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ability, and high-performance operation. Traditional methods for fault detection and diagnosis rely on
nominal input-output data, which can contain insufficient information to support reliable conclusions.
Recent years have witnessed a growing interest in active fault diagnosis, which addresses this issue by
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1. Introduction

Faults and malfunctions can happen in any modern technical
system, with potentially detrimental effects on safety, performance,
reliability, environmental footprint, and economics. In 2013, every
Boeing 787 Dreamliner was grounded indefinitely after battery fail-
ures had occurred in two planes, with enormous consequences for
the finances and reputations of the affected airlines, the manu-
facturer, and its suppliers (Williard, He, Hendricks, & Pecht, 2013).
The 2005 series of explosions and fires at the BP refinery in Texas
City, in part caused by an overflowing isomerization column, re-
sulted in 15 fatalities and 180 injuries (Khan & Amyotte, 2007;
Manca & Brambilla, 2012). Before losing control of El Al Flight
1862 in the 1992 accident, in which both engines on the starboard
side detached because of material fatigue, the pilots were able to
keep the plane in the air for almost fifteen minutes. Had the fault
been diagnosed during this time, followed by appropriate action,
the disaster could have been averted (Alwi, Edwards, Stroosma, &
Mulder, 2008; Maciejowski & Jones, 2003). Reliable and timely di-
agnosis of faults is not only critical to safety, reliability, availabil-
ity, and maintainability of a system, it is also essential in ensuring
a system'’s ability to function as designed (Isermann, 2006). How-
ever, the growing complexity and strict performance requirements
of modern technical systems have made reliable fault diagnosis in-
creasingly challenging.

Fault diagnosis is generally a multi-step process, commonly in-
cluding fault detection, isolation, identification, and estimation. Infor-
mally, these terms in turn refer to: determining whether or not the
system is fault free; if not, which part of the system is faulty; the
type of fault that has occurred in that part; and the magnitude of
the fault (e.g., Blanke, Kinnaert, Lunze, & Staroswiecki, 2006). This
paper deals with fault diagnosis in its entirety, rather than treating
these activities individually. In particular, we focus on the problem
of enhancing fault diagnosis through the design of system inputs,
which is known as active fault diagnosis, or AFD. The remainder of
this section gives an overview of some common types of faults,
contrasts the active and passive approaches to fault diagnosis, dis-
cusses advantages of the active approach, highlights some connec-
tions to related branches of the control literature, and states the
objective of the paper.

For clarity, we conform to the common practice of distin-
guishing between faults and failures, since these two terms are
sometimes conflated in the literature. While a fault may cause a
reduction in a system’s ability to perform the tasks for which it
is designed, a failure is generally understood as an event that ren-
ders the system inoperable. The two terms can thus be defined as
follows (after Blanke et al., 2006; Isermann, 2006; Varga, 2017).

Definition 1 (Fault). A fault in a dynamic system is an anomalous
variation in a characteristic system property that causes an unac-
ceptable deviation from the specified limits of normal operation.

Definition 2 (Failure). A failure is generally an irrecoverable event
that renders the system incapable of operating such that it fulfills
its purpose.

Hence, a failure is more critical than a fault, and a fault may
lead to a failure unless diagnosed and managed appropriately.

Much of the literature makes a distinction between faults that
arise from structural and gradual changes in the system. Structural
changes are discrete events, such as actuators that are stuck in
some position, the complete loss of a sensor, or a system com-
ponent that breaks entirely. Faults arising from structural changes
are often abrupt. Conversely, faults that stem form gradual changes
can increase in severity or magnitude over time; examples include
actuators that become slower to respond because of wear, sensor
biases, and system components that suffer from issues like leaks or

changing material characteristics. Incipient faults are in their earli-
est stages, primarily of the gradual type. Finally, a structural fault
about to happen is impending.

