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Structural model uncertainty is prevalent in control design and arises from incomplete knowledge of the
system or the existence of different modes of dynamic behavior, such as those arising from system faults
and malfunctions. This paper addresses control of stochastic nonlinear systems using model predictive
control, or Mpc, under structural model uncertainty. Inspired by dual control, the mMpc strategy with ac-
tive learning presented here can probe the uncertain system to select, among a set of candidates, the
model that best describes the observed closed-loop system data. The proposed controller involves on-
line model selection based on estimation of the model-hypothesis probabilities and minimization of a
computationally tractable measure of the predicted Bayes risk of selection error. The performance of the
proposed approach is compared to that of nominal mpc with no learning, Mpc with passive learning, and
a robust Mpc approach that systematically accounts for structural model uncertainty but has no learn-
ing mechanism. Simulation results on a nonlinear bioreactor demonstrate that active learning can have
significant advantages in maintaining adequate control performance in the presence of structural uncer-
tainty. Active learning can be particularly beneficial for improving online model discrimination and active

fault diagnosis under closed-loop control.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The use of multiple models has seen increasing applications
in control of nonlinear systems over a wide operating range.
Multiple-model control generally involves representing the system
dynamics with a set of local models, designing a controller for each
model, and incorporating the local controllers into a global one
using an online switching method (Murray-Smith and Johansen,
1997; Azimzadeh et al., 2001; Rodriguez et al., 2003; Ozkan and
Kothare, 2006; Boling et al., 2007; Nandola and Bhartiya, 2008;
Du and Johansen, 2014). When classic adaptive control based on
a single model with parametric uncertainty can be unsatisfactory
because of significant system uncertainties, multiple models can
enable adaptive control under structural model uncertainty; see,
e.g., Narendra and Han (2011). Uncertainty in the structure of a
model can arise from incomplete knowledge of the system (such
as unmodeled dynamics and disturbances), system dynamics that
vary significantly over time, and the occurrence of different modes
of operation that may arise from system faults and malfunctions.
Accounting for significant system variations through online model
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adaptation in multiple-model control can ensure adequate control
performance under various operating scenarios (Gopinathan et al.,
1998; Kanev and Verhaegen, 2000; Maciejowski and Jones, 2003;
Kuure-Kinsey and Bequette, 2009). One of the main challenges in
multiple-model control is developing models that correspond to
the different scenarios, some of which may be undesirable. While
improved system design can circumvent a variety of such scenar-
ios, others may occur no matter how well the system is designed
and operated, in particular if their root causes are exogenous to the
system.

Multiple-model control approaches generally involve switching
between competing models (Murray-Smith and Johansen, 1997;
Narendra and Han, 2011). That is, the control input at any given
time is computed based on a single model and is not intended
for learning about the model structure or discriminating between
the competing models. However, when the control input affects
not only the system state but possibly also the future state un-
certainty, the dual effect is present in the system (Bar-Shalom and
Tse, 1974). In this case, probing the system for information can
become an important part of reducing that uncertainty. A dual
controller, originally introduced for parametric model uncertainty
(Feldbaum, 1961), naturally incorporates probing into the control
input to actively learn about the uncertain model parameters to
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the extent required for achieving optimal control performance. The
two aspects of dual control are often referred to as exploitation
(i.e., making a decision based on the currently available informa-
tion) and exploration (i.e., probing the system for learning through
generating more information); see Astrom and Wittenmark (1995).
Although dual control is in general computationally intractable for
practical systems (Wittenmark, 1995), the growing body of litera-
ture on approximate dual control has demonstrated the benefits of
active learning under parametric uncertainty for improved control
performance relative to passive learning, in which the controller
does not increase the information content of the closed-loop data
(e.g., Shouche et al., 2002; Larsson et al., 2016; Houska et al., 2017;
La et al,, 2017; Heirung et al., 2017b; Mesbah, 2018; Lorenzen et al.,
2019).

This paper addresses the problem of simultaneous control and
active learning under structural model uncertainty in the con-
text of model predictive control, or Mpc. There is a range of
well-established methods for systematically accounting for model
uncertainty in MPC. Among the most common are robust MPC
(Bemporad and Morari, 1999; Mayne, 2014; Kouvaritakis and Can-
non, 2016), which relies on deterministic bounds on the uncer-
tainty, and stochastic Mpc (Mayne, 2014; Kouvaritakis and Cannon,
2016; Mesbah, 2016), based on probabilistic uncertainty specifica-
tions. These approaches, however, generally do not involve updat-
ing the uncertainty descriptions online. Adaptive mMpc, conversely,
updates the system model online in response to new measure-
ments, but the controller typically has no mechanism for active re-
duction of uncertainty (e.g., Tanaskovic et al., 2014; Zhu and Xia,
2016; Guay et al., 2015; Benosman, 2018).

In this work, we address the problem of mMpc with active
learning under structural model uncertainty (Heirung and Mesbah,
2017; Heirung et al., 2018) through an approach similar to dual
control for parametric uncertainty. There are fundamental differ-
ences between the problems of reducing structural model uncer-
tainty and learning model parameters. In particular, optimal inputs
for discriminating between model structures are often ill suited
for estimating parameters (Atkinson and Fedorov, 1975; Atkinson,
2008). In some cases, however, there is no clear distinction be-
tween structural and parametric model uncertainty. One example
of such a case is when large variations in some quantity have more
severe operational consequences than those more commonly rep-
resented as parameter drifts. Such large changes can additionally
have different root causes than those of smaller magnitudes. In
this case, larger variations may be better represented as significant
events that are differences in kind, rather than degree, and treated
as anomalous.

The primary focus of this paper is the introduction of active
learning to reduce structural model uncertainty in Mpc. We present
a tractable formulation for Mpc with active uncertainty reduction
for stochastic nonlinear systems. The formulation uses a set of
model hypotheses (possibly with uncertain parameters) to repre-
sent different candidates for the model structure or, alternatively,
describe various operating modes for the system. The proposed
mpc formulation includes a mechanism for active learning to re-
duce structural model uncertainty. That is, the control inputs not
only direct the system state but also facilitate model discrimination
based on closed-loop measurements. We accomplish this by mod-
ifying a finite-horizon optimal control problem to include a com-
putationally tractable measure of the Bayes risk of choosing the
incorrect model hypothesis (Matusita, 1971). The optimal control
problem explicitly accounts for the cost of future structural model
uncertainty, and its solution thus balances the costs of control and
active learning. Our receding-horizon implementation of this opti-
mal control problem relies on a Bayesian approach to recursively
update the estimated model-hypothesis probabilities.

In what follows, the idea of active learning in optimal control
under structural model uncertainty is first illustrated using a mo-
tivating example. Here, the optimal control problem with active
learning can be solved exactly (Section 2). The subsequent section
presents the control problem considered in this work and its as-
sociated challenges (Section 3), followed by the proposed solution
methods and control algorithm (Section 4). A case study involving
a nonlinear bioreactor with structural model uncertainty demon-
strates the proposed MPc strategy with active learning in Section 5.
The demonstration includes performance comparisons to nominal
MPC with no learning, a robust Mpc that systematically accounts
for structural uncertainty but has no learning mechanism, and Mpc
with passive learning.

Notation: Z,p is the set of integers {a,a+1,...,b}. v, € R"
denotes the value of v at discrete time index k, with vy, ;. de-
noting the value of v at future time k + j predicted from time k.
Zgp =124 .23,4.---,25 |7 is a vector concatenation of a sequence of
values of z, € R" from discrete time indices k = a through k =b.
With z € R" a realization of the real-valued random variable Z, p(z)
(p(z]-)) denotes the (conditional) probability density function (PDF)
for Z and E[Z] (E[Z]-]) denotes the (conditional) expected value of
Z. Pr[A] €0, 1] is the probability of event A, whereas Pr[A|-] is the
conditional probability of event A.

2. Why active learning under structural model uncertainty?

Consider the finite-horizon problem of minimizing deviation
from an unstable setpoint x* = 0 with minimal use of input energy
for a scalar, stochastic nonlinear system. Two candidate models M
and My,

2
Mo 0]y :=225(x") = 3547 + 3 4w+ w, (1a)
1 1 3 2 1
My o)y = —0375 (1) 2,25 (1) - 35443+ g+ w]

(1b)

both predict the behavior of the system near the setpoint x*, and
in both models the state is measured directly without error. In (1),
x}{’] €R, u, R, and w, € R denote the state, the control input,
and the zero-mean Gaussian white system disturbance at time k
for model i =0, 1 (indicated with superscript [i]). One of the two
models is an exact representation of the system dynamics, but it
is not known which model is “true.” However, the initial (or prior)
probability of My being true is known and denoted by le]() (with

PI% =1 —P[{/?]O). The probabilities of each model being the exact,
or the best, representation of the system can be recursively up-
dated using Bayes’ theorem with each observation of the state xy,
as discussed in Sections 3 and 4. Fig. 1 illustrates the expected suc-
cessor states of the two models and suggests that in the presence
of the disturbance, My and M; are not distinguishable around the
setpoint x*.

We consider a sequence of control laws ug., ; = {to. i1, ...,
Un—_1} such that u, = uk(xk,Pl{/?}(), with N being the length of the
finite horizon. Given an initial state Xp and a prior model proba-

bility P,{/?]O, we define the cost of using the control-law sequence
Ho:N-1 asS

N-1
](xo, P,{/%) =E[ Y ax; +ruf +qx3 |. (2)

k=0

where q and r are positive tuning parameters and the expectation
is taken over the model probabilities and the probability distribu-
tions of x; and wy. The optimal sequence of control laws ug.\_,
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Fig. 1. Expected value of the next state x}(’L,
control input u;, = 0 for the two models in (1).

given the current state x}:] and the

minimizes this cost. The corresponding optimal cost, incurred by
using (4§.y_q, is the solution to the optimal control problem

]*(xo,P,{,%> = mig](xo,P,w%). 3)

This optimal cost is also known as the cost to go N steps along the
optimal trajectory that starts at (xo,P,{/(,J_]O). Solving (3) for wo:n_1
numerically with dynamic programming results in a numerical
representation of wj.y_,. Dynamic programming involves formu-
lating (3) as a Bellman equation, which relies on the principle of
optimality (Bellman, 1957), and iterating backward in time from
k=N —1 to k= 0. Since the state, control, disturbance, and model
probability all are continuous, numerical solution involves quantiz-
ing these variables.

The model probability PI{/?_L "
plol '

Wk and Xxi.q using Bayes’ theorem. That is, the evolution of P,{/?}<
can be predicted together with x;, and both quantities depend on
the control input u;_;. Future uncertainty in the model structure,

as represented by Pm{, can thus be reduced in a predictable man-

ner using the control input. Accounting for this dual effect when
solving (3), which means treating both x; and Pm( as dynamic

can be written as a function of

quantities, enables active learning. We use ];(xo,P,!/?]O) to denote
the optimal cost obtained with this active-learning approach.

Conversely, solving (3) without including the equation that gov-
erns the evolution of PA[/(I)L as part of the dynamic model leads to a
control law that does not anticipate that future information will
influence the uncertainty. Implicitly, this control law assumes that
the model probabilities will not change, or that P)\[/?L = P};}Hk Vike
Zjo,N—1]- The control law will therefore not lead to active learning.
It does, however, permit passive learning, since the model prob-
abilities can be updated at every time step using the latest ob-
servation of x;. Accordingly, using the optimal policy that results
from solving (3) in this manner has the corresponding optimal cost
J5(xo. Pig)-

The key question here is whether the expected cost (2) that re-
sults from using the control law with active learning, ];(xO,PI{/E]O),
is significantly different from the cost incurred when using passive
learning, J; (xo, P,{,?]O). Before a quantitative analysis of this question,

o)

(0. PYO) — T3 (0, PLOY

*
P

Fig. 2. Expected benefit of active learning. The figure shows the scaled difference
in optimal expected cost with active and passive learning for the example problem
in Section 2 with a horizon length of N = 20.

consider the following. First, solving E[xﬂl] = xl = x* for the con-
trol input gives the steady-state value u* = —3 with both models.
In model M;, however, the steady-state control u® =0 results in
E[xw]] = x}:] = 2. Assume that q and r are such that operating near
x = 2 results in a lower cost than operating near x = x* = 0 if My is
true. The value of knowing whether the system evolves according
to Models My or M; is then high, and the optimal control law may
involve probing the system to learn which of the two hypotheses
is true. Qualitatively, Fig. 1 shows that close to the setpoint x* = 0,
the expected next state of the system is near identical regardless
of which model hypothesis is true. A control policy that keeps the
state in the vicinity of x* is therefore unlikely to generate informa-
tion that facilitates fast learning. It may be necessary to purpose-
fully move the state away from x* to speed up the learning, but
this probing may come at a high cost in terms of input energy and
deviation from x*. This question of whether the cost of learning
through probing is likely to generate system knowledge that the
controller can use to lower the control cost is in general difficult
to answer.

To quantify the improvement in cost by using control with
active instead of passive learning, consider the optimal costs
Ji (xo, P,{,?_]O) and J; (xo. Pz\[/(l),]o) introduced above. The benefit from ac-

tive over passive learning is the difference Jj(xo, Pz{/?, 1)) —Ji (%o, le))'
Fig. 2 shows this difference, scaled by the horizon length N = 20,
for the exact numerical solutions obtained with dynamic program-
ming. Note that the expected benefit of active learning is positive
for almost the entire Xo—P){/?](J space. The expected benefit depends
on the state and the model probabilities and is highly nonlinear
in xo and P,!/%. A key insight from Fig. 2 is that there are regions

of the XO_PI{/(I),]O space in which active learning has a very large ex-
pected benefit, and that in other areas there is relatively little or
no expected benefit. The benefit is largest for xy > 1.5; the advan-
tage of knowing the true model in this region is significant since
My is unstable and much more expensive to control than M; (see
Fig. 1). When there is a high degree of certainty in which model is
true, i.e., Pz{/?.]o is close to zero or one, there is little benefit to active
learning.

This paper considers the type of control problem discussed in
this section: optimal control of stochastic nonlinear systems un-
der structural model uncertainty using a set of model hypotheses.
Since the dynamic programming approach used to solve this exam-
ple problem is intractable even for moderately-sized systems, the
paper presents the development of a tractable receding-horizon
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Fig. 3. Illustration of the Bayesian hypothesis selection problem (after
Blackmore and Williams, 2006).

strategy with active learning for reducing structural uncertainty.
Not only can the proposed algorithm learn faster, and with higher
confidence, which of the models that best predicts the data, it can
also improve control performance relative to robust and passive-
learning Mpc approaches. Before a formal presentation of the prob-
lem formulation, the next section presents a brief overview of hy-
pothesis testing, which is central to the problem of control with
multiple models.

3. Preliminaries and problem statement
3.1. Model hypothesis selection

Consider a finite set of ny+1 model hypotheses M :=
{Mg, My, ..., Mn,,} and a prior probability Pr(M;) for each model.
The decision-theory problem of model discrimination involves
classifying the measured output y, resulting from the input u, as
predictions of one of the models in M. Note that we here use u
and y to denote general inputs and outputs; these variables may
represent sequences such as u,., and y..4 or the single-sample val-
ues like uy and y;, ;. The Bayesian decision rule for model hypothe-
sis selection minimizes the risk of misclassification, that is, the risk
of selecting an incorrect hypothesis given u and y (Hellman and
Raviv, 1970). The Bayesian decision rule can be formulated

select M;. such that i* = arg maxPr(M; |y, u), (4)
i

where Pr(M; |y, u) = p(y | M;, u)Pr(M;)/p(y | u) by Bayes’ theorem.
Here, p(y|M;, u) is the likelihood function for observing y given
hypothesis M; and the input u and p(y|u) is a normalization con-
stant commonly referred to as the model evidence or the marginal
likelihood.

Define a region R; such that the decision rule (4) selects hy-
pothesis M; when the system observation y falls into R;; that is,
Ri:={y:py|Miu)>py|Mju)V j#i}

Fig. 3 illustrates an example-set of regions and shows that Pr(y eR;,
M; | u) quantifies the probability of erroneously selecting the model
hypothesis M; when M; is the model that best predicts the data.
Hence, the probability of hypothesis-selection error Pr(error), also
known as the Bayes risk, is (Duda et al., 2002)

Nm Nm
Prierror) := 3 3 / p(y | My, u)Pr(M,)dy. (5)

i=0 j=it1”Ri
Eq. (5) reveals that Pr(error) depends on the input u. As evident
from Fig. 3, inputs that reduce the overlap between the distribu-
tions p(y|M;, u) decrease Pr(error) and thus facilitate model dis-
crimination. Note that for arbitrary distributions and in higher-
dimensional space, the regions R; may be difficult or impossible
to determine (see, e.g., Duda et al, 2002). The key property of
the proposed mpc algorithm developed in this paper is reduction
of structural model uncertainty for a nonlinear stochastic system
through reducing Pr(error) while simultaneously controlling the
system.

3.2. Problem formulation

Consider a stochastic system S with discrete-time dynamics

X = S, we wy),
S: 6
{ Vi = he(x. v), ()

where k is the time index; x, € R™, u, € R™, and y, € R are the
system state, control input, and output, respectively; w, € R™ is
the system disturbance; v, € R™ is the measurement noise; and
fr i R™ x R™ x R™ — R™ and hy, : R™ x R™ — R™ describe the
(possibly) nonlinear system dynamics and the measurements, re-
spectively. Because of the structural uncertainty in modeling f; and
h, and the potential changes in the dynamics over time, we con-
sider a finite set of models denoted by M := {My, My, ..., Mp,,}.
Here, each model M; represents a hypothesis for describing the
system S with dynamics of the form

ALy = () w010, ),
YT = il (x}jl, olil, v;jl).

Each of the models may have uncertain parameters 6!, and the
superscript [i] is used to distinguish the functions and variables
associated with each model M; € M. Note that the functions and
variables associated with the true system S in (6) have no super-
script [i]. ) .

The sequences WL'] and v}:] are both independent realizations
of identically distributed random variables with known probabil-
ity distributions p(w!ll) and p(v!!). The initial condition xg] and
parameter vector 8!l in model i are unknown, and are modeled
as time-invariant probabilistic uncertainties with known joint PDF
p(xg], 6lil). A hypothesis M; contains all the information necessary
for specifying model i;

M; := {fm, hlil, p(xg], G[il), p(wE]>, p(v}{”) } (8)

The true system S is not necessarily contained in the set of model
candidates M. All models in M and the system S have the same
control inputs u, and measurements y,; that is, the respective di-
mensions of these signals, ny and ny, are identical across all mod-
els in M. Note that the numbers of states, unknown parameters,
and stochastic disturbance and noise elements may vary between
models and the system S.
The control inputs u; in (6) are constrained to a polytope U:

ug € U = {ug | Autg < bu}, ©)

(7)

where Ay € R b, € R, and n. is the number of input con-
straints. The state constraints are specified as a set of np inequality
constraints,

g[i]<x5<i]> <0, Vie{l,...,nm}, (10)

where glil : R — R™ defines the inequalities.! However, since the
system evolves as a stochastic process that is observed through
noisy measurements, the constraints (10) cannot be enforced di-
rectly. We implement these constraints probabilistically in the pro-
posed MPc, as discussed below.

As demonstrated in the motivating example in Section 2, ac-
tive learning under model uncertainty can be a central component
in optimal control. The optimal control problem we consider is
thus twofold: (i) regulating the system dynamics, and (ii) active
learning that reduces the structural model uncertainty. Inspired

T If the number of state constraints n, vary between the models, which may be
the case if the models have different state dimension n,, gl! is defined accordingly
for every model.
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by explicit methods for dual control with parametric uncertainty
(Wittenmark, 1995; Filatov and Unbehauen, 2000; Mesbah, 2018),
this paper formulates an explicit cost for the probability of future
model-selection error that is minimized along with the stage and
terminal costs. Including the cost of reducing the structural uncer-
tainty in the optimal control problem (or ocp) enables probing of
the system to determine which model hypothesis in (8) that best
describes the observed closed-loop dynamics.

For the stochastic nonlinear system S in (6) with structural
model uncertainty, we state the ocp considered in this paper for-
mally as follows.

Problem 1 (Optimal control of stochastic systems with active
learning under structural model uncertainty). At sampling time k,
determine the optimal input sequence uy,, . , for the system S
in (6) that minimizes a cost function consisting of the terminal cost
En(xy), the stage cost €(x;, ui) over the horizon Zy yiy-_1}, and
the probability of model-selection error Pr(error) in (5), given the
model set M in (8), while satisfying the state constraints (10) with
specified confidence, and the input constraints (9).

The solution to the ocp in Problem 1 involves a balance be-
tween controlling the system based on current knowledge and
reducing the structural uncertainty at every sampling time k to
improve control performance. Solving Problem 1 on a receding
horizon thus leads to an MpPc strategy with active learning. The
MPC applies only the first element of the optimal input sequence,
uzlk, to the system S at every discrete time k and re-solves
the optimal control problem at the subsequent sampling time
incorporating new information from the system measurements.

Remark 1. Problem 1 does not specify how the terminal and stage
costs, the state constraints, and probability of model-selection er-
ror are evaluated. For example, this general formulation permits
implementation choices such as whether to enforce the state con-
straints for all models in the set M or only the one that has the
highest probability at any given time. The choices made in this pa-
per are discussed in the following section.

The goal of this paper is to present a tractable formulation for
MmPC with active learning for structural model uncertainty. We dis-
cuss some of the main considerations in receding-horizon imple-
mentation of the ocp in Problem 1 in the following.

Computation of the probability of model-selection error: Eval-
uating the probability of model-selection error Pr(error) in (5)
requires computing multivariate integrals over the probabil-
ity distribution p(Yi,1:k4n | Mi, Ugpon—1) Over the decision re-
gions depicted in Fig. 3. In general, no closed-form expression
for pWis1:ken | Mis Ugen—1) eXists, rendering exact evaluation of
Pr(error) intractable (Blackmore and Williams, 2006). The primary
challenge in solving the ocp in Problem 1 is deriving a computa-
tionally tractable approximation for Pr(error) given the model set
M.
Online estimation of model probabilities: Receding-horizon im-
plementation of Problem 1 also requires online estimation of the
conditional model probabilities Pr(M; |y,) at every sampling time k
to update the probability of model-selection error Pr(error) based
on the output y,. This problem is in its general form referred to
as multiple-model estimation (Ackerson and Fu, 1970). This is an
intractable problem that suffers from exponential growth in com-
plexity over time; see Li and Bar-Shalom (1996) for an overview
and discussion of different solution approaches.

Uncertainty propagation: Solving Problem 1 requires efficient
propagation of the probabilistic model uncertainty in xq and 6
as well as the stochastic disturbances wj and noise v, through
the nonlinear models M; € M. The probability distribution of the
model outputs p(Viyq:ksn | Mis Uggen—1), O their statistical mo-

ments, are required for evaluating the cost function of the ocp.
The probabilistic state information can also be used to enforce the
state constraints (10) with a specified probability of satisfaction. In
general, however, joint propagation of parametric uncertainty and
stochastic noise poses a significant challenge to optimal control for
nonlinear systems (Paulson and Mesbah, 2017). The widely-used
random-sampling approaches to uncertainty propagation (Cowles
and Carlin, 1996; Caflisch, 1998; Kantas et al., 2009) are primar-
ily developed for propagating one source of uncertainty (i.e., either
time-invariant parametric uncertainty or time-varying stochastic
disturbances) and can be computationally prohibitive for online
optimization. Moreover, these methods are generally ill-suited for
gradient-based optimization since they do not lend themselves to
accurate and precise gradient computation.

The proposed MPC strategy involves approximating the prob-
ability distribution p(Vy1:k4n | Mi, Ugpon—1) in terms of its
moments. As shown in the next section, this enables approximat-
ing the ocp in Problem 1 with a deterministic surrogate that is
amenable to online solution. Established methods for moment-
based approximation of probability distributions include lineariza-
tion (Ljung, 1979) and the unscented transform (Julier and Uhlmann,
1997; 2004). For conceptual and notational simplicity, we here ap-
proximately solve Problem 1 through approximating the first two
moments of the probability distributions using linearization. Other
methods for approximating p(Vi,1:ken | Mi, Ug:pyn—1), Such as the
unscented transform, are equally well-suited for our proposed
approach. The unscented transform is particularly useful when the
system dynamics exhibit a high degree of nonlinearity, or when
computation of the model Jacobians is computationally prohibitive.

4. Approximate solution to optimal control with active
learning

This section first presents the methods used to address the
challenges associated with solving the ocp in Problem 1 as dis-
cussed above. We subsequently present an algorithm for Mmpc with
active learning for reducing structural model uncertainty based on
a deterministic surrogate for Problem 1.

4.1. Joint propagation of probabilistic model uncertainty and
stochastic disturbances

The uncertainty propagation approach adopted in this work
is based on augmenting the state vector xE{’] with the unknown
time-invariant parameters 6l in the model Eq. (7). Omitting the
model-index superscript [i], denote the augmented state vector by
z=[x]. 61", where the parameters 6 have constant dynamics
Or.1 = O¢. The augmented state vector then evolves according to

Xk, Uy, O, W,
Zir1 = fo(z U Wy) = [f( k ’ék k k)}. (11a)
Similarly, the output equation takes the form
Y = hz(z, 1), (11b)

where f;:R" x R x R™ — R™ and h; : R x R"™ — RW, n, =
nx +ng, and p(zg) = p(xg, &) is the joint probability distribution of
the initial augmented state.

There exists no closed-form method for propagation of
probabilistic uncertainties through a general nonlinear system
(Chen, 2003). This work relies on propagating the moments of
the probability distributions of the augmented state and output
in (11). The moment-based method used here for joint propagation
of probabilistic model uncertainty and stochastic disturbances is
based on linearization of the augmented system dynamics (11) and
approximation of the probability distributions of the state and
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output as multivariate Gaussian distributions. Linearization is a
well-established method for uncertainty propagation in recursive
Bayesian estimation, resulting in the extended Kalman filter, or EKF,
for state estimation in nonlinear systems (e.g., Ljung, 1979; Simon,
2006).

A first-order Taylor series approximation of the augmented
state equations in (11a) with respect to the state and disturbance
results in

Ziet % f2(Ze W W) + Ax(2k — 2) + Ex (Wi — W), (12)
where
Ak = % ko= afz

0z 15y W I3 i

2, ~ 7z} = E[z] is the approximated mean of the augmented state,
and w = E[w;]. The evolution of Z; is described by

Zie1 = 2 (G, wg, W), (13)

starting from Zy=2Z;, which has a known distribution.
Hence, (12) can be written in terms of the deviation variables
Azy =z, —Z, and Aw,=w,—w, leading to the linear time-
varying system

Azk+1 = AkAZk + E](AWk. (14)

Note that since we do not linearize the augmented state equations
in (11a) with respect to uy, the input enters (14) directly through
Az, 1, which is a function of f;(Z, uy, w). The covariance of the
augmented state, denoted by X, can now be approximated as
f)zk = E[AZ,CAZII]. Using (14), we arrive at the Lyapunov-type re-
cursive expression

o, =AZLAL +ESWE], with £, =%, (15)
for the evolution of the approximate covariance. Similarly,

the approximate mean and covariance of the model output
in (11b) evolve as

I = hz(2. 7). (16a)
e = GEL G+ MM (16b)
where
¢, .o dh: ._ Oh

e 0z 2,(,:7’ © vy 2k,17.

To predict the future evolution of the first two moments of the
augmented state and output in (11) over the prediction horizon k
to k + N while capturing the cross-correlation of moments in time,
we collect the moment propagation equations for all future sam-
pling times into one set of equations. The predicted sequence of
augmented state deviations from time k to k + N can be written as
Azppon = AAZ + EAWy v, Where
-

A

AAy

1_[%;11 Aj
L [Tj=14;

-0 0 0
Eo 0 0
AEq Eq
E =
AzA]E() AzEl E2
: : ) 0
| 175 AjEo H?’Qzl AjE, An_1En_2  En_q |

Note that each A; and E; both depend on the predicted input u .
from the sequence uy.,,y. The covariances of the augmented state
from time k to k + N evolve as

S =AS, AT + Ediag (2w, ..., Sw)E".

Similarly, using (16), we collect the equations for predicting the
output moments over the prediction horizon k to k + N into

AYikin = CAYg + MAV N, (17a)

Sypn = CEz, €T+ Mdiag(Zy, ... T)M', (17b)

where C =diag(C;, ..., Cy) and M = diag(M;, ..., My). Note that
the symmetric matrix flykw in (17b) captures the cross-
correlation of the predicted output covariances in time.

4.2. Tractable approximation of the probability of model-selection
error

For the nonlinear setting considered in this work, there ex-
ists no closed-form expression for evaluating the Bayes risk of
hypothesis-selection error Pr(error) in the cost function of the ocp
in Problem 1. Assuming that the output of the model hypotheses
in the set M has a multivariate Gaussian distribution, an upper
bound (Matusita, 1971; Blackmore and Williams, 2006) can be de-
rived for Pr(error). Given the information available at time k, let
lek := Pr(M; | Yo.» Ug:k—1) be the probability of model M; being the
best, or most appropriate, representation of the system. For the
nm + 1 model hypotheses in M, Pr(error) can be bounded as

Pr(error) < Pyg,

where the bound Pyg over the prediction horizon k+ 1 to k+ N is
defined in terms of pairwise Bhattacharyya bounds as

Nm  Nm
. [il plil
Pup -= Z Z PPt
i=0 j=it+1

[i] [i] [l 1]
X exp <_dB <y1<l+1:k+N’ Eyj<+1:/<+N’yI(]+1Zk+N’ E}’iﬂ;mw)) (18&1)

with
dy (y11, S, ylil, T <= %(ym _ym)T[gm " Em]*] (11— Y1)

lil 4 il
Pl () (18b)
2\ 2/|=1 |z

The quantity dg is known as the Bhattacharyya distance between
the predicted distributions of the output of models i and j, as-
suming that the distributions are Gaussian and thus described by
the predicted mean and covariance of the output y; see (17). We
here use the bound (18a) as a tractable surrogate for the prob-
ability of model-selection error Pr(error) in the cost function of
Problem 1. While the bound Pyg is not guaranteed to hold in the
case of nonlinear models or non-Gaussian distributions, the goal of
the proposed approach is not to quantify the probability of model-
selection error. Rather, the goal is to lower this probability to the
extent that it benefits control performance in expectation. If reduc-
ing the bound Pyg does not sufficiently improve the control per-
formance, there is a variety of metrics that quantify the overlap or
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similarity between distributions that can be employed. Gibbs and
Su (2002) provide an extensive overview of various such met-
rics, including the Hellinger distance, the Kullback-Leibler diver-
gence, the Kolmogorov metric, and the Wasserstein metric. How-
ever, these metrics do not directly correspond to (a bound on)
the probability of selecting the wrong hypothesis, the reduction of
which is the objective in the proposed mMpc strategy.

4.3. Model probability estimation and model selection

As evident from (18), the bound Pyg depends on the model
probabilities lek. Thus, online estimation of the model proba-
bilities is important for evaluating Pyg when solving the ocp in
Problem 1 on a receding horizon. We use Bayesian recursion to
estimate P' for each of the model hypothesis in the set M given
the measurements Vi

Let the prediction error of each model M; be defined as

=Yk~ E[XL“ | Yo:k—1- Uo:k—1 Mi]- (19)

When the model outputs are sufficiently separated, the model pre-
diction error el’l is small for the model i that currently best pre-
dicts the data generated by the true system S, relative to the
prediction error for the other models; cf. Fig. 1. That is, the er-
ror (19) is a measure of how well each model predicts the ob-
served system outputs at time k. The prediction errors e}(’] can

[i]
ek

be used to estimate the model probabilities P[] recursively using
Bayes’ theorem (e.g., see Simon, 2006). The 111<e11hood of measur-
ing y, under model hypothesis i is proportional to the probability
of observing y, conditioned on model M; and the past measure-
ments yg.,_1; i.e,

I o pyic | you-1. My).

Determining the density on the right-hand side of the above ex-
pression involves evaluation of multivariate integrals for which no
closed-form solution exists for general nonlinear model equations.
In this work, we approximate the likelihood Lkl in terms of the first
two moments of y;, such that the right-hand side density takes the
form of a multivariate Gaussian distribution. That is, we approxi-
mate the likelihood as

P | Yoot Mi) ~ exp (——(e};‘) z,'e). (20)

Eq. (20) incorporates that the components of y, with large mea-
surement noise covariance have a relatively smaller contribution
to the likelihood. Based on the likelihood of observing the mea-
surements under each of the model hypotheses, we can now use
Bayes’ theorem to estimate the probablhty of each of the models
best predicting the data. Let P[’], and P Mk ; denote the posterior
and prior probabilities of model i. The Bayesian recursion approxi-
mates the posterior probability of each model i as
) plil -l
P)\[/zgk _ Mk—1"k Q1)

Nm [jl [jl1°
Z} OPM k— Lk

With the model probabilities determined, the Bayesian decision
rule selects the model i; that has the largest posterior probability
at time k; i.e.,
iy i=arg EnaxPI{/'[]k
At times when there are two or more models that have the highest
and near-highest probabilities, using if for control can lead to fre-
quent switching between models. To avoid this behavior, the pro-
posed MPc strategy chooses the control model i};" according to

{i,’; if iy = lk]V]E{lZ ., Ns},

M
L

= 22
¢ otherwise. (22)

Here, Ns is the number of sampling times the most probable model
iy must remain the same for it to be selected as the control model.
The value of Ng must be chosen on a case-by-case basis, with par-
ticular attention to the variance of the stochastic disturbances and
noise as well as the tuning of the state estimators.

Remark 2. When a sequence of system observations is signifi-
cantly different from the predictions of a particular model hypoth-
esis, the corresponding model probability quickly approaches zero.
However, note that if the scenario corresponding to that model
hypothesis subsequently occurs, the model probability would in-
crease very slowly despite high likelihoods, since the likelihood is
multiplied by a near-zero prior probability. Thus, the controller can
only adapt slowly to the change in scenario, potentially leading to
degradation of the control performance. To avoid this issue, we in-
troduce a lower bound P,,;, on the probabilities P,{/l,]k, similar to the
approach of Aufderheide and Bequette (2003), and renormalize to
ensure that ) '™ P[‘] =1

Remark 3. We here make the conventional choice (Murray-Smith
and Johansen 1997; Narendra and Han, 2011) of using only one
model 1k for evaluating the control objective and the state con-
straints (discussed below) and switching between the models as
appropriate. Alternatively, one can use two or more models in de-
termining the control cost and in constraint enforcement, for in-
stance by weighting the output variables (Kuure-Kinsey and Be-
quette, 2010) and constraints by the model probabilities used
in their evaluation. Using such a weighted approach can enable
smoother control profiles, but it can also result in more conser-
vative performance as well as increased computational cost owing
to a larger number of constraints.

4.4. State and parameter estimation

Our proposed approach to mpc with active learning does not
depend on a specific type of estimation algorithm. Hence, both
for simplicity of presentation and for its symmetry with the pro-
posed propagation approach presented in Section 4.1, we here use
the EKF over more involved alternatives such as the unscented
Kalman filter (Ukf; Julier and Uhlmann, 2004), particle-based fil-
ters (e.g., Arulampalam et al,, 2002), and moving-horizon estima-
tion (Robertson et al., 1996). The EKF uses the model Jacobians to
propagate the mean and covariance of z, using (13) and (15), re-
spectively (Simon, 2006).2 The prediction step of the EXF for every
model M; consists of

5li] [l] 5lil i

k=1 = (Zk ko1 Uk-1- [']>, (23a)
$ulil il il RN

e = Al X (Akq) + B X (Ek,1> . (23b)

Once the system measurements y; are observed, the posterior
distribution of z; is updated according to

el (y,( — i (2};“1,{4 , Dlﬂ)),

Sl _ gl il

Zik — T Zkjk-1 Vilk-1

5lil 5lil
Zhike = “kjk-1

(24a)
k!, (24b)

where the Kalman gain is defined by

lil _ gLl
Kl =%

-1
i $h[i]
Zie|k—1-Yklk-1 (Z}’k\kq .

2 Alternatively, state and parameter estimation can be performed separately, for
instance using a dual-estimation approach (see, e.g., Wan and Nelson, 1996.)
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4.5. State constraint implementation

A rigorous treatment of various approaches to enforcing and
implementing the state constraints (10) is beyond the scope of this
paper. We here employ the approach of selecting a parameter vec-
tor c € R™ > 0 for constraint back-off (see, e.g., Farina et al., 2016;
Heirung et al.,, 2017a; Paulson and Mesbah, 2018; Koller et al.,
2018). The proposed Mpc enforces the state constraints for the
expected-value state predictions from the current control model il’:/'
at time k. That is, we implement

iM] A[ ] .
g[lk (Xk'+]+1|k> <=—¢ Vije Z[O,N—l]' (25)

Note that since the predicted (augmented) state statistics are com-
puted to evaluate Pyg (cf. Sections 4.1-4.2), specifying satisfaction
probabilities for the individual constraints in (10) is a trivial exten-
sion of the proposed MPC strategy.

4.6. Algorithm for MPc with active learning for structural model
uncertainty

We now formulate a deterministic surrogate for the ocp in
Problem 1 using the methods discussed above. The control objec-
tive is evaluated over the horizon k to k+ N and consists of the
bound Pyg (uy.,,n_1) in (18a), which provides a tractable approxi-
mation of the probability of model-selection error, as well as the

M . M
stage cost ¢;(X ”k,u]‘k) and the terminal cost €’<+N(Xk+N|k) both
for the nominal state trajectory predicted with the current control
iM . . .
model MUk13 That is, we define the control objective
k+N-1

SliY A[' ]
JUkekin-1) = Z ¢ ( ]|k’u1\k> +ek+N< k+N|k>
=k

+ 18Py (Ujekn—1) (26)

where 13 >0 is a (user-specified) scalar weight. The first two terms
in the objective (26) represent the performance predicted with the
current control model chosen by the selection rule (22). The third
term is the cost associated with model-selection error, the reduc-
tion of which induces a probing action for lowering the structural
model uncertainty.

The tractable surrogate ocp for Problem 1 can now be stated as

umln JUeken-1) (27a)
kik+N—1
subject to
il {i] ;
Zkl+1+l|k 2 (ZI(+]|k’ Uger jlks W ]), VieZpn-
VYMie M,  (27b)
S~ ASI AT 1l diag (zw, L zw) ()",
VYM;ie M,  (27¢)
oli] [i] ;
Ficejue=ha (Zkll . vm) VieZpn,
VMie M, (27d)
S =gl ()" 4 mil diag (Em ’ ZLI’])(M[H)T’
VM;eM, (27e)
Ui jik € U, VijeZon) (27f)

gl Py <-—c
krjrik ) = 6

[i] il
Wiy j ~ Pwits Vi

VijeZonoy (27g)

VjeZgn-a)
VMi e M,

~ Py, ZEI]k ~ P
(27h)

3 For clarity, the dependence of Pyg on the input sequence is indicated explicitly
here.

with the state estimate 2!/ and its covariance E['] given by the

k|k

estimator equation (24) f‘or all models M; e M. Here, the con-
straints (27b) and (27c) predict the approximate state mean and
covariance (cf. (13) and (15)) for each of the models M; € M,
whereas (27d) and (27e) predict the corresponding output means
and covariances (cf. (16)); the constraints (27f) and (27g) specify
the input and state constraints, the latter for the current control
model il’:" (cf. (25)); and (27h) specifies the given probability distri-
butions for the disturbances, measurement noise, and augmented
state.

The proposed MPc strategy with active learning for structural
model uncertainty involves solution of the deterministic optimal
control problem (27) at every measurement sampling time k on a
receding horizon. This requires online estimation of the mean and

covariance of the augmented state (i.e., L’“ and EZklk) as well as

the model probabilities Pl{/';]k. We summarize the proposed Mpc al-
gorithm as follows.

for all models.

5il [i]
ik and Ezklk

0. Initialize at time k = O: specify p il and P'

1. At time k, obtain measurements y; and update Z
for all models using (24). )

2. Update all model probabilities lek
use (22) to select i),

3. Solve the ocp (27) to obtain the optimal control input se-
quence up, 4

4. Implement the control input uk| ke
5. Predict 2}('] 1k and Eg(] ™ for all models using (23).

6. Set k < k+1 and go to step 1.

using (21), and

Remark 4. The number of variables in (27) depends on its imple-
mentation. A straight-forward formulation results in Nn, control
variables, Nn;ny, augmented-state mean variables, Nnz(n; + 1)nm /2
variables in the symmetric state covariance matrices, and N(N +
1)ny (ny + 1)nm/4 variables in the full symmetric output covariance
matrix (17b). The largest number of variables thus comes from this
last matrix, necessary to evaluate Pr(error).

5. Case study

We here apply our proposed approach to optimiz-
ing productivity in a bioreactor case study adapted from
Agrawal et al. (1989) and Henson and Seborg (1992).

5.1. Problem description with multiple model hypotheses

In the bioreactor, biomass and a substrate react to form a prod-
uct; their respective concentrations are X, S, and P. The control in-
put is the dilution rate u = D and the reactor volume is kept con-
stant by ensuring the volumetric inlet and outlet flows are iden-
tical. In the true system and in the model hypotheses, the states
x=[X, S, P]" evolve according to discrete-time equations of the
forms (6) and (7), respectively, with

(=DX + uX)At +X
fx,u,w) = D(S¢—S) — Ylux)At +S|+w, (28)
X/S
(—DP + (ap + B)X)At + P

where w = [wy, wg, wp]T is a vector of independent realizations
of zero-mean unit-variance Gaussian variables scaled by their re-
spective standard deviations oy, o, and op, and At is the sample
time. Further, S; is the substrate concentration in the inlet feed,
Yys is the yield of biomass per substrate consumed, & and 8 are
the yield parameters for the production of P, and u is the biomass
growth rate. The substrate and product concentrations are both
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Table 1
Nominal parameters and operating conditions of the contin-
uous bioreactor (Agrawal et al., 1989; Henson and Seborg,

1992).
Variable Nominal value Unit
Yxis 04 glg
o 22 glg
B 0.2 h!
Ihmax 0.48 h!
K 12 g/L
S 20 g/L
P 50 g/L
At 0.1 h
ox 0.090 g/L
os 0.013 g/L
op 0.112 g/L
o, 0.03 g/L
Oy 1.00 g/L
Prnin 0.01 -
Ns 5 -

measured;

Vi =[Sk Pel" + v,

where v, € R? and vy ~ N (0, diag(oy,, 02)).

We consider three models: M = {My, My, M,}. The nominal M,
model with saturation/monod kinetics; a model M; with saturation
kinetics combined with a drop in the substrate inlet feed concen-
tration, and a product inhibition model M,, in which the growth
rate decreases with the product concentration (Agrawal et al.,
1989). The kinetic models can be interpreted as representing struc-
tural model uncertainty, with the following two growth hypotheses
that may be valid under different conditions;

= Il:mi’:ss in models My and My,
m
and
W= Hmax (1 = P/Pm)S in Model M,,

Kn+S

where [tmax denotes the maximum growth rate, K, is an affinity
constant, and Py, is the maximum production rate. Model M; rep-
resents a fault causing a significant disturbance to the nominal op-
eration of the bioreactor, which may be difficult to identify under
regular feedback control:

st = (1-0.25)s;.

This fault and the random fluctuations in substrate concentration
share certain similarities, but the fault prevents acceptable opera-
tion and must be addressed through intervention.

We consider a scenario in which the true system initially
evolves according to Model M. At time ¢t = 3h, a change occurs
and the bioreactor starts evolving according to the structure of
Model M;. If and when the change is detected, the process is re-
turned to structurally evolve according to Model M, after 0.5h
through some form of intervention. Table 1 lists the parameter
values used to represent the true system and the operating con-
ditions for the system. The initial conditions are X, =7.78g/L,
So=0.55g/L, and Py = 27.50¢g/L.

We assume that all model parameters are known, with no un-
certainty specified in 6 for any model. However, we introduce
some plant-model mismatch by using wrong values for several pa-
rameters in all models used in the controllers. Relative to the true
values listed in Table 1, all models in M have values of «, max,
and op that are all 10% smaller, while 8, Km, oy, and o are 10%
larger. The model M; contains an additional parameter error: the
25% reduction in S¢ is a 22 % reduction in the true system if this
fault occurs.

Necessary lenght of probing period (h)

rg =70

2.8 2.9 3.0 3.1
Average productivity loss over the probing period (g/(Lh))

Fig. 4. Simulation-based tuning of the parameter rg, with the top-left point corre-
sponding to no active learning. The ordinate shows the average time elapsed be-
tween the controller initiates probing for active learning and correct selection of
the model that corresponds to the structural change. The abscissa shows the av-
erage per-hour productivity loss, relative to the optimal steady-state productivity,
over the corresponding period of time.

We determine the desired operating point offline under the
assumption that the system evolves according to Model My. The
product concentration should stay as close as possible to the de-
sired value Py = 27.5 g/L and must be between 25 g/L and 30 g/L.

The lower and upper bounds on the product concentration are
enforced for the expected-value predictions with a back-off pa-
rameter ¢; = 0.5 g/L. The dilution rate (the control) is constrained
to 0.015h~! <u, <0.8h~!, and its desired value corresponding
to Py is Dg =0.15 h~1. The stage cost is thus formulated as the
reference-tracking objective

. ; 2
Sl Blix'l 2
@J'(Xjfk 7”j|k> = (Pﬂi —Pd> + (i = Da)
for all j on the prediction horizon. The terminal cost is

iM M
[k+N(2§<lli131|k) = (Pl£l+kl\}|k - Pd)z. In all simulations reported below, the
prediction horizon is N = 8 since there is no marginal benefit to

increase it beyond this value.
5.2. MPC with active learning

The stage cost in (26) is the tracking error in P for the current
control model My, whereas the bound Pyp quantifies the struc-

tural model uncerktainty. The trade-off between the two objectives,
minimizing the tracking error for the most probable model and
active learning for correct identification of a potential structural
change, thus explicitly appears in the objective function. The rel-
ative importance of these two goals is specified with the weight
rg. Turning off the active-learning feature by setting rg to zero in-
creases the risk of productivity loss from a structural change that
is not identified. Conversely, increasing rg to a value so high that
active learning is the dominant objective results in a large tracking
error, which leads to productivity loss. That is, a large rz can re-
sult in probing that disrupts the operation to an extent that causes
performance loss greater than the gain from faster learning. This is
demonstrated for this case study in Fig. 4, which shows the nec-
essary length of time for which active learning is required, plotted
against the average reduction in productivity over this period of
time.
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An appropriate value for rz can be determined through a tuning
procedure like the one we describe next. The results are obtained
through simulating the closed-loop system over a set of different
rg values ranging from 0 to 70, with 100 Monte Carlo simulations
for each value of rg.

The ordinate in Fig. 4 shows the average time elapsed between
the controller initiates probing for active learning and correct se-
lection of the model that corresponds to the structural change. The
abscissa shows the average productivity loss, relative to the op-
timal steady-state productivity P4Dg4, over the length of time for
which the probing is performed. The top-left point in Fig. 4, rg = 0,
corresponds to the controller making no attempt to reduce the
probability of error in model selection. Increasing rg from 0 leads
to a large improvement in the time taken to select the correct
model, with minimal increase in productivity loss. This shows that
a relatively small adjustment to the operating strategy can result
in large gains in uncertainty reduction with minor immediate loss
of performance. Note that the curve in Fig. 4 shows a short-term
cost of active learning, but it does not show the potential gain in
productivity that is realized after the learning. That is, the trade-
off discussed in the previous paragraph does not imply an overall
loss in control performance. Also note that there is minimal benefit
to increasing rg past 30, and that setting rz > 70 does not further
expedite the learning.

Based on the insight from Fig. 4, we choose rg = 30 for the ob-
jective function of the optimal control problem (27) solved in the
simulation results presented below. This value of rg balances the
productivity loss and the probability of selection error and is used
for structural change identification after a sudden drop in produc-
tivity signals that a change may have occurred. Further simulations
show that rg = 30 works well across a range of scenarios of struc-
tural change.

5.3. Benchmark MPC controllers

We compare the performance of our proposed MPC strategy
with active learning to three other control strategies: (i) nomi-
nal mpc with no learning, (ii) robust mpc that accounts for struc-
tural model uncertainty, stochastic disturbances, and measurement
noise through tightening the state constraints, and (iii) MPc with
passive learning where the model is updated at any given time,
but the controller has no probing feature to actively learn about
the process. All four Mpc strategies use the EKF discussed in
Section 4.4 for state estimation.

The nominal MPc strategy uses My as the prediction model and
enforces expected-value state constraints for My with the back-off
parameter c; discussed above. In this approach, the uncertainty
arises from not knowing which model best predicts the process
data as well as from the stochastic disturbances and measure-
ment noise. To increase robustness to this uncertainty, we use the
constraint-tightening approach of Limén et al. (2002, 2005) for ro-
bust Mpc. To ensure robust constraint satisfaction while using My
as the control model, we determine the bounds on the additive
disturbances and the prediction errors through 1000 Monte Carlo
simulations using each of the different models to represent the
process. With these simulations we determine upper bounds for
the estimate error of the constrained state Py, |P; —I3k|k|, and the
one-step-ahead prediction error |[K(y, — C&i)|loo. both of which
hold for all system realizations. With a Lipschitz constant L; =
1.1185 for constraint tightening and after adding a 5% margin to
each of these bounds, a prediction horizon of N = 3 is used in the
robust MPC strategy.

The mpc with passive learning is identical to our proposed ap-
proach with active learning except rp is set to zero.

All tuning parameters are identical in all four controllers ex-
cept as noted above, with the shorter prediction horizon N in the
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Fig. 5. Histograms showing improvements that result from mpc with active learn-
ing over Mpc with passive learning in terms of (a) selection time of the correct
model hypothesis and (b) production over the selection time obtained with passive
learning.

robust MPC, a nonzero rg for active-learning mpc, and updating
the control-model structure in the two controllers with learning.
Hence, only the mpc with active learning predicts the covariances
in (27c) and (27e) as well as the other quantities for more than
one model.

5.4. Simulation results

We implement all four Mpc strategies the by solving the associ-
ated special cases of the ocp (27) using 1popPT 3.12.5 (Wdchter and
Biegler, 2006) under MATLAB with explicit functions for the gradi-
ents. In this implementation, all variables are treated as decision
variables. The problem can also be solved in the reduced space of
the control inputs, and the gradients can be determined using au-
tomatic differentiation with tools such as casapi (Andersson et al.,
2019).

Evaluating the control performance on 1500 Monte Carlo simu-
lations reveals the proposed approach with active learning outper-
forms the three other controllers, with the passive-learning MPC
being second best. For these simulations, the cpu time for solv-
ing each instance of the optimal control problem (which with ac-
tive learning has 872 variables) on a standard laptop is on average
0.167 s (standard deviation 0.023 s) for Mpc with passive learning
and 0.301 s (standard deviation 0.126 s) for Mpc with active learn-
ing. Fig. 5 compares these two strategies and quantifies the two
main advantages of Mpc with active learning: faster selection of
the correct model hypothesis and, as a result, improved mitigation
of productivity loss.

Fig. 5(a) shows the average improvement in the speed of learn-
ing using active over passive learning. We quantify this through
improvement in selection time, which is the time elapsed between
the structural change occurring and the controller selecting corre-
sponding model. On average, the correct model is selected 2.99 h
faster with active learning, with a standard deviation of 2.20 h.
There is a large number of cases for which the improvement is
more than one standard deviation above the average, and crucially
there is only a small number of cases where passive learning
slightly outperforms active learning. In these few instances, the re-
alizations of the stochastic noise and disturbances are such that the
passive strategy of not actively improving the learning yield a bet-
ter outcome, despite the active approach being significantly better
in expectation and on average. Fig. 5(b) compares the difference in
total production during the selection time relative to the passive
learning case (that is, the total productivity with passive learning
over this time span is subtracted from the total productivity with
active learning over the same time span). This is thus a metric
for the production improvement obtained using active instead of
passive learning. The improvement in production is distributed
similarly to the improvement in selection time. The average
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Fig. 6. Comparison of setpoint tracking in product concentration P using nominal
MpPcC with no learning, robust Mpc with no learning, Mpc with passive learning (rg =
0), and Mpc with active learning (rg = 30). The time of the structural change at 3 h
is indicated with a vertical line.
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Fig. 7. Comparison of input profiles D using nominal MPc with no learning, ro-
bust Mpc with no learning, Mpc with passive learning (rg = 0), and Mpc with ac-
tive learning (rg = 30). The time of the structural change at 3 h is indicated with a
vertical line.

production improvement of 23.42 g/L is significant and corre-
sponds to 5.6 h of production at the optimal productivity PyDy.
There is also here a large number of cases where the production
improvement is larger than one standard deviation of 24.55 g/L
and only a few cases in which using active learning reduces the
production relative to using passive learning. These simulation
results illustrate the importance of active learning for effectively
restoring the Mpc performance in the presence of structural model
uncertainty and consequently mitigating losses in the process
performance.

Figs. 6-8, show representative simulations for all four strate-
gies under the same realization of disturbances and measurement
noise, illustrating their different performance. The figures show, re-
spectively, setpoint tracking in product concentration P, input pro-
files D, and productivity profiles PD.
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Fig. 8. Comparison of productivity PD using nominal Mpc with no learning, ro-
bust mpc with no learning, Mpc with passive learning (rg = 0), and Mpc with ac-
tive learning (g = 30). The time of the structural change at 3 h is indicated with a
vertical line.

Fig. 6 shows how the nominal MPc results in significant tracking
error in P, a consequence of not accounting for uncertainty. This is
the cause of the large productivity drop shown in Fig. 8. Fig. 6 also
illustrates how the robust mpc does not significantly improve per-
formance over the nominal one. There is minimal improvement in
tracking error and no substantial change in the control input pro-
file, apparent from Fig. 7. Accordingly, the productivity drop shown
in Fig. 8 is unacceptable also when using the robust mpc. Together,
these figures provide representative demonstrations of how neither
the nominal Mpc nor the robust Mpc recovers from the structural
change since neither has a mechanism to detect that the change
occurred. Both controllers lower the dilution rate to maintain the
product concentration near its optimal steady-state value. The re-
duced inlet substrate concentration and the maintenance of this
product concentration together cause a slow depletion of substrate
in the reactor, which necessitates reducing the dilution rate further
before the process settles around a lower steady-state productivity.

Fig. 7 shows how the proposed mpc with active learning uses
the dilution rate to probe the process and to reduce the proba-
bility of selecting the wrong model. In this case, the probing re-
sults in a significant improvement in mitigating the productivity
loss; see Fig. 8. Averaged over the 1500 Monte Carlo simulations,
the integral of the squared deviation from optimal productivity for
the nominal, the robust, and the with passive- and active-learning
MPC strategies are 88.7 g2/(L2h), 82.0 gZ/(L%h), 79.4 g2/(L?h), and
66.9 g2/(L2h), respectively. By this metric, all Mpc strategies that
account for the process uncertainty in some way improve the pro-
cess performance relative to the nominal Mpc, with the mpc with
active learning being superior to the others.

To identify the occurrence of the structural change, the mMpc
strategies with passive and active learning both estimate the model
probabilities. These two strategies differ in the value of rg, which
as noted above is set to zero for passive learning. Fig. 9 compares
the estimated probabilities for the three model hypotheses that re-
sult from Mpc with passive and active learning, and it illustrates
how the average improvement in selection time shown in Fig. 5 is
achieved. These profiles correspond to the same uncertainty real-
ization shown in Figs. 6-8. Fig. 9 shows that the probability of the

correct model hypothesis, Pl{/} i increases faster as a result of the
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Fig. 9. Comparison of model probabilities for the three model hypotheses for mpc
with passive (a) and active (b) learning. The time of the structural change at 3 h is
indicated with a vertical line.

probing induced by active learning. In this particular case, the con-
troller with active learning selects the correct model at time 11.1 h,
8.1 h after the structural change occurred. Conversely, with passive
learning the controller does not select the correct model until time
18.5 h, 15.5 h after the change. That is, the active learning reduces
the time elapsed before correct selection by 47.7 %.

6. Conclusions

This work adopts the concept of explicit dual control to develop
a computationally tractable approach to mpc with active learning
that increases the information content of closed-loop system data
for reducing structural model uncertainty. The proposed approach
involves improved hypothesis selection from a set of candidate
models through minimizing an approximate bound on the Bayes
risk of model-selection error. Simulation results with a nonlinear
bioreactor case study demonstrate that Mpc with active learning
can lead to significant improvement in the control performance
relative to nominal Mpc with no learning, a robust Mpc that ac-
counts for structural model uncertainty but has no learning mech-
anism, and Mpc with passive learning. mpc with active learning
can create new avenues for online model discrimination and active
fault diagnosis under closed-loop control (e.g., see Blanke et al.,
2006; Heirung and Mesbah, 2019).

The computationally tractable approach to MPc with active
learning developed in this paper relies on several approximations.
In particular, we approximate the state probability distributions
and likelihoods using the first two moments and use an approx-
imate bound on the Bayes risk of model-selection error. Future
work involves analyzing the theoretical implications of these ap-
proximations and identifying potential sources of significant con-
servatism. The development of a tighter bound on the Bayes risk
of model-selection error and analysis of the convergence proper-
ties of the proposed approach are topics of future papers.
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