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ABSTRACT

There are many ways to numerically represent chemical systems in order to compute their electronic structure. Basis functions may be local-
ized in real-space (atomic orbitals), in momentum-space (plane waves), or in both components of phase-space. Such phase-space localized
basis functions in the form of wavelets have been used for many years in the electronic structure. In this paper, we turn to a phase-space
localized basis set first introduced by Wilson [Generalized Wannier Functions (Cornell University, 1987), preprint]. We provide the first full
study of this basis and its numerical implementation. To calculate electronic energies of a variety of small molecules and states, we utilize
the sum-of-products form, Gaussian quadratures, and introduce methods for selecting sample points from a grid of phase-space localized
Wilson basis. Both full configuration interaction and Hartree-Fock implementations are discussed and implemented numerically. As with
many grid based methods, describing both tightly bound and diffuse orbitals is challenging so we have considered augmenting the Wilson
basis set as projected Slater-type orbitals. We have also compared the Wilson basis set against the recently introduced wavelet transformed
Gaussians (gausslets). Throughout, we give comments on the implementation and use small atoms andmolecules to illustrate the convergence
properties of the Wilson basis.
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NOMENCLATURE

Notation

Δx spacing between basis functions in position
space.

m index for the location of the phase-space basis
function in position space at mΔx, not neces-
sarily an integer butm has integer spacing.

k index for the location of the phase-space basis
function in momentum space.

n signifies phase-space basis function composite
index n =m, k.

n⃗ ≙ ∥n1,n2, . . .nD∥ the vector of all 1D indices for themultidimen-
sional basis function with D = 3 or D = 6.

Lk number of grid functions in position space.
Lm number of grid functions inmomentum space.
L total number of one dimensional phase-space

functions.
N size of basis.

H matrices will be capital letters in bold and
nonitalicized.

v vectors will be small letters in bold and noni-
talicized.

I(O) the integral for the operator O.
G(A,B,C,D,μ, x) the combination of two Gaussians.
g(A,B,C,D) the integral of G(A,B,C,D,μ, x) over all x.
I. INTRODUCTION

Computation of the electronic structure of a fixed nuclear
potential occupies a swath of academic and commercial research in
both the quantum and classical computational domains. In all cases,
the basis set used to represent the possible locations of electrons
plays a large role in the reach of a finite computational device. Both
plane wave computations and spatially local basis functions form
the major approaches. A key alternative, which includes the present
study, makes use of basis functions localized in both momentum
and real space. Such phase-space localized (PSL) basis functions
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in the form of wavelets have been used in electronic structure cal-
culations with some success for a number of years.1–9 However,
these basis functions are, with one exception,9 defined only on a
grid which makes obtaining analytic matrix elements very diffi-
cult for the unbounded Coulomb potential. In 1987, Wilson intro-
duced a basis which is analytic everywhere and localized in phase
space.10,11

Reference 11 was the first to consider Wilson basis functions
for the electronic structure and to suggest that PSL functions should
have certain advantages over other grid basis methods. This early
work considered only a one-dimensional electronic problem and
hinted at the methodology for performing numerical calculations
in real space. Here, we developed the full machinery necessary to
utilize Wilson basis sets very similar to the Daubechies, Jaffard,
and Journé12 construction for electronic structure calculations. The
sum-of-products form of the full Hamiltonian in the Wilson basis
allows the Hamiltonian to be decomposed into the separate Carte-
sian directions. This reduces memory requirements and can be used
to perform matrix-vector products more efficiently using sequen-
tial summation.13 We also use Gaussian quadrature to numeri-
cally evaluate the Hamiltonian terms. Throughout, we use a vari-
ety of small electronic systems using both exact diagonalization
(i.e., full configuration interaction) and the Hartree-Fock approx-
imation. Furthermore, our paper finds and describes reasonable
numerical parameters and procedures for the Wilson basis and its
extensions.

The organization of the paper is as follows: The Wilson basis
is introduced in Sec. II. The representation of the operators in the
Wilson basis is computed in Sec. III as closed form expressions.
We then describe the evaluation of the Coulomb integrals using
Gaussian quadrature in Sec. IV. Next, in Sec. V, we combine the
integrals over the Wilson basis with sampling techniques to yield a
complete computational procedure for calculating electronic ener-
gies. Then, the parameters of algorithm are varied and tested on the

exactly solvable one-electron hydrogen atomic system in Sec. VI.
Section VII examines the Wilson basis applied to multiple states
of the two-electron helium and molecular hydrogen systems. Sec-
tion VIII discusses how Hartree-Fock calculations with the Wilson
basis can be performed by using the methodology developed in
the paper. In Sec. IX, gausslet basis sets and standard Slater-type
orbital basis sets are considered as possibilities to extend the Wil-
son basis. We summarize our conclusions and give an outlook in
Sec. X.

Atomic units (h̵ =me = a0 = 4π𝜖0 = 1) are used throughout.

II. WILSON BASIS FUNCTIONS

The Wilson basis functions as defined in Ref. 12 are a product
of 1D PSL functions that are of the form

wn(x) ≙
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ(x − m
2 ) ∥m∥ ∈ 2Z, k ≙ 0√

2ϕ(x − m
2 ) cos∥2πkx∥ ∥m∥ + k ∈ 2Z, k > 0√

2ϕ(x − m
2 ) sin∥2πkx∥ ∥m∥ + k ∈ 2Z + 1, k > 0

, (1)

where modulated Gaussians are used as functions to generate ϕ(x)
such that

ϕ(x) ≙ ∑
j,l∈Z

ajl exp∥2ilπx∥(2v)1/4 exp[−vπ(2x − j)2]. (2)

In Ref. 12, the ajl are found using either a Zak transform or a
convergent series in momentum space.

In order to simplify the calculations, we use the technique
related to that of Refs. 14 and 15 but most similar to Ref. 16 to gener-
ate aWilson basis. This involves using a grid ofmodulated Gaussians
defined here as

dn(x) ≙
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn√
Δx

exp[− π
2Δx2 (x −m Δx)2] ∥m∥ ∈ 2Z, k ≙ 0

ηn√
Δx

exp[− π
2Δx2 (x −m Δx)2] cos[ π

Δx
k(x −m Δx)] ∥m∥ + k ∈ 2Z, k > 0

ηn√
Δx

exp[− π
2Δx2 (x −m Δx)2] sin[ π

Δx
k(x −m Δx)] ∥m∥ + k ∈ 2Z + 1, k > 0

, (3)

where

ηn ≙ 2( 1
2(1 + (−1)∥m∥+k exp∥−πk2∥))

1/2(−i)∥m∥+k, (4)

with Δx being the distance between functions in position space
and ∥m∥ is either the integer part of m or the integer part of
m − 1, depending on where the k = 0 are chosen to be placed. For
these functions, we have ΔxΔp = π. Each basis function is local-
ized in position space around mΔx, where the Lm possible m val-
ues have integer spacing but are in general real. The functions are

also localized in momentum space at ± kπ/Δx, where k is a pos-
itive integer such that k = 0, 1, 2, 3, . . ., Lk − 1. The index n is
taken to represent the composite index k, ∥m∥, and the total 2D
phase-space grid that represents one real-space dimension is com-
posed of L = Lm × Lk functions. Each box in positive momen-
tum space takes up π but is combined with the corresponding
negative momentum space partner such that the full basis func-
tion follows the uncertainty principle and is localized in 2π of
phase-space.

As the modulated Gaussians of Eq. (3) are not orthogonal to
each other, they must be orthogonalized in order to be used for
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calculating eigenvalues iteratively. We consider two schemes: sym-

metric orthogonalized (w̃n(x) ≙ ∑j S
−1/2
nj dj(x)) and biorthogonal-

ized [bn(x) ≙ ∑j S
−1
nj dj(x) combined with dn′ (x) as the dual]. There

are benefits to either choice but all resulting basis functions are
localized exponentially in phase-space. The symmetric orthogonal-
ized version (w̃n(x)) of these basis functions is shown in Fig. 1 and
forms an orthonormal basis. When the basis functions w̃n(x) are
not close to the boundary of the grid, the functions are very simi-
lar (maxx ∣w̃n(x) − wn(x)∣ ≲ 10−3) to the Daubechies, Jaffard, and
Journ (DJJ) functions wn(x). This can be seen in Fig. 2 for the
n ≙ (0, 1) and n ≙ (1, 1) positions in phase-space. The two depicted
functions are representative of all m, k values in the interior of the
phase-space domain. Equivalency was claimed in Ref. 14 assuming
that the underlying modulated Gaussians used to generate the basis
functions are the same. However, Ref. 14 did not explicitly show the
equivalency and also did not appear to rigorously prove it.We do not
make an effort to prove the equivalency ofw(x) and w̃n(x) but note
that w̃n(x), bn(x), and dn(x) all have the properties of the original
Wilson basis.

All functions [w̃n(x), bn(x), and dn(x)] have symmetry prop-
erties in a checker board like fashion where ∥m∥+ k ∈ 2Z+1 are odd
and ∥m∥+k ∈ 2Z are even. w̃n(x) and bn(x) are exponentially local-
ized in phase-space, while dn(x) is Gaussian localized. If a smaller
grid of dn(x) is used to generate w̃n(x), exponential localization is
retained but the functions are not as similar (especially for functions
at the edge of the grid) to the construction of Ref. 12. That being
said, the accuracy and pruneability of the basis are not impacted
greatly.15,16

The symmetric (or antisymmetric) position in momentum
space is more explicitly obvious when Eq. (3) is in the com-
plex exponential form with cos∥ px∥ ≙ 1/2(exp∥ipx∥ + exp∥−ipx∥),
sin∥ px∥ ≙ −i/2(exp∥ipx∥ − exp∥−ipx∥). This allows theWilson basis

of Eq. (3) to be written more succinctly as

dn(x) ≙ ηn√
Δx

exp[− π

2Δx2
(x −m Δx)2]

× (exp[i π
Δx

k(x −m Δx)] + (−1)∥m∥+k
× exp[−i π

Δx
k(x −m Δx)]). (5)

In Eq. (5), the values of ∥m∥ ∈ 2Z + 1, k ≙ 0 not included in the basis.
If one ignored the normalization prefactor, all ∥m∥ ∈ 2Z + 1, k ≙ 0
evaluate to zero.