1.1. Active versus passive approaches to fault diagnosis

The growing complexity of modern technical systems has made
faults possibly more frequent and harder to diagnose. Generally, an
important consideration in the design of technical systems is the
potential occurrence of faults and failures to ensure some level of
inherent robustness to such anomalies through the system design.
For example, sensor and actuator redundancy can enable graceful
degradation of system performance in the event of certain faults.
Nonetheless, systematically accounting for all potential faults in
the system design stage is impractical or impossible. This has moti-
vated the use of fault diagnostics during operation, which are typ-
ically developed once the system is designed. However, a complex
design, as well as feedback control and system uncertainties, can
significantly limit the ability to diagnose faults (Sampath, Lafor-
tune, & Teneketzis, 1998). Therefore, there has been a growing in-
terest in the development of methods for faster and more reliable
fault diagnosis during operation (Campbell & Nikoukhah, 2004;
Zhang, 1989).

Fault diagnosis approaches are commonly classified as active
or passive. The latter approach, also known as non-invasive, gen-
erally relies on comparing recorded input-output data to some
reference data, which can be historical or generated through
simulation. Importantly, the system is not perturbed to in-
vestigate its fault status. Comprehensive survey papers (e.g.,
Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003, Venkata-
subramanian, Rengaswamy, & Kavuri, 2003; Venkatasubramanian,
Rengaswamy, Kavuri, & Yin, 2003) and a growing number of
textbooks, such as Chen and Patton (1999), Chiang, Russell, and
Braatz (2001), Blanke et al. (2006), Isermann (2006), Gonzalez, Qi,
and Huang (2016), and Varga (2017), discuss passive methods in
detail. Algorithms for passive fault diagnosis are broadly classified
as data or model based (Venkatasubramanian, Rengaswamy, Yin,
et al., 2003; Venkatasubramanian, Rengaswamy, & Kavuri, 2003;
Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003). Model-
based methods generally require a model for every fault. These
models are often based on first principles, but can also be iden-
tified from data (e.g., see Ljung, 1999). In contrast, data-based
methods rely less on domain knowledge about the system, with
a stronger focus on analysis of large historical data sets to charac-
terize fault-free and different types of faulty operation.

A shortcoming of passive approaches arises from the potential
lack of diagnostically relevant information in the input-output data
generated while the system is operated under the assumption that
no fault has occurred. We refer to this as normal operation, and say
the system then generates nominal input-output data. Note that
normal operation does not imply that no fault has occurred, and is
thus distinct from fault-free operation.! That is, passive approaches
do not account for the fact that nominal operating data may not be
sufficiently informative for reliable fault diagnosis. Common rea-
sons of this lack of diagnostically relevant information include sys-
tem uncertainties and the presence of feedback controllers. Incom-
plete knowledge, or uncertainty, about the system and its state
can result from inadequate measurements (including issues such
as low signal-to-noise ratio, which lowers the information content
in the measurements) and system disturbances that may not be
readily distinguishable from faults through analysis of nominal op-
erating data. Similarly, feedback controllers, the purpose of which

1 Some authors use nominal as an antonym for faulty in the context of operation
and models, a convention we do not follow here.
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is partly to compensate for system variations, can mask the effects
of faults. Thus, faults may remain undiagnosed for an extended pe-
riod of time when nominal operating data is used for fault diagno-
sis. This situation can be particularly critical in the case of incipient
faults that lead to failures unless diagnosed early.

Active fault diagnosis has primarily emerged to address the
shortcomings of the passive approach of using nominal input-
output data. Algorithms for AFD are generally model based; that is,
a set of models is used to predict the behavior of different faults.
The central idea in AFD is to design input signals that, when ap-
plied to the system, increase the amount of diagnostically relevant
information in the input-output data. The designed input signals
can be applied to the system when some performance-monitoring
metric indicates abnormal operation (Qin, 1998; Severson, Chai-
watanodom, & Braatz, 2016; Zagrobelny, Ji, & Rawlings, 2013), or as
part of a diagnostic routine, possibly periodically, to verify whether
or not a fault has occurred. Such an input signal, commonly re-
ferred to as an auxiliary or test signal, is generally designed to
ensure maximal or full separation between the model predictions
corresponding to the different modes of operation. The fault hy-
potheses can then be discarded if their respective model predic-
tions are in sufficient disagreement with new measurements. Note
that the active approach to fault diagnosis is closely related to op-
timal experiment design for model discrimination (e.g., Atkinson &
Cox, 1974; Mélykati, August, Papachristodoulou, & El-Samad, 2010),
where the design objective is to determine which model, among a
set of candidates, best predicts the data. Similar to classic meth-
ods for model discrimination, the early AFD approaches do not rely
on numerical optimization (Kerestecioglu & Zarrop, 1991; Zhang,
1989). This is in contrast to more recent ones, which often pose
the input-design problem as a dynamic optimization problem, as
discussed in this paper.

