrophic events,
motivates planning for resilient infrastructure networks so that
they may be recovered quickly after a disruptive event.
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There have been many recent attempts to define, model, and
measure resilience across a number of application areas,
including infrastructure networks (e.g., transportation, electric
power, pipelines)*7 and service networks (e.g., emergency
response, humanitarian relief, debris removal)® !, Fig. 1
offers a paradigm for the resilience of a network prior, during,
and in the aftermath of a disruptive event, e/ 416 The
performance of the network is measured with ¢(t) (e.g., the
extent to which demand is met in an electric power network).
The resilience of a network over time is measured with

s o (t|ej ), or the proportion of network performance in each
time period after disruption (i.e., ¢ (t) for t = t,, ..., tf, caused
by disruption scenario, e/ € D for D = {1, ...,J} where D is a
set of possible disruptive events), to network performance prior
to the disruption.

Fig. 1 highlights two primary dimensions of resilience: (i)
vulnerability, or the lack of ability of a network to maintain its
level of performance given the occurrence of a disruptive event,
and (i) recoverability, or the ability of a network to recover to
a desired level of performance timely. Vugrin and
Camphouse!'” introduced resilience capacity, as a function of
absorptive capacity (i.e., the extent to which a network can
absorb disturbances during the occurrence of a disruptive event),
adaptive capacity (i.e., the extent to which a network can
quickly adapt in the aftermath of a disruptive event by short-
term, temporary means), and restorative capacity (i.e., the
extent to which a network can be restored from a disruptive
event over a longer time horizon). In Fig. 1, absorptive and
adaptive capacity address network vulnerability mitigation, or
how to extend the performance (i.e., stable original state) and
how to reduce the drop in performance (i.e., system disruption
state), respectively. Network recoverability can be addressed
with restorative capacity, or how to reduce the time horizon in
which restorative operations occur, thus increasing the slope of
performance!'®],

This paper focuses on enhancing recoverability through
restorative capacity. In this area, considerable research in recent
years has focused on optimization models and algorithms to
improve recovery operations. Recent reviews by Anaya-Arenas
et al.?% and Ozdamar and Ertem!'! discuss post-disruption
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Fig. 1. Relationship between resilience capacities and the primary dimensions
of resilience proposed in [14].

restoration plans particularly in humanitarian logistics, such as
relief delivery, casualty transportation, and mass evacuation. As
far as transportation networks are concerned, Kasaei and
Salman! study arc routing problems to regain network
connectivity by clearing blocked roads, developing heuristic
algorithms to attain maximum benefit gained by network
connectivity while minimizing the time horizon. Aksu and
Ozdamart??! consider a multi-vehicle problem to maximize
network accessibility during transportation network recovery
by identifying critical blocked links and restore them with
limited resources. Nurre et al.’) introduce a design and
scheduling formulation to expedite the infrastructure network
restoration process.

Electric power networks behave differently than
transportation networks, as according to laws of physics, power
flow cannot be controlled and affected directly. Bienstock and
Mattia*! proposed a mixed integer model to protect power grid
networks at minimum costs to increase their survivability to
cascading failures. Later Nurre et al.’’! incorporate the method
by Bienstock and Mattia* to propose a schedule and design
problem that models restoration efforts associated with power
networks. Fang and Sansavini®®! co-optimize power grid
expansion and installation of line switching devices to mitigate
the supply disservice in the aftermath of disruptions and
enhance resilience by system re-configurability. Xiao and
Yeh?luse a dual covering graph in which nodes represent links
in the corresponding original graph and present a model to
assess the existence and non-existence of operational links after
the failure of degree dependent links. Arif et al.?” propose a
two stage method which first clusters the disrupted lines and
grids based on their distance from the restoration depot and then
proposes a mixed integer linear program to schedule restoration
crews to disrupted locations and dispatch them through the
network to minimize the total restoration time. Chen et al.[2128]
introduce a sequential service restoration framework to
optimize the restoration process for large-scale power outages,
disrupted  distribution networks, and microgrids. The
framework is formulated as a mixed integer linear program and
schedules a set of control actions that synchronize distributed
generators, switches, and switchable loads and form multiple
isolated microgrids in three-phase unbalanced distribution
systems and microgrids.

Many infrastructure networks can be described by models of
complex networks (e.g., scale-free and small-world networks),

therefore recent research has focused on how network
structures facilitate and constrain network behavior,
particularly in the aftermath of a disruptive event®l. Ouyang et
al.B% investigate how the resilience of redundant systems in
scale-free networks plays a significant role to reduce the
adverse effects of disruptions. Chang and Wul®* analyze
complex network theories and characteristics to be able to track
the mechanism of cascading failure, showing that network
reliability could decline to 5% as the result of cascading failure.
Albert et al.’!! assess level of robustness and vulnerability of
complex networks for different disruption scenarios. They
show that the malfunction of key components may nevertheless
lead to an adverse loss in the complex networks as the result of
redundant connections existing in the network structure.

While the aforementioned works deal with various aspects of
infrastructure networks after a disruptions, none consider the
role of network structure (mesh, random, scale-free, small-
world) in planning the restoration process, and none present a
framework that can adapt to a variety of infrastructure
networks, each with particular performance characteristics.
Therefore, we indicate the applicability of the proposed model
to a variety of infrastructure networks and study the behavior of
the model in presence of different network structure (e.g., from
mesh network to scale-free and small-world networks).