We can further simplify notation by considering each the
positive and negative momentum term separately in Eq. (5)
using

α
±
n (x) ≙ ηn√

Δx
exp[− π

2Δx2
(x −m Δx)2] exp[±k iπ

Δx
(x −m Δx)], (6)

which results in dn(x) ≙ α+n(x) + (−1)∥m∥+kα−n (x).
To form a multidimensional basis, a product of the 1D basis

functions of Eq. (5) for each of the D dimensions is used. The num-
ber of dimensions is either three or six. In this section, we are consid-
ering one electron integrals so D = 3 but when considering the two

electron integrals D = 6. In both cases, the basis function is written
as

bn1 ,n2 ,...,nD(x1, x2, . . . , xD) ≙ D∏
i≙1

dni(xi), (7)

where there is a composite index ni for each of the i = 1, 2, . . ., D
dimensions.

FIG. 1. The symmetric orthogonal-
ized versions of Eq. (3) with indices
n≙(m ∈ ∥−1, 0, 1∥, k ∈ ∥0, 1, 2∥). The
checkerboard pattern of symmetry is
clear with red functions/boxes represent-
ing positive symmetry and black func-
tions/boxes representing negative sym-
metry. Functions with m = 1 are lines and
triangles, while functions with m = −1
are lines and stars. The white boxes at
m = ±1, k = 0 indicate that these indices
are not in the basis.
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FIG. 2. Comparison of the symmetric orthogonalized versions of Eq. (3) (w̃n(x)) with Δx = 1/2, and the DJJ functions wn(x) using an exponent scaling factor of v ≙ 1/2
for positions in phase-space of n = (m = 0, k = 1) and n = (m = 1, k = 1). The Gaussian grid from which both sets of functions are generated is a tiling of modulated Gaussians
in phase-space spanning indices m ∈ ∥−23, 23∥, k ∈ ∥−23, 23∥. The relative difference between w̃n(x) and wn(x) is around 10−4 and shows a periodicity.

III. OPERATOR REPRESENTATION INTEGRALS

This section outlines all the integrals needed to define the
Hamiltonian representation in the Wilson basis. The one and two-
body Coulomb integrals can be calculated advantageously as a sum-
of-products. In the electronic structure, the sum-of-products form
has been previously used to assist in the evaluation of exchange and
Coulomb integrals,17 as well as evaluating the Møller-Plesset pertur-
bation second order correction.18 Exploiting grid based basis sets
and a sum-of-product decomposition of the Hamiltonian into its
three Cartesian product has been applied to the electronic structure,
using a multiresolution disjoint Legendre polynomial basis,3 and a
tensor decomposed sinc function basis.19 Like the Wilson basis, the
sinc functions are analytic. However, the Wilson basis functions are
also localized in phase-space which has advantages for representing
the cusps of electronic wavefunctions.

Due to the sum-of-products form, the overlap matrix and the
Cartesian kinetic energy operator can be defined using a product of
1Dmatrix elements. All operatorO integrals will be performed using

the notation of I(a
′a)

n′n (O) which refers to the pair αa
′

n′ ,α
a
n with a′,

a ∈ {+, −} except for the overlap integral denoted as S
(a′a)
n′n . The

integral then includes four pairs of momentum combinations which

are (+k′, +k), (+k′, −k), (−k′, +k), and (−k′, −k). The I(+,+)n′n (O) and
I
(+,−)
n′n (O) integrals are equivalent to the complex conjugates of the

I
(−,−)
n′n (O) and I

(−,+)
n′n (O) integrals, respectively. The two-electron

terms have a similar structure but require summing over more
momentum combinations.

The overlap matrix for two basis functions, n⃗′ ≙ [n′x,n′y,n′z] and
n⃗ ≙ ∥nx,ny,nz∥ in three dimensions is

Sn⃗′n⃗ ≙∏
i

Sn′ini ≙ ∫ dx dnx(x)dn′x(x)∫ dy dny(y)dn′y(y)
× ∫ dz dnz(z)dn′z(z), (8)

while the portion of the Cartesian Laplacian with second derivative
in dimension j is written as
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T
( j)
n⃗′n⃗
≙ Tn′j ,nj∏

i≠j

Sn′ini . (9)

Throughout, we will be using Gaussian integrals heavily so let
us establish notation. We will always represent Gaussian integrals in
the form

g(A,B,C,D) ≙ ∫ ∞

−∞
dxG(A,B,C,D,μ, x), (10)

where

G(A,B,C,D,μ, x) ≙ exp[−A(x − μ)2] exp∥iB(x − μ)∥
× exp∥C∥ exp∥iD∥, (11)

with A, B, C, D, μ being real constants. The integration of Eq. (10)
results in

g(A,B,C,D) ≙ ( π
A
)1/2 exp[− B2

4 A
] exp∥C∥ exp∥iD∥. (12)

The integrals of x and x2 are also presented as they are used to
efficiently calculate the∇2 operator below,

∫
∞

−∞
dx xG(A,B,C,D,μ, x) ≙ (i B

2A
+ μ)g(A,B,C,D) (13)

and

∫
∞

−∞
dx x2 G(A,B,C,D,μ, x) ≙ (2A − B2

4A2
+ iμ

B

A
+ μ

2)g(A,B,C,D).
(14)

A. Overlap integral

The overlap integral that needs to be evaluated for all four
(a′, a) combinations is given as

S̃
(a′a)
n′n ≙ ∫

∞

−∞
dx α

a′

n′(x)αan(x)
≙ (ηnηn′ 1

Δx
)∫ ∞

−∞
dxG(A,B,C,D,μ, x)

≙ ∫
∞

−∞
(ηn′ηn 1

Δx
) exp[− π

2Δx2
(x −m′Δx)2]

× exp[i π
Δx

a
′
k
′(x −m′Δx)] exp[− π

2Δx2
(x −m Δx)2]

× exp[i π
Δx

ak(x −m Δx)]dx, (15)

where either (−1)∥m∥+k or (−1)[m′ ]+k′ are excluded from S̃
(a′a)
n′n but

are included in the definition of S(a
′a)

n′n .
For Eq. (15), the appropriate values ofA, B,C,D for the product

of αan(x) and αa
′

n′(x) are
A ≙ π

Δx2
,B ≙ π

Δx
k
(a′a)
− ,C ≙ −π

4
m

2
−,

D ≙ 1
2
(m−k(a′a)+ )π,μ ≙ Δx

2
m+,

(16)

wherem± =m′ ±m and k(a
′a)

± ≙ a′k′ ±ak. Thus, the overlap integral
for a given a′, a combination evaluates to

S̃
(a′a)
n′n ≙ (ηnηn′ 1

Δx
)g(A,B,C,D,μ)

≙ ηnηn′ exp[−π
4
(m2
− + (k(a′a)+ )2)] exp[−i π

2
(m−k(a′a)− )].

(17)

Each of the a′, a combinations is added together to form the full

overlap matrix element [i.e., Sn′n ≙ S̃
(++)
n′n + (−1)∥m∥+k+[m′]+k′ S̃(−−)n′n

+ (−1)∥m∥+kS̃(+−)n′n + (−1)[m′]+k′ S̃(−+)n′n ]. The final definition of the
partial overlap values is

S
(++)
n′n ≙ S̃(++)n′n ,

S
(+−)
n′n ≙ (−1)∥m∥+kS̃(+−)n′n ,

S
(−+)
n′n ≙ (−1)[m′]+k′ S̃(−+)n′n ,

S
(−−)
n′n ≙ (−1)∥m∥+k+[m′]+k′ S̃(−−)n′n ,

(18)

where the appropriate (−1)∥m∥+k or (−1)∥m∥′+k′ are now included.
The full overlap matrix for basis functions dn(x) with dn′ (x) is

Sn′n ≙
+,−

∑
a

+,−

∑
a′
S
(a′a)
n′n . (19)

B. 1D kinetic energy operator

All 1D operators examined here can be written as

In′n(O) ≙ +,−

∑
a

+,−

∑
a′
I
(a′a)
n′n (O), (20)

where I(a
′a)

n′n (O) are the partial integrals for operator O.
When evaluating the integrals associated with the kinetic

energy operator, the values of (16) will be the same since the kinetic
energy operator applied to a complex Gaussian results in the same
Gaussian multiplied by a second degree polynomial. Therefore, we
will also need to integrate against the x and x2 operators to evaluate
the Laplacian.

Using (13) and (14), the necessary partial integrals are given in
terms of the overlap integral as

I
(a′a)
n′n (x) ≙ (i B2A + μ)S(a′a)n′n ≙ Δx

2
(m+ + i(a′k′ + ak))S(a′a)n′n (21)

and

I
(a′a)
n′n (x2) ≙ (2A − B2

4A2
+ iμ

B

A
+ μ

2)S(a′a)n′n

≙ Δx2

4
( 2
π
+m

2
+ + i2m+(a′k′ + ak) − (a′k′ + ak)2)S(a′a)n′n ,

(22)

where S(a
′a)

n′n are defined in Eq. (18) with a, a′ ∈ {+,−}.
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To evaluate the integral of the −∇2 operator, we will use the

Cartesian representation (− d2

dx2 − d2

dy2 − d2

dz2 ) and perform 1D integrals
for x, y, z. For greater symmetry in the integrals, we will act with

the derivative operator to the left and to the right with form d
dx

† d
dx

≡ − d2

dx2 . The action of d
dx

† d
dx in the integral simplifies to

( d
dx

α
a′

n′) × ( d
dx

α
a
n) ≙ ⎛⎝ π2

4Δx2
(2m′ − i2a′k′)(2m + i2ak)

− π

Δx3
(−im+ + k

(a′a)
+ )x + π2

Δx4
x
2⎞⎠

×G(A,B,C,D,μ, x). (23)

Using the S(a
′a)

n′n , I(a
′a)

n′n (x) and I
(a′a)
n′n (x2) derived above and simpli-

fying result in

I
(a′a)
n′n ( d

dx

† d
dx
) ≙ π2

4Δx2
( 2
π
− (m− + ik

(a′a)
− )2)S(a′a)n′n . (24)

One can then use Eq. (20) to obtain the complete integral by
summing over the four possible values of a′, a to obtain

Tn′n ≙
+,−∑
a′ ,a

I
(a′a)
n′n ( d

dx

† d
dx
), (25)

which can be stored in an L × Lmatrix T and is the same for x, y, z.

C. Coulomb integral

The Coulomb integral is more challenging and will be the focus
of the remainder of this section. We evaluate the integrals in closed
form using the error function, erf(x) ≙ 2π−1/2 ∫ x

0 exp(−t2)dt, as well
as discuss the use of numerical quadrature to evaluate the functions
quickly. The numerical integration is, in the end, preferred since it
allows the integration to be done componentwise. As we will see
below, the input to the error function has all Cartesian components
combined.

To exploit the fact that our multidimensional basis functions,
Eq. (7), are products of each Cartesian dimension, the form of the
Coulomb operator we use is

1∣r − r′∣ ≙ 2√
π
∫
∞

0
exp[−t2(x − x′)2] exp[−t2(y − y′)2]

× exp[−t2(z − z′)2]dt, (26)

where r = [x, y, z] and r′ = [x′, y′, z′]. We will use Eq. (26) to per-
form the electron-nuclear and electron-electron integrations in close
form.

1. Electron-nuclear Coulomb integral

The electron-nuclear integrals are performed using r′ = rA
= [Rx, Ry, Rz] as the fixed nuclear position. We will evaluate the

integral using the form Eq. (26): first by integrating over the one-
dimensional coordinates and then by integrating over the dummy
variable t of Eq. (26). Since all terms including those introduced by
the integral form of the Coulomb operator are all Gaussian, there are
many simplifications along the way.

The required integral is given by

I
a⃗′ ,⃗a
n⃗′n⃗ ( 1∣r − r′∣ ) ≙ ∫

∞

−∞
Gx(x)Gy(y)Gz(z)∣r − r′∣ dxdydz. (27)

The constants for Gj(r) = G(Aj, Bj, Cj, Dj, μj, r) are the same as those
given in Eq. (16). In general, these constants will depend on which
direction is being discussed, hence the subscript.

We can simplify notation going forward by performing the
integral over the individual spatial coordinates before simplifying
the Gaussian expression which then remains parameterized by t.
Consider for j = x, y, z the integration

Ṽ
(a′j aj)

n′j nj
(t) ≙ ∫ ∞

−∞
dqGj(q) exp∥−t2(q − Rj)2∥

≙ g(Ajt ,Bjt ,Cjt ,Djt). (28)

The constants for the final Gaussian integral are given by

Ajt ≙ Aj + t
2, Bjt ≙ Bj,

Cjt ≙ Cj − π

4

(Δxmj+ − 2Ri)t2
π + Δx2t2

, Djt ≙ Dj +
π

2
(2Ri − Δxm+)t2

π + Δx2t2
.

(29)

Anticipating the final integration, we perform a change of variables
to further convert the integral over t ∈ (0,∞) to v ∈ (−1, 1) with

t ≙
√

π

Δx2
1 − v
1 + v

, dt ≙ −√π

Δx

1√
1 − v2 dv. (30)

Performing the change of variables in Eq. (28) and integrating over
q result in

Ṽ
(a′i ai)

n′ini
(v,Ri) ≙

√(1 + v)
2

× exp[−(c(a′i ai)
n′ini
)(1 − v)]S(a′i ai)

n′ini
, (31)

where c
(a′i ai)

n′ini
≙ π

8 (mi+ + ik
(a′a)
+ − 2 Ri

Δx
)2. Our final definition for V

removes the prefactor,

V
(a′i ai)

n′ini
(v,Ri) ≙

√
2(1 + v) Ṽ(a

′

i ai)

n′ini
(v,Ri)

≙ exp[−(c(a′i ai)
n′ini
)(1 − v)]S(a′i ai)

n′ini
. (32)

The full 3D integral for a given n⃗, a⃗, n⃗′, a⃗′ is then reduced to

I
a⃗′ ,⃗a
n⃗′n⃗ ( 1∣r − r′∣ ) ≙ 1

Δx

1√
2
∫

1

−1
dv

V
(a′xax)

n′xnx
(v,Ri)V(a′yay)n′yny

(v,Ri)V(a′zaz)n′znz
(v,Ri)√

1 − v . (33)
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The complete integral for a nucleus at r′ for a basis function n⃗′ ≙ [n′x,n′y,n′z] with n⃗ ≙ ∥nx,ny,nz∥ is then
In⃗′n⃗( 1

r − re ) ≙
64∑
{a}

1
Δx

1√
2
∫

1

−1
dv

V
(a′xax)

n′xnx
(v,Rx)V(a′yay)n′yny

(v,Ry)V(a′zaz)n′znz
(v,Rz)√

1 − v , (34)

where the sum is performed over all 64 combinations of ax, ay, az , a′x, a
′
y, a
′
z which can each be plus or minus. Evidently, the 3D Coulomb

integral can be written in the multidimensional form of Eq. (20) with an additional integration over variable v. Equation (34) can be evaluated
in closed form to

In⃗′n⃗( 1
r − re ) ≙

64

∑
{a}

√
π

Δx

Erf[√c
(a′xax)

n′xnx
+ c
(a′yay)

n′yny
+ c
(a′zaz)

n′znz
]√

c
(a′xax)

n′xnx
+ c
(a′yay)

n′yny
+ c
(a′zaz)

n′znz

S
(a′xax)

n′xnx
S
(a′yay)

n′yny
S
(a′yay)

n′znz
. (35)

2. Two-electron Coulomb integral

The form of the Coulomb operator for the two-electron integral is similar to Eq. (33) but defining n⃗i ≙ ∥nxi ,nyi ,nzi∥ and a⃗1 ≙ ∥axi , ayi , azi∥
is

I
a′1 ,a

′

2 ,a1 ,a2
n⃗1
′n⃗2
′n⃗1n⃗2
( 1∣r − r′∣ ) ≙ 2√

π
∫
∞

0
dt Fx(t)Fy(t)Fz(t), (36)

where

Fi(t) ≙ ∫ ∞

−∞
dq2 ∫

∞

−∞
dq1 G

1
i (q1)G2

i (q2) exp[−t2(q1 − q2)2]. (37)

Here, Gk
i ≙ G(Ai,Bi,Ci,Di,μi, qk) is the product of Gaussian corresponding to different dimensions i = x, y, z and a one-dimensional electron

coordinate k = 1, 2 along that direction. To use this function, we need to perform the integrals over x1, y1, z1, x2, y2, z2 and then perform the

integral over t. The change of variables here is v ≙ π−2Δx2t2
π+2Δx2t2 , which results in

I
(a′1a

′

2a1a2)

n⃗1
′n⃗2
′n⃗1n⃗2
( 1
r1 − r2 ) ≙ 1

2Δx ∫
1

−1
dv

V
(a′x1

a′x2
ax1 ax2)

n⃗x1
′n′x2

nx1nx2
(v)V(a′y1 a′y2 ay1 ay2)

n⃗y1
′n′y2

ny1ny2
(v)V(a′z1 a′z2 az1 ax2)

n⃗z1
′n′z2

nz1nz2
(v)√

1 − v , (38)

where

V
(a′i1

a′i2
ai1 ai2)

n⃗i1
′n′i2

ni1ni2
(v) ≙ exp[−b(a′1 ,a1 ,a′2 ,a2)i (1 − v)]S(a′i1 ai1)

n′i1
,ni1

S
(a′i2

ai2)

n′i2
,ni2

, (39)

where b
(a′1 ,a1 ,a

′

2 ,a2)
i ≙ π

16(mi1+ −mi2+ + i(k(a′i1 ai1 )i1+
− k(a′i2 ai2 )i2+

))2 with i = x, y, z.

The full 6-dimensional integral is given as a sum of 46 = 4096 terms in closed form as

In⃗1′n⃗2′n⃗1n⃗2( 1
r1 − r2 ) ≙

4096

∑⃗
a

√
π

Δx 2
√
2

Erf[√2(b(a′x1 ,ax1 ,a′x2 ,ax2)x + b
(a′y1

,ay1 ,a
′

y2
,ay2)

y + b
(a′z1

,az1 ,a
′

z2
,az2)

z )]√
b
(a′x1

,ax1 ,a
′

x2
,ax2)

x + b
(a′y1

,ay1 ,a
′

y2
,ay2)

y + b
(a′z1

,az1 ,a
′

z2
,az2)

z

× S
(a′x1

ax1)

n′x1
,nx1

S
(a′y1

ay1)

n′y1
,ny1

S
(a′z1

az1)

n′z1
,nz1

S
(a′x2

ax2)

n′x2
,nx2

S
(a′y2

ay2)

n′y2
,ny2

S
(a′z2

az2)

n′z2
,nz2

. (40)

Note that Δx only appears as a prefactor to the integral. Thus, the Coulomb integrals do not need to be re-evaluated when changing the spatial
distance between adjacent Wilson basis functions in real space.