1.2. Advantages of active fault diagnosis

The main motivation for AFD is to diagnose faults faster and
more reliably relative to passive approaches. An active approach
enables proactive investigation of the system’s fault status while
systematically accounting for uncertainty and operational con-
straints. Accounting for uncertainty is particularly important when
dealing with faults that are small in magnitude or develop slowly.
The effects of these faults may be indistinguishable from the vari-
ation arising from system uncertainty and disturbances; as a result
they can become challenging to diagnose based on nominal input-
output data. Injecting a test signal into the system can enable diag-
nosing small-magnitude faults before their severity increases. An-
other important feature of AFD is the ability to account for system
constraints while injecting the test signal. Physical limits on capac-
ity and actuation are common reasons for specifying constraints.
Other reasons include ensuring that the test signal does not com-
promise operational safety or leads to unacceptable reduction in
performance while investigating the fault status.

Active fault diagnosis fits into a larger context of automatic con-
trol systems that are tolerant to system uncertainties and undesir-
able events. As recognized by Astrom (1991), “Fault diagnosis is an
essential ingredient property of an intelligent system.” In the con-
text of fault detection, diagnosis, and tolerance, a brief comment
on the use of the terms passive and active is in order. As described,
active fault diagnosis involves manipulating the system input to ac-
tively investigate the fault status. The meaning of the word active
in AFD is different from its meaning in the context of fault-tolerant
control, or FTC. An active fault-tolerant controller responds to diag-
nosed faults through reconfiguration of the control strategy (Zhang

& Jiang, 2008). That is, active refers to the controller’s response to
a diagnosed fault, as opposed to the diagnosis approach.?

1.3. Objective of the paper

Active fault diagnosis has matured significantly over the last
two decades, with a diverse set of AFD approaches for a wide range
of problems reported in the literature. The objective of this pa-
per is to introduce researchers unfamiliar with the topic to the
various directions in the literature, provide a systematic overview
of available input-design methods for AFD, discuss important chal-
lenges and considerations involved in the formulation and solu-
tion of input-design problems, and present some opportunities and
possible directions for future research.

This paper is organized as follows. Section 2 first provides some
background on active fault diagnosis along with a discussion on
relevant concepts. An overview of the first decade of the literature
follows, along with a brief discussion of how the modern develop-
ments relate to these early results. Section 3 provides a compre-
hensive overview of the main contributions in the literature, cen-
tered around what we consider the three primary approaches to
formulating input-design problems in AFD, along with some techni-
cal detail. We then discuss extension and variations on these three
directions, followed by a discussion on results for nonlinear sys-
tems and Markov jump systems. We discuss some aspects of im-
plementation of AFD methods in Section 4, with a focus on open-
and closed-loop approaches as well as how AFD and control can
be performed simultaneously. Section 5 concludes the paper with
a brief discussion and some ideas for future research.

2. Input design for AFD
2.1. Background

A fundamental question in fault diagnosis is whether or not
it is possible to diagnose a fault. This gives rise to the property
diagnosability, the use of which varies across the literature, and
there is no agreed-upon definition of diagnosability in the context
of active fault diagnosis. Sampath, Sengupta, Lafortune, Sinnamo-
hideen, and Teneketzis (1995), Sampath et al. (1998), Paoli and
Lafortune (2005), and Bazille, Fabre, and Genest (2017) use defi-
nitions in the context of stochastic automata and finite state ma-
chines, and Dunia and Qin (1998) posit a set of conditions based
on subspace identification; see also Saberi, Stoorvogel, Sannuti, and
Niemann (2000). There are also variations in the literature in us-
ing diagnosability to refer to specific faults or to the system as a
whole.