Aside from introducing the Binary Active model, in which a
disrupted component must be fully recovered to be fully
operational (e.g., an electric power line), this paper presents the
Proportional Active model, in which a disrupted component can
be partially operational in the network while it is being
recovered. In the context of power grid network recovery, this
is also the case for redundant components connected in a
parallel configuration, in which the components equally share
the load. Power lines, busbars, and step-down transformers are
often operated by following this logic. The capacity and,
consequently, the level of operation associated with each
disrupted line increase during restoration. Another contribution
of this paper allows for variability in the number of crews
required to restore disrupted components, each with special
characteristics (e.g., restoration time, and level of disruption).

The remainder of the paper is organized as follows. Section
I proposes Binary Active infrastructure mathematical
formulations for restoration efforts and update the structure of
the model to incorporate proportionally operational
components in each time period. Section III provides data
generation and computational analyses of the impact of
Proportional and Binary Active models on scale-free and small-
world networks derived from the 400-kV French electric power
transmission network, as well as the French power network
itself. We discuss concluding remarks in Section IV.

II. PROPOSED OPTIMIZATION MODEL

Let G = (N, A) be an undirected connected network, where
N is the set of nodes and A is the set of links. There is a set of
supply nodes N, € N, aset of demand nodes N_ € N, and a set
of transshipment nodes N_ & N. Each supply node i € N,
supplies amount o; in each time period, and each demand node
i € N_ demands amount b; in each time period. Each link
(i,j) € A has a defined pre-disruption capacity u;j;, and a pre-
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calculated flow value x;;;, based on the solution to the classic
flow problem!*?! aiming to satisfy demand nodes i € N_. Power
flow rules are not considered in small-world and scale-free
instances as the relevant series reactance values are not known.

Some challenges may arise in studying a power network flow
formulation: (i) the nonlinearity and nonconvexity of AC power
flow, (ii) the complexity of its solution, particularly when it is
integrated with network restoration formulation, and (iii) the
fact that the system may have multiple solutions'. For the sake
of simplicity, we use a DC linear approximation to bypass the
aforementioned shortcoming. While such an approximation is a
simplification, it has shown to provide a good estimation of the
network restoration process after a disruption. Furthermore,
eliminating the behavior of power networks (e.g., start-up times
for units and pick up of ballast loads) decreases the solution
time and complexityH5],

With the application of the DC linear approximation model
for the 400kV French transmission network (shown in
Appendix A), we are interested in sending the amount of flow
from supply nodes to satisfy all demand nodes, respecting the
flow capacity of links and supply/demand capacities. There
exists an importance weight w; of each demand node i € N_.

There is a set of links A’ € A that are affected by the
disruptive event at time t,. Without loss of generality, we can
consider inoperable nodes as inoperable links since a node can
be split to two nodes and a link. The affected links are scheduled
to multiple parallel restoration crews, k = 1, ..., K, where K is
the maximum number of work crews that can be assigned to
each disrupted link (i, ) € A’. The total number of work crews
available for all links is L. Each link (i,j) € A’ has an
associated processing time p;j; which depends on the
characteristics of that link and the number of restoration crews
assigned to it. Without loss of generality, p;j; is an integer
parameter for each (i,j) € A'. We also assumed that each
recovery task should be processed without interruption.

We evaluate the performance of the network in each time
period t =1,...,T by determining the total flow reaching
demand nodes, denoted by X.;cy_ @;:. The objective function
maximizes the resilience of the infrastructure network at each
time t, and consequently over the horizon of the problem. The
resilience of the system at time t after disruptive event e’ J € E,
is captured in the objective function with Eq. (1), where
Yien_ @it, is the performance of the network before the
occurrence of disruptive event (at time t, from Fig. 1), and
Yien_ Pit, 1s the performance of the network after disruptive

effects have occurred (at time t).

Yien_ Pit — Lien. Pity

A, (tle)) =
¢ Yien_ Pit, — Yien_ Pity

M

In this paper, we assume total demand does not change
during the horizon of the problem. However, in cases where the
total demand changes with time, we could substitute Y;ey_ @,
with Y;en_ E[@]ic, Where parameter E[@];; would represent
the expected total demand in each time period after a disruptive
event.

A. Mathematical Models

In this section, two variations on a mixed integer
mathematical model are presented to solve the infrastructure
network restoration problem. In the Binary Active model, we
assume that each disrupted link remains inoperable until the
related recovery process is completed. The decision variables
for the Binary Active model are found in Table I. In certain
realistic case studies, such as transportation networks, disrupted
links can be partially operable during their recovery process.
The Proportional Active model, the decision variables for
which are found in Table II, addresses this situation where the
level of operability of link (i, j) increases during its recovery
process and becomes completely operational at the end of the
recovery process.

