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a b s t r a c t 

Structural model uncertainty is prevalent in control design and arises from incomplete knowledge of the 

system or the existence of different modes of dynamic behavior, such as those arising from system faults 

and malfunctions. This paper addresses control of stochastic nonlinear systems using model predictive 

control, or mpc , under structural model uncertainty. Inspired by dual control, the mpc strategy with ac- 

tive learning presented here can probe the uncertain system to select, among a set of candidates, the 

model that best describes the observed closed-loop system data. The proposed controller involves on- 

line model selection based on estimation of the model-hypothesis probabilities and minimization of a 

computationally tractable measure of the predicted Bayes risk of selection error. The performance of the 

proposed approach is compared to that of nominal mpc with no learning, mpc with passive learning, and 

a robust mpc approach that systematically accounts for structural model uncertainty but has no learn- 

ing mechanism. Simulation results on a nonlinear bioreactor demonstrate that active learning can have 

significant advantages in maintaining adequate control performance in the presence of structural uncer- 

tainty. Active learning can be particularly beneficial for improving online model discrimination and active 

fault diagnosis under closed-loop control. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The use of multiple models has seen increasing applications

in control of nonlinear systems over a wide operating range.

Multiple-model control generally involves representing the system

dynamics with a set of local models, designing a controller for each

model, and incorporating the local controllers into a global one

using an online switching method ( Murray-Smith and Johansen,

1997; Azimzadeh et al., 2001; Rodriguez et al., 2003; Özkan and

Kothare, 20 06; Böling et al., 20 07; Nandola and Bhartiya, 20 08;

Du and Johansen, 2014 ). When classic adaptive control based on

a single model with parametric uncertainty can be unsatisfactory

because of significant system uncertainties, multiple models can

enable adaptive control under structural model uncertainty; see,

e.g., Narendra and Han (2011) . Uncertainty in the structure of a

model can arise from incomplete knowledge of the system (such

as unmodeled dynamics and disturbances), system dynamics that

vary significantly over time, and the occurrence of different modes

of operation that may arise from system faults and malfunctions.

Accounting for significant system variations through online model
∗ Corresponding author. 
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daptation in multiple-model control can ensure adequate control

erformance under various operating scenarios ( Gopinathan et al.,

998; Kanev and Verhaegen, 20 0 0; Maciejowski and Jones, 2003;

uure-Kinsey and Bequette, 2009 ). One of the main challenges in

ultiple-model control is developing models that correspond to

he different scenarios, some of which may be undesirable. While

mproved system design can circumvent a variety of such scenar-

os, others may occur no matter how well the system is designed

nd operated, in particular if their root causes are exogenous to the

ystem. 

Multiple-model control approaches generally involve switching

etween competing models ( Murray-Smith and Johansen, 1997;

arendra and Han, 2011 ). That is, the control input at any given

ime is computed based on a single model and is not intended

or learning about the model structure or discriminating between

he competing models. However, when the control input affects

ot only the system state but possibly also the future state un-

ertainty, the dual effect is present in the system ( Bar-Shalom and

se, 1974 ). In this case, probing the system for information can

ecome an important part of reducing that uncertainty. A dual

ontroller , originally introduced for parametric model uncertainty

 Feldbaum, 1961 ), naturally incorporates probing into the control

nput to actively learn about the uncertain model parameters to

https://doi.org/10.1016/j.compchemeng.2019.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2019.05.012&domain=pdf
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T.A.N. Heirung, T.L.M. Santos and A. Mesbah / Computers and Chemical Engineering 128 (2019) 128–140 129 

t  

t  

(  

t  

g  

A  

p  

t  

a  

p  

d  

(  

L  

2

 

a  

t  

w  

u  

(  

n  

t  

2  

t  

i  

u  

m  

d  

2

 

l  

2  

c  

e  

t  

f  

f  

2  

t  

o  

s  

r  

h  

t  

e  

a

 

l  

a  

f  

m  

s  

d  

m  

d  

o  

b  

i  

p  

i  

p  

u  

a  

m  

u

 

u  

t  

l  

p  

s  

m  

a  

s  

T  

m  

f  

w

d  

n  

z  

v  

W  

(  

f  

Z  

c

2

 

f  

f

a

M

M

b  

i  

x  

a  

f  

m  

i  

p  

P  

o  

d  

a  

c  

o  

s

 

μ  

fi  

b  

μ

J

w  

i  

t

he extent required for achieving optimal control performance. The

wo aspects of dual control are often referred to as exploitation

i.e., making a decision based on the currently available informa-

ion) and exploration (i.e., probing the system for learning through

enerating more information); see Åström and Wittenmark (1995) .

lthough dual control is in general computationally intractable for

ractical systems ( Wittenmark, 1995 ), the growing body of litera-

ure on approximate dual control has demonstrated the benefits of

ctive learning under parametric uncertainty for improved control

erformance relative to passive learning , in which the controller

oes not increase the information content of the closed-loop data

e.g., Shouche et al., 2002; Larsson et al., 2016; Houska et al., 2017;

a et al., 2017; Heirung et al., 2017b; Mesbah, 2018; Lorenzen et al.,

019 ). 

This paper addresses the problem of simultaneous control and

ctive learning under structural model uncertainty in the con-

ext of model predictive control, or mpc . There is a range of

ell-established methods for systematically accounting for model

ncertainty in mpc . Among the most common are robust mpc

 Bemporad and Morari, 1999; Mayne, 2014; Kouvaritakis and Can-

on, 2016 ), which relies on deterministic bounds on the uncer-

ainty, and stochastic mpc ( Mayne, 2014; Kouvaritakis and Cannon,

016; Mesbah, 2016 ), based on probabilistic uncertainty specifica-

ions. These approaches, however, generally do not involve updat-

ng the uncertainty descriptions online. Adaptive mpc , conversely,

pdates the system model online in response to new measure-

ents, but the controller typically has no mechanism for active re-

uction of uncertainty (e.g., Tanaskovic et al., 2014; Zhu and Xia,

016; Guay et al., 2015; Benosman, 2018 ). 

In this work, we address the problem of mpc with active

earning under structural model uncertainty ( Heirung and Mesbah,

017; Heirung et al., 2018 ) through an approach similar to dual

ontrol for parametric uncertainty. There are fundamental differ-

nces between the problems of reducing structural model uncer-

ainty and learning model parameters. In particular, optimal inputs

or discriminating between model structures are often ill suited

or estimating parameters ( Atkinson and Fedorov, 1975; Atkinson,

008 ). In some cases, however, there is no clear distinction be-

ween structural and parametric model uncertainty. One example

f such a case is when large variations in some quantity have more

evere operational consequences than those more commonly rep-

esented as parameter drifts. Such large changes can additionally

ave different root causes than those of smaller magnitudes. In

his case, larger variations may be better represented as significant

vents that are differences in kind, rather than degree, and treated

s anomalous. 

The primary focus of this paper is the introduction of active

earning to reduce structural model uncertainty in mpc . We present

 tractable formulation for mpc with active uncertainty reduction

or stochastic nonlinear systems. The formulation uses a set of

odel hypotheses (possibly with uncertain parameters) to repre-

ent different candidates for the model structure or, alternatively,

escribe various operating modes for the system. The proposed

pc formulation includes a mechanism for active learning to re-

uce structural model uncertainty. That is, the control inputs not

nly direct the system state but also facilitate model discrimination

ased on closed-loop measurements. We accomplish this by mod-

fying a finite-horizon optimal control problem to include a com-

utationally tractable measure of the Bayes risk of choosing the

ncorrect model hypothesis ( Matusita, 1971 ). The optimal control

roblem explicitly accounts for the cost of future structural model

ncertainty, and its solution thus balances the costs of control and

ctive learning. Our receding-horizon implementation of this opti-

al control problem relies on a Bayesian approach to recursively

pdate the estimated model-hypothesis probabilities. 
In what follows, the idea of active learning in optimal control

nder structural model uncertainty is first illustrated using a mo-

ivating example. Here, the optimal control problem with active

earning can be solved exactly ( Section 2 ). The subsequent section

resents the control problem considered in this work and its as-

ociated challenges ( Section 3 ), followed by the proposed solution

ethods and control algorithm ( Section 4 ). A case study involving

 nonlinear bioreactor with structural model uncertainty demon-

trates the proposed mpc strategy with active learning in Section 5 .

he demonstration includes performance comparisons to nominal

pc with no learning, a robust mpc that systematically accounts

or structural uncertainty but has no learning mechanism, and mpc

ith passive learning. 

