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Abstract—This research focuses on the planning and scheduling 

of restoration efforts provided by infrastructure networks in the 
aftermath of disruptive events. Two mathematical formulations 
are presented to assign restoration crews to disrupted components 
and maximize network resilience progress in any given time 
horizon. In the first formulation, the number of assigned 
restoration crews to each component can vary to increase the 
flexibility of models in the presence of different disruption 
scenarios. Along with considering the assumptions of the first 
formulation, the second formulation models the condition where 
the disrupted components can be partially active during the 
restoration process. We test the efficacy of our formulations on the 
realistic data set of 400-kV French electric transmission network 
and 32 realistic size data sets illustrating scale-free, small-world, 
lattice, and random networks. The results indicate that the 
proposed formulations can be used for a wide variety of 
infrastructure networks and for real-time restoration process 
planning.  
 

Index Terms— Infrastructure networks, network resilience, 
scale-free networks, small-world networks, scheduling 

I. INTRODUCTION AND MOTIVATION 
HE United States, as well as many countries around the 
globe, have increasingly emphasized resilience planning 

for critical infrastructure networks. Presidential Policy 
Directive 21[1] states that such networks “must be secure and 
able to withstand and rapidly recover from all hazards.” The 
combination of withstanding and recovering these critical 
infrastructure networks is generally referred to as resilience, 
formally defined as the “ability to withstand, adapt to, and 
recover from a disruption”[2]. Examples of critical infrastructure 
networks include water, gas, communication, transportation, 
and the electric power grid. 

U.S. resilience planning documents highlight terrorist 
attacks, natural disasters, and manmade hazards, all of which 
could exacerbate our aging and vulnerable infrastructure 
systems. The state of these critical infrastructure networks, 
combined with the fact that climate change will likely result in 
more frequent, severe, and complicated catastrophic events, 
motivates planning for resilient infrastructure networks so that 
they may be recovered quickly after a disruptive event.  
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There have been many recent attempts to define, model, and 
measure resilience across a number of application areas[3], 
including infrastructure networks  (e.g., transportation, electric 
power, pipelines)[4]-[7],and service networks (e.g., emergency 
response, humanitarian relief, debris removal)[8]-[12]. Fig. 1 
offers a paradigm for the resilience of a network prior, during, 
and in the aftermath of a disruptive event, 𝑒𝑗  [14]-[16]. The 
performance of the network is measured with 𝜑(𝑡) (e.g., the 
extent to which demand is met in an electric power network). 
The resilience of a network over time is measured with 
Я

𝜑
(𝑡|𝑒𝑗), or the proportion of network performance in each 

time period after disruption (i.e., 𝜑(𝑡) for 𝑡 = 𝑡𝑒 , … , 𝑡𝑓, caused 
by disruption scenario,  𝑒𝑗 ∈ 𝐷 for 𝐷 = {1, … , 𝐽} where 𝐷 is a 
set of possible disruptive events), to network performance prior 
to the disruption. 

Fig. 1 highlights two primary dimensions of resilience: (i) 
vulnerability, or the lack of ability of a network to maintain its 
level of performance given the occurrence of a disruptive event, 
and (ii) recoverability, or the ability of a network to recover to 
a desired level of performance timely. Vugrin and 
Camphouse[17] introduced resilience capacity, as a function of 
absorptive capacity (i.e., the extent to which a network can 
absorb disturbances during the occurrence of a disruptive event), 
adaptive capacity (i.e., the extent to which a network can 
quickly adapt in the aftermath of a disruptive event by short-
term, temporary means), and restorative capacity (i.e., the 
extent to which a network can be restored from a disruptive 
event over a longer time horizon). In Fig. 1, absorptive and 
adaptive capacity address network vulnerability mitigation, or 
how to extend the performance (i.e., stable original state) and 
how to reduce the drop in performance (i.e., system disruption 
state), respectively. Network recoverability can be addressed 
with restorative capacity, or how to reduce the time horizon in 
which restorative operations occur, thus increasing the slope of 
performance[18].  

This paper focuses on enhancing recoverability through 
restorative capacity. In this area, considerable research in recent 
years has focused on optimization models and algorithms to 
improve recovery operations. Recent reviews by Anaya-Arenas 
et al.[20] and Ozdamar and Ertem[21] discuss post-disruption 

K. Barker is with the School of Industrial and Systems Engineering, 
University of Oklahoma, Norman, OK 73019 USA (e-mail: 
kashbarker@ou.edu). 

G. Sansavini is with the Reliability and Risk Engineering Laboratory, 
Institute of Energy Technology, Department of Mechanical and Process 
Engineering, ETH Zurich, Zurich, Switzerland (e-mail: sansavig@ethz.ch). 

Restorative Capacity Optimization for Complex 
Infrastructure Networks  

Nazanin Morshedlou, Kash Barker, Member, IEEE, Giovanni Sansavini, Member, IEEE 

T 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

2 

 
 

Fig. 1. Relationship between resilience capacities and the primary dimensions 
of resilience proposed in [14]. 

restoration plans particularly in humanitarian logistics, such as 
relief delivery, casualty transportation, and mass evacuation. As 
far as transportation networks are concerned, Kasaei and 
Salman[19] study arc routing problems to regain network 
connectivity by clearing blocked roads, developing heuristic 
algorithms to attain maximum benefit gained by network 
connectivity while minimizing the time horizon. Aksu and 
Ozdamar[22] consider a multi-vehicle problem to maximize 
network accessibility during transportation network recovery 
by identifying critical blocked links and restore them with 
limited resources. Nurre et al.[5] introduce a design and 
scheduling formulation to expedite the infrastructure network 
restoration process.  

Electric power networks behave differently than 
transportation networks, as according to laws of physics, power 
flow cannot be controlled and affected directly. Bienstock and 
Mattia[4] proposed a mixed integer model to protect power grid 
networks at minimum costs to increase their survivability to 
cascading failures. Later Nurre et al.[5] incorporate the method 
by Bienstock and Mattia[4] to propose a schedule and design 
problem that models restoration efforts associated with power 
networks. Fang and Sansavini[23] co-optimize power grid 
expansion and installation of line switching devices to mitigate 
the supply disservice in the aftermath of disruptions and 
enhance resilience by system re-configurability. Xiao and 
Yeh[25] use a dual covering graph in which nodes represent links 
in the corresponding original graph and present a model to 
assess the existence and non-existence of operational links after 
the failure of degree dependent links. Arif et al.[27] propose a 
two stage method which first clusters the disrupted lines and 
grids based on their distance from the restoration depot and then 
proposes a mixed integer linear program to schedule restoration 
crews to disrupted locations and dispatch them through the 
network to minimize the total restoration time. Chen et al.[29][28]  
introduce a sequential service restoration framework to 
optimize the restoration process for large-scale power outages, 
disrupted distribution networks, and microgrids. The 
framework is formulated as a mixed integer linear program and 
schedules a set of control actions that synchronize distributed 
generators, switches, and switchable loads and form multiple 
isolated microgrids in three-phase unbalanced distribution 
systems and microgrids.  