TABLE I
DECISION VARIABLES IN THE BINARY ACTIVE MODEL

Notation  Type Definition
Equals 1 if the recovery process of link
Qyije Binary (i,)) is completed by k work crews at
time t, 0 otherwise
. Equals 1 if link (i, ) is operational at
Bije Binary tircile t,0 otherwise] P
. Cumulative flow reaching demand node
Pit Continuous ., .
{attimet
Xijt Continuous  Flow on link (i, ) at time t

TABLE II
DECISION VARIABLES IN THE PROPORTIONAL ACTIVE MODEL

Notation Type Definition
Equals 1 if the recovery process of
Ykije Binary link (i, j) begins by k work crews
at time t, 0 otherwise
o Continuous The cumulativ.e ﬂo_w reaches to
i demand node i at time ¢
Xyt Continuous The flow corresponding to link

(i,j) at time ¢t

1) MIP Model for Binary Active Network Restorative
Capacity

maxz ytﬂ(p(t|e7) ®)
teT

s.t.

Xije = Z Xjie < 0; VieN,, t=1,..,T 3)
Ji(i,j)EA J:(j,i)EA

Xije = Z Xjie = 0 VieN.,t=1,..,T @)
Ji(L.)EA J:UA)EA

Xije = Z Xjie = ~Pic VieN_,t=1,..,T 5)
Ji(i,j)EA J:(j,i)EA
0 < @y < b VieN_,t=1,..,T (6)

0 < xije < wyje,

v(i, ) €A/ t=1,..,T %)

0 < x5 < Bijelije, v(i,j)ed,t=1,..,T ®)

K

ZZT: (1 + l%]) kayjs < L )

k=1 s=t
v@i,j)ed,t=1,..,T
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ZZakUt <1

v(i,j) € A’ (10)
KkEK teT
Pijk—1
Z e = 0 v(i,j) € A, Vk € K (11
t=1
t
ﬁiit—ZZak”s <0 V(i) €A, t=1,..,T (12)
s=1 keK
akiit,ﬁ‘iit € {0,1} vk € K,V(l,]) € A’, t= 1, ,T (13)
@i =0 VieN_, t=1,.,T

The objective function maximizes the resilience of the
network over the horizon of the problem. We also associate
weight py; to the resilience of the network at time t, as the
importance of the resilience measure may vary over time (e.g.,
more rapid recovery may be achieved when earlier time periods
have large weights). Egs. (3)-(5) are network flow constraints
in and out of supply nodes, transition nodes, and demand nodes,
respectively. Eq. (6) ensures that the amount of delivered flow
does not exceed the capacity of demand nodes. Eqgs. (7) and (8)
ensures that the flow of link (i,j) € A" does not exceed its
(disrupted or recovered) capacity. Egs. (9)-(12) schedule
disrupted link for recovery. Eq. (9) ensures that no more than L
restoration crews can work on disrupted links in each time
period. None of the disrupted links receives recovery services
more than once, according to Eq. (10), and no link recovery
process completes before its processing time is finished with
Eq. (11). Eq. (12) ensures that if link (i, ) € A’ is operational
at time t, then its recovery process must have been completed
by that time t.

2) MIP Model for Proportional Active Network Restorative
Capacity

In the Proportional Active formulation, the processing time
of link (i,j) € A is a function of: (i) the characteristics of that
link, such as the level of disruption it experiences and the series
of required task for its recovery, and (ii) the number of the
assigned work crews to link (i, ), fijx(t). This function is non-
decreasing on t =1,...,T intervals and, without loss of
generality, it is integer-valued. We also assume that each
recovery task should be processed without interruption.

max Z e, (tled)

teT

(14

s.t.
Egs. (3), (4), (5), (6), (7)

t
0 < x5 < W, + Z Z Yiijs frije-s)(Wije, — Wijey)
k€K s=1

v(@i,jead,t=1,.,T

(15)

K t

IR e P

k=1s=1
v(i,j)eA, t=1,..,T

(16)

Yiijs <1 v(i,j) €A’ 17

=
m
=
o
m
=

Yiije =0 v(i,)eA k=1.,K (18)

NGB

t=T—pij+1

vk e K,V(i,j) € A’

L o>
Viije € (0.1}, ¢ie 2 0 t=1,..,T, Vi€ N_

19)

Eq. (14) calculates the improvement on each disrupted link
(i,j) € A’ recovery process as an increase in its capacity while
assuring the flow on link (i,j) does not exceed its capacity.
Egs. (15)-(17) schedule disrupted link for recovery. Eq. (16)
ensures that no more than L work crews can work on disrupted
links in each time period. Eq. (17) requires that the allocation
of work crews is only made once for each disrupted link. No
link recovery process starts if its processing time takes longer
than the restoration horizon, as in Eq. (18).