IV. EVALUATING COULOMB MATRIX ELEMENTS
USING GAUSSIAN QUADRATURE

In Sec. III, we have evaluated all the overlap, kinetic, and
Coulomb integrals in closed form using the error function.

However, the error function is not separable since the x, y, z com-
ponents are combined in the argument of the error function. In
order to use a much larger number of basis functions, it is impor-
tant to (a) not store the full matrix and (b) increase the efficiency of
matrix-vector products.
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We can accomplish this using Gaussian quadrature over each
dimension separately to get the Hamiltonian into a sum-of-products
form. The overlap integral and the kinetic energy integrals are
already a sum-of-products of one-dimensional operators so we only
need to consider the Coulomb integrals.

Let us consider integrals of the form Eq. (34) which is in the
form ∫ 1

−1 f (x)(1−x)a(1+x)b with a =−0.5 and b = 0. Integrals of this
form can be evaluated using Gauss-Jacobi quadrature20 where the

integral is approximated using∑Np

α wαf (pα). Here,Np is the number
of quadrature points pα and their corresponding weights are wα.

This allows us to accurately convert the integral Eq. (33) into a
sum-of-products form with Np terms such that

In⃗′n⃗( 1
r − rc ) ≈

Np∑
α≙1

wαV
(1)
n′xnx
(pα,Rx)V(1)n′yny

(pα,Ry)V(1)n′znz
(pα,Rz), (41)

where

V
(1)
n′ini
(pα,Ri) ≙ +,−∑

a′i ,ai

V
(a′i ai)

n′ini
(pα,Ri), (42)

with i = x, y, z.V(1)(pα, Ri) is an L × Lmatrix with each element being
a sum of 22 = 4 terms.

Since Gaussian quadrature calculates polynomials of order 2Np

+ 1 exactly, the convergence of the integral is superb. Test calcula-
tions have found that as few as seven quadrature points are necessary
to obtain chemical accuracy as shown in the test results below. The
same transformation can be performed for the two-body Coulomb
as

In⃗′n⃗( 1
r1 − r2 ) ≈

Np∑
α≙1

wα

2
V
(2)
n′x1

nx1n
′

x2
nx2
(pα)

×V(2)n′y1
ny1n

′

y2
ny2
(pα)V(2)n′z1

nz1n
′

z2
nz2
(pα), (43)

where

V
(2)
n′i1

ni1n
′

i2
ni2
(pα) ≙ +,−∑

ai1 ,ai2 ,a
′

i1
,a′i2

V
(a′i1

a′i2
ai1 ai2)

n⃗i1
′n′i2

ni1ni2
(pα), (44)

with i = x, y, z.V(2)(pα) is an L2 × L2 matrix with each element being a
sum of 42 = 16 terms. It is not possible to separate x1, x2 in any obvi-
ous fashion analytically. This means that storing the two-electron
matrix elements grows rapidly with the size of 1D sampling grid and
is responsible for most of the memory usage. The V(2)(pα) are the
same for x, y, z so only one matrix for each of the Np quadrature
points need to be stored in memory.

The main value of these transformations is that we can now
make use of the well-established technique of performing sums
sequentially, which is of common usage in the calculation of vibra-
tional energy levels. The advantage is only realized for a “normal”
(i.e., not generalized) eigenvalue problem. Using the modulated
Gaussian grid of Eq. (5) directly results in a generalized eigenprob-
lem unless we orthogonalize or biorthogonalize the representation.
For the one-electron case, the Hamiltonian can be written in a
sum-of-products form as

Hn⃗′n ≙
Nt∑
t

∏
i≙x,y,z

O
(t)
n′ini

, (45)

where O(t)
n′ini

is a 1D operator which is the kinetic energy integral [of

Eq. (25)], the overlap integral [of Eq. (19)], or one of the Coulomb
terms [of Eq. (42)]. The number of terms in the Hamiltonian rep-
resentation is Nt = 3 + NnNp with factor of three for the kinetic
energy operator directions, Nn is the number of nuclei, and Np

is the number of quadrature points used to evaluate each nuclei-
electron Coulomb term. Each O

(t)
i for dimension i is of size L × L.

This means that the full generalized eigenvalue problem can be
written as

( Nt∑
t

O
(t)
x ⊗O

(t)
y ⊗O

(t)
z )Z ≙ (Sx ⊗ Sy ⊗ Sz)ZE, (46)

where Z is the matrix of eigenvectors and E is the diagonal matrix
of eigenvalues. The total memory requirements to store the sum-of-
products matrix representation are 3NpL

2 which is much less than
the full matrix which requires L6. The Z and E are of size L3 × L3.
Equation (46) can easily be converted to an eigenvalue problem with
no overlap matrix by either using

(∑
t

S
−1/2

O
(t)
x S

−1/2 ⊗ S
−1/2

O
(t)
y S

−1/2 ⊗ S
−1/2

O
(t)
z S

−1/2)U ≙ UE
(47)

with U = (S1/2 ⊗ S
1/2 ⊗ S

1/2)Z or

(∑
t

O
(t)
x S

−1 ⊗O
(t)
y S

−1 ⊗O
(t)
z S

−1)U ≙ UE (48)

with U = (S ⊗ S ⊗ S)Z. Both forms have been used successfully in
previous vibrational calculations.21 Equation (47) has the advantage
of being Hermitian, while Eq. (48) generally produces a smaller basis
representation. Most calculations in this study use Eq. (47) but both
are examined. We also emphasize that Eq. (47) will result in a calcu-
lation very similar to using the Wilson basis of Ref. 12 if a large grid

of Eq. (5) is used to generate theO(t)i and Smatrices.
Similarly, the two-body Coulomb term can be orthogonalized

as

(∑
t

S
−1/2
1,2 O

(t)
x1 ,x2S

−1/2
1,2 ⊗ S

−1/2
1,2 O

(t)
y1 ,y2S

−1/2
1,2 ⊗ S

−1/2
1,2 O

(t)
z1 ,z2S

−1/2
1,2 )U ≙ UE

(49)

or biorthogonalized as

(∑
t

O
(t)
x1 ,x2S

−1
1,2 ⊗O

(t)
y1 ,y2S

−1
1,2 ⊗O

(t)
z1 ,z2S

−1
1,2)U ≙ UE, (50)

where O
(t)
x1 ,x2 represents the full 4D matrix with V

(2)
n′i1

ni1n
′

i2
ni2

as ele-

ments and S1,2 = S ⊗ S. It is clear that i1, i2 are not separable but
we can do each pair {x1, x2}, {y1, y2}, {z1, z2} separately.

V. CALCULATING ENERGIES

In order to calculate eigenvalues efficiently, it is important to
perform matrix-vector products sequentially. In order to simplify
the notation, we restrict this attention to the one-electron prob-
lem and define B

(t)
j ≙ S

−1/2
O
(t)
x S

−1/2 or O
(t)
x S

−1 such that the
Hamiltonian is now
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Hn⃗′n ≙
T∑
t

∏
i≙x,y,z

B
(t)
n′ini

, (51)

where the first summation is over all the terms and t is an arbi-
trary labeling of the term. The full matrix vector product for
one coefficient u⃗n⃗′ corresponding to indices n⃗′ ≙ ∥n′x,n′y,n′z∥ is
given as

w⃗n⃗′ ≙∑
nx

∑
ny

∑
nz

B
(t)
n′xnx

B
(t)
n′yny

B
(t)
n′znz

u⃗n⃗ (52)

≙∑
nx

B
(t)
n′xnx

⎡⎢⎢⎢⎢⎣∑ny B
(t)
n′yny

⎡⎢⎢⎢⎣∑nz B
(t)
n′znz

u⃗n⃗
⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
, (53)

with the sum performed over all L values on the grid for each of x, y,
z. The total summation performed naively using Eq. (52) requires a
scaling of L6 since, for each of the L3 components ofw, onemust sum
over all L3 components of u. One can instead performmatrix-vector
products sequentially using Eq. (53). This is performed by using
intermediate vectors u⃗′ and u⃗

′′. First, u⃗′ is formed by performing
the sum over z first such that

u⃗
′
nx ,ny ,n′z

≙∑
nz

B
(t)
n′znz

u⃗n⃗, (54)

which involves a sum over L terms for L3 indices. Then, u⃗′′ is
generated by taking u⃗′ as an input for the sum over y such that

u⃗
′′
nx ,n′y ,n

′

z
≙∑

ny

B
(t)
n′yny

u⃗
′
nx ,ny ,n′z

, (55)

which involves another sum over L terms for each L3 index. The sum
is then performed over x using u⃗′′ as an input which results in

u⃗n⃗′ ≙∑
nx

B
(t)
n′xnx

u⃗
′′
nx ,n′y ,n

′

z
. (56)

Two advantages can be noted. First, the three step process of
Eqs. (54)–(56) requires 3L4 operations compared to L6 for Eq. (52)
with the resulting vectors u⃗n⃗′ being equivalent. This is the computa-
tional benefit of having a sum-of-products Hamiltonian. The other
key benefit is memory usage. One only needs to store a number of
L × Lmatrices compared to the full Hamiltonian of L3 × L3 size.

For the two-electron problem, the matrices are not separa-
ble for j1, j2 ∈ {x, y, z}. This means that the sum that needs to be
performed is

w⃗n⃗′ ≙∑
nx1

∑
nx2

Vn′x1
nx1n

′

x2
nx2 ∑

ny1

∑
ny2

Vn′y1
ny1n

′

y2
ny2 ∑

nz1

∑
nz2

Vn′z1
nz1n

′

z2
nz2 u⃗n⃗,

(57)

where Vn′j1
nj1n

′

j2
nj2

are the L2 × L2 matrices for the two-electron
Coulomb operator. Performing this matrix vector product sequen-
tially requires 3 × L6 × L2 = 3L8 operations. If the Coulomb term
was not separated into 3 products, the total cost of the matrix-vector
product would be L12. Storing these L2 × L2 matrices is the major
RAM requirement of these calculations since a fairly large grid is
required to converge eigenvalues. Storing the full matrix would not
be feasible.

The direct product basis for a two-electron problem has L6

components but even this becomes intractable quickly. Therefore,

instead of using the full direct product grid, we only include basis
functions that have significant overlap with the desired wavefunc-
tion(s). We call this set of basis function labels, n⃗, as β. The size of β
is the number of one-electron basis functions denoted as M. Using
a general pruned basis β complicates the matrix-vector products
significantly. The matrix representation is now

(∑
t

P
T
β (B(t)x ⊗ B

(t)
y ⊗ B

(t)
z )Pβ)U ≙ UE, (58)

where Pβ is a rectangular matrix that projects out the appropriate
matrix elements for basis β. The sequential summation is now

w⃗n⃗′ ≙∑
nx

B
(t)
n′xnx

∑
ny(nx)

B
(t)
n′yny

∑
nz(nx ,ny)

B
(t)
n′znz

u⃗n⃗, (59)

where nz(nx, ny) denotes that the summation for dimension z is per-
formed only over those values of nz that are in the set β that have
corresponding ny, nz values. This is the effect of the projectorPβ. The
second summation is performed over all values of ny(nx) which indi-
cates that only ny values that have a corresponding nx are included,
while nz can be any value in β. The final summation is performed
over all nx in β but only generate the output for n⃗′ ∈ β which is
the effect of the projector PT

β . This means that in order to perform
matrix-vector products sequentially, intermediate vectors u⃗′, u⃗′′ will
have a larger size thanM.

If one uses the form of Eq. (59) as stated, then the interme-
diate vectors u⃗′, u⃗′′ will most likely be larger than necessary. One
only needs to retain any intermediate basis functions that includes
the union of set {nx,ny, n̄z} and {n̄x,ny,nz}, with the n̄i signifying
that all values of ni are taken while only the combinations nj, nk in
the retained basis β are included. Therefore, the intermediate vec-
tors will still be greater than M but smaller than what would result
using Eq. (59). This is explained well in Ref. 13 for any number of
dimensions and is implemented here.

There is also an approximation that can be made such that
intermediate vectors are always the same size. This is the prod-
uct approximation where the matrix-representation of Eq. (47) is
replaced by

(∑
t

F
(t)
x F

(t)
y F

(t)
z )U ≙ UE, (60)

where Fx ≙ PT
β (S−1/2O(t)x S

−1/2 ⊗ Iy ⊗ Iz)Pβ, Fy ≙ PT
β (Ix ⊗ S

−1/2
O
(t)
y

S
−1/2 ⊗ Iz)Pβ, and Fz ≙ P

T
β (Ix ⊗ Iy ⊗ S

−1/2
O
(t)
z S

−1/2)Pβ, where Ii

is the identity operator for coordinate i. Performing matrix-vector
products is now

w⃗n⃗′ ≙ ∑
nx(n′y ,n′z)

B
(t)
n′xnx

∑
ny(nx ,n′z)

B
(t)
n′yny

∑
nz(nx ,ny)

B
(t)
n′znz

u⃗n⃗. (61)

The main disadvantage of the product approximation is that
the Hamiltonian representation is no longer Hermitian. To jus-
tify this claim, consider an approximate sum-of-products approx-
imation where Htrunc . = ∑ihihi+1 with Hermitian conjugate H†

trunc.≈ ∑j hi+1hi. The action of the operator and its dual are only the same
when hihi+1 = hi+1hi. This can be rectified by taking the transpose of
the original ordering of the abovematrices such that FxFyFz becomes
1
2(FxFyFz + FzFyFx). See Ref. 22 for the first numerical application
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to molecular physics. However, in our context, this approach dou-
bles the computational cost and as will be shown later in Sec. VI,
is not necessary for accurate calculations to be made. One simply
needs to use Arnoldi iterations as opposed to Lanczos iterations
to calculate eigenvalues/eigenvectors.23 This does increase memory
requirements as a set of basis vectors need to be stored but, for the
calculations performed here, the main memory costs are from stor-
ing the Hamiltonian matrix elements for the two-electron Coulomb
terms.

A. Choosing basis functions

It is impossible to know a priori the overlap of the basis func-
tions dn(x) with the desired eigenfunctions. Choosing functions that
are centered in the classically allowed region can provide semiquan-
titative accuracy;15 however, this is difficult to do in multiple dimen-
sions. A better method is to iteratively improve the basis function
by starting with a small basis (motivated by classical phase-space
energies) and progressively add more functions around the most
important basis functions to improve the description of the wave-
function.24–26 In this study, the functions included in set β are deter-
mined by considering the diagonal elements of the density matrix
for the eigenstate.

Consider first the case where we are interested in the ground
state and we will generalize to cases where we consider more than
one state subsequently. At the start of the computation, L is fixed and
β is a subset of M functions chosen from the full L3 basis functions.
After each computation of an approximate wavefunction, we have
vn⃗i as the coefficient for basis function αn⃗. The importance func-
tion of each basis function is then defined by Pn⃗ ≙ v

2
n⃗i. If one is

interested in optimizing the pruned basis for more than one eigen-
state at a time, then the total importance function is the sum of the
importance vector for each targeted state.

The importance vector determines which basis function is
pruned and determines which basis functions will be added for the
next iteration. Those basis functions with importance values below
a cutoff threshold are removed and not considered in future iter-
ations. Expansion of the set β occurs near the functions with the
largest importance values. Additions are made in all 3 × 4 direc-
tions in phase-space: three for each dimension x, y, z and four for
each choice of ±m, ±k. Special care needs to be (and was) taken
to exclude redundant function that is already in β and to exclude∥m∥ ∈ 2Z + 1, k ≙ 0. For basis functions of m = l, k = 0, the addi-
tions to the set β are only m = l ± 2, k = 0, m = l ∓ 1, k = 1, and
m = l, k = 1.

For all calculations in this paper, we are using basis functions
in x, y, z that can be symmetry adapted with respect to inversion of
single coordinate, e.g., f (−x, y, z) = ±f (x, y, z). All systems studied
in this paper have symmetry about the origin in at least two coordi-
nates, and therefore fewer basis functions will be needed to represent
their wavefunction. This is true even though the full wavefunction
(including correlation) does not respect this single-coordinate inver-
sion symmetry. The asymmetry introduced by correlation is a much
smaller portion of the total wavefunction and therefore requires
fewer antisymmetric basis functions to describe it accurately. This
means that at the origin, k ∈ 2Z are symmetric functions while
k ∈ 2Z + 1 are antisymmetric functions. All other functions are
localized in four positions in phase-space (±mΔx, ±kπ/Δx) except

for k = 0 which is localized at two points. The indices are then
relabeled such that positive mmeans moving outward from the ori-
gin in symmetric functions, while a decrease in negative m from
meansmoving outward from the origin in antisymmetric functions.

VI. ONE-ELECTRON CALCULATIONS

There are four parameters that one controls the lattice spac-
ing in position space Δx, the number (and type) of quadrature
points used for the Coulomb terms, the number of underlying
dn(x) functions, and whether the Hermitian [Eq. (59)] or prod-
uct approximated [Eq. (61)] Hamiltonian representation is used.
The hydrogen atom is used as the test for all parameters. The basis
is symmetry adapted for x, y, z with basis functions located at
. . ., −2Δx, −Δx, 0, Δx, 2Δx, . . . and the hydrogen nucleus located
at 0, 0, 0. The size of the position grid is always of the size Lk
≙ 4Z − 1 so that m = 0, k = 0 is in the basis with an odd num-
ber of m values on either side. The symmetric orthogonalized form
of Eq. (47) with Hermitian matrix-vector products is used unless
otherwise stated. In addition, the underlying dn(x) grid is only
has large as necessary except for Sec. VI C. Implicitly restarted
Arnoldi via ARPACK23 is used to calculate eigenvalues/eigenvectors.
When performing the test of grid spacing and when comparing the
Hermitian and product approximations, 19 Gauss-Jacobi quadra-
ture points were used. However, 13 quadrature points were used
for all multielectron calculations consistent with our findings in
Subsection VI A.

A. Convergence of quadrature approximation

The convergence of the Gauss-Jacobi quadrature approxima-
tion can be seen in Figs. 3 and 4 for the 1S [with Δx ≙ √π] and the
2P state [with Δx ≙√π], respectively. For the 1S state with Δx ≙√π,
chemical accuracy 𝜖 < 10−3 hartree can be achieved with only 7
quadrature points. This is not true if one uses Δx ≙ 2

√
π where 11

quadrature points are required. The reason for this is that the max-
imum momentum index required for chemical accuracy is k = 15
with Δx ≙ 2

√
π while only k = 7 for Δx ≙ √π. A more highly oscil-

latory basis requires a higher degree polynomial to represent and
therefore more quadrature points. Therefore, all later calculations
are performed with 13 Gauss-Jacobi quadrature points which are
more than enough to achieve chemical accuracy without the quadra-
ture error entering the calculation. One can also use Gauss-Legendre
quadrature, but the number of points required to achieve chemical
accuracy is generally larger by about 50%.

B. Hermitian vs product approximation

For the 1S state of hydrogen with a position spacing Δx ≙ √π,
the comparison between the Hermitian [of Eq. (59)] and product
approximated form [of Eq. (61)] is shown in Fig. 5. It is clear that
the product approximation only manifests when high accuracy is
required. For this calculation that occurs after chemical accuracy has
been achieved. This is not the case if Δx ≙ 2√π for which the differ-
ence is evident when the error is approximately 0.002 Eh and error
below 0.001 Eh requires a larger basis. Even with this disadvantage,
the speed of the calculation using the product representation ismuch
faster as intermediate basis sizes can be upward of six times larger
than the retained basis.
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FIG. 3. Convergence of the ground state
eigenvalue of a hydrogen atom using a
grid spacing of

√
π using an increas-

ing number of Gauss-Jacobi quadrature
points.

C. Using different sizes of modulated Gaussian
phase-space localized functions

We have also tested using different sizes of modulated Gaus-
sian [Eq. (5)] grids for the 1S state of a hydrogen atom. The large
grid includes indices m ∈ ∥−21, 21∥, k ∈ ∥0, 22∥. The small grid
has indices m ∈ ∥−7, 7∥, k ∈ ∥0, 13∥. The basis functions after the
40 expansion iterations shown have indices m ≤ 6 and k ≤ 11.

In Fig. 6, the difference between the large and small grid of dn(x)
functions is insignificant near convergence. In fact, the coefficients
of the eigenvector are the same to several (approximately four) dig-
its for a given n. Knowing this, we only use as many functions as is
necessary to cover a large enough region of phase-space to converge
the calculations. This is especially important for the two-electron
calculations when memory resources become the constraining
factor.

FIG. 4. Convergence of the 2P state
eigenvalue of a hydrogen atom using a
grid spacing of 2

√
π using an increas-

ing number of Gauss-Jacobi quadrature
points.
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FIG. 5. Convergence of the 1S state of
a hydrogen atom using a grid spacing
of
√
π using the Hermitian and product

approximation.

D. Convergence 1S, 2S, and 2P hydrogen energy levels
using different grid spacing

The S orbitals are determined with only even basis func-
tions for x, y, z, while the 2P state is determined by using even
basis functions for x, y and odd basis functions for z. Without

symmetry adaption, the number of basis functions would be 8 = 23

times larger.
The convergence of hydrogen energy levels is determined by

growing the basis using only the wavefunction from the desired
state (see Subsection V A). The convergence has been examined
for the spacing of Δx ≙ √π and Δx ≙ 2

√
π with each state

FIG. 6. Convergence of the 1S state of
a hydrogen atom using a grid spacing
of
√
π using a large or small underlying

grid.
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FIG. 7. Convergence of 1S, 2S, and 2P
states of hydrogen with a grid spacing of√
π. The order of convergence is fit for

each state.

being optimized independently. The discontinuous derivative of
the 1S and 2S states results in a slower convergence than for the
2P state. For Δx ≙ √π (shown in Fig. 7), the convergence of
the 1S, 2S, and 2P states is N1.63, N1.72, and N2.236, respectively.
When Δx ≙ 2

√
π, the 2S and 2P states converge much more

quickly (N2.602 and N5.563, respectively) compared to 1S only hav-
ing a convergence of N0.911 (Fig. 8). This is why multiresolution
wavelet PSL basis sets are desirable.9 Unfortunately, the Wilson
basis does not have this property but we return to this point in
Sec. IX A.

FIG. 8. Convergence of 1S, 2S, and 2P
states of hydrogen with a grid spacing of
2
√
π. The order of convergence is fit for

each state.
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VII. TWO-ELECTRON CALCULATIONS

To perform two-electron calculations, we simply take the set of
one electron basis functions and make a direct-product to add the
other three dimensions,

bn⃗1n⃗2 ≙ bn⃗1 ⊗ bn⃗2 , (62)

where n⃗1 ≙ ∥n1,n2,n3∥ and n⃗2 ≙ ∥n4,n5,n6∥ are both contained in
the pruned basis function set β. This means that no product approx-
imation is made in the individual two-electron Coulomb terms for
x, y, z regardless of whether one uses Eq. (59) or Eq. (61). The
benefit of using Eq. (62) is that spin can be taken into account if
desired.

For example, one can differentiate between singlet and triplet
states by enforcing symmetry under exchange. This is explicitly
written as

b
(s)
n⃗1 ,n⃗2
≙ (bn⃗1 ,n⃗2 + bn⃗2 ,n⃗1)/2 (63)

for the singlet state and

b
(t)
n⃗1 ,n⃗2
≙ (bn⃗1 ,n⃗2 − bn⃗2 ,n⃗1)/2 (64)

for the triplet state. Even when using the product approxima-
tion (and Arnoldi iterations), symmetry adaptation isolates singlet
and triplet states effectively as the product approximation error is
small.

If one uses Eq. (59), then singlet/triplet labels can be obtained
with a single matrix-vector product for each Lanczos iteration
using symmetry adapted Lanczos.27 This is because the symmetry
projection operator P commutes with the Hamiltonian such that
PHv = HPv. Therefore, a sum of vectors with different symme-
tries applied to the Hamiltonian, followed by the symmetries then

being projected out is equivalent to applying the Hamiltonian to
each vector with distinct symmetry separately. One then stores and
calculates eigenvalues from separate Lanczos tridiagonal matrices
for each symmetry. Note that symmetry adapted Lanczos was not
implemented in this pilot study.

The first test case is for the 1S ground state of the helium
atom. The convergence of the basis with Δx ≙ 0.45

√
π on a grid

of Lk = 11, Lm = 11 is found to be M−0.726 (where M = N2)
for the symmetric basis and N−0.781 for the biorthogonal basis as
shown in Fig. 9. The most accurate energy calculated is found to
be −2.9013 Eh with the exact solution being −2.903 72. . . Eh.

28 This
required a basis of 3325 × 3325 = 11 055 625 functions. This cal-
culation took just under 5 h using 16 cores on a Xeon(R) E5-
2640 processor and required 28.5 GB of RAM. The majority of the
RAM usage (22 GBs) was required to store the two-body Coulomb
matrix representation at each of the 13 quadrature points. A value
of −2.9017 Eh using the biorthogonal representation used 2603× 2603 = 6 775 609 basis functions and required just under 3 h
of computing time using 26.2 GB of RAM on the same com-
puter. The reduction of approximately 20% in the one-electron
basis size is fairly consistent across all calculations examined when
using the biorthogonal representation relative to the orthogonal
basis.

We also performed calculations on the hydrogen molecule at
a distance of 0.74 Å and obtained the lowest two singlet states

along with the lowest energy triplet state. The sampling grid was
Lm = 11, Lk = 11 with Δx ≙ 1.3

√
π. Optimizing the ground state

separately resulted in an energy of −1.8872 Eh with a basis size of
3180 × 3180 = 10 112 400. When optimizing for all three eigenval-
ues, a basis of 2898 × 2898 = 8 398 404 obtained energies of −1.8865
Eh for X 1

Σ
+
g , −1.4961 Eh for b 3

Σ
+
u , and −1.4254 Eh for B 1

Σ
+
u . All

three of these values are more converged than those calculated with
Ref. 19. This is especially true for B 1

Σ
+
u , which is 0.007Eh lower in

energy.

FIG. 9. Convergence of the 1
S ground

state of the helium atom with a grid
spacing of 0.45

√
π. The order of con-

vergence is fit to be O(M−0.726) for
S−1/2HS−1/2 and O(M−0.781) for HS−1,
where M = N

2.
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VIII. HARTREE-FOCK

Hartree-Fock or mean-field ansatz is also possible using the
Wilson basis functions. This is because the Coulomb basis is not
truncated but rather remains a direct product of basis functions, Eq.
(62). The Hartree-Fock equations are derived by taking the gradient
of the energy functional of charge density matrices. The resulting
operator is the Fock matrix given in standard notation as29

Fn⃗′n⃗ ≙ Hn⃗′n⃗ +
Ne/2∑
a

β∑⃗
m⃗j

Cm⃗ aC
∗
j⃗a∥2(n⃗′n⃗∣ j⃗m⃗) − (n⃗′m⃗∣ j⃗n⃗)∥, (65)

with (n⃗1n⃗′1∣n⃗2n⃗′2) ≙ In⃗′1n⃗
′

2 ,n⃗1n⃗2
(∣r1 − r2∣−1). We can achieve a more

efficient algorithm by rearranging the action of the second term as
follows:

β∑⃗
n

⎛⎜⎝
Ne/2∑
a

β∑⃗
m⃗j

Cm⃗ aC
∗
j⃗a∥2(n⃗′n⃗∣ j⃗m⃗) − (n⃗′m⃗∣ j⃗n⃗)∥⎞⎟⎠bn⃗ (66)

≙
β∑⃗
n

Ne/2∑
a

β∑⃗
j

C
∗
j⃗a

β∑⃗
m

(n⃗′n⃗∣ j⃗n⃗)∥2Cm⃗ abn⃗ − Cn⃗ abm⃗∥. (67)

This second form allows us to perform the action of the Fock oper-
ator without constructing the matrix. In some cases, the first form
could be more efficient if the number of electrons is very high
but the second form is what has been implemented. The integral
driven procedure scales as 3Ne(N2 + N8/3)/2. If instead one first
forms the charge density matrix, Pλσ ≙ ∑Ne/2

a CλaCσa, then performs
the remaining summations in Eq. (66), a cost of (N2) (3N4/3)/2 is
expected. It is therefore cheaper to use the density matrix approach
only when the number of electrons is less than N2/3. For all calcu-
lations performed here, Ne ≪ N2/3, so the integral driven approach
was utilized.

The convergence of the Hartree-Fock calculation of the helium
atom is shown in Fig. 10. The convergence using the symmetric basis
is N−1.561 which is essentially the same convergence as the full two
electron calculation, but N is denoted by the size of the one-electron
basis here. The most accurate value obtained is −2.860 12 Eh using
a basis of 2525 functions. The exact value is −2.8618 for an error of
less than 0.002 Eh.

A. Four electron system using Hartree-Fock

Using Eq. (67), we study the four-electron system LiH at a spac-
ing of 3 a0 with H at −0.75 a0 and Li at 2.25a0. The system geome-
try is such that both atoms are on the x-axis. Consequently, only
even-parity functions are necessary for y and z directions reduc-
ing the necessary basis size by a factor of four. By choosing the
step size in each direction, the Coulomb matrices are the same in
each direction. By performing the same transform to the symme-
try adapted basis to each coordinates maintains the equivalence of
the Coulomb matrices in each direction. Hence, we can store a
single L × L × L × L Coulomb matrix at each quadrature point
rather than maintaining separate representations in each Cartesian
direction.

The basis functions for this calculation were sampled from
a grid of Lm = 15, Lk = 7 with Np = 13 quadrature points and

required ≈17 GB of memory. The majority of this memory over-
head comes from the 13 (15× 7)4 two-electronmatrices representing
approximately 13 GB of memory.

To test the performance of the Wilson basis on the LiH sys-
tem, we compared against the standard basis sets of STO-3G and 3-
21G with respective Hartree-Fock energies of −7.8623 and −7.9295,
respectively. Of the total L3 = 1 157 625 Wilson basis functions, a
pruned basis set β of sizeN = 2048 was necessary to achieve STO-3G
accuracy and N = 3511 was needed to reach 3-21G accuracy.

FIG. 10. Convergence of the 1
S ground

state of the helium atom using Hartree-
Fock with a grid spacing of 0.45

√
π.

The order of convergence is fit to be
O(N−1.561).
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We performed the calculations using 16 cores of a Xeon(R)
E5-2640 processor with 64 GB RAM, part of Dartmouth’s discov-
ery cluster. Obtaining STO-3G accuracy took 10.3 h while obtaining
3-21G accuracy took approximately 38 h.

IX. EXTENSIONS OF THE WILSON BASIS SET

The necessity of describing both diffuse and tightly bound
eigenfunctions simultaneously complicates the usage ofWilson basis
functions. Therefore, the Wilson basis will probably be more suc-
cessful when combined with pseudopotentials. Instead of using
pseudopotentials, two alternative ideas are tested.

The first is to utilize a multiresolution basis, and the second
is to augment the Wilson basis with projected Slater type orbitals.
The multiresolution gausslets9 are more effective at describing both
diffuse and tightly bound eigenfunctions but, as we point out in
Subsection XI A, there are cases where the Wilson basis remains
better.

The second method makes use of the sum-of-products form of
the STO-nG basis. We showed that accurate energies of one electron
in a LiH2 potential can be obtained by replacing high momentum
functions with the STO-6G basis centered on the Li nuclei. This
second technique will likely be most useful when using an expan-
sion of the eigenfunction as a sum-of-products described in Refs. 30
and 19.

We will close this section with a tour through other ideas for
improving the overall numerical implementation. The final subsec-
tion will highlight several paths for improvement that were not done
in this study.

A. Using gausslets

Earlier in Sec. VI D, we noted that the convergence rates of the
1S state are faster when theWilson function grid spacing is small but
the 2S and 2P states converge faster with larger grid spacing. This
suggests that a single choice of resolution will not work for multi-
ple states. In this subsection, we explore multiresolution approaches
and compare them against the Wilson basis. We find that the con-
vergence rates of the Wilson basis are faster for individual states
but the multiresolution functions can better capture simultaneous
convergence of multiple states.

It has been shown8 that using multiresolution wavelets for
Coulomb potentials can provide a significant reduction in the num-
ber of basis functions required for one-dimensional convergence.
However, most wavelets used previously are only defined on a
grid, and as the electron-nuclei and electron-electron potentials
are unbounded, the Hamiltonian representations become nontrivial
when performing quadrature due to the singularity at various points
in space. One then either needs to use a pseudopotential7 or soften
the discontinuity.8

In another approach to this problem, White9 developed a
wavelet theory using “gausslets” that are defined as certain linear
combinations of an equally spaced grid of Gaussians. This allows
a multiresolution wavelet transform to be performed on a grid of
Gaussian functions. Starting from a single wavelet, a set of three
transformations can be used to decrease the resolution systemat-
ically: a transformation to an even function, a transformation to
an odd, and a scaling transform. The even/odd symmetries are

defined by inversion about the center of the gausslet. Here, we
consider a calculation for the electronic energy of the hydrogen
atom.

The grid of Gaussians is defined as

gi(x) ≙√δx exp[−1
2
(i − 3δx x)2], (68)

with δx between each Gaussian on the grid. For each cartesian direc-
tion, we consider a one-dimensional grid with i ranging between−4208 and 4208. The overlap integral for two Gaussians on the
grid is

S
(g)
i′i ≙

√
π

3
exp[−1

4
(i − i′)2]. (69)

The kinetic energy operator integral is

I
(g)
i′i (T) ≙ − 1

8δx2
(−2 + (i − i′)2)S(g)i′i , (70)

and the one-electron Coulomb integral for each Legendre quadra-
ture point pα is

V
(g)
i′i (pα,Ri) ≙ exp[− 1

16
(i + i

′ − 6δxRi)2(1 + pα)2]S(g)i′i . (71)

The full Coulomb operator is

In⃗′n⃗( 1
r − r′ ) ≈

√
π

δx

Np∑
α≙1

wαV
(g)
n′x ,nx
(pα,Rx)V(g)n′y ,ny

(pα,Ry)V(g)n′z ,nz
(pα,Rz).

(72)

We use the G10 gausslet with application of the W652 wavelet
transform repeated 4 times and a Gaussian grid spacing of
δx = 0.015. This choice was found to give the best results using the
methodology described in the present paper. The matrix elements
were calculated by generating the transformation matrix G for each
basis function at position n = (m, k),

wn(x) ≙∑
i

Gnigi(x), (73)

with Gni representing a vector of coefficients inG for n = (m, k) such
that m = −8, −7, . . ., 0, . . ., 7, 8 for k = 0 and m = −7.5, . . ., −0.5,
0.5, . . ., 7.5 for the even and odd wavelets at k = 1, 2, . . ., 8. The
centers of the wavelets change depending on the k-dependent spac-
ing of the wavelets Δx(k) given by Δx(7) = Δx(8) = 9δx, Δx(5) = Δx(6)

= 27δx, Δx(3) = Δx(4) = 81δx, and Δx(0) = Δx(1) = Δx(6) = 243δx.
The even and odd wavelet transforms shift the center by a factor of
Δxk/2 and are responsible for the differentm indexing between k ≠ 0
and k = 0.

We generate the basis by starting with gausslet G10,
9 defined by

the coefficient vector G⃗(10) with nonzero elements from i = [−68,
68] and centered at x = 0. The odd W652 wavelet transform is
applied to G⃗(10) to obtain the G(m=1/2,k=8),i coefficients; the even
W652 wavelet transform is applied to obtain the G(m=1/2,k=7),i coef-
ficients. We obtain another gausslet denoted as G⃗(10,6) also centered
at x = 0 with lower resolution by applying the W652 scaling trans-
form to the original G10. This process is repeated, by applying the
odd, even, and scaling transforms G⃗(10,6), to obtain G(m=1/2,k=6),i,
G(m=1/2,k=5),i, and G⃗(10,6,6), respectively, which are now spaced 27δx
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apart. The resolution is further decreased using the same three trans-
forms (odd, even, and scaling) to obtain G(m=1/2,k=4),i, G(m=1/2,k=3),i,
and G⃗(10,6,6,6) with spacing 81δx. After the final set of transforms,
we obtain G(m=1/2,k=2),i, G(m=1/2,k=1),i and G⃗(10,6,6,6,6) with spacing
243Δx. Then, Gm=0,k=0,i is defined as G⃗(10,6,6,6,6). To obtain other
m values, one simply has to shift the coefficients by the appro-
priate number of positions for each resolution level. Specifically,
G(m ,k),i = G(m=1/2,k),i+(m−1/2)×s, where s = 9 for k = 7, 8, s = 27
for k = 5, 6, s = 81 for k = 3, 4, and s = 243 for k = 1, 2.
For k = 0, G(m ,k),i = G(0,0),i+m×243. The number of nonzero ele-
ments in each row of G is 252, 706, 2094, 4528 for each level,
respectively.

The calculation of the matrix elements is then simply a contrac-
tion of the full operator matrices as

I
(g)(O) ≙ GOG

T , (74)

where O is one of T(g ) or C
(g ) described by Eqs. (70) and (71),

respectively, and G has elements Gni as generated from wavelet
transforms and translations. Clearly, very large matrices are needed
in one dimension to calculate matrix elements in this fashion.
However, the matrices are banded due to all matrix elements
depending on the banded S

(g)
i′i such that the calculation and stor-

age requirements only grow linearly with increasing number of
wavelets.

The other issue is that a larger number of quadrature points
are required to calculate accurate energy levels. With the Wilson
basis, as few as seven Gauss-Jacobi quadrature points are needed
for the quadrature error to be less than 0.001a0. For the gausslet
basis, 51 Gauss-Legendre quadrature points are required to achieve
the same precision. If a smaller δx spacing is used than even more

quadrature points are required. In addition, Gauss-Jacobi quadra-
ture does not work for gausslets, most likely due to the disconti-

nuity in V
(g)
i′i causing problems here but are not important in the

Wilson basis. Another issue is that the basis is not variational with
respect to quadrature points. If fewer points than necessary are used,
one can obtain energies that are lower in energy than the exact
value.

The advantage of the gausslet/wavelet basis comes from trying
to describe two different eigenfunctions simultaneously. As can be
seen from Fig. 11, the accuracy of the 1S state is only marginally
worse (for a given basis size) if both the 1S and 2S states are opti-
mized simultaneously, as opposed to only optimizing the 1S state.
To obtain chemical accuracy for only the 1S state requires 1366 basis
functions, while obtaining chemical accuracy for both the 1S and 2S
states requires 1717 basis functions.

This result is very different from what is found with the Wilson
basis. To obtain chemical accuracy only optimizing the 1S state
requires only 823 functions while obtaining chemical accuracy
of both 1S and 2S states requires 2974 functions. Therefore,
using gausslets should allow fewer necessary basis functions for
describing multiple states at once. Symmetry adapted wavelets
were used in the calculation along with Hermitian matrix-vector
products.

B. Augmenting the Wilson basis with Gaussian Slater
type orbitals

Another possible improvement is the ability to combine the
Wilson basis with well-developed quantum chemistry basis sets. As
an example, we will find the ground state of one-electron in a poten-
tial of a Li nuclei at the origin and two H nuclei at ±3a0. The first
thing to note is that the STO-nG is a basis in sum-of-products form
such that

FIG. 11. Convergence 1S, 2S states of
hydrogen with an underlying Gaussian
grid spacing of 0.015a0. The bracketed
values indicate which states were opti-
mized simultaneously. One can see that
there is only a small decrease in accu-
racy when optimizing both the 1S and 2S
states as opposed to only the 1S state.
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STO-nG ≙
n∑
i=1

ci(2αi
π
)3/4 exp[−αi(r − ri)2]

≙
n∑
i=1

ci(2αi
π
)3/4 exp[−αi(x − Rx)2]

× exp[−αi(y − Ry)2] exp[−αi(z − Rz)2]. (75)

Next, we can expand each of the exp[−(x − Ri)2]Gaussians in terms
of the Wilson basis. We wish to describe the portion of phase-space
that has contributions from all three nuclei with theWilson basis set.
Therefore, we partition phase-space such that the high momentum
region (k greater than cutoff kc) will be described by the projection
of the STO-nG basis into the k > kc Wilson basis functions. Thus, for
k > kc, the STO-nG basis is expanded as

exp[−αi(r − rA)2]
≙ ∑

m,k>kc

s
(i)
mx ,kx

pmx ,kx(x)s(i)my ,ky
pmy ,ky(y)s(i)mz ,kz

pmz ,kz(z), (76)

where s(i)
m′x ,k

′

x
≙ ∑nx=(mx ,kx) S

−1/2
n′xnx ∫ ∞−∞ exp{−αi(x − Ri)2}dmx ,kx(x) and

pm,k(x) ≙ ∑nx
S
−1/2
nxn′x

dm′x ,k′x(x). These states are then combined with

the Wilson basis set for k < kc.
These functions are orthogonal to the k ≤ kc Wilson basis but

are not orthogonal to each other; therefore, orthogonalization needs
to be performed in order to use this new basis iteratively. This is
done using Gram-Schmidt starting with the smallest αi and work-
ing upward. The small values of α correspond to diffuse, delocal-
ized orbitals, while large values of α correspond to tight, localized
orbitals. Thus, the larger values of α will contain higher momen-
tum components. The Gram-Schmidt orthogonalization procedure
preserves the ordering of the momentum when the input states are
sorted by αi.

We can separate the sum of products and use individual com-
ponents, ∑mz ,kz>kc s

(i)
mz ,kz

pmz ,kz(z) representations as 1D basis func-
tions. For these calculations, n = 6, and we use the projected STO-nG
basis functions only for the high momentum part of the Lithium
nuclei. The two smallest values of αi are diffuse, and the part of
phase-space these functions that describe is described by the Wil-
son basis. This means that the basis used for the calculation is now

pmi ,ki , k < kc∑mz ,kz>kc s
(i′)
mz ,kz

pmz ,kz(z), m ≙ 0, k ≙ kc + i′, i′ > 2
0, otherwise,

, (77)

where i′ labels the Gram-Schmidt orthogonalized states. Applying
this basis to the H–Li–H one-electron system with an even sym-
metrized basis increases the rate of convergence substantially. Using
the basis of Eq. (77) required a basis size of 1493 to obtain the
value of −5.1642 Eh, while using only theWilson basis required 4250
basis functions. This comparison was made using Δx ≙ 0.5

√
π with

13 Gauss-Jacobi quadrature points and Hermitian matrix vector
products.

The use of the STO-nG basis’ sum-of-products form pre-
sented here would most likely be even more useful if one
represented the wavefunction as a sum-of-products basis. The
reason is that the region of phase-space represented by the

STO-nG basis only requires the addition of n basis functions. Here,
the n basis functions had to be added in each dimension and then
coupled into the rest of the basis so the savings were much smaller.
That being said, the improvement in basis size is still substantial. The
main downside is that calculating the necessary two-body Coulomb
matrix elements for a fixed grid is no longer independent of the
nuclear configuration. This is due to centering of the STO-nG basis
functions on the nuclei.

C. Other extensions

There are a few directions, one could pursue to increase the effi-
ciency of the Wilson basis: further exploits the locality, the symme-
try, and extending the extrapolation methods to estimate complete
basis set limits.

First, it would be beneficial to take advantage of the fact that
the individual matrices in the sum-of-products expansion of the
Coulomb operator are banded in the sense that the off-diagonal ele-
ments decay exponentially. This is somewhat nontrivial to leverage
as the bandedness depends on the quadrature point the matrix is
evaluated at. In both Eqs. (42) and (44), pα closer to minus one
is more diagonal in position space while v closer to one is more
diagonal in momentum space. Taking advantage of the bandedness
would speed up the calculation and also assist with the troublesome
memory usage of L4.

Second, there room to further exploit the symmetries of the
problem. As mentioned in Sec. VII, the translational symmetry in
position space for the two-electron matrix elements has not been
exploited here. It may also be useful to use a linear combination of
Wilson basis functions that have arguments of the pairs of coordi-
nates (x1, x2), (y1, y2) and (z1, z2) instead of only xi, yi, and zi. First,
symmetry adaptation of the basis would be more effective since it
respects the symmetry of the fully correlated wavefunction. Second,
as there is no obvious way to separate the x1, x2 matrix of Eq. (44),
the use of these basis functions would not decrease the speed of the
calculation.

Third, expanding the basis using the technique of Sec. V A pro-
duced convergence of the calculated energies that can be fitted to a
function with form aMb. This should make it possible to extrapo-
late to the complete basis set limit although this was not done in the
present study.

The use of phase-space localized (PSL) basis functions has gar-
nered some attention to assist in the calculation of vibrational15,16,31

energy levels. The motivating idea is that only a finite number of
PSL basis functions would be needed in order to cover the local-
ized region of phase-space in which the wavefunction occupies.
For vibrational calculations, a comparison with PSL functions and
the commonly used Gauss-Hermite functions16 or sinc basis32 sug-
gests that this motivating idea has complications. It is important
to describe the tail portion of the wavefunction that tunnels out-
side the classically allowed region of phase-space, but this tail region
requires a much larger PSL basis. For vibrational problems, describ-
ing the tail region properly is difficult a priori as the potential
becomes more complicated away from the minimum where a multi-
dimensional Taylor expansion is accurate. This is not the case for
electronic calculations where the potential can be expanded suc-
cinctly away from the nuclei using multipole expansions. Thus,
in the future, it may prove beneficial to replace the tail regions
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∣m∣ > mc with projections of the Wilson basis into standard basis
sets.

X. CONCLUSION

Is the Wilson basis competitive with commonly used basis sets
at this time? The answer to this question is no. However, there are
three advantages worth highlighting. First, this basis performs bet-
ter in terms of computation and convergence than the previously
investigated sinc basis functions. Second, for isolating a single state,
the Wilson basis uses fewer functions than gausslets in the examples
tested. Third, and most promising, we have shown how to com-
bine the Wilson basis functions with the commonly used Slater type
Gaussian basis functions.

Future areas of investigation for the Wilson basis include
electronic systems with large applied magnetic fields, translation-
ally invariant electronic systems, and use of the Wilson basis in
quantum simulation algorithms on quantum computers. In order
to model systems with an applied magnetic field, the extension
to complex basis functions must be done and this is relatively
straight-forward. Our preliminary computations suggest that the
inclusion of a magnetic field does not greatly increase the num-
ber of basis functions needed for convergence although Δx must be
adjusted.

In this paper, we have only looked at small molecular systems
but there is an opportunity to study the electronic properties of
solids with the Wilson basis functions. Since the Wilson basis func-
tions are phase-space localized, the techniques used in this paper can
equally be applied to calculations in momentum space.

A final application area of the Wilson basis function is quan-
tum simulation algorithms for quantum computing. To utilize the
power of quantum computation for electronic structure theory, it
is crucial to map fermions to qubits optimally. Efficient mapping
allows the number of overall quantum gates applied to be reduced,
which is especially important given the current limitations of quan-
tum computing hardware. While there are multiple fermion-to-
qubits mappings,33–38 our most recent work has highlighted the
potential of the Bravyi-Kitaev Super-Fast mapping38 as well as its
robustness against certain quantum noise processes.39 This map-
ping, which has connections to lattice gauge theory,40 simulates
the gauge fields rather than standard mappings that simulate the
fermionic fields themselves. Because of the close connect to lattice
gauge theories, our group has noticed strong dependence on the
choice of basis set.41 Future work will be in applying the Wilson
functions described here to fermion encodings that require localized
wavefunctions.
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