Notation : Z [ a,b] is the set of integers { a, a + 1 , . . . , b} . v k ∈ R 
n 

enotes the value of v at discrete time index k , with v k + j| k de-
oting the value of v at future time k + j predicted from time k .

 a : b = [ z � a , z 
� 
a +1 

, . . . , z � 
b 
] � is a vector concatenation of a sequence of

alues of z k ∈ R 
n from discrete time indices k = a through k = b.

ith z ∈ R 
n a realization of the real-valued random variable Z, p ( z )

 p ( z | ·)) denotes the (conditional) probability density function ( pdf )
or Z and E[ Z ] (E[ Z | · ]) denotes the (conditional) expected value of
 . Pr[ A ] ∈ [0, 1] is the probability of event A , whereas Pr[ A | · ] is the
onditional probability of event A . 

. Why active learning under structural model uncertainty? 

Consider the finite-horizon problem of minimizing deviation

rom an unstable setpoint x ∗ = 0 with minimal use of input energy

or a scalar, stochastic nonlinear system. Two candidate models M 0 

nd M 1 , 

 0 : x 
[0] 

k +1 
: = 2 . 25 

(
x [0] 
k 

)2 
− 3 . 5 x [0] 

k 
+ 3 + u k + w 

[0] 

k 
, (1a) 

 1 : x 
[1] 

k +1 
: = −0 . 375 

(
x [1] 
k 

)3 
+ 2 . 25 

(
x [1] 
k 

)2 
− 3 . 5 x [1] 

k 
+ 3 + u k + w 

[1] 

k 
, 

(1b) 

oth predict the behavior of the system near the setpoint x ∗, and
n both models the state is measured directly without error. In (1) ,

 

[ i ] 

k 
∈ R , u k ∈ R , and w k ∈ R denote the state, the control input,

nd the zero-mean Gaussian white system disturbance at time k

or model i = 0 , 1 (indicated with superscript [ i ]). One of the two

odels is an exact representation of the system dynamics, but it

s not known which model is “true.” However, the initial (or prior )

robability of M 0 being true is known and denoted by P 
[0] 
M, 0 

(with

 

[1] 
M, 0 

= 1 − P 
[0] 
M, 0 

). The probabilities of each model being the exact,

r the best, representation of the system can be recursively up-

ated using Bayes’ theorem with each observation of the state x k ,

s discussed in Sections 3 and 4 . Fig. 1 illustrates the expected suc-

essor states of the two models and suggests that in the presence

f the disturbance, M 0 and M 1 are not distinguishable around the

etpoint x ∗. 
We consider a sequence of control laws μ∗

0: N−1 = { μ0 , μ1 , . . . ,

N−1 } such that u k = μk (x k , P 
[0] 

M,k 
) , with N being the length of the

nite horizon. Given an initial state x 0 and a prior model proba-

ility P 
[0] 
M, 0 

, we define the cost of using the control-law sequence

0: N−1 as 

 

(
x 0 , P 

[0] 
M, 0 

)
= E 

[ 

N−1 ∑ 

k =0 

qx 2 k + ru 2 k + qx 2 N 

] 

, (2) 

here q and r are positive tuning parameters and the expectation

s taken over the model probabilities and the probability distribu-

ions of x k and w k . The optimal sequence of control laws μ∗
0: N−1 
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Fig. 1. Expected value of the next state x [ i ] 
k +1 

, given the current state x [ i ] 
k 

and the 

control input u k = 0 for the two models in (1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Expected benefit of active learning. The figure shows the scaled difference 

in optimal expected cost with active and passive learning for the example problem 

in Section 2 with a horizon length of N = 20 . 
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minimizes this cost. The corresponding optimal cost, incurred by

using μ∗
0: N−1 , is the solution to the optimal control problem 

J ∗
(
x 0 , P 

[0] 
M, 0 

)
= min 

μ0: N−1 

J 

(
x 0 , P 

[0] 
M, 0 

)
. (3)

This optimal cost is also known as the cost to go N steps along the

optimal trajectory that starts at (x 0 , P 
[0] 
M, 0 

) . Solving (3) for μ0: N−1 

numerically with dynamic programming results in a numerical

representation of μ∗
0: N−1 . Dynamic programming involves formu-

lating (3) as a Bellman equation, which relies on the principle of

optimality ( Bellman, 1957 ), and iterating backward in time from

k = N − 1 to k = 0 . Since the state, control, disturbance, and model

probability all are continuous, numerical solution involves quantiz-

ing these variables. 

The model probability P 
[0] 

M,k +1 
can be written as a function of

P 
[0] 

M,k 
and x k +1 using Bayes’ theorem. That is, the evolution of P 

[0] 

M,k 

can be predicted together with x k , and both quantities depend on

the control input u k −1 . Future uncertainty in the model structure,

as represented by P 
[0] 

M,k 
, can thus be reduced in a predictable man-

ner using the control input. Accounting for this dual effect when

solving (3) , which means treating both x k and P 
[0] 

M,k 
as dynamic

quantities, enables active learning. We use J ∗
A 
(x 0 , P 

[0] 
M, 0 

) to denote

the optimal cost obtained with this active-learning approach. 

Conversely, solving (3) without including the equation that gov-

erns the evolution of P 
[0] 

M,k 
as part of the dynamic model leads to a

control law that does not anticipate that future information will

influence the uncertainty. Implicitly, this control law assumes that

the model probabilities will not change, or that P 
[0] 

M,k 
= P 

[0] 

M,k + k ∀ k ∈
Z [0 ,N−1] . The control law will therefore not lead to active learning.

It does, however, permit passive learning, since the model prob-

abilities can be updated at every time step using the latest ob-

servation of x k . Accordingly, using the optimal policy that results

from solving (3) in this manner has the corresponding optimal cost

J ∗
P 
(x 0 , P 

[0] 
M, 0 

) . 

The key question here is whether the expected cost (2) that re-

sults from using the control law with active learning, J ∗
A 
(x 0 , P 

[0] 
M, 0 

) ,

is significantly different from the cost incurred when using passive

learning, J ∗
P 
(x 0 , P 

[0] 
M, 0 

) . Before a quantitative analysis of this question,
onsider the following. First, solving E [ x 
[ i ] 

k +1 
] = x 

[ i ] 

k 
= x ∗ for the con-

rol input gives the steady-state value u ∗ = −3 with both models.

n model M 1 , however, the steady-state control u 0 = 0 results in

 [ x 
[1] 

k +1 
] = x 

[1] 

k 
= 2 . Assume that q and r are such that operating near

 = 2 results in a lower cost than operating near x = x ∗ = 0 if M 1 is

rue. The value of knowing whether the system evolves according

o Models M 0 or M 1 is then high, and the optimal control law may

nvolve probing the system to learn which of the two hypotheses

s true. Qualitatively, Fig. 1 shows that close to the setpoint x ∗ = 0 ,

he expected next state of the system is near identical regardless

f which model hypothesis is true. A control policy that keeps the

tate in the vicinity of x ∗ is therefore unlikely to generate informa-

ion that facilitates fast learning. It may be necessary to purpose-

ully move the state away from x ∗ to speed up the learning, but

his probing may come at a high cost in terms of input energy and

eviation from x ∗. This question of whether the cost of learning

hrough probing is likely to generate system knowledge that the

ontroller can use to lower the control cost is in general difficult

o answer. 

To quantify the improvement in cost by using control with

ctive instead of passive learning, consider the optimal costs

 
∗
A 
(x 0 , P 

[0] 
M, 0 

) and J ∗
P 
(x 0 , P 

[0] 
M, 0 

) introduced above. The benefit from ac-

ive over passive learning is the difference J ∗
P 
(x 0 , P 

[0] 
M, 0 

) − J ∗
A 
(x 0 , P 

[0] 
M, 0 

) .

ig. 2 shows this difference, scaled by the horizon length N = 20 ,

or the exact numerical solutions obtained with dynamic program-

ing. Note that the expected benefit of active learning is positive

or almost the entire x 0 –P 
[0] 
M, 0 

space. The expected benefit depends

n the state and the model probabilities and is highly nonlinear

n x 0 and P 
[0] 
M, 0 

. A key insight from Fig. 2 is that there are regions

f the x 0 –P 
[0] 
M, 0 

space in which active learning has a very large ex-

ected benefit, and that in other areas there is relatively little or

o expected benefit. The benefit is largest for x 0 ≥1.5; the advan-

age of knowing the true model in this region is significant since

 0 is unstable and much more expensive to control than M 1 (see

ig. 1 ). When there is a high degree of certainty in which model is

rue, i.e., P 
[0] 
M, 0 

is close to zero or one, there is little benefit to active

earning. 