Here, we use the term as follows when referring to the diag-
nosability of a fault and a system. For a fault to be diagnosable,
it needs to be possible to generate input-output data that is suf-
ficiently informative for ascertaining, with a desired confidence in
finite time and without violating any specified constraints, whether
the fault has occurred. Note the relevance of constraints in this
context: considerations such as safety limits may prohibit gener-
ating the required data. A typical example of generating data that
reveals the occurrence of a fault is brake testing in a car. When
driving at a constant velocity on a straight road there is no indica-
tion whether a car’s brakes have failed. Tapping the brakes gener-
ates a response, which in turn generates data that can be analyzed
to diagnose a brake fault. If all considered faults are diagnosable,
we say the system is diagnosable.

2 Note that a passive fault-tolerant controller is designed for robustness to faults;
that is, the controller is capable of maintaining acceptable performance over a range
of faults without reacting to the faults by modifying the control law (Zhang &
Jiang, 2008).
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When a system is diagnosable, fast and reliable fault diagnosis
relies on two key factors: the information content of the input-
output data and a diagnostic algorithm that analyzes the data to
diagnose faults. If the data contains little or no information rel-
evant to fault diagnosis, the diagnostic algorithm, no matter how
well designed, may be unable to diagnose faults in a timely and
reliable manner. Conversely, information-rich data may not be use-
ful if the diagnostic algorithm is not adequate. Hence, the problem
of active fault diagnosis consists of two components: (1) design-
ing an input signal that, when applied to the system, can generate
sufficiently informative input-output data for fault diagnosis, and
(2) analyzing the data using a suitable diagnostic algorithm to in-
fer the occurrence of faults. This is in contrast to passive fault di-
agnosis that generally relies on nominal input-output data, taking
no active steps toward increasing the information content of data.
Note that in general, these two components are not separate and
their efficacies can be significantly interdependent. That is, a test
signal that is optimal for one diagnostic algorithm may be unsuit-
able for another, and vice versa. Thus, active fault diagnosis can be
generally defined as follows.

Definition 3 (Active fault diagnosis). Active fault diagnosis consists
of designing an appropriate test signal, injecting it into the system,
and using the resulting input-output data for diagnosis of faults.

It follows from this definition that input design is the main
aspect differentiating active and passive approaches to fault di-
agnosis, while the diagnostic algorithms used for passive and ac-
tive approaches generally do not differ. Diagnostic algorithms have
been thoroughly surveyed (e.g., see Blanke et al., 2006; Chiang
et al., 2001; Isermann, 2006; Venkatasubramanian, Rengaswamy,
Yin, et al, 2003; Venkatasubramanian, Rengaswamy, & Kavuri,
2003; Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003) and
discussing these is beyond the scope of this paper. Rather, we fo-
cus on the input-design problem.

Problem (Input design for fault diagnosis). Given a model of the
system, a set of fault models, and a diagnostic algorithm, design
an input signal that results in data sufficiently informative for di-
agnosing a fault with some specified or maximized confidence,
within a specified or minimal time, and without violating system
constraints.

In the following, diagnosis experiment refers to the time period
over which the input signal is applied to the system. Generally,
input design for AFD has multiple objectives: (1) ensure diagno-
sis with an acceptable (typically prescribed) confidence, (2) en-
sure the diagnosis experiment is not excessively long, (3) prevent
excessive operational disruption during the diagnosis experiment,
and (4) ensure that the system remains within the specified oper-
ational constraints during the diagnosis experiment. Specifying an
upper bound on, or minimizing the energy of, the test signal in the
input-design problem is one way of ensuring its application does
not result in excessive disruption. That is, the input signal can be
designed to be minimally intrusive to operation during the diagno-
sis experiment. This is particularly important when there are risks
associated with the experiment, or when there is a direct mone-
tary cost associated with perturbing the system with an input sig-
nal designed to improve the diagnosis.

Modern input design for AFD generally involves formulating
a dynamic optimization problem that consists of an objective
function, one model for fault-free operation and one model for
each fault, and commonly input and state constraints. The ex-
tent to which the system dynamics are nonlinear, the number
of fault models, and how system uncertainties are accounted for
all contribute to the complexity of an input-design problem. In
the simplest case of two models, one for fault-free operation and

one fault model, the problem often simplifies significantly; see,
e.g., Campbell, Horton, and Nikoukhah (2002) and Blackmore and
Williams (2005, 2006). The majority of research on active fault di-
agnosis considers linear systems. The two most common model
types are data-driven input-output models affected by Gaussian
white noise, such as ARMAX, and state-space models that are gener-
ally based on first principles. In recent years, active fault diagnosis
for nonlinear systems, systems governed by differential-algebraic
equations, and jump Markov processes are receiving increasing at-
tention.