The proposed formulations are applicable to various
infrastructure networks, such as transportation and supply
chains. However, to prove the applicability of the proposed
model to power grid network it is required to update the
formulation to capture the electric power flows computed
according to circuit laws, which generally cannot be controlled
individually by decision makers!. Similar to Nurre et al.], we
apply the DC model which is a linear approximation commonly
used to model the operations of power network infrastructure.
The linearized approximations have been justified using
traditional engineering assumptions that under ‘“normal”
operating conditions, voltage magnitudes do not significantly
deviate from nominal values and phase differences are
“small”*31. To address this problem, we consider that, after the
failure of components and the disconnection of overloaded
components, the power system reaches to a stable state, and the
model formulation is used to dispatch the power flow over the
residual network. In fact, the recovery process discussed in the
appendix is not intended to capture the operations of the power
grid. Rather, considering the recovery of each disrupted
component, it calculates the performance of the residual
network iteratively and plans the restoration accordingly. The
system is then dispatched for “normal” conditions using the
undisrupted elements. We also incorporate cascading failure
effects in early time periods after disruptions into the proposed
models. Then, we employ a combined algorithm from Soltan et
al.’* and Bienstock* to control the disruptions caused by
imbalanced supply-demand correlation (see the Appendix for
details). The cascading failure evolution algorithm{*#! also uses
the DC approximation to calculate the network flows and
prevent the violation capacity after the cascading failures. Our
focus is not on the effect of cascading failures and on their
control. However, applying a cascading failures control
algorithm immediately after a disruptive event provides a
realistic disrupted network for implementation into and testing
the proposed restoration and resource allocation formulations,
which is our focus. To limit the approximation errors during the
deployment of this formulation on real-world systems, the AC
relations can be applied in place of DC approximations33,

III. ILLUSTRATIVE EXAMPLES DERIVED FROM THE 400 KV
FRENCH POWER TRANSMISSION NETWORK

The two proposed models are illustrated with reference to
several test instances derived from the 400-kV electric power
transmission network of France. The transmission network®,
depicted in Fig. 2 is the power network containing 171 nodes,
including 26 generators (i.e., 26 supply nodes), 145 distributors
(i.e., demand nodes), and 220 transmission lines.
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To test realistic disaster areas possibly affected by realistic
disruptions (e.g., Hurricane Katrina led to devastation on the
U.S. gulf coast approximately half the size of Swedenl*™), we
consider a hypothetically significant disruptive event (e.g., an
earthquake) impacting 94 of 220 transmission lines (48%).
Knowing that such a disruption would affect a geographically
limited area, the disruptions are distributed randomly among the
network components to evaluate the ability and behavior of the
models in solving various disrupted component scenarios. The
capacity of each transmission line is about 5190 MW and the
total delivered power flow is 84988 MW in the nominal
operating conditions. Other modified versions of disrupted
transmission networks are used by Alipour et al.*®! and Fang et
al.?’l, We employ different network structures to evaluate the
applicability of the two proposed models. Scale-free and small-
world networks are generated according to Barabasi-Albert>”!
and Watts-Strogatz*”) models, respectively, based on the data
describing the 400-kV French transmission network. A small-
world network refers to a type of mathematical graph in which
the distance between two random nodes grows slowly,
proportionally to the logarithm of the number of the nodes,
while at the same time the level of clustering in that
corresponding network is not small®). These networks
resemble many power grid networks and networks of how
infectious disease spreads. For a scale-free network, the degree
distribution follows a power law. That is, the portion of nodes
having k connections to other nodes is k=¥, where y is a
parameter in the rage of (2,3)*°). These networks resemble
airline networks in the US, as well as the physical structure of
the Internet and the world wide web.

The small-world and scale-free networks are not spatially
embedded networks, therefore their links overlap, and the
definition of series reactance loses its meaning. To mitigate this
issue, we consider the generated small-world and scale-free
networks as simple supply-demand networks. For generated
small-world and scale-free instances, as we do not have any
information about the series reactance of the lines, we need to
exclude the DC flow linear approximation constraint presented
by Bienstock and Mattia* from the model formulation when
applied to these network structures. The average capacity of the
lines of each network instance is chosen so that all demand
nodes are satisfied.

For scale-free networks, we use preferential attachment as
the growth mechanism for developing network structure for the
test instances. In preferential attachment mechanism, the
probability P (i) that a node i € N gets a new link to another
node is proportional to a positive function, Ay, of its current

degree. Based on Barabasi-Albert model, A, = Ay, is assumed
to be a log-linear form of h*, where @ > 0 is the exponent

attachment!'l, The data are also generated from the 400-kV
French transmission network topology with 171 nodes. Without
altering the number of nodes, we vary the attachment exponent
from 0.002 to 1. Changing the exponent attachment, we
produce new network instances using the same number of nodes
(i.e., supply, demand, and transmission nodes) with different
numbers of lines and topological structure through which the
disruptions are distributed in a random order.

Note that if @ < 1 (the sub-linear case), then the degree
distribution is going to be a stretched exponential, while in the

case of @ > 1 (super-linear case), one node will attain all the
incoming links. Eventually, the power law distribution is
presented only when a = 1, linear casel*!l. We alter the power
of preferential attachment, which enables nodes with the higher
degree to have a higher chance of grabbing new links added to
the network, from 0.002 to 1.8, where 1 represents linear
preferential attachment.

For small-world networks, the data are randomly generated
with the same amount of supply and demand as the 400kV
French transmission network data set?®l, with 171 nodes and
the same number of generators and distributors randomly
allocated to the nodes. The capacities of lines are chosen to
enable the network to satisfy all demand nodes in its
undisrupted state with the minimum level of network
redundancy. Without altering the number of nodes, we rewire
each link with probability p from 1 to 0.001 and produce a new
instance with different number of links and topological
structure through which the disruptions are distributed in a
random order, p = 0 represents a regular ring lattice network,
p = 1 represents a complete random network, and 0 <p < 1
represents a small-world networks.

Each generated network may have a different number of links
out of which 48% are disrupted. It is assumed that 14 work
crews are deployed to recover disrupted links, and at most seven
crews can be assigned to a disrupted link at the same time. The
restoration times for disrupted links vary between 1 to 12
periods depending on the characteristics of the link, the level of
damage it experienced, and the number of assigned work crews.

We have run our computational experiment on a 64-bit
Core™ 17-7500U CPU computer. We set a limit of 3600
seconds for all the instances and tested whether the proposed
formulation solved them in this time limit or not. Each run was
terminated before 3600 s if the optimality gap fell below 0.2%
for the Proportional Active model. Python 2.7.10 is used for
modeling, and Gurobi 7.0.2 is used to solve both models. The
time horizon T,y is 60 periods (hours), which corresponds to
six 10-hours work shifts.

A. Computational Testing on Scale-Free Networks

Table III presents the result of Binary Active and
Proportional Active models for 17 scale-free network test
instances with different exponent attachment value, @ > 0,a €
[0.002,1.8]. The exponent attachment value, the capacity of
links, and the total number of active links are shown in the first,
second, and third columns respectively. For both models, Table
III provides (i) Makespan, or the minimum recovery time
required for an infrastructure network to reach to the maximum
level of resilience, (ii)) %Gap, the optimality gap for the
obtained solution, and (iii) the CPU time required for the
computation of the solutions. Restoration is depicted with Fig.
3 and Fig. 4
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Fig. 2. The 400 kV French power transmission network[3],

Table III demonstrates that the two models can be solved
within 0.6% of the optimal solution. The Proportional Active
formulation recovers networks in shorter time horizons and
with a lower optimality gap. As expected, Fig. 4 demonstrates
that in the Proportional Active model the networks with
attachment « > 1 display a great tolerance against catastrophic
events, as they contain highly connected nodes, which form
redundant paths and support connectivity. However, the
increase in the number of high degree hubs in these networks
results in them being potentially highly vulnerable to
malevolent attacks. In this paper, we consider natural
disruptions, but intentional attacks could remove a set of more
significant components that could more substantially damage
the network. It is also concluded from with Fig. 3 and Fig. 4
that the higher exponent attachment a provides relatively more
uniform slope and present higher resilience value in any
specific time horizon.

B. Computational Testing on Small-World Networks

Table IV represents the results of the Binary Active model
and Proportional Active model, respectively, for 20 small-
world networks test instances with different rewiring
probability scenarios. The rewiring probability and its related
clustering coefficient, C(p), and mean path length, L(p) before
the occurrence of a disruptive event, are shown in the first,
second, and third columns, respectively. The fourth and fifth
columns display the capacity of links and the number of links
respectively. The average capacity of links changes when we
change p so as to prevent flows from being rerouted through
paths with redundant capacity, though rerouting is not a focus
of this work. The makespan column provides the recovery time
of best feasible solution, and the %Gap column provides the
optimality gap for the obtained solution. The last column
reports the CPU time required for computation of the solutions.

Table IV demonstrates that the Binary Active model can be
solved within 0.6% of the optimal solution, and the makespan
of restorative efforts increases as the rewiring probability

decreases. As expected, when rewiring probability is low, the
nodes that are nearby are connected (i.e., local connections),
and the clustering coefficient is high as well. Although the
transitivity is high, some nodes may have long distance
connection which simply means it takes a long chain of
connection to reach from those nodes to some others. Note that
path length counts each link as length one. Fig. 5 and Fig. 6
illustrate the recovery process for Binary and Proportional
formulations, where the curves associated with p =1.0, 0.6, and
0.1 represent the restorative efforts for networks with random
model characteristics, curves associated with p =0.07, 0.04,
and 0.01 represent networks with small-world properties, and
curves associated with p = 0.008, 0.004, and 0.001 represent
networks model characteristics. For p = 0.1, the restoration
process starts from a lower level of network resilience,
suggesting that these networks are more initially vulnerable to
random disruptions. By increasing the rewiring probability, p,
results indicate a higher percentage of recovery in a specific
time horizon. The diagrams associated with p < 0.008 indicate
smooth progress in the network resilience. The slope of
resilience measure varies for different rewiring probabilities
values in networks with rewiring probability p € [0.09,0.01],
displaying much steeper recovery in the beginning for higher
rewiring probabilities (p = 0.06) and more uniform progress
for lower rewiring probabilities. This case study suggests that a
higher cluster coefficient results in a smoother trajectory of
improvement in the resilience measure. As Fig. 5 and Fig. 6
show, the makespan of restoration efforts related to different
rewiring probabilities noticeably decreases when the
Proportional Active model is employed. Unlike the Binary
Active model, altering the rewiring probability does not
significantly affect the makespan. According to Fig. 6, the
trajectory of restoration for networks with different rewiring
probabilities is illustrated as concave upward graphs with the
uniform slope. From curves with p < 0.07, we can conclude
that restoration efforts resulting from the Proportional Active
model lead to more uniform restoration curves. Fig. 6 also
demonstrates that higher C(p)/C(0) result in less affected
networks in the aftermath of a disruptive event for p < 0.07,
suggesting that networks with lattice characteristics are less
vulnerable to random disruptions. Finally, we see steeper slope
of resilience enhancement in the beginning for higher rewiring
probabilities (p = 0.06) and more robust networks with more
uniform progress for lower rewiring probabilities (p < 0.06).
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TABLE III
BINARY AND PROPORTIONAL ACTIVE MODEL COMPUTATIONAL RESULTS FOR SCALE FREE NETWORKS

Link No. of Binary Active model Proportional Active model
a capacity links Makespan (h)  %Gap CPU time (s) Makespan (h)  %Gap CPU time (s)
0.002 13488 170 45 0.54 3600 33 0.14 3425
0.008 9375 170 43 0.41 3600 32 0.17 3266
0.02 9795 171 46 0.53 3600 31 0.19 3210
0.08 8320 170 45 0.21 3600 33 0.11 3367
0.2 16280 170 44 0.42 3600 32 0.06 3151
0.8 10480 170 44 0.21 3600 32 0.07 3207
1.2 8088 170 45 0.47 3600 33 0.02 3313
1.8 11270 171 43 0.13 3600 32 0.02 3354
TABLE IV
BINARY AND PROPORTIONAL ACTIVE COMPUTATIONAL RESULTS FOR SMALL-WORLD NETWORKS
Binary Active model Proportional Active model
No. CPU CPU
c®) L®) Link of Makespan time Makespan time
p c(0) L(0) capacity links (h) %Gap (s) (h) %Gap (s)
1 0.1 <0.04 1730 215 42 0.530 3600 32 0.253 3600
0.6 0.18 0.04 1350 237 42 0.410 3600 32 0.200 3600
0.1 0.47 0.79 1350 232 44 0.510 3600 35 0.200 3600
0.06 0.53 1.16 1015 289 44 0.343 3600 32 0.380 3600
0.01 0.62 3.81 1015 340 47 0.556 3600 29 0.406 3600
0.006 0.63 5.32 900 327 46 0.510 3600 33 0.204 3600
0.001 0.4 9.96 1015 338 54 0.345 3600 34 0.402 3600

To evaluate the tolerance and behavior of both proposed
models to large disruptions resulting from any number of
catastrophic events and malevolent attacks, we deactivate 40%
of network links (around 68 links), either partially or
completely. Considering the number of crews assigned to each
disrupted link as a variable increases the complexity of the
problem, regardless of the level of network disruption.
Therefore, the computational results are obtained within 0.6%
in the given CPU time. In cases where 7% of components are
disrupted (comparable to an earthquake of magnitude 6
[Gonzalez et al. 2016a] to 16% (comparable to an earthquake
of magnitude 9), the average optimality gap and solution time
obtained from solving scale-free network instances are 0.025%
and 7.23 seconds, respectively, for the Binary Active model,
and 0.016% and 5.08 seconds, respectively, for the Proportional
Active model. For small-world network instances, the average
optimality gap is 0.029% and average solution time is 12.46
seconds for the Binary Active model, and for the Proportional
Active model, 0.019% and 13.29 seconds, respectively.

C. Computational Testing on the 400 kV French
Transmission Network

Fig. 7 and Fig. 8 compare the Binary Active and Proportional
Active formulations for the actual 400 kV French transmission
network topology as shown in Fig. 2. Although the Proportional
Active formulation may only be applicable to redundant lines
and components and not to all disrupted lines in the 400 kV
French transmission network, it is of interest to study the
behavior of both Proportional and Binary Active formulations
for a real data set. We examine the effect of the two weights: (i)
w;, i € N_, for weighting the importance of demand nodes,
where demand nodes located in highly populated areas are
considered a higher priority relative to other demand nodes, and
(ii) pe, t € {1, ..., T}, for weighting network performance for
each time period.
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0.65
0.55
0.45
0.35
0.25

Resilience

13

16 19 22 25 28 31 34

Time Period

0.008
1.4

0.06
1.8
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Fig. 3. Trajectory of the resilience measure for the Binary Active model
applied to scale-free networks (for select values of ).

We update Eq. (1) to incorporate weights w; in models in Eq.
(20). Each takes on a constant value (where all time periods and
demand nodes are weighted equally) or a scaled value (where
weights are allowed to reflect importance).

Yien_ Wi®ir — Dien_ WiQit,

Yien_ W@, — Yien_ Wi@it,

Ay (tle)) = (20)

In Table V, Column 1 shows the possible combination of
weighting scenarios. When p, is scaled, preference is given to
earlier time periods. When w; is scaled, preference is given to
demand nodes in more populated areas. Remaining columns
show the makespan, optimality gap, and CPU time for both
models. According to Table V, both models can be solved at
most within 0.7% of the optimal solution. The Proportional
Active formulation results in full network performance
recovery in a shorter time horizon.



TABLE V
COMPUTATIONAL RESULTS FOR THE 400-KV FRENCH TRANSMISSION NETWORK EXAMPLES (CONSIDERING CASCADING FAILURES)
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Binary Active model

Proportional Active model

Makespan (h) %Gap CPU time (s) Makespan (h) %Gap CPU time (s)
W;: constant, [l;: constant 39 0.32 1800 35 0.70 1800
W;: scaled, [1;: constant 40 0.23 1800 35 0.59 1600
W;: constant, ty: scaled 43 0.32 1800 38 0.66 1180
W;: scaled, ¢ scaled 47 0.70 1800 40 0.45 1540
TABLE VI

COMPUTATIONAL RESULTS FOR THE 400-KV FRENCH TRANSMISSION NETWORK EXAMPLES (WITHOUT CASCADING FAILURES)

Binary Active model

Proportional Active model

Makespan (h) %Gap CPU time (s) Makespan (h) %Gap CPU time (s)
W;: constant, [ constant 29 0.13 313 31 0.11 250
W;: scaled, [y constant 30 0.18 352 31 0.15 240
W;j: constant, [, : scaled 26 0.13 334 34 0.13 364
W;: scaled, U scaled 31 0.15 345 36 0.14 343
related to both models in
0.98 1.00
0.88 095
.
% 0.68 g 0:80
Z g
© 058 = 075
o 070
0.48 & 065
0.38 0.60
1 4 7 10 13 16 19 22 25 28 31 34 0.55
Time Period 050
1 5 9 13 17 21 25 29 33 37 41 45 49
0.002 0.008 0.06 04 1 14 18

Fig. 4. Trajectory of the resilience measure for the Proportional Active model
applied to scale-free networks (for select values of @).

Note that scaled y; may not result in a shorter recovery time
horizon, though it results in a higher value of network resilience
in a specific time horizon in comparison to other scenarios, as
shown in Fig. 7 and Fig. 8. As expected, scaled w; prioritizes
distributers located in more populated areas to be recovered.
This scenario may not lead to a shorter recovery time horizon
as the prioritized distributors may be supplied via paths that do
not share disrupted links with other paths in the network.
Regarding the fourth scenario, where both weights are enacted,
incorporating scaled y, may lead to more aggregate flow
reaching to demand nodes in each time period, which may
conflict with scaled w; as it favors satisfying prioritized
demand nodes. As such, the model restores the links that not do
not carry a high percentage of accumulated network flow. Fig.
7 and Fig. 8 indicate that employing the fourth scenario does
not lead to satisfying all prioritized distributers (using scaled
w;) nor to a higher value of network resilience in a specific time
horizon (using scaled p;), a counterintuitive result.

We also analyze the restorative capacity formulation in the
absence of cascading failures, Fig. 9 and Fig. 10. According to
the results shown in Table VI, both models solved to within
0.18% of the optimal solution in less computational time, and
both are more robust to disruption (i.e., the levels of resilience
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1.000
0.010

0.600
0.008

0.100
0.004

0.070
0.001

0.040

Fig. 5. Trajectory of the resilience measure for the Binary Active model applied
to small-world networks (for select values of p).
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Fig. 6. Trajectory of the resilience measure for the Proportional Active model
applied to small-world networks (for select values of p).

the aftermath of the disruptions are higher than the conditions
where cascading failures are considered in the corresponding
models).

This is because, according to Algorithm 1 (shown in
Appendix A), in the aftermath of a disruptive event, the
difference between the voltage in generators and distributers
may bring several operational links to carry redirected flow that
is greater than their capacity. This overload flow causes failures
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among operational links and increases the level of network
disruption in a very short time period (e.g., 5 to 10 seconds).
Therefore, both model formulations have to restore the network
starting from a lower level of resilience.

That is, the total restoration time of the network, as well as
the solution time, for the Binary and Proportional Active
formulations increase considerably when considering
cascading failures. Again, in cases where we disrupt 7% to 16%
percent of network components, we reach an average optimality
gap of 0.024% in an average solution time of 10.08 seconds for
the Binary Active model, and average optimality gap of 0.014%
in an average solution time of 8.05 seconds for the Proportional
Active model.
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Fig. 7. Trajectory of the resilience measure for the Binary Active model
applied to the 400-kV French transmission network (with cascading failures).
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Fig. 8. Trajectory of the resilience measure for the Binary Active model
applied to the 400-kV French transmission network (without cascading
failures).
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Fig. 9. Trajectory of the resilience measure for the Proportional Active model
applied to the 400-kV French transmission network (with cascading failures).
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Fig. 10. Trajectory of the resilience measure for the Proportional Active
model applied to the 400-kV French transmission network (without cascading
failures).

IV. CONCLUDING REMARKS

This research is an attempt to explore formulations for
enhancing restorative capacity that can be used in the recovery
efforts of an infrastructure network after a disruptive event.
Many complex networks arisen in nature or man-made
environment can be represented by their scale-free and small-
world properties, which are highly heterogeneous in their
connectivity pattern. From scale-free and small-world networks
to lattice and random networks, this problem is general enough
to be applicable to a wide variety of infrastructure networks.
Two formulations are proposed: (i) one that assumes that
disrupted components cannot play a role in a network
performance unless they are recovered completely (e.g.,
railway network), which we refer to as a Binary Active model,
and (ii) one that assume that we can alter the restoration process
by assuming partially recovered network components as
proportionally operational (e.g., road networks), which we refer
to as a Proportional Active model.

Although the Proportional Active model may not be always
applicable on power networks, its implementation on highway
networks, physical structure of internet networks is of a great
significance. Proportional Active model is also applicable to
some cases where, along with restoring the main power lines,
temporary, and emergency lines are installed and used to satisfy
at least a portion of demands. Apart from that, for expanding
the evaluation of the Proportional Active formulation and for
simplicity, we assume that the restoration process has a
sufficiently long time horizon where there can be enough time
for installation of temporary lines, particularly for severely
damaged network components. Furthermore, this model is also
applicable when redundant components are installed to perform
the same task (e.g., parallel power lines and transformers).

The proposed formulations are path-based scheduling
models that accomplish the restorative capacity goals while
providing the connectivity of suppliers to demand nodes in the
network during the restoration process. Solving models on 34
realistic size networks with different structures, we show that

both models can produce solutions that are within 0.7%
above the best possible solution in one hour of computation
time. This work proposes a model that can be used following a
disruptive event to restore infrastructure networks to some
desired level of resilience while optimizing the restoration
process aligned with the decision makers policies. The model
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not only schedules work crews to restore disrupted components,
but also determines where work crews should originate from,
given a set of candidate locations. The proposed optimization
model considers the physical interdependency between the
infrastructure networks as well as the geographical
interdependency when allowing work crews from different
infrastructure networks to be stationed at the same established
facilities.

The contributions of this paper lie in: (i) the flexibility of the
number of assigned crew to each disrupted link, (ii) the
Proportional Active model formulation, and (iii) the
applicability of both proposed formulations on different
network structures. The first contribution allows the number of
restoration crews assigned to each disrupted link to differ from
one link to another, so that the models are flexible enough to
attain the maximum level of resilience in each time period. The
second contribution incorporates each link under the restoration
process as partially operational in the network. Results suggest
that adopting a Proportional Active in appropriate network
situations can alter tactical restoration scheduling and
consequently enhance the recovery process. The third
contribution studies the behavior of both formulations through
different network structure (e.g., lattice, small-world, scale-
free, and random networks) with various characteristics (e.g.,
exponent attachment, a, for scale-free networks and rewiring
probabilities, p, for small-world network). Note that while
reaching 0.7% of optimality is likely sufficient for such
problems, an hour-long solution time may not be sufficient for
decision making purposes after a disruption where good
solutions are needed quickly.

As such, future work will explore heuristic methods to solve,
especially larger network problems. Other future explorations
include (i) the incorporation of the practical concern of work
crew vehicle routing, (ii) the interdependence of infrastructure
networks with each other, and (iii) the effects of network
recovery not only on the network itself but on any broader
socioeconomic impacts a disruption may cause. Due to the
complexity of the mathematical models, the effects of such
concepts as generator black start, generator ramping, and
network maneuvering are not considered in the proposed
formulations. An important direction for the future research is
to propose an algorithm whereby we obtain the near optimal
solution in a timely manner when such concepts are added to
the formulation.
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APPENDIX

A. Controlling Cascading Failures in a Power Network

Although integrating DC flow approximation constraints
with the proposed models prevents any violation of link
capacity, in reality, an initial disruption sets off a sequence of
additional disturbances in the network in a time horizon that is
on the order of minutes. We implement the Cascading Failure
Evolution (CFE) algorithm introduced by Soltan et al.’¥. We
implement the cascading process in ten rounds, R = 10, and
terminate the process using the termination law proposed by
Bienstock[®1.

Algorithm 1 — Cascading Failure Evolution (CFE)

Input: Graph G = (V, A) and the set of initial disrupted links A, S A

1: Ay « Ay andi « 0.

2:forr=1,..,R

3:  Adjust total demand to total supply within each connected island
K S G = (V,A\A).

4:  Compute the new flows x;;,-(4™) V(i,j) € A\A™.

5:  Find the set of new links A'y1q = {(i, D|x;jr (A") > uyje,, A\A"},
Ay <A VAL

Termination. (round R) If any component has overload line,
proportionally decrease the demand until all flows fall into capacity range.
Set Y& = min{1, (Er}fle)§(|xijr(A;§) [uije,} If Yy > 1, then any distributer in

round R in each component resets its demand to bX /y%.

The input of the algorithm is the initial set of disrupted links
immediately after the occurrence of a disruptive event. We
assume this set as the initial optimal set of disrupted links A’
It is assumed that the flow of each link falls in its capacity range,
|xi jte| < Uj¢,. After a disruptive event, some links fail and
disconnect the network to x = {1,.., K} islands. Each island
may have a number of generators and distributors whose total
pre-disruption supply and demand were not in balance. The
network still sets the total supply and demand balance in each
island. However, there are not an adequate amount of capacity

due to the failure of some links, and this leads to the overload
of some operational links and consequently other links may fail.
In each round, a set of new disrupted links 4;.,,; € A is added
to the previous set to form a new set of disrupted links A%, «
A7 U A}, 4. In the last round, the total demand in each island is
adjusted to be equal to total supply of that island decreasing the
level of demand (supply), referred to as the shedding/generation
process’®¥. We assume that the supply-demand balance is
considered in each time period of the recovery process to
prevent additional disruptions.
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