Many infrastructure networks can be described by models of 
complex networks (e.g., scale-free and small-world networks), 

therefore recent research has focused on how network 
structures facilitate and constrain network behavior, 
particularly in the aftermath of a disruptive event[29]. Ouyang et 
al.[30] investigate how the resilience of redundant systems in 
scale-free networks plays a significant role to reduce the 
adverse effects of disruptions. Chang and Wu[24] analyze 
complex network theories and characteristics to be able to track 
the mechanism of cascading failure, showing that network 
reliability could decline to 5% as the result of cascading failure. 
Albert et al.[31] assess level of robustness and vulnerability of 
complex networks for different disruption scenarios. They 
show that the malfunction of key components may nevertheless 
lead to an adverse loss in the complex networks as the result of 
redundant connections existing in the network structure.  

While the aforementioned works deal with various aspects of 
infrastructure networks after a disruptions, none consider the 
role of network structure (mesh, random, scale-free, small-
world) in planning the restoration process, and none present a 
framework that can adapt to a variety of infrastructure 
networks, each with particular performance characteristics. 
Therefore, we indicate the applicability of the proposed model 
to a variety of infrastructure networks and study the behavior of 
the model in presence of different network structure (e.g., from 
mesh network to scale-free and small-world networks). 

Aside from introducing the Binary Active model, in which a 
disrupted component must be fully recovered to be fully 
operational (e.g., an electric power line), this paper presents the 
Proportional Active model, in which a disrupted component can 
be partially operational in the network while it is being 
recovered. In the context of power grid network recovery, this 
is also the case for redundant components connected in a 
parallel configuration, in which the components equally share 
the load. Power lines, busbars, and step-down transformers are 
often operated by following this logic. The capacity and, 
consequently, the level of operation associated with each 
disrupted line increase during restoration. Another contribution 
of this paper allows for variability in the number of crews 
required to restore disrupted components, each with special 
characteristics (e.g., restoration time, and level of disruption).  

The remainder of the paper is organized as follows. Section 
II proposes Binary Active infrastructure mathematical 
formulations for restoration efforts and update the structure of 
the model to incorporate proportionally operational 
components in each time period. Section III provides data 
generation and computational analyses of the impact of 
Proportional and Binary Active models on scale-free and small-
world networks derived from the 400-kV French electric power 
transmission network, as well as the French power network 
itself. We discuss concluding remarks in Section IV. 

II. PROPOSED OPTIMIZATION MODEL 
Let 𝐺 = (𝑁, 𝐴) be an undirected connected network, where 

𝑁 is the set of nodes and 𝐴 is the set of links. There is a set of 
supply nodes 𝑁+ ⊆ 𝑁, a set of demand nodes 𝑁− ⊆ 𝑁, and a set 
of transshipment nodes 𝑁= ⊆ 𝑁 . Each supply node 𝑖 ∈ 𝑁+ 
supplies amount 𝑜𝑖 in each time period, and each demand node 
𝑖 ∈ 𝑁−  demands amount 𝑏𝑖  in each time period. Each link 
(𝑖, 𝑗) ∈ 𝐴 has a defined pre-disruption capacity 𝑢𝑖𝑗𝑡𝑒

 and a pre-
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calculated flow value 𝑥𝑖𝑗𝑡𝑒
 based on the solution to the classic 

flow problem[32] aiming to satisfy demand nodes 𝑖 ∈ 𝑁−. Power 
flow rules are not considered in small-world and scale-free 
instances as the relevant series reactance values are not known. 

Some challenges may arise in studying a power network flow 
formulation: (i) the nonlinearity and nonconvexity of AC power 
flow, (ii) the complexity of its solution, particularly when it is 
integrated with network restoration formulation, and (iii) the 
fact that the system may have multiple solutions[4]. For the sake 
of simplicity, we use a DC linear approximation to bypass the 
aforementioned shortcoming. While such an approximation is a 
simplification, it has shown to provide a good estimation of the 
network restoration process after a disruption. Furthermore, 
eliminating the behavior of power networks (e.g., start-up times 
for units and pick up of ballast loads) decreases the solution 
time and complexity[4],[5]. 

With the application of the DC linear approximation model 
for the 400kV French transmission network (shown in 
Appendix A), we are interested in sending the amount of flow 
from supply nodes to satisfy all demand nodes, respecting the 
flow capacity of links and supply/demand capacities. There 
exists an importance weight 𝑤𝑖 of each demand node 𝑖 ∈ 𝑁−.  

There is a set of links 𝐴′ ⊆ 𝐴  that are affected by the 
disruptive event at time 𝑡𝑒. Without loss of generality, we can 
consider inoperable nodes as inoperable links since a node can 
be split to two nodes and a link. The affected links are scheduled 
to multiple parallel restoration crews, 𝑘 = 1, … , 𝐾, where 𝐾 is 
the maximum number of work crews that can be assigned to 
each disrupted link (𝑖, 𝑗) ∈ 𝐴′. The total number of work crews 
available for all links is 𝐿 . Each link (𝑖, 𝑗) ∈ 𝐴′  has an 
associated processing time 𝑝𝑖𝑗𝑘  which depends on the 
characteristics of that link and the number of restoration crews 
assigned to it. Without loss of generality, 𝑝𝑖𝑗𝑘  is an integer 
parameter for each (𝑖, 𝑗) ∈ 𝐴′ . We also assumed that each 
recovery task should be processed without interruption.  

We evaluate the performance of the network in each time 
period 𝑡 = 1, … , 𝑇  by determining the total flow reaching 
demand nodes, denoted by ∑ 𝜑𝑖𝑡𝑖∈𝑁−

. The objective function 
maximizes the resilience of the infrastructure network at each 
time 𝑡, and consequently over the horizon of the problem. The 
resilience of the system at time 𝑡 after disruptive event 𝑒𝑗̅ 𝑗̅ ∈ 𝐸, 
is captured in the objective function with Eq. (1), where 
∑ 𝜑𝑖𝑡𝑒𝑖∈𝑁−

 is the performance of the network before the 
occurrence of disruptive event (at time 𝑡𝑒  from Fig. 1), and 
∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−

 is the performance of the network after disruptive 
effects have occurred (at time 𝑡𝑑). 

 
Я𝜑(𝑡|𝑒𝑗̅) =

∑ 𝜑𝑖𝑡𝑖∈𝑁−
− ∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (1) 

 
In this paper, we assume total demand does not change 

during the horizon of the problem. However, in cases where the 
total demand changes with time, we could substitute ∑ 𝜑𝑖𝑡𝑒𝑖∈𝑁−

  
with ∑ 𝐸[𝜑]𝑖𝑡𝑖∈𝑁−

, where parameter 𝐸[𝜑]𝑖𝑡  would represent 
the expected total demand in each time period after a disruptive 
event. 

A. Mathematical Models 
In this section, two variations on a mixed integer 

mathematical model are presented to solve the infrastructure 
network restoration problem. In the Binary Active model, we 
assume that each disrupted link remains inoperable until the 
related recovery process is completed. The decision variables 
for the Binary Active model are found in Table I. In certain 
realistic case studies, such as transportation networks, disrupted 
links can be partially operable during their recovery process. 
The Proportional Active model, the decision variables for 
which are found in Table II, addresses this situation where the 
level of operability of link (𝑖, 𝑗) increases during its recovery 
process and becomes completely operational at the end of the 
recovery process. 

 
TABLE I 

DECISION VARIABLES IN THE BINARY ACTIVE MODEL 

Notation Type Definition 

𝛼𝑘𝑖𝑗𝑡 Binary 
Equals 1 if the recovery process of link 
(𝑖, 𝑗) is completed by 𝑘 work crews at 
time 𝑡, 0 otherwise 

𝛽𝑖𝑗𝑡 Binary Equals 1 if link (𝑖, 𝑗) is operational at 
time 𝑡, 0 otherwise 

𝜑𝑖𝑡 Continuous Cumulative flow reaching demand node 
𝑖 at time 𝑡 

𝑥𝑖𝑗𝑡 Continuous Flow on link (𝑖, 𝑗) at time 𝑡 
 

TABLE II 
DECISION VARIABLES IN THE PROPORTIONAL ACTIVE MODEL 

Notation Type Definition 

𝛾𝑘𝑖𝑗𝑡 Binary 
Equals 1 if the recovery process of 
link (𝑖, 𝑗) begins by 𝑘 work crews 
at time 𝑡, 0 otherwise 

𝜑𝑖𝑡 Continuous The cumulative flow reaches to 
demand node 𝑖 at time 𝑡 

𝑥𝑖𝑗𝑡 Continuous The flow corresponding to link 
(𝑖, 𝑗) at time 𝑡 

 
1) MIP Model for Binary Active Network Restorative 
Capacity 
 

max ∑ 𝜇𝑡Я𝜑(𝑡|𝑒𝑗̅)

 𝑡∈𝑇

 (2) 

s.t.   

∑ 𝑥𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

≤ 𝑂𝑖 ∀𝑖 ∈ 𝑁+ ,  𝑡 = 1, … , 𝑇 (3) 

∑ 𝑥𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

= 0 ∀𝑖 ∈ 𝑁= ,  𝑡 = 1, … , 𝑇 (4) 

∑ 𝑥𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

= −𝜑𝑖𝑡 ∀𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 (5) 

0 ≤ 𝜑𝑖𝑡 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑁− , 𝑡 = 1, … , 𝑇 (6) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗𝑡𝑒
 

          
∀(𝑖, 𝑗) ∈ 𝐴/𝐴′, 𝑡 = 1, … , 𝑇 (7) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝛽𝑖𝑗𝑡𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 (8) 

∑ ∑ (1 + ⌊
𝑡 − (𝑠 − 𝑝𝑘𝑖𝑗 + 1)

𝑀
⌋) 𝑘𝛼𝑘𝑖𝑗𝑠

𝑇

𝑠=𝑡

𝐾

𝑘=1

≤ 𝐿  

          ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 

(9) 
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∑ ∑ 𝛼𝑘𝑖𝑗𝑡

𝑡∈𝑇𝑘∈𝐾

≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴′ (10) 

∑ 𝛼𝑘𝑖𝑗𝑡

𝑝𝑖𝑗𝑘−1

𝑡=1

= 0 ∀(𝑖, 𝑗) ∈ 𝐴′,  ∀𝑘 ∈ 𝐾 (11) 

𝛽𝑖𝑗𝑡 − ∑ ∑ 𝛼𝑘𝑖𝑗𝑠

𝑘∈𝐾

𝑡

𝑠=1

≤ 0 ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 (12) 

𝛼𝑘𝑖𝑗𝑡 , 𝛽𝑖𝑗𝑡 ∈ {0,1}                      ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 

𝜑𝑖𝑡 ≥ 0                                     ∀𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 
(13) 

 

The objective function maximizes the resilience of the 
network over the horizon of the problem. We also associate 
weight 𝜇𝑡  to the resilience of the network at time 𝑡 , as the 
importance of the resilience measure may vary over time (e.g., 
more rapid recovery may be achieved when earlier time periods 
have large weights). Eqs. (3)-(5) are network flow constraints 
in and out of supply nodes, transition nodes, and demand nodes, 
respectively. Eq. (6) ensures that the amount of delivered flow 
does not exceed the capacity of demand nodes. Eqs. (7) and (8) 
ensures that the flow of link (𝑖, 𝑗) ∈ 𝐴′  does not exceed its 
(disrupted or recovered) capacity. Eqs. (9)-(12) schedule 
disrupted link for recovery. Eq. (9) ensures that no more than 𝐿 
restoration crews can work on disrupted links in each time 
period. None of the disrupted links receives recovery services 
more than once, according to Eq. (10), and no link recovery 
process completes before its processing time is finished with 
Eq. (11). Eq. (12) ensures that if link (𝑖, 𝑗) ∈ 𝐴′ is operational 
at time 𝑡, then its recovery process must have been completed 
by that time 𝑡. 

 
2) MIP Model for Proportional Active Network Restorative 
Capacity 

In the Proportional Active formulation, the processing time 
of link (𝑖, 𝑗) ∈ 𝐴′ is a function of: (i) the characteristics of that 
link, such as the level of disruption it experiences and the series 
of required task for its recovery, and (ii) the number of the 
assigned work crews to link (𝑖, 𝑗), 𝑓𝑖𝑗𝑘(𝑡). This function is non-
decreasing on 𝑡 = 1, … , 𝑇  intervals and, without loss of 
generality, it is integer-valued. We also assume that each 
recovery task should be processed without interruption. 
 

max ∑ 𝜇𝑡Я𝜑(𝑡|𝑒𝑗̅)

 𝑡∈𝑇

 (14) 

s.t.   
Eqs. (3), (4), (5), (6), (7)   

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗𝑡𝑑
+ ∑ ∑ 𝛾𝑘𝑖𝑗𝑠

𝑡

𝑠=1

𝑓𝑘𝑖𝑗(𝑡−𝑠)(𝑢𝑖𝑗𝑡𝑒
− 𝑢𝑖𝑗𝑡𝑑

)

𝑘∈𝐾

 

           ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 

(15) 

∑ ∑ (1 + ⌊
(𝑠 + 𝑝𝑘𝑖𝑗 − 1) − 𝑡

𝑀
⌋) 𝑘𝛾𝑘𝑖𝑗𝑠

𝑡

𝑠=1

𝐾

𝑘=1

≤ 𝐿 

            ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 

(16) 

∑ ∑ 𝛾𝑘𝑖𝑗𝑠

𝑡∈𝑇𝑘∈𝐾

≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴′ (17) 

∑ 𝛾𝑘𝑖𝑗𝑡

𝑇

𝑡=𝑇−𝑝𝑘𝑖𝑗+1

= 0 ∀(𝑖, 𝑗) ∈ 𝐴′ 𝑘 = 1, … , 𝐾 (18) 

𝛾𝑘𝑖𝑗𝑡 ∈ {0,1}, 𝜑𝑖𝑡 ≥ 0 ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴′  
𝑡 = 1, … , 𝑇, ∀𝑖 ∈ 𝑁−  (19) 

 

Eq. (14) calculates the improvement on each disrupted link 
(𝑖, 𝑗) ∈ 𝐴′ recovery process as an increase in its capacity while 
assuring the flow on link (𝑖, 𝑗) does not exceed its capacity. 
Eqs. (15)-(17) schedule disrupted link for recovery. Eq. (16) 
ensures that no more than 𝐿 work crews can work on disrupted 
links in each time period. Eq. (17) requires that the allocation 
of work crews is only made once for each disrupted link. No 
link recovery process starts if its processing time takes longer 
than the restoration horizon, as in Eq. (18). 

The proposed formulations are applicable to various 
infrastructure networks, such as transportation and supply 
chains. However, to prove the applicability of the proposed 
model to power grid network it is required to update the 
formulation to capture the electric power flows computed 
according to circuit laws, which generally cannot be controlled 
individually by decision makers[4]. Similar to Nurre et al.[5], we 
apply the DC model which is a linear approximation commonly 
used to model the operations of power network infrastructure. 
The linearized approximations have been justified using 
traditional engineering assumptions that under “normal” 
operating conditions, voltage magnitudes do not significantly 
deviate from nominal values and phase differences are 
“small”[33]. To address this problem, we consider that, after the 
failure of components and the disconnection of overloaded 
components, the power system reaches to a stable state, and the 
model formulation is used to dispatch the power flow over the 
residual network. In fact, the recovery process discussed in the 
appendix is not intended to capture the operations of the power 
grid. Rather, considering the recovery of each disrupted 
component, it calculates the performance of the residual 
network iteratively and plans the restoration accordingly. The 
system is then dispatched for “normal” conditions using the 
undisrupted elements. We also incorporate cascading failure 
effects in early time periods after disruptions into the proposed 
models. Then, we employ a combined algorithm from Soltan et 
al.[34] and Bienstock[35] to control the disruptions caused by 
imbalanced supply-demand correlation (see the Appendix for 
details). The cascading failure evolution algorithm[34] also uses 
the DC approximation to calculate the network flows and 
prevent the violation capacity after the cascading failures. Our 
focus is not on the effect of cascading failures and on their 
control. However, applying a cascading failures control 
algorithm immediately after a disruptive event provides a 
realistic disrupted network for implementation into and testing 
the proposed restoration and resource allocation formulations, 
which is our focus. To limit the approximation errors during the 
deployment of this formulation on real-world systems, the AC 
relations can be applied in place of DC approximations[33].  

III. ILLUSTRATIVE EXAMPLES DERIVED FROM THE 400 KV 
FRENCH POWER TRANSMISSION NETWORK 

The two proposed models are illustrated with reference to 
several test instances derived from the 400-kV electric power 
transmission network of France. The transmission network[36], 
depicted in Fig. 2 is the power network containing 171 nodes, 
including 26 generators (i.e., 26 supply nodes), 145 distributors 
(i.e., demand nodes), and 220 transmission lines.  
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To test realistic disaster areas possibly affected by realistic 
disruptions (e.g., Hurricane Katrina led to devastation on the 
U.S. gulf coast approximately half the size of Sweden[37]), we 
consider a hypothetically significant disruptive event (e.g., an 
earthquake) impacting 94 of 220 transmission lines (48%). 
Knowing that such a disruption would affect a geographically 
limited area, the disruptions are distributed randomly among the 
network components to evaluate the ability and behavior of the 
models in solving various disrupted component scenarios. The 
capacity of each transmission line is about 5190 MW and the 
total delivered power flow is 84988 MW in the nominal 
operating conditions. Other modified versions of disrupted 
transmission networks are used by Alipour et al.[38] and Fang et 
al.[26]. We employ different network structures to evaluate the 
applicability of the two proposed models. Scale-free and small-
world networks are generated according to Barabasi-Albert[39] 
and Watts-Strogatz[40] models, respectively, based on the data 
describing the 400-kV French transmission network. A small-
world network refers to a type of mathematical graph in which 
the distance between two random nodes grows slowly, 
proportionally to the logarithm of the number of the nodes, 
while at the same time the level of clustering in that 
corresponding network is not small[40]. These networks 
resemble many power grid networks and networks of how 
infectious disease spreads. For a scale-free network, the degree 
distribution follows a power law. That is, the portion of nodes 
having 𝑘̅  connections to other nodes is 𝑘̅−𝛾 , where 𝛾  is a 
parameter in the rage of (2,3)[39]. These networks resemble 
airline networks in the US, as well as the physical structure of 
the Internet and the world wide web.  

The small-world and scale-free networks are not spatially 
embedded networks, therefore their links overlap, and the 
definition of series reactance loses its meaning. To mitigate this 
issue, we consider the generated small-world and scale-free 
networks as simple supply-demand networks. For generated 
small-world and scale-free instances, as we do not have any 
information about the series reactance of the lines, we need to 
exclude the DC flow linear approximation constraint presented 
by Bienstock and Mattia[4] from the model formulation when 
applied to these network structures. The average capacity of the 
lines of each network instance is chosen so that all demand 
nodes are satisfied. 

For scale-free networks, we use preferential attachment as 
the growth mechanism for developing network structure for the 
test instances. In preferential attachment mechanism, the 
probability 𝑃(𝑖) that a node 𝑖 ∈ 𝑁 gets a new link to another 
node is proportional to a positive function, 𝐴ℎ𝑖

, of its current 
degree. Based on Barabasi-Albert model, 𝐴ℎ𝑖

= 𝐴ℎ is assumed 
to be a log-linear form of ℎ𝛼 , where 𝛼 > 0 is the exponent 
attachment[41]. The data are also generated from the 400-kV 
French transmission network topology with 171 nodes. Without 
altering the number of nodes, we vary the attachment exponent 
from 0.002 to 1. Changing the exponent attachment, we 
produce new network instances using the same number of nodes 
(i.e., supply, demand, and transmission nodes) with different 
numbers of lines and topological structure through which the 
disruptions are distributed in a random order. 

Note that if 𝛼 < 1  (the sub-linear case), then the degree 
distribution is going to be a stretched exponential, while in the 

case of 𝛼 > 1 (super-linear case), one node will attain all the 
incoming links. Eventually, the power law distribution is 
presented only when 𝛼 = 1, linear case[41]. We alter the power 
of preferential attachment, which enables nodes with the higher 
degree to have a higher chance of grabbing new links added to 
the network, from 0.002 to 1.8, where 1 represents linear 
preferential attachment.   

For small-world networks, the data are randomly generated 
with the same amount of supply and demand as the 400kV 
French transmission network data set[36], with 171 nodes and 
the same number of generators and distributors randomly 
allocated to the nodes. The capacities of lines are chosen to 
enable the network to satisfy all demand nodes in its 
undisrupted state with the minimum level of network 
redundancy. Without altering the number of nodes, we rewire 
each link with probability 𝑝 from 1 to 0.001 and produce a new 
instance with different number of links and topological 
structure through which the disruptions are distributed in a 
random order, 𝑝 = 0 represents a regular ring lattice network,  
𝑝 = 1 represents a complete random network, and 0 < 𝑝 < 1 
represents a small-world networks.  

Each generated network may have a different number of links 
out of which 48% are disrupted. It is assumed that 14 work 
crews are deployed to recover disrupted links, and at most seven 
crews can be assigned to a disrupted link at the same time. The 
restoration times for disrupted links vary between 1 to 12 
periods depending on the characteristics of the link, the level of 
damage it experienced, and the number of assigned work crews.  

We have run our computational experiment on a 64-bit 
Core™ i7-7500U CPU computer. We set a limit of 3600 
seconds for all the instances and tested whether the proposed 
formulation solved them in this time limit or not. Each run was 
terminated before 3600 s if the optimality gap fell below 0.2% 
for the Proportional Active model. Python 2.7.10 is used for 
modeling, and Gurobi 7.0.2 is used to solve both models. The 
time horizon 𝑇max is 60 periods (hours), which corresponds to 
six 10-hours work shifts. 

A. Computational Testing on Scale-Free Networks 
Table III presents the result of Binary Active and 

Proportional Active models for 17 scale-free network test 
instances with different exponent attachment value, 𝛼 > 0, 𝛼 ∈
[0.002,1.8]. The exponent attachment value, the capacity of 
links, and the total number of active links are shown in the first, 
second, and third columns respectively. For both models, Table 
III provides (i) Makespan, or the minimum recovery time 
required for an infrastructure network to reach to the maximum 
level of resilience, (ii) %Gap, the optimality gap for the 
obtained solution, and (iii) the CPU time required for the  
computation of the solutions. Restoration is depicted with Fig. 
3 and Fig. 4 
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Fig. 2. The 400 kV French power transmission network[36]. 

Table III demonstrates that the two models can be solved 
within 0.6% of the optimal solution. The Proportional Active 
formulation recovers networks in shorter time horizons and 
with a lower optimality gap. As expected, Fig. 4 demonstrates 
that in the Proportional Active model the networks with 
attachment 𝛼 ≥ 1 display a great tolerance against catastrophic 
events, as they contain highly connected nodes, which form 
redundant paths and support connectivity. However, the 
increase in the number of high degree hubs in these networks 
results in them being potentially highly vulnerable to 
malevolent attacks. In this paper, we consider natural 
disruptions, but intentional attacks could remove a set of more 
significant components that could more substantially damage 
the network. It is also concluded from with Fig. 3 and Fig. 4 
that the higher exponent attachment 𝛼 provides relatively more 
uniform slope and present higher resilience value in any 
specific time horizon.  

B. Computational Testing on Small-World Networks 
Table IV represents the results of the Binary Active model 

and Proportional Active model, respectively, for 20 small-
world networks test instances with different rewiring 
probability scenarios. The rewiring probability and its related 
clustering coefficient, 𝐶(𝑝), and mean path length, 𝐿(𝑝) before 
the occurrence of a disruptive event, are shown in the first, 
second, and third columns, respectively. The fourth and fifth 
columns display the capacity of links and the number of links 
respectively. The average capacity of links changes when we 
change 𝑝 so as to prevent flows from being rerouted through 
paths with redundant capacity, though rerouting is not a focus 
of this work. The makespan column provides the recovery time 
of best feasible solution, and the %Gap column provides the 
optimality gap for the obtained solution. The last column 
reports the CPU time required for computation of the solutions. 

Table IV demonstrates that the Binary Active model can be 
solved within 0.6% of the optimal solution, and the makespan 
of restorative efforts increases as the rewiring probability 

decreases. As expected, when rewiring probability is low, the 
nodes that are nearby are connected (i.e., local connections), 
and the clustering coefficient is high as well. Although the 
transitivity is high, some nodes may have long distance 
connection which simply means it takes a long chain of 
connection to reach from those nodes to some others. Note that 
path length counts each link as length one. Fig. 5 and Fig. 6 
illustrate the recovery process for Binary and Proportional 
formulations, where the curves associated with 𝑝 =1.0, 0.6, and 
0.1 represent the restorative efforts for networks with random 
model characteristics, curves associated with 𝑝 =0.07, 0.04, 
and 0.01 represent networks with small-world properties, and 
curves associated with 𝑝 = 0.008, 0.004, and 0.001 represent 
networks model characteristics. For 𝑝 ≥ 0.1 , the restoration 
process starts from a lower level of network resilience, 
suggesting that these networks are more initially vulnerable to 
random disruptions. By increasing the rewiring probability, 𝑝, 
results indicate a higher percentage of recovery in a specific 
time horizon. The diagrams associated with 𝑝 ≤ 0.008 indicate 
smooth progress in the network resilience. The slope of 
resilience measure varies for different rewiring probabilities 
values in networks with rewiring probability 𝑝 ∈ [0.09,0.01], 
displaying much steeper recovery in the beginning for higher 
rewiring probabilities (𝑝 ≥ 0.06) and more uniform progress 
for lower rewiring probabilities. This case study suggests that a 
higher cluster coefficient results in a smoother trajectory of 
improvement in the resilience measure. As Fig. 5 and Fig. 6 
show, the makespan of restoration efforts related to different 
rewiring probabilities noticeably decreases when the 
Proportional Active model is employed. Unlike the Binary 
Active model, altering the rewiring probability does not 
significantly affect the makespan. According to Fig. 6, the 
trajectory of restoration for networks with different rewiring 
probabilities is illustrated as concave upward graphs with the 
uniform slope. From curves with  𝑝 ≤ 0.07, we can conclude 
that restoration efforts resulting from the Proportional Active 
model lead to more uniform restoration curves. Fig. 6 also 
demonstrates that higher 𝐶(𝑝)/𝐶(0)  result in less affected 
networks in the aftermath of a disruptive event for 𝑝 < 0.07, 
suggesting that networks with lattice characteristics are less 
vulnerable to random disruptions. Finally, we see steeper slope 
of resilience enhancement in the beginning for higher rewiring 
probabilities (𝑝 ≥ 0.06) and more robust networks with more 
uniform progress for lower rewiring probabilities (𝑝 < 0.06).  
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To evaluate the tolerance and behavior of both proposed 
models to large disruptions resulting from any number of 
catastrophic events and malevolent attacks, we deactivate 40% 
of network links (around 68 links), either partially or 
completely. Considering the number of crews assigned to each 
disrupted link as a variable increases the complexity of the 
problem, regardless of the level of network disruption. 
Therefore, the computational results are obtained within 0.6% 
in the given CPU time. In cases where 7% of components are 
disrupted (comparable to an earthquake of magnitude 6 
[Gonzalez et al. 2016a] to 16% (comparable to an earthquake 
of magnitude 9), the average optimality gap and solution time 
obtained from solving scale-free network instances are 0.025% 
and 7.23 seconds, respectively, for the Binary Active model, 
and 0.016% and 5.08 seconds, respectively, for the Proportional 
Active model. For small-world network instances, the average 
optimality gap is 0.029% and average solution time is 12.46 
seconds for the Binary Active model, and for the Proportional 
Active model, 0.019% and 13.29 seconds, respectively. 

C. Computational Testing on the 400 kV French 
Transmission Network 

Fig. 7 and Fig. 8 compare the Binary Active and Proportional 
Active formulations for the actual 400 kV French transmission 
network topology as shown in Fig. 2. Although the Proportional 
Active formulation may only be applicable to redundant lines 
and components and not to all disrupted lines in the 400 kV 
French transmission network, it is of interest to study the 
behavior of both Proportional and Binary Active formulations 
for a real data set. We examine the effect of the two weights: (i) 
𝑤𝑖 , 𝑖 ∈ 𝑁− , for weighting the importance of demand nodes, 
where demand nodes located in highly populated areas are 
considered a higher priority relative to other demand nodes, and 
(ii) 𝜇𝑡 , 𝑡 ∈ {1, … , 𝑇}, for weighting network performance for 
each time period. 

  
Fig. 3. Trajectory of the resilience measure for the Binary Active model 

applied to scale-free networks (for select values of 𝛼). 

We update Eq. (1) to incorporate weights 𝑤𝑖 in models in Eq. 
(20). Each takes on a constant value (where all time periods and 
demand nodes are weighted equally) or a scaled value (where 
weights are allowed to reflect importance). 

 

Я𝜑(𝑡|𝑒𝑗̅) =
∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−

− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (20) 

 

In Table V, Column 1 shows the possible combination of 
weighting scenarios. When 𝜇𝑡 is scaled, preference is given to 
earlier time periods. When 𝑤𝑖 is scaled, preference is given to 
demand nodes in more populated areas. Remaining columns 
show the makespan, optimality gap, and CPU time for both 
models. According to Table V, both models can be solved at 
most within 0.7% of the optimal solution. The Proportional 
Active formulation results in full network performance 
recovery in a shorter time horizon. 
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TABLE IV 
BINARY AND PROPORTIONAL ACTIVE COMPUTATIONAL RESULTS FOR SMALL-WORLD NETWORKS  

𝑝 
𝐶(𝑝)

𝐶(0)
 

𝐿(𝑝)

𝐿(0)
 Link 

capacity 

No. 
of 

links 

Binary Active model Proportional Active model 

Makespan 
(h) %Gap 

CPU 
time 
(s) 

Makespan 
(h) %Gap 

CPU 
time  
(s) 

1 0.1 < 0.04 1730 215 42 0.530 3600 32 0.253 3600 
0.6 0.18 0.04 1350 237 42 0.410 3600 32 0.200 3600 
0.1 0.47 0.79 1350 232 44 0.510 3600 35 0.200 3600 
0.06 0.53 1.16 1015 289 44 0.343 3600 32 0.380 3600 
0.01 0.62 3.81 1015 340 47 0.556 3600 29 0.406 3600 
0.006 0.63 5.32 900 327 46 0.510 3600 33 0.204 3600 
0.001 0.4 9.96 1015 338 54 0.345 3600 34 0.402 3600 

 

TABLE III 
BINARY AND PROPORTIONAL ACTIVE MODEL COMPUTATIONAL RESULTS FOR SCALE FREE NETWORKS 

𝛼 
Link 

capacity 
No. of 
links 

Binary Active model Proportional Active model 
Makespan (h) %Gap CPU time (s) Makespan (h) %Gap CPU time (s) 

0.002 13488 170 45 0.54 3600 33 0.14 3425 
0.008 9375 170 43 0.41 3600 32 0.17 3266 
0.02 9795 171 46 0.53 3600 31 0.19 3210 
0.08 8320 170 45 0.21 3600 33 0.11 3367 
0.2 16280 170 44 0.42 3600 32 0.06 3151 
0.8 10480 170 44 0.21 3600 32 0.07 3207 
1.2 8088 170 45 0.47 3600 33 0.02 3313 
1.8 11270 171 43 0.13 3600 32 0.02 3354 
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Fig. 4. Trajectory of the resilience measure for the Proportional Active model 
applied to scale-free networks (for select values of 𝛼). 

Note that scaled 𝜇𝑡 may not result in a shorter recovery time 
horizon, though it results in a higher value of network resilience 
in a specific time horizon in comparison to other scenarios, as 
shown in Fig. 7 and Fig. 8. As expected, scaled 𝑤𝑖 prioritizes 
distributers located in more populated areas to be recovered. 
This scenario may not lead to a shorter recovery time horizon 
as the prioritized distributors may be supplied via paths that do 
not share disrupted links with other paths in the network. 
Regarding the fourth scenario, where both weights are enacted, 
incorporating scaled 𝜇𝑡  may lead to more aggregate flow 
reaching to demand nodes in each time period, which may 
conflict with scaled 𝑤𝑖  as it favors satisfying prioritized 
demand nodes. As such, the model restores the links that not do 
not carry a high percentage of accumulated network flow. Fig. 
7 and Fig. 8 indicate that employing the fourth scenario does 
not lead to satisfying all prioritized distributers (using  scaled 
𝑤𝑖) nor to a higher value of network resilience in a specific time 
horizon (using scaled 𝜇𝑡), a counterintuitive result. 

We also analyze the restorative capacity formulation in the 
absence of cascading failures, Fig. 9 and Fig. 10. According to 
the results shown in Table VI, both models solved to within 
0.18% of the optimal solution in less computational time, and 
both are more robust to disruption (i.e., the levels of resilience 

related to both models in 

  
Fig. 5. Trajectory of the resilience measure for the Binary Active model applied 
to small-world networks (for select values of 𝑝). 

 
Fig. 6. Trajectory of the resilience measure for the Proportional Active model 

applied to small-world networks (for select values of 𝑝). 

the aftermath of the disruptions are higher than the conditions  
where cascading failures are considered in the corresponding 
models). 

This is because, according to Algorithm 1 (shown in 
Appendix A), in the aftermath of a disruptive event, the 
difference between the voltage in generators and distributers 
may bring several operational links to carry redirected flow that 
is greater than their capacity. This overload flow causes failures 
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TABLE V 
COMPUTATIONAL RESULTS FOR THE 400-KV FRENCH TRANSMISSION NETWORK EXAMPLES (CONSIDERING CASCADING FAILURES)  

 Binary Active model Proportional Active model 
 Makespan (h) %Gap CPU time (s) Makespan (h) %Gap CPU time (s) 

𝑤𝑖: constant, 𝜇𝑡: constant 39 0.32 1800 35 0.70 1800 
𝑤𝑖: scaled, 𝜇𝑡: constant 40 0.23 1800 35 0.59 1600 
𝑤𝑖: constant, 𝜇𝑡: scaled 43 0.32 1800 38 0.66 1180 
𝑤𝑖: scaled, 𝜇𝑡: scaled 47 0.70 1800 40 0.45 1540 

 
TABLE VI 

COMPUTATIONAL RESULTS FOR THE 400-KV FRENCH TRANSMISSION NETWORK EXAMPLES (WITHOUT CASCADING FAILURES) 

 Binary Active model Proportional Active model 
 Makespan (h) %Gap CPU time (s) Makespan (h) %Gap CPU time (s) 

𝑤𝑖: constant, 𝜇𝑡: constant 29 0.13 313 31 0.11 250 
𝑤𝑖: scaled, 𝜇𝑡: constant 30 0.18 352 31 0.15 240 
𝑤𝑖: constant, 𝜇𝑡: scaled 26 0.13 334 34 0.13 364 
𝑤𝑖: scaled, 𝜇𝑡: scaled 31 0.15 345 36 0.14 343 
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among operational links and increases the level of network 
disruption in a very short time period (e.g., 5 to 10 seconds). 
Therefore, both model formulations have to restore the network 
starting from a lower level of resilience. 

That is, the total restoration time of the network, as well as 
the solution time, for the Binary and Proportional Active 
formulations increase considerably when considering 
cascading failures. Again, in cases where we disrupt 7% to 16% 
percent of network components, we reach an average optimality 
gap of 0.024% in an average solution time of 10.08 seconds for 
the Binary Active model, and average optimality gap of 0.014% 
in an average solution time of 8.05 seconds for the Proportional 
Active model.  

 
Fig. 7. Trajectory of the resilience measure for the Binary Active model 

applied to the 400-kV French transmission network (with cascading failures). 

 
Fig. 8. Trajectory of the resilience measure for the Binary Active model 
applied to the 400-kV French transmission network (without cascading 

failures). 

 
Fig. 9. Trajectory of the resilience measure for the Proportional Active model 
applied to the 400-kV French transmission network (with cascading failures).  

 
Fig. 10. Trajectory of the resilience measure for the Proportional Active 

model applied to the 400-kV French transmission network (without cascading 
failures). 

IV. CONCLUDING REMARKS 
This research is an attempt to explore formulations for 

enhancing restorative capacity that can be used in the recovery 
efforts of an infrastructure network after a disruptive event. 
Many complex networks arisen in nature or man-made 
environment can be represented by their scale-free and small-
world properties, which are highly heterogeneous in their 
connectivity pattern. From scale-free and small-world networks 
to lattice and random networks, this problem is general enough 
to be applicable to a wide variety of infrastructure networks. 
Two formulations are proposed: (i) one that assumes that 
disrupted components cannot play a role in a network 
performance unless they are recovered completely (e.g., 
railway network), which we refer to as a Binary Active model, 
and (ii) one that assume that we can alter the restoration process 
by assuming partially recovered network components as 
proportionally operational (e.g., road networks), which we refer 
to as a Proportional Active model.  

Although the Proportional Active model may not be always 
applicable on power networks, its implementation on highway 
networks, physical structure of internet networks is of a great 
significance. Proportional Active model is also applicable to 
some cases where, along with restoring the main power lines, 
temporary, and emergency lines are installed and used to satisfy 
at least a portion of demands. Apart from that, for expanding 
the evaluation of the Proportional Active formulation and for 
simplicity, we assume that the restoration process has a 
sufficiently long time horizon where there can be enough time 
for installation of temporary lines, particularly for severely 
damaged network components. Furthermore, this model is also 
applicable when redundant components are installed to perform 
the same task (e.g., parallel power lines and transformers). 

The proposed formulations are path-based scheduling 
models that accomplish the restorative capacity goals while  
providing the connectivity of suppliers to demand nodes in the 
network during the restoration process. Solving models on 34 
realistic size networks with different structures, we show that  

both models can produce solutions that are within 0.7% 
above the best possible solution in one hour of computation 
time. This work proposes a model that can be used following a 
disruptive event to restore infrastructure networks to some 
desired level of resilience while optimizing the restoration 
process aligned with the decision makers policies. The model 
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not only schedules work crews to restore disrupted components, 
but also determines where work crews should originate from, 
given a set of candidate locations. The proposed optimization 
model considers the physical interdependency between the 
infrastructure networks as well as the geographical 
interdependency when allowing work crews from different 
infrastructure networks to be stationed at the same established 
facilities. 

The contributions of this paper lie in: (i) the flexibility of the 
number of assigned crew to each disrupted link, (ii) the 
Proportional Active model formulation, and (iii) the 
applicability of both proposed formulations on different 
network structures. The first contribution allows the number of 
restoration crews assigned to each disrupted link to differ from 
one link to another, so that the models are flexible enough to 
attain the maximum level of resilience in each time period. The 
second contribution incorporates each link under the restoration 
process as partially operational in the network. Results suggest 
that adopting a Proportional Active in appropriate network 
situations can alter tactical restoration scheduling and 
consequently enhance the recovery process. The third 
contribution studies the behavior of both formulations through 
different network structure (e.g., lattice, small-world, scale-
free, and random networks) with various characteristics (e.g., 
exponent attachment, 𝛼, for scale-free networks and rewiring 
probabilities, 𝑝 , for small-world network). Note that while 
reaching 0.7% of optimality is likely sufficient for such 
problems, an hour-long solution time may not be sufficient for 
decision making purposes after a disruption where good 
solutions are needed quickly. 

As such, future work will explore heuristic methods to solve, 
especially larger network problems. Other future explorations 
include (i) the incorporation of the practical concern of work 
crew vehicle routing, (ii) the interdependence of infrastructure 
networks with each other, and (iii) the effects of network 
recovery not only on the network itself but on any broader 
socioeconomic impacts a disruption may cause. Due to the 
complexity of the mathematical models, the effects of such 
concepts as generator black start, generator ramping, and 
network maneuvering are not considered in the proposed 
formulations. An important direction for the future research is 
to propose an algorithm whereby we obtain the near optimal 
solution in a timely manner when such concepts are added to 
the formulation.  
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APPENDIX 

A. Controlling Cascading Failures in a Power Network  
Although integrating DC flow approximation constraints 

with the proposed models prevents any violation of link 
capacity, in reality, an initial disruption sets off a sequence of 
additional disturbances in the network in a time horizon that is 
on the order of minutes. We implement the Cascading Failure 
Evolution (CFE) algorithm introduced by Soltan et al.[34]. We 
implement the cascading process in ten rounds, 𝑅 = 10, and 
terminate the process using the termination law proposed by 
Bienstock[35].  
 

Algorithm 1 – Cascading Failure Evolution (CFE) 
Input: Graph 𝐺 = (𝑉, 𝐴) and the set of initial disrupted links 𝐴0

′  ⊆ 𝐴 
1: 𝐴0

′∗ ← 𝐴0
′  and 𝑖 ← 0. 

2: for 𝑟 = 1, … , 𝑅 
3:       Adjust total demand to total supply within each connected island 𝜅  
𝜅 ⊆ 𝐺 = (𝑉, 𝐴\𝐴′∗). 
4:       Compute the new flows 𝑥𝑖𝑗𝑟(𝐴′∗)   ∀(𝑖, 𝑗) ∈ 𝐴\𝐴′∗. 
5:       Find the set of new links  𝐴′𝑟+1 = {(𝑖, 𝑗)|𝑥𝑖𝑗𝑟(𝐴′∗) > 𝑢𝑖𝑗𝑡𝑒

, 𝐴\𝐴′∗}, 
𝐴𝑟+1

′∗ ← 𝐴𝑟
′∗ ∪ 𝐴𝑟+1

′ .  
Termination. (round R) If any component has overload line, 
proportionally decrease the demand until all flows fall into capacity range. 
Set 𝜓𝐾

𝑅 = min{1, max
(𝑖,𝑗)∈𝐾

|𝑥𝑖𝑗𝑟(𝐴𝑅
′∗)|/𝑢𝑖𝑗𝑡𝑒

}. If 𝜓𝐾 > 1, then any distributer in 

round 𝑅 in each component resets its demand to 𝑏𝑖
𝑅/𝜓𝐾

𝑅. 
 

The input of the algorithm is the initial set of disrupted links 
immediately after the occurrence of a disruptive event. We 
assume this set as the initial optimal set of disrupted links 𝐴0

′∗. 
It is assumed that the flow of each link falls in its capacity range, 
|𝑥𝑖𝑗𝑡𝑒

| ≤ 𝑢𝑖𝑗𝑡𝑒
. After a disruptive event, some links fail and 

disconnect the network to 𝜅 = {1, . . , 𝐾} islands. Each island 
may have a number of generators and distributors whose total 
pre-disruption supply and demand were not in balance. The 
network still sets the total supply and demand balance in each 
island. However, there are not an adequate amount of capacity 

due to the failure of some links, and this leads to the overload 
of some operational links and consequently other links may fail. 
In each round, a set of new disrupted links 𝐴𝑟+1

′ ⊆ 𝐴 is added 
to the previous set to form a new set of disrupted links 𝐴𝑟+1

′∗ ←
𝐴𝑟

′∗ ∪ 𝐴𝑟+1
′ . In the last round, the total demand in each island is 

adjusted to be equal to total supply of that island decreasing the 
level of demand (supply), referred to as the shedding/generation 
process[34]. We assume that the supply-demand balance is 
considered in each time period of the recovery process to 
prevent additional disruptions.  
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