This paper considers the type of control problem discussed in

his section: optimal control of stochastic nonlinear systems un-

er structural model uncertainty using a set of model hypotheses.

ince the dynamic programming approach used to solve this exam-

le problem is intractable even for moderately-sized systems, the

aper presents the development of a tractable receding-horizon
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Fig. 3. Illustration of the Bayesian hypothesis selection problem (after 

Blackmore and Williams, 2006 ). 

s  

N  

c  

a  

l  

l  

p  

m

3

3

 

{  

T  

c  

p  

a  

r  

u  

s  

o  

R

s  

w  

H  

h  

s  

l

 

p

R

F  

M  

h  

H  

k

P  

E  

f  

t  

c  

d  

t  

t  

o  

t  

s

3

S

w  

s  

t  

 

(  

s  

h  

s  

H  

s

M

E  

s  

a  

v  

s

 

o  

i  

p  

a  

 

f

M

T  

c  

c  

m  

e  

a  

m

u

w  

s  

c

g  

w  

s  

n  

r  

p

 

t  

i  

t  

l  

1 If the number of state constraints n p vary between the models, which may be 

the case if the models have different state dimension n x , g 
[ i ] is defined accordingly 

for every model. 
trategy with active learning for reducing structural uncertainty.

ot only can the proposed algorithm learn faster, and with higher

onfidence, which of the models that best predicts the data, it can

lso improve control performance relative to robust and passive-

earning mpc approaches. Before a formal presentation of the prob-

em formulation, the next section presents a brief overview of hy-

othesis testing, which is central to the problem of control with

ultiple models. 

. Preliminaries and problem statement 

.1. Model hypothesis selection 

Consider a finite set of n m + 1 model hypotheses M : =
 M 0 , M 1 , . . . , M n m } and a prior probability Pr( M i ) for each model.

he decision-theory problem of model discrimination involves

lassifying the measured output y , resulting from the input u , as

redictions of one of the models in M . Note that we here use u

nd y to denote general inputs and outputs; these variables may

epresent sequences such as u a : b and y c : d or the single-sample val-

es like u k and y k +1 . The Bayesian decision rule for model hypothe-

is selection minimizes the risk of misclassification, that is, the risk

f selecting an incorrect hypothesis given u and y ( Hellman and

aviv, 1970 ). The Bayesian decision rule can be formulated 

elect M i ∗ such that i ∗ = arg max 
i 

Pr (M i | y, u ) , (4)

here Pr (M i | y, u ) = p(y | M i , u ) Pr (M i ) /p(y | u ) by Bayes’ theorem.

ere, p ( y | M i , u ) is the likelihood function for observing y given

ypothesis M i and the input u and p ( y | u ) is a normalization con-

tant commonly referred to as the model evidence or the marginal

ikelihood. 

Define a region R i such that the decision rule (4) selects hy-

othesis M i when the system observation y falls into R i ; that is, 

 i : = 

{
y : p(y | M i , u ) > p(y | M j , u ) ∀ j � = i 

}
. 

ig. 3 illustrates an example-set of regions and shows that Pr( y ∈ R j ,

 i | u ) quantifies the probability of erroneously selecting the model

ypothesis M j when M i is the model that best predicts the data.

ence, the probability of hypothesis-selection error Pr(error), also

nown as the Bayes risk , is ( Duda et al., 2002 ) 

r ( error ) : = 

n m ∑ 

i =0 

n m ∑ 

j= i +1 

∫ 
R j 

p(y | M i , u ) Pr (M i ) dy. (5)

q. (5) reveals that Pr(error) depends on the input u . As evident

rom Fig. 3 , inputs that reduce the overlap between the distribu-

ions p ( y | M i , u ) decrease Pr(error) and thus facilitate model dis-

rimination. Note that for arbitrary distributions and in higher-

imensional space, the regions R i may be difficult or impossible

o determine (see, e.g., Duda et al., 2002 ). The key property of

he proposed mpc algorithm developed in this paper is reduction

f structural model uncertainty for a nonlinear stochastic system

hrough reducing Pr(error) while simultaneously controlling the

ystem. 
.2. Problem formulation 

Consider a stochastic system S with discrete-time dynamics 

 : 

{
x k +1 = f k ( x k , u k , w k ) , 
y k = h k ( x k , v k ) , 

(6) 

here k is the time index; x k ∈ R 
n x , u k ∈ R 

n u , and y k ∈ R 
n y are the

ystem state, control input, and output, respectively; w k ∈ R 
n w is

he system disturbance; v k ∈ R 
n v is the measurement noise; and

f k : R 
n x × R 

n u × R 
n w → R 

n x and h k : R 
n x × R 

n v → R 
n y describe the

possibly) nonlinear system dynamics and the measurements, re-

pectively. Because of the structural uncertainty in modeling f k and

 k and the potential changes in the dynamics over time, we con-

ider a finite set of models denoted by M : = { M 0 , M 1 , . . . , M n m } .
ere, each model M i represents a hypothesis for describing the

ystem S with dynamics of the form 

 i : 

⎧ ⎨ 

⎩ 

x [ i ] 
k +1 

= f [ i ] 
(
x [ i ] 
k 

, u k , θ
[ i ] , w 

[ i ] 

k 

)
, 

y [ i ] 
k 

= h [ i ] 
(
x [ i ] 
k 

, θ [ i ] , v [ i ] 
k 

)
. 

(7) 

ach of the models may have uncertain parameters θ [ i ] , and the

uperscript [ i ] is used to distinguish the functions and variables

ssociated with each model M i ∈ M . Note that the functions and

ariables associated with the true system S in (6) have no super-

cript [ i ]. 

The sequences w 

[ i ] 

k 
and v [ i ] 

k 
are both independent realizations

f identically distributed random variables with known probabil-

ty distributions p ( w 
[ i ] ) and p ( v [ i ] ). The initial condition x 

[ i ] 
0 

and

arameter vector θ [ i ] in model i are unknown, and are modeled

s time-invariant probabilistic uncertainties with known joint pdf

p(x [ i ] 
0 

, θ [ i ] ) . A hypothesis M i contains all the information necessary

or specifying model i ; 

 i : = 

{ 
f [ i ] , h [ i ] , p 

(
x [ i ] 
0 

, θ [ i ] 
)
, p 

(
w 

[ i ] 

k 

)
, p 

(
v [ i ] 
k 

)} 
. (8) 

he true system S is not necessarily contained in the set of model

andidates M . All models in M and the system S have the same

ontrol inputs u k and measurements y k ; that is, the respective di-

ensions of these signals, n u and n y , are identical across all mod-

ls in M . Note that the numbers of states, unknown parameters,

nd stochastic disturbance and noise elements may vary between

odels and the system S . 
The control inputs u k in (6) are constrained to a polytope U : 

 k ∈ U : = { u k | A u u k ≤ b u } , (9) 

here A u ∈ R 
n c ×n u , b u ∈ R 

n c , and n c is the number of input con-

traints. The state constraints are specified as a set of n p inequality

onstraints, 

 
[ i ] 
(
x [ i ] 
k 

)
≤ 0 , ∀ i ∈ { 1 , . . . , n m } , (10)

here g [ i ] : R 
n x → R 

n p defines the inequalities. 1 However, since the

ystem evolves as a stochastic process that is observed through

oisy measurements, the constraints (10) cannot be enforced di-

ectly. We implement these constraints probabilistically in the pro-

osed mpc , as discussed below. 

As demonstrated in the motivating example in Section 2 , ac-

ive learning under model uncertainty can be a central component

n optimal control. The optimal control problem we consider is

hus twofold: (i) regulating the system dynamics, and (ii) active

earning that reduces the structural model uncertainty. Inspired



132 T.A.N. Heirung, T.L.M. Santos and A. Mesbah / Computers and Chemical Engineering 128 (2019) 128–140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

T  

s  

g  

s  

n  

r  

a  

i  

t  

d  

o  

g  

a

 

a  

m  

i  

a  

b  

t  

1  

p  

m  

m  

u  

a  

s  

c  

4

l

 

c  

c  

a  

a

4

s

 

i  

t  

m  

z  

θ

z  

S

y  

w  

n  

t

 

p  

(  

t  

i  

o  

b  

a  
by explicit methods for dual control with parametric uncertainty

( Wittenmark, 1995; Filatov and Unbehauen, 20 0 0; Mesbah, 2018 ),

this paper formulates an explicit cost for the probability of future

model-selection error that is minimized along with the stage and

terminal costs. Including the cost of reducing the structural uncer-

tainty in the optimal control problem (or ocp ) enables probing of

the system to determine which model hypothesis in (8) that best

describes the observed closed-loop dynamics. 

For the stochastic nonlinear system S in (6) with structural

model uncertainty, we state the ocp considered in this paper for-

mally as follows. 

Problem 1 (Optimal control of stochastic systems with active

learning under structural model uncertainty) . At sampling time k ,

determine the optimal input sequence u ∗
k : k + N−1 

for the system S
in (6) that minimizes a cost function consisting of the terminal cost

� N ( x N ), the stage cost � k ( x k , u k ) over the horizon Z [ k, k + N−1] , and

the probability of model-selection error Pr(error) in (5) , given the

model set M in (8) , while satisfying the state constraints (10) with

specified confidence, and the input constraints (9) . 

The solution to the ocp in Problem 1 involves a balance be-

tween controlling the system based on current knowledge and

reducing the structural uncertainty at every sampling time k to

improve control performance. Solving Problem 1 on a receding

horizon thus leads to an mpc strategy with active learning. The

mpc applies only the first element of the optimal input sequence,

u ∗
k | k , to the system S at every discrete time k and re-solves

the optimal control problem at the subsequent sampling time

incorporating new information from the system measurements. 

Remark 1. Problem 1 does not specify how the terminal and stage

costs, the state constraints, and probability of model-selection er-

ror are evaluated. For example, this general formulation permits

implementation choices such as whether to enforce the state con-

straints for all models in the set M or only the one that has the

highest probability at any given time. The choices made in this pa-

per are discussed in the following section. 

The goal of this paper is to present a tractable formulation for

mpc with active learning for structural model uncertainty. We dis-

cuss some of the main considerations in receding-horizon imple-

mentation of the ocp in Problem 1 in the following. 

Computation of the probability of model-selection error : Eval-

uating the probability of model-selection error Pr(error) in (5)

requires computing multivariate integrals over the probabil-

ity distribution p(y k +1: k + N | M i , u k : k + N−1 ) over the decision re-

gions depicted in Fig. 3 . In general, no closed-form expression

for p(y k +1: k + N | M i , u k : k + N−1 ) exists, rendering exact evaluation of

Pr(error) intractable ( Blackmore and Williams, 2006 ). The primary

challenge in solving the ocp in Problem 1 is deriving a computa-

tionally tractable approximation for Pr(error) given the model set

M . 

Online estimation of model probabilities : Receding-horizon im-

plementation of Problem 1 also requires online estimation of the

conditional model probabilities Pr( M i | y k ) at every sampling time k

to update the probability of model-selection error Pr(error) based

on the output y k . This problem is in its general form referred to

as multiple-model estimation ( Ackerson and Fu, 1970 ). This is an

intractable problem that suffers from exponential growth in com-

plexity over time; see Li and Bar-Shalom (1996) for an overview

and discussion of different solution approaches. 

Uncertainty propagation : Solving Problem 1 requires efficient

propagation of the probabilistic model uncertainty in x 0 and θ
as well as the stochastic disturbances w k and noise v k through

the nonlinear models M i ∈ M . The probability distribution of the

model outputs p(y k +1: k + N | M i , u k : k + N−1 ) , or their statistical mo-
ents, are required for evaluating the cost function of the ocp .

he probabilistic state information can also be used to enforce the

tate constraints (10) with a specified probability of satisfaction. In

eneral, however, joint propagation of parametric uncertainty and

tochastic noise poses a significant challenge to optimal control for

onlinear systems ( Paulson and Mesbah, 2017 ). The widely-used

andom-sampling approaches to uncertainty propagation ( Cowles

nd Carlin, 1996; Caflisch, 1998; Kantas et al., 2009 ) are primar-

ly developed for propagating one source of uncertainty (i.e., either

ime-invariant parametric uncertainty or time-varying stochastic

isturbances) and can be computationally prohibitive for online

ptimization. Moreover, these methods are generally ill-suited for

radient-based optimization since they do not lend themselves to

ccurate and precise gradient computation. 

The proposed mpc strategy involves approximating the prob-

bility distribution p(y k +1: k + N | M i , u k : k + N−1 ) in terms of its

oments. As shown in the next section, this enables approximat-

ng the ocp in Problem 1 with a deterministic surrogate that is

menable to online solution. Established methods for moment-

ased approximation of probability distributions include lineariza-

ion ( Ljung, 1979 ) and the unscented transform ( Julier and Uhlmann,

997; 2004 ). For conceptual and notational simplicity, we here ap-

roximately solve Problem 1 through approximating the first two

oments of the probability distributions using linearization. Other

ethods for approximating p(y k +1: k + N | M i , u k : k + N−1 ) , such as the

nscented transform, are equally well-suited for our proposed

pproach. The unscented transform is particularly useful when the

ystem dynamics exhibit a high degree of nonlinearity, or when

omputation of the model Jacobians is computationally prohibitive.

. Approximate solution to optimal control with active 

earning 

This section first presents the methods used to address the

hallenges associated with solving the ocp in Problem 1 as dis-

ussed above. We subsequently present an algorithm for mpc with

ctive learning for reducing structural model uncertainty based on

 deterministic surrogate for Problem 1 . 

.1. Joint propagation of probabilistic model uncertainty and 

tochastic disturbances 

The uncertainty propagation approach adopted in this work

s based on augmenting the state vector x 
[ i ] 

k 
with the unknown

ime-invariant parameters θ [ i ] in the model Eq. (7) . Omitting the

odel-index superscript [ i ], denote the augmented state vector by

 k = [ x � 
k 
, θ� 

k 
] � , where the parameters θ k have constant dynamics

k +1 = θk . The augmented state vector then evolves according to 

 k +1 = f z ( z k , u k , w k ) = 

[
f ( x k , u k , θk , w k ) 

θk 

]
. (11a)

imilarly , the output equation takes the form 

 k = h z (z k , v k ) , (11b)

here f z : R 
n z × R 

n u × R 
n w → R 

n z and h z : R 
n z × R 

n v → R 
n y , n z =

 x + n θ , and p(z 0 ) = p(x 0 , θ ) is the joint probability distribution of

he initial augmented state. 

There exists no closed-form method for propagation of

robabilistic uncertainties through a general nonlinear system

 Chen, 2003 ). This work relies on propagating the moments of

he probability distributions of the augmented state and output

n (11) . The moment-based method used here for joint propagation

f probabilistic model uncertainty and stochastic disturbances is

ased on linearization of the augmented system dynamics (11) and

pproximation of the probability distributions of the state and
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utput as multivariate Gaussian distributions. Linearization is a

ell-established method for uncertainty propagation in recursive

ayesian estimation, resulting in the extended Kalman filter, or ekf ,

or state estimation in nonlinear systems (e.g., Ljung, 1979; Simon,

006 ). 

A first-order Taylor series approximation of the augmented

tate equations in (11a) with respect to the state and disturbance

esults in 

 k +1 ≈ f z 
(
ˆ z k , u k , w̄ 

)
+ A k 

(
z k − ˆ z k 

)
+ E k ( w k − w̄ ) , (12)

here 

 k : = 

∂ f z 

∂z k 

∣∣∣
ˆ z k ,u k , ̄w 

, E k : = 

∂ f z 

∂w k 

∣∣∣
ˆ z k ,u k , ̄w 

, 

ˆ  k ≈ z̄ k = E [ z k ] is the approximated mean of the augmented state,

nd w̄ = E [ w k ] . The evolution of ˆ z k is described by 

ˆ  k +1 = f z ( ̂ z k , u k , w̄ ) , (13)

tarting from ˆ z 0 = z̄ 0 , which has a known distribution.

ence, (12) can be written in terms of the deviation variables

z k = z k − ˆ z k and �w k = w k − w̄ , leading to the linear time-

arying system 

z k +1 = A k �z k + E k �w k . (14)

ote that since we do not linearize the augmented state equations

n (11a) with respect to u k , the input enters (14) directly through

z k +1 , which is a function of f z ( ̂ z k , u k , w̄ ) . The covariance of the

ugmented state, denoted by �z k 
, can now be approximated as

ˆ z k = E [�z k �z � 
k 
] . Using (14) , we arrive at the Lyapunov-type re-

ursive expression 

ˆ 
z k +1 

= A k ̂  �z k A 
� 
k + E k �w E 

� 
k , with ˆ �z 0 = �z 0 , (15)

or the evolution of the approximate covariance. Similarly,

he approximate mean and covariance of the model output

n (11b) evolve as 

ˆ  k = h z 
(
ˆ z k , ̄v 
)
, (16a) 

ˆ 
y k +1 

= C k ̂  �z k C 
� 
k + M k �v M 

� 
k , (16b) 

here 

 k : = 

∂h z 
∂z k 

∣∣∣
ˆ z k , ̄v 

, M k : = 

∂h z 
∂v k 

∣∣∣
ˆ z k , ̄v 

. 

To predict the future evolution of the first two moments of the

ugmented state and output in (11) over the prediction horizon k

o k + N while capturing the cross-correlation of moments in time,

e collect the moment propagation equations for all future sam-

ling times into one set of equations. The predicted sequence of

ugmented state deviations from time k to k + N can be written as

z k : k + N = A �z k + E�w k : k + N , where 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I 
A 1 

A 1 A 2 
. . . ∏ N−1 

j=1 A j ∏ N 
j=1 A j 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
f  
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 · · · · · · 0 
E 0 0 0 

A 1 E 0 E 1 
. . . 

. . . 

A 2 A 1 E 0 A 2 E 1 E 2 
. . . 

. . . 
. . . 

. . . 
. . . 0 ∏ N−1 

j=1 A j E 0 
∏ N−1 

j=2 A j E 1 · · · A N−1 E N−2 E N−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

ote that each A j and E j both depend on the predicted input u k + j| k 
rom the sequence u k : k + N . The covariances of the augmented state

rom time k to k + N evolve as 

ˆ 
z k : k + N = A ̂  �z k A 

� + E diag ( �w , . . . , �w ) E 
� . 

imilarly, using (16) , we collect the equations for predicting the

utput moments over the prediction horizon k to k + N into 

y k : k + N = C�y k + M�v k : k + N , (17a) 

ˆ 
y k : k + N = C ˆ �z k : k + N C 

� + M diag (�v , . . . , �v ) M 
� , (17b) 

here C = diag (C j , . . . , C N ) and M = diag (M j , . . . , M N ) . Note that

he symmetric matrix ˆ �y k : k + N in (17b) captures the cross-

orrelation of the predicted output covariances in time. 

.2. Tractable approximation of the probability of model-selection 

rror 

For the nonlinear setting considered in this work, there ex-

sts no closed-form expression for evaluating the Bayes risk of

ypothesis-selection error Pr(error) in the cost function of the ocp

n Problem 1 . Assuming that the output of the model hypotheses

n the set M has a multivariate Gaussian distribution, an upper

ound ( Matusita, 1971; Blackmore and Williams, 2006 ) can be de-

ived for Pr(error). Given the information available at time k , let

 

[ i ] 

M,k 
: = Pr (M i | y 0: k , u 0: k −1 ) be the probability of model M i being the

est, or most appropriate, representation of the system. For the

 m + 1 model hypotheses in M , Pr(error) can be bounded as 

r ( error ) ≤ P UB , 

here the bound P UB over the prediction horizon k + 1 to k + N is

efined in terms of pairwise Bhattacharyya bounds as 

 UB := 

n m ∑ 

i =0 

n m ∑ 

j= i +1 

√ 

P [ i ] 
M,k 

P [ j] 
M,k 

× exp 

(
−d B 

(
y [ i ] 
k +1: k + N , �

[ i ] 
y k +1: k + N , y 

[ j] 

k +1: k + N , �
[ j] 
y k +1: k + N 

))
(18a) 

ith 

 B 

(
y [ i ] , �[ i ] , y [ j] , �[ j] 

)
:= 

1 

4 

(
y [ i ] − y [ j] 

)� [
�[ i ] + �[ j] 

]−1 (
y [ i ] − y [ j] 

)
+ 

1 

2 
ln 

( 

| �[ i ] + �[ j] | 
2 
√ | �[ i ] | | �[ j] | 

) 

. (18b) 

The quantity d B is known as the Bhattacharyya distance between

he predicted distributions of the output of models i and j , as-

uming that the distributions are Gaussian and thus described by

he predicted mean and covariance of the output y ; see (17) . We

ere use the bound (18a) as a tractable surrogate for the prob-

bility of model-selection error Pr(error) in the cost function of

roblem 1 . While the bound P UB is not guaranteed to hold in the

ase of nonlinear models or non-Gaussian distributions, the goal of

he proposed approach is not to quantify the probability of model-

election error. Rather, the goal is to lower this probability to the

xtent that it benefits control performance in expectation. If reduc-

ng the bound P UB does not sufficiently improve the control per-

ormance, there is a variety of metrics that quantify the overlap or
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2 Alternatively, state and parameter estimation can be performed separately, for 

instance using a dual-estimation approach (see, e.g., Wan and Nelson, 1996 .) 
similarity between distributions that can be employed. Gibbs and

Su (2002) provide an extensive overview of various such met-

rics, including the Hellinger distance, the Kullback-Leibler diver-

gence, the Kolmogorov metric, and the Wasserstein metric. How-

ever, these metrics do not directly correspond to (a bound on)

the probability of selecting the wrong hypothesis, the reduction of

which is the objective in the proposed mpc strategy. 

4.3. Model probability estimation and model selection 

As evident from (18) , the bound P UB depends on the model

probabilities P 
[ i ] 

M,k 
. Thus, online estimation of the model proba-

bilities is important for evaluating P UB when solving the ocp in

Problem 1 on a receding horizon. We use Bayesian recursion to

estimate P 
[ i ] 

M,k 
for each of the model hypothesis in the set M given

the measurements y k . 

Let the prediction error of each model M i be defined as 

e [ i ] 
k 

= y k − E 

[ 
x [ i ] 
k 

| y 0: k −1 , u 0: k −1 , M i 

] 
. (19)

When the model outputs are sufficiently separated, the model pre-

diction error e 
[ i ] 

k 
is small for the model i that currently best pre-

dicts the data generated by the true system S, relative to the

prediction error for the other models; cf. Fig. 1 . That is, the er-

ror (19) is a measure of how well each model predicts the ob-

served system outputs at time k . The prediction errors e 
[ i ] 

k 
can

be used to estimate the model probabilities P 
[ i ] 

M,k 
recursively using

Bayes’ theorem (e.g., see Simon, 2006 ). The likelihood of measur-

ing y k under model hypothesis i is proportional to the probability

of observing y k conditioned on model M i and the past measure-

ments y 0: k −1 ; i.e., 

L [ i ] 
k 

∝ p ( y k | y 0: k −1 , M i ) . 

Determining the density on the right-hand side of the above ex-

pression involves evaluation of multivariate integrals for which no

closed-form solution exists for general nonlinear model equations.

In this work, we approximate the likelihood L 
[ i ] 

k 
in terms of the first

two moments of y k , such that the right-hand side density takes the

form of a multivariate Gaussian distribution. That is, we approxi-

mate the likelihood as 

p ( y k | y 0: k −1 , M i ) ≈ exp 

(
−1 

2 

(
e [ i ] 
k 

)� 
�−1 

v e 
[ i ] 

k 

)
. (20)

Eq. (20) incorporates that the components of y k with large mea-

surement noise covariance have a relatively smaller contribution

to the likelihood. Based on the likelihood of observing the mea-

surements under each of the model hypotheses, we can now use

Bayes’ theorem to estimate the probability of each of the models

best predicting the data. Let P 
[ i ] 

M,k 
and P 

[ i ] 

M,k −1 
denote the posterior

and prior probabilities of model i . The Bayesian recursion approxi-

mates the posterior probability of each model i as 

P [ i ] 
M,k 

= 

P [ i ] 
M,k −1 

L [ i ] 
k ∑ n m 

j=0 P 
[ j] 

M,k −1 
L [ j] 
k 

. (21)

With the model probabilities determined, the Bayesian decision

rule selects the model i ∗
k 
that has the largest posterior probability

at time k ; i.e., 

i ∗k : = arg max 
i 

P [ i ] 
M,k 

. 

At times when there are two or more models that have the highest

and near-highest probabilities, using i ∗
k 
for control can lead to fre-

quent switching between models. To avoid this behavior, the pro-

posed mpc strategy chooses the control model i M 

k 
according to 

i M 

k = 

{
i ∗
k 

if i ∗
k 

= i ∗
k − j 

∀ j ∈ { 1 , 2 , . . . , N S } , 
i M 

k −1 
otherwise . 

(22)
ere, N S is the number of sampling times the most probable model

 
∗
k 
must remain the same for it to be selected as the control model.

he value of N S must be chosen on a case-by-case basis, with par-

icular attention to the variance of the stochastic disturbances and

oise as well as the tuning of the state estimators. 

emark 2. When a sequence of system observations is signifi-

antly different from the predictions of a particular model hypoth-

sis, the corresponding model probability quickly approaches zero.

owever, note that if the scenario corresponding to that model

ypothesis subsequently occurs, the model probability would in-

rease very slowly despite high likelihoods, since the likelihood is

ultiplied by a near-zero prior probability. Thus, the controller can

nly adapt slowly to the change in scenario, potentially leading to

egradation of the control performance. To avoid this issue, we in-

roduce a lower bound P min on the probabilities P 
[ i ] 

M,k 
, similar to the

pproach of Aufderheide and Bequette (2003) , and renormalize to

nsure that 
∑ n m 

i =0 
P 
[ i ] 

M,k 
= 1 . 

emark 3. We here make the conventional choice ( Murray-Smith

nd Johansen, 1997; Narendra and Han, 2011 ) of using only one

odel i M 

k 
for evaluating the control objective and the state con-

traints (discussed below) and switching between the models as

ppropriate. Alternatively, one can use two or more models in de-

ermining the control cost and in constraint enforcement, for in-

tance by weighting the output variables ( Kuure-Kinsey and Be-

uette, 2010 ) and constraints by the model probabilities used

n their evaluation. Using such a weighted approach can enable

moother control profiles, but it can also result in more conser-

ative performance as well as increased computational cost owing

o a larger number of constraints. 

.4. State and parameter estimation 

Our proposed approach to mpc with active learning does not

epend on a specific type of estimation algorithm. Hence, both

or simplicity of presentation and for its symmetry with the pro-

osed propagation approach presented in Section 4.1 , we here use

he ekf over more involved alternatives such as the unscented

alman filter ( ukf ; Julier and Uhlmann, 2004 ), particle-based fil-

ers (e.g., Arulampalam et al., 2002 ), and moving-horizon estima-

ion ( Robertson et al., 1996 ). The ekf uses the model Jacobians to

ropagate the mean and covariance of z k using (13) and (15) , re-

pectively ( Simon, 2006 ). 2 The prediction step of the ekf for every

odel M i consists of 

ˆ  [ i ] 
k | k −1 

= f [ i ] z 

(
ˆ z [ i ] 
k −1 | k −1 

, u k −1 , w̄ 
[ i ] 
)
, (23a)

ˆ [ i ] 
z k | k −1 

= A [ i ] 
k −1 

ˆ �[ i ] 
z k −1 | k −1 

(
A [ i ] 
k −1 

)� 
+ E [ i ] 

k −1 
�[ i ] 

w 

(
E [ i ] 
k −1 

)� 
. (23b)

Once the system measurements y k are observed, the posterior

istribution of z k is updated according to 

ˆ  [ i ] 
k | k = ˆ z [ i ] 

k | k −1 
+ K [ i ] 

k 

(
y k − h [ i ] z 

(
ˆ z [ i ] 
k | k −1 

, ̄v [ i ] 
))

, (24a)

ˆ [ i ] 
z k | k = 

ˆ �[ i ] 
z k | k −1 

K [ i ] 
k 

ˆ �[ i ] 
y k | k −1 

K [ i ] 
k 

, (24b)

here the Kalman gain is defined by 

 

[ i ] = 
ˆ �[ i ] 
z ,y 

(
ˆ �[ i ] 
y 

)−1 

. 
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.5. State constraint implementation 

A rigorous treatment of various approaches to enforcing and

mplementing the state constraints (10) is beyond the scope of this

aper. We here employ the approach of selecting a parameter vec-

or c ∈ R 
n p ≥ 0 for constraint back-off (see, e.g., Farina et al., 2016;

eirung et al., 2017a; Paulson and Mesbah, 2018; Koller et al.,

018 ). The proposed mpc enforces the state constraints for the

xpected-value state predictions from the current control model i M 

k 
t time k . That is, we implement 

 
[ i M 
k 
] 
(
ˆ x 
[ i M 
k 
] 

k + j+1 | k 
)

≤ −c, ∀ j ∈ Z [0 ,N−1] . (25)

ote that since the predicted (augmented) state statistics are com-

uted to evaluate P UB (cf. Sections 4.1 –4.2 ), specifying satisfaction

robabilities for the individual constraints in (10) is a trivial exten-

ion of the proposed mpc strategy. 

.6. Algorithm for MPC with active learning for structural model 

ncertainty 

We now formulate a deterministic surrogate for the ocp in

roblem 1 using the methods discussed above. The control objec-

ive is evaluated over the horizon k to k + N and consists of the

ound P UB (u k : k + N−1 ) in (18a) , which provides a tractable approxi-

ation of the probability of model-selection error, as well as the

tage cost � j 

(
ˆ x 
[ i M 
k 
] 

j| k , u j| k 
)

and the terminal cost � k + N 
(
ˆ x 
[ i M 
k 
] 

k + N| k 
)
, both

or the nominal state trajectory predicted with the current control

odel M 
[ i M 
k 
] . 3 That is, we define the control objective 

(u k : k + N−1 ) = 

k + N−1 ∑ 

j= k 
� j 

(
ˆ x 
[ i M 
k 
] 

j| k , u j| k 
)

+ � k + N 
(
ˆ x 
[ i M 
k 
] 

k + N| k 
)

+ r B P UB (u k : k + N−1 ) , (26) 

here r B ≥0 is a (user-specified) scalar weight. The first two terms

n the objective (26) represent the performance predicted with the

urrent control model chosen by the selection rule (22) . The third

erm is the cost associated with model-selection error, the reduc-

ion of which induces a probing action for lowering the structural

odel uncertainty. 

The tractable surrogate ocp for Problem 1 can now be stated as 

min 
u k : k + N−1 

J(u k : k + N−1 ) (27a) 

subject to 

ˆ z [ i ] 
k + j+1 | k = f [ i ] z 

(
ˆ z [ i ] 
k + j| k , u k + j| k , w̄ 

[ i ] 
)
, ∀ j ∈ Z [0 ,N −1] , 

∀ M i ∈ M , (27b) 

ˆ �[ i ] 
z k : k + N = A [ i ] ˆ �[ i ] 

z k | k (A 
[ i ] ) � + E [ i ] diag 

(
�[ i ] 

w , . . . , �
[ i ] 
w 

)(
E [ i ] 
)� 

, 

∀ M i ∈ M , (27c) 

ˆ y [ i ] 
k + j| k = h z 

(
ˆ z [ i ] 
k | k , ̄v 

[ i ] 
)
, ∀ j ∈ Z [1 ,N] , 

∀ M i ∈ M , (27d) 

ˆ �[ i ] 
y k : k + N = C [ i ] ˆ �[ i ] 

z k : k + N 

(
C [ i ] 
)� + M 

[ i ] diag 

(
�[ i ] 

v , . . . , �
[ i ] 
v 

)(
M 

[ i ] 
)� 

,

∀ M i ∈ M , (27e) 

u k + j| k ∈ U, ∀ j ∈ Z [0 ,N −1] , (27f) 

g [ i 
M 
k 
] 
(
ˆ x 
[ i M 
k 
] 

k + j+1 | k 
)

≤ −c, ∀ j ∈ Z [0 ,N −1] , (27g) 

w 

[ i ] 

k + j ∼ p w [ i ] , v 
[ i ] 

k + j ∼ p v [ i ] , z 
[ i ] 

k | k ∼ p 
z [ i ] 
k 

, ∀ j ∈ Z [0 ,N −1] , 

∀ M i ∈ M , (27h) 
3 For clarity, the dependence of P UB on the input sequence is indicated explicitly 

ere. 

t  

Y  

t  

g  
ith the state estimate ˆ z 
[ i ] 

k | k and its covariance ˆ �[ i ] 
z k | k given by the

stimator equation (24) for all models M i ∈ M . Here, the con-

traints (27b) and (27c) predict the approximate state mean and

ovariance (cf. (13) and (15) ) for each of the models M i ∈ M ,

hereas (27d) and (27e) predict the corresponding output means

nd covariances (cf. (16) ); the constraints (27f) and (27g) specify

he input and state constraints, the latter for the current control

odel i M 

k 
(cf. (25) ); and (27h) specifies the given probability distri-

utions for the disturbances, measurement noise, and augmented

tate. 

The proposed mpc strategy with active learning for structural

odel uncertainty involves solution of the deterministic optimal

ontrol problem (27) at every measurement sampling time k on a

eceding horizon. This requires online estimation of the mean and

ovariance of the augmented state (i.e., ˆ z 
[ i ] 

k | k and ˆ �[ i ] 
z k | k ), as well as

he model probabilities P 
[ i ] 

M,k 
. We summarize the proposed mpc al-

orithm as follows. 

0. Initialize at time k = 0 : specify p 
z 
[ i ] 
0 

and P 
[ i ] 
M, 0 

for all models. 

1. At time k , obtain measurements y k and update ˆ z 
[ i ] 

k | k and ˆ �[ i ] 
z k | k 

for all models using (24) . 

2. Update all model probabilities P 
[ i ] 

M,k 
using (21) , and

use (22) to select i M 

k 
. 

3. Solve the ocp (27) to obtain the optimal control input se-

quence u ∗
k : k + N−1 

. 

4. Implement the control input u ∗
k | k . 

5. Predict ˆ z 
[ i ] 

k +1 | k and ˆ �[ i ] 
z k +1 | k for all models using (23) . 

6. Set k ← k + 1 and go to step 1. 

emark 4. The number of variables in (27) depends on its imple-

entation. A straight-forward formulation results in Nn u control

ariables, Nn z n m augmented-state mean variables, Nn z (n z + 1) n m / 2

ariables in the symmetric state covariance matrices, and N(N +
) n y (n y + 1) n m / 4 variables in the full symmetric output covariance

atrix (17b) . The largest number of variables thus comes from this

ast matrix, necessary to evaluate Pr(error). 

. Case study 

We here apply our proposed approach to optimiz-

ng productivity in a bioreactor case study adapted from

grawal et al. (1989) and Henson and Seborg (1992) . 

.1. Problem description with multiple model hypotheses 

In the bioreactor, biomass and a substrate react to form a prod-

ct; their respective concentrations are X, S , and P . The control in-

ut is the dilution rate u = D and the reactor volume is kept con-

tant by ensuring the volumetric inlet and outlet flows are iden-

ical. In the true system and in the model hypotheses, the states

 = [ X, S, P ] � evolve according to discrete-time equations of the

orms (6) and (7) , respectively, with 

f (x, u, w ) = 

⎡ 

⎢ ⎣ 

( −DX + μX ) �t + X (
D (S f − S) − 1 

Y X/S 

μX 

)
�t + S 

( −DP + (αμ + β) X ) �t + P 

⎤ 

⎥ ⎦ + w, (28)

here w = [ w X , w S , w P ] 
� is a vector of independent realizations

f zero-mean unit-variance Gaussian variables scaled by their re-

pective standard deviations σ X , σ S , and σ P , and �t is the sample

ime. Further, S f is the substrate concentration in the inlet feed,

 X / S is the yield of biomass per substrate consumed, α and β are

he yield parameters for the production of P , and μ is the biomass

rowth rate. The substrate and product concentrations are both
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Table 1 

Nominal parameters and operating conditions of the contin- 

uous bioreactor ( Agrawal et al., 1989; Henson and Seborg, 

1992 ). 

Variable Nominal value Unit 

Y X / S 0.4 g/g 

α 2.2 g/g 

β 0.2 h 
−1 

μmax 0.48 h 
−1 

K m 1.2 g/L 

S f 20 g/L 

P m 50 g/L 

�t 0.1 h 

σ X 0.090 g/L 

σ S 0.013 g/L 

σ P 0.112 g/L 

σv S 0.03 g/L 

σv P 1.00 g/L 

P min 0.01 –

N S 5 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulation-based tuning of the parameter r B , with the top-left point corre- 

sponding to no active learning. The ordinate shows the average time elapsed be- 

tween the controller initiates probing for active learning and correct selection of 

the model that corresponds to the structural change. The abscissa shows the av- 

erage per-hour productivity loss, relative to the optimal steady-state productivity, 

over the corresponding period of time. 

 

a  

p  

s

 

e  

r  

t  

t  

r

�

f  

�  

p  

i

5

 

c  

t  

m  

a  

c  

a  

r  

c  

i  

a  

e  

s  

p  

d  

e  

a  

t

measured; 

y k = [ S k , P k ] 
� + v k , 

where v k ∈ R 
2 and v k ∼ N (0 , diag (σ 2 

v S , σ
2 
v P )) . 

We consider three models: M = { M 0 , M 1 , M 2 } . The nominal M 0

model with saturation/monod kinetics; a model M 1 with saturation

kinetics combined with a drop in the substrate inlet feed concen-

tration, and a product inhibition model M 2 , in which the growth

rate decreases with the product concentration ( Agrawal et al.,

1989 ). The kinetic models can be interpreted as representing struc-

tural model uncertainty, with the following two growth hypotheses

that may be valid under different conditions; 

μ = 

μmax S 

K m + S 
in models M 0 and M 1 , 

and 

μ = 

μmax (1 − P/P m ) S 

K m + S 
in Model M 2 , 

where μmax denotes the maximum growth rate, K m is an affinity

constant, and P m is the maximum production rate. Model M 1 rep-

resents a fault causing a significant disturbance to the nominal op-

eration of the bioreactor, which may be difficult to identify under

regular feedback control: 

S [1] 
f 

= (1 − 0 . 25) S f . 

This fault and the random fluctuations in substrate concentration

share certain similarities, but the fault prevents acceptable opera-

tion and must be addressed through intervention. 

We consider a scenario in which the true system initially

evolves according to Model M 0 . At time t = 3 h , a change occurs

and the bioreactor starts evolving according to the structure of

Model M 1 . If and when the change is detected, the process is re-

turned to structurally evolve according to Model M 0 after 0.5 h

through some form of intervention. Table 1 lists the parameter

values used to represent the true system and the operating con-

ditions for the system. The initial conditions are X 0 = 7 . 78 g / L ,

S 0 = 0 . 55 g / L , and P 0 = 27 . 50 g / L . 

We assume that all model parameters are known, with no un-

certainty specified in θ for any model. However, we introduce

some plant–model mismatch by using wrong values for several pa-

rameters in all models used in the controllers. Relative to the true

values listed in Table 1 , all models in M have values of α, μmax ,

and σ P that are all 10 % smaller, while β , K m , σ X , and σ S are 10 %

larger. The model M 1 contains an additional parameter error: the

25 % reduction in S f is a 22 % reduction in the true system if this

fault occurs. 
We determine the desired operating point offline under the

ssumption that the system evolves according to Model M 0 . The

roduct concentration should stay as close as possible to the de-

ired value P d = 27 . 5 g/L and must be between 25 g/L and 30 g/L. 

The lower and upper bounds on the product concentration are

nforced for the expected-value predictions with a back-off pa-

ameter c 1 = 0 . 5 g/L. The dilution rate (the control) is constrained

o 0 . 015 h −1 ≤ u k ≤ 0 . 8 h −1 , and its desired value corresponding

o P d is D d = 0 . 15 h −1 . The stage cost is thus formulated as the

eference-tracking objective 

 j 

(
ˆ x 
[ i M 
k 
] 

j| k , u j| k 
)

= 

(
ˆ P 
[ i M 
k 
] 

j| k − P d 

)2 
+ 

(
u j| k − D d 

)2 
or all j on the prediction horizon. The terminal cost is

 k + N 
(
ˆ x 
[ i M 
k 
] 

k + N| k 
)

= 

(
ˆ P 
[ i M 
k 
] 

k + N| k − P d 
)2 
. In all simulations reported below, the

rediction horizon is N = 8 since there is no marginal benefit to

ncrease it beyond this value. 

.2 . MPC with active learning 

The stage cost in (26) is the tracking error in P for the current

ontrol model M 
i M 
k 

, whereas the bound P UB quantifies the struc-

ural model uncertainty. The trade-off between the two objectives,

inimizing the tracking error for the most probable model and

ctive learning for correct identification of a potential structural

hange, thus explicitly appears in the objective function. The rel-

tive importance of these two goals is specified with the weight

 B . Turning off the active-learning feature by setting r B to zero in-

reases the risk of productivity loss from a structural change that

s not identified. Conversely, increasing r B to a value so high that

ctive learning is the dominant objective results in a large tracking

rror, which leads to productivity loss. That is, a large r B can re-

ult in probing that disrupts the operation to an extent that causes

erformance loss greater than the gain from faster learning. This is

emonstrated for this case study in Fig. 4 , which shows the nec-

ssary length of time for which active learning is required, plotted

gainst the average reduction in productivity over this period of

ime. 
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Fig. 5. Histograms showing improvements that result from mpc with active learn- 

ing over mpc with passive learning in terms of (a) selection time of the correct 

model hypothesis and (b) production over the selection time obtained with passive 

learning. 
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An appropriate value for r B can be determined through a tuning

rocedure like the one we describe next. The results are obtained

hrough simulating the closed-loop system over a set of different

 B values ranging from 0 to 70, with 100 Monte Carlo simulations

or each value of r B . 

The ordinate in Fig. 4 shows the average time elapsed between

he controller initiates probing for active learning and correct se-

ection of the model that corresponds to the structural change. The

bscissa shows the average productivity loss, relative to the op-

imal steady-state productivity P d D d , over the length of time for

hich the probing is performed. The top-left point in Fig. 4 , r B = 0 ,

orresponds to the controller making no attempt to reduce the

robability of error in model selection. Increasing r B from 0 leads

o a large improvement in the time taken to select the correct

odel, with minimal increase in productivity loss. This shows that

 relatively small adjustment to the operating strategy can result

n large gains in uncertainty reduction with minor immediate loss

f performance. Note that the curve in Fig. 4 shows a short-term

ost of active learning, but it does not show the potential gain in

roductivity that is realized after the learning. That is, the trade-

ff discussed in the previous paragraph does not imply an overall

oss in control performance. Also note that there is minimal benefit

o increasing r B past 30, and that setting r B > 70 does not further

xpedite the learning. 

Based on the insight from Fig. 4 , we choose r B = 30 for the ob-

ective function of the optimal control problem (27) solved in the

imulation results presented below. This value of r B balances the

roductivity loss and the probability of selection error and is used

or structural change identification after a sudden drop in produc-

ivity signals that a change may have occurred. Further simulations

how that r B = 30 works well across a range of scenarios of struc-

ural change. 

.3. Benchmark MPC controllers 

We compare the performance of our proposed mpc strategy

ith active learning to three other control strategies: (i) nomi-

al mpc with no learning, (ii) robust mpc that accounts for struc-

ural model uncertainty, stochastic disturbances, and measurement

oise through tightening the state constraints, and (iii) mpc with

assive learning where the model is updated at any given time,

ut the controller has no probing feature to actively learn about

he process. All four mpc strategies use the ekf discussed in

ection 4.4 for state estimation. 

The nominal mpc strategy uses M 0 as the prediction model and

nforces expected-value state constraints for M 0 with the back-off

arameter c 1 discussed above. In this approach, the uncertainty

rises from not knowing which model best predicts the process

ata as well as from the stochastic disturbances and measure-

ent noise. To increase robustness to this uncertainty, we use the

onstraint-tightening approach of Limón et al. (20 02, 20 05) for ro-

ust mpc . To ensure robust constraint satisfaction while using M 0 

s the control model, we determine the bounds on the additive

isturbances and the prediction errors through 10 0 0 Monte Carlo

imulations using each of the different models to represent the

rocess. With these simulations we determine upper bounds for

he estimate error of the constrained state P k , | P k − ˆ P k | k | , and the
ne-step-ahead prediction error ‖ K(y k −C ̂  x k | k ) ‖ ∞ , both of which

old for all system realizations. With a Lipschitz constant L c =
 . 1185 for constraint tightening and after adding a 5 % margin to

ach of these bounds, a prediction horizon of N = 3 is used in the

obust mpc strategy. 

The mpc with passive learning is identical to our proposed ap-

roach with active learning except r B is set to zero. 

All tuning parameters are identical in all four controllers ex-

ept as noted above, with the shorter prediction horizon N in the
obust mpc , a nonzero r B for active-learning mpc , and updating

he control-model structure in the two controllers with learning.

ence, only the mpc with active learning predicts the covariances

n (27c) and (27e) as well as the other quantities for more than

ne model. 

.4. Simulation results 

We implement all four mpc strategies the by solving the associ-

ted special cases of the ocp (27) using ipopt 3.12.5 ( Wächter and

iegler, 2006 ) under matlab with explicit functions for the gradi-

nts. In this implementation, all variables are treated as decision

ariables. The problem can also be solved in the reduced space of

he control inputs, and the gradients can be determined using au-

omatic differentiation with tools such as casadi ( Andersson et al.,

019 ). 

Evaluating the control performance on 1500 Monte Carlo simu-

ations reveals the proposed approach with active learning outper-

orms the three other controllers, with the passive-learning mpc

eing second best. For these simulations, the cpu time for solv-

ng each instance of the optimal control problem (which with ac-

ive learning has 872 variables) on a standard laptop is on average

.167 s (standard deviation 0.023 s) for mpc with passive learning

nd 0.301 s (standard deviation 0.126 s) for mpc with active learn-

ng. Fig. 5 compares these two strategies and quantifies the two

ain advantages of mpc with active learning: faster selection of

he correct model hypothesis and, as a result, improved mitigation

f productivity loss. 

Fig. 5 (a) shows the average improvement in the speed of learn-

ng using active over passive learning. We quantify this through

mprovement in selection time, which is the time elapsed between

he structural change occurring and the controller selecting corre-

ponding model. On average, the correct model is selected 2.99 h

aster with active learning, with a standard deviation of 2.20 h.

here is a large number of cases for which the improvement is

ore than one standard deviation above the average, and crucially

here is only a small number of cases where passive learning

lightly outperforms active learning. In these few instances, the re-

lizations of the stochastic noise and disturbances are such that the

assive strategy of not actively improving the learning yield a bet-

er outcome, despite the active approach being significantly better

n expectation and on average. Fig. 5 (b) compares the difference in

otal production during the selection time relative to the passive

earning case (that is, the total productivity with passive learning

ver this time span is subtracted from the total productivity with

ctive learning over the same time span). This is thus a metric

or the production improvement obtained using active instead of

assive learning. The improvement in production is distributed

imilarly to the improvement in selection time. The average
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Fig. 6. Comparison of setpoint tracking in product concentration P using nominal 

mpc with no learning, robust mpc with no learning, mpc with passive learning ( r B = 

0 ), and mpc with active learning ( r B = 30 ). The time of the structural change at 3 h 

is indicated with a vertical line. 

Fig. 7. Comparison of input profiles D using nominal mpc with no learning, ro- 

bust mpc with no learning, mpc with passive learning ( r B = 0 ), and mpc with ac- 

tive learning ( r B = 30 ). The time of the structural change at 3 h is indicated with a 

vertical line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of productivity PD using nominal mpc with no learning, ro- 

bust mpc with no learning, mpc with passive learning ( r B = 0 ), and mpc with ac- 

tive learning ( r B = 30 ). The time of the structural change at 3 h is indicated with a 

vertical line. 
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production improvement of 23.42 g/L is significant and corre-

sponds to 5.6 h of production at the optimal productivity P d D d .

There is also here a large number of cases where the production

improvement is larger than one standard deviation of 24.55 g/L

and only a few cases in which using active learning reduces the

production relative to using passive learning. These simulation

results illustrate the importance of active learning for effectively

restoring the mpc performance in the presence of structural model

uncertainty and consequently mitigating losses in the process

performance. 

Figs. 6–8 , show representative simulations for all four strate-

gies under the same realization of disturbances and measurement

noise, illustrating their different performance. The figures show, re-

spectively, setpoint tracking in product concentration P , input pro-

files D , and productivity profiles PD . 
Fig. 6 shows how the nominal mpc results in significant tracking

rror in P , a consequence of not accounting for uncertainty. This is

he cause of the large productivity drop shown in Fig. 8 . Fig. 6 also

llustrates how the robust mpc does not significantly improve per-

ormance over the nominal one. There is minimal improvement in

racking error and no substantial change in the control input pro-

le, apparent from Fig. 7 . Accordingly, the productivity drop shown

n Fig. 8 is unacceptable also when using the robust mpc . Together,

hese figures provide representative demonstrations of how neither

he nominal mpc nor the robust mpc recovers from the structural

hange since neither has a mechanism to detect that the change

ccurred. Both controllers lower the dilution rate to maintain the

roduct concentration near its optimal steady-state value. The re-

uced inlet substrate concentration and the maintenance of this

roduct concentration together cause a slow depletion of substrate

n the reactor, which necessitates reducing the dilution rate further

efore the process settles around a lower steady-state productivity.

Fig. 7 shows how the proposed mpc with active learning uses

he dilution rate to probe the process and to reduce the proba-

ility of selecting the wrong model. In this case, the probing re-

ults in a significant improvement in mitigating the productivity

oss; see Fig. 8 . Averaged over the 1500 Monte Carlo simulations,

he integral of the squared deviation from optimal productivity for

he nominal, the robust, and the with passive- and active-learning

pc strategies are 88.7 g 2 /(L 2 h), 82.0 g 2 /(L 2 h), 79.4 g 2 /(L 2 h), and

6.9 g 2 /(L 2 h), respectively. By this metric, all mpc strategies that

ccount for the process uncertainty in some way improve the pro-

ess performance relative to the nominal mpc , with the mpc with

ctive learning being superior to the others. 

To identify the occurrence of the structural change, the mpc

trategies with passive and active learning both estimate the model

robabilities. These two strategies differ in the value of r B , which

s noted above is set to zero for passive learning. Fig. 9 compares

he estimated probabilities for the three model hypotheses that re-

ult from mpc with passive and active learning, and it illustrates

ow the average improvement in selection time shown in Fig. 5 is

chieved. These profiles correspond to the same uncertainty real-

zation shown in Figs. 6 –8 . Fig. 9 shows that the probability of the

orrect model hypothesis, P 
[1] 

M,k 
, increases faster as a result of the
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Fig. 9. Comparison of model probabilities for the three model hypotheses for mpc 

with passive (a) and active (b) learning. The time of the structural change at 3 h is 

indicated with a vertical line. 
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robing induced by active learning. In this particular case, the con-

roller with active learning selects the correct model at time 11.1 h,

.1 h after the structural change occurred. Conversely, with passive

earning the controller does not select the correct model until time

8.5 h, 15.5 h after the change. That is, the active learning reduces

he time elapsed before correct selection by 47.7 %. 

. Conclusions 

This work adopts the concept of explicit dual control to develop

 computationally tractable approach to mpc with active learning

hat increases the information content of closed-loop system data

or reducing structural model uncertainty. The proposed approach

nvolves improved hypothesis selection from a set of candidate

odels through minimizing an approximate bound on the Bayes

isk of model-selection error. Simulation results with a nonlinear

ioreactor case study demonstrate that mpc with active learning

an lead to significant improvement in the control performance

elative to nominal mpc with no learning, a robust mpc that ac-

ounts for structural model uncertainty but has no learning mech-

nism, and mpc with passive learning. mpc with active learning

an create new avenues for online model discrimination and active

ault diagnosis under closed-loop control (e.g., see Blanke et al.,

006; Heirung and Mesbah, 2019 ). 

The computationally tractable approach to mpc with active

earning developed in this paper relies on several approximations.

n particular, we approximate the state probability distributions

nd likelihoods using the first two moments and use an approx-

mate bound on the Bayes risk of model-selection error. Future

ork involves analyzing the theoretical implications of these ap-

roximations and identifying potential sources of significant con-

ervatism. The development of a tighter bound on the Bayes risk

f model-selection error and analysis of the convergence proper-

ies of the proposed approach are topics of future papers. 
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