System uncertainty is generally described using (deterministic)
bounded sets or probability distributions, although as discussed
below there are input-design methods that rely on hybrid descrip-
tions. Modeling uncertainty with bounded sets in an input-design
problem enables prediction of the system outputs as bounded sets.
When there is no overlap between any of these predicted output
sets from the models, a system measurement can be reconciled
with only one model, thus guaranteeing fault diagnosis. This ap-
proach to AFD is known as set based. Conversely, when describing
uncertainties with probability distributions, the input-design ob-
jective generally involves separating the resulting predicted output
distributions. If these distributions have infinite support, they nec-
essarily overlap to some extent. In this case, it is not possible to
guarantee diagnosis. The goal of input design is then typically ei-
ther to minimize the probability of misdiagnosis or to ensure it
is below a specified value. This is referred to as a probabilistic or
stochastic approach to AFD. Note that when all distributions have fi-
nite supports, probabilistic AFD approaches enable guaranteed fault
diagnosis through full separation of the predicted output probabil-
ity distributions, similar to set-based approaches.

The remainder of this section gives an overview of the early
developments in input design for active fault diagnosis. We outline
the field’s evolution from the early input-design methods based on
linear data-driven models before transitioning to the following sec-
tion, which focuses on modern approaches.

2.2. Early results on AFD for linear systems

The first AFD results for linear systems are presented in the
paper by Zhang and Zarrop (1988) and in the monographs by
Zhang (1989) and Kerestecioglu (1993). These early contributions
consider input design for improved fault diagnosis using two AR-
MAX models, one for fault-free operation and one for operation
under a fault. These formulations rely on the assumption that
the disturbances and measurement noise are Gaussian. Zhang and
Zarrop (1988) introduce a measure for the statistical distance be-
tween the predicted output distributions and show that increas-
ing the generated information, as measured by this distance, leads
to faster fault diagnosis. The test signal is designed by maxi-
mizing this measure of diagnostic information subject to mag-
nitude and bias constraints on the input. Notably, Zhang and
Zarrop (1988) present an algorithm for multi-stage input design
with implementation on a moving horizon. Zhang (1989) explores
this framework more thoroughly, including both open- and closed-
loop implementation of test signals designed to minimize di-
agnosis delay, which is the time between the onset of a fault
and the diagnosis. Additionally, Zhang (1989) proposes a design
criterion based on the Kullback-Leibler divergence (Kullback &
Leibler, 1951), a measure of the similarity of two probability dis-
tributions. A large Kullback-Leibler divergence between two pre-
dicted output distributions indicates the test signal causes the
model outputs to diverge, so that there is little overlap be-
tween the distributions. For fault diagnosis, this means there is a
low probability of misdiagnosis. Kerestecioglu and Zarrop (1991)
compare offline and online input design for two ARMAX model
hypotheses. The design objectives here are to decrease the ex-
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pected diagnosis time and to ensure that the rate of false alarms
is below a given threshold. They formulate an online input-
design problem as finding a static feedback gain that achieves
these goals. The paper shows there exists a trade-off between
reducing the diagnosis delay and the rate of false alarms, and
that the test signals designed offline have a simple structure:
a sine wave with one single frequency. Later, Kerestecioglu and
Zarrop (1994) extend their approach to multiple fault models and
constraints on the output variance, the input energy, and the
rate of false alarms. In this more general case, the optimal sig-
nals generated offline are sine waves that contain a finite number
of frequencies. Output-variance constraints are also considered by
Uosaki, Tanaka, and Sugiyama (1984) in the related field of model
discrimination. Instead of using ARMAX models, Uosaki, Takata, and
Hatanaka (1993) pose the input-design problem in terms of in-
creasing the Kullback-Leibler divergence for output distributions
predicted using one ARX model for fault-free and one for faulty op-
eration. While not improving the diagnosis rates or worsening the
rates of false alarms, the designed test signals result in faster di-
agnosis on average. The authors later investigate a variant of this
problem in the frequency domain (Hatanaka & Uosaki, 1994), as
well as for the case of multiple models (Hatanaka & Uosaki, 1996;
1999a; 1999b) by maximizing the minimum Kullback-Leibler di-
vergence for any pair of models.

While Bayesian statistics were used in passive fault diag-
nosis before the onset of research on AFD (e.g., see Chow &
Willsky, 1984), most of the above approaches rely on statistical
tests such as the cumulative-sum, or cusum, test or sequential
probability-ratio test (SPRT). Kerestecioglu and Zarrop (1989) intro-
duce the Bayesian framework to active fault diagnosis and formu-
late input design as a sequential decision-making problem. They
demonstrate the potential of the Bayesian formulation through
analysis based on dynamic programming (Bellman, 1957).

All of the methods for input design discussed so far assume
that each model hypothesis is an exact representation of the re-
spective fault dynamics, with the stochastic process disturbances
the only source of uncertainty. That is, the model parameters
and the initial conditions are assumed known in each hypothesis.
Kerestecioglu and Cetin (1997a) develop an AFD approach for AR-
MAX models that allows the fault model to have parameters that
change in a known direction but by an unknown magnitude with
respect to the model for fault-free operation (in which the pa-
rameters are known and fixed). Separately, Kerestecioglu and Cetin
(1997b, 2004) consider the case where the direction of the param-
eter change in the fault model is also unknown. A main finding
is that the designed test signals have simple structures. A single-
frequency sinusoidal input is sufficient when the change direction
is known. When the direction is unknown, the number of required
frequencies is determined by the number of poles and zeros in
the transfer function. Furthermore, the standard trade-off between
fast diagnosis and the rate of false alarms exists in the case of a
known change direction. However, when the direction of parame-
ter change is unknown, the test signal can enable both faster diag-
nosis and a lower rate of false alarms. Note that in this approach,
neither a probability distribution nor a closed set is assigned to
the unknown parameters, offering a flexible framework for input
design with a fault model that has a high level of parametric un-
certainty.

The literature from this first decade of research on active fault
diagnosis discussed above largely focuses on deriving closed-form
expressions for the optimal input signals. Typical structures of
these test signals include bang-bang (Zhang & Zarrop, 1988) and
a sum of sinusoids (e.g., Kerestecioglu & Cetin, 1997b). While these
early AFD approaches rely on simple computational methods to de-
termine optimal test signals for scalar systems, the underlying as-
sumptions are somewhat restrictive and only a limited class of

input-design problems lends itself to analytical solution. As dis-
cussed below, more general models and problem formulations en-
able posing a range of complex problems, with optimal inputs pri-
marily designed through numerically solving dynamic optimization
problems.

2.3. Toward modern AFD methods

A new paradigm, utilizing more modern tools and theory,
started in the late 1990s, with Nikoukhah (1998) introducing a
general formulation of the input-design problem based on state-
space models and set-based uncertainty formulations. In this two-
model approach, fault-free operation and one fault are modeled
using two linear time-varying state-space models, with process
disturbances and measurement noise described by deterministic,
bounded sets. The formulation uses convex polytopes to formu-
late bounds on the input signal and on the uncertain disturbances
and measurement noise. This deterministic problem formulation
enables guaranteed fault diagnosis; that is, the designed test sig-
nal guarantees that the bounded sets of predicted model outputs
do not intersect.

The use of state-space models has been prominent in the liter-
ature on active fault diagnosis since Nikoukhah’s 1998 paper. Most
of the subsequent development can be classified as one of three
separate directions. One of these directions is the set-based ap-
proach described above, which has been extended in a series of
papers through the introduction of a specific type of polytopes,
zonotopes, to the input-design problem. A second direction consid-
ers disturbances and measurement noise that are sequences of ran-
dom variables. As a consequence, this is a probabilistic framework
and involves increasing the probability of correct diagnosis, rather
than providing a guarantee. The third direction relies on bound-
ing the energy of the uncertainty that enters the system and does
permit guaranteed diagnosis. In the following section, we discuss
these three directions in more detail. With that basis, we then dis-
cuss the different variations and extensions proposed in the litera-
ture.

3. Optimization-based formulations and solution methods

We here present three primary approaches to modeling the un-
certainty within the framework of state-space models, along with
corresponding formulations of the input-design problem. These
three formulations span a broad range of problems in active fault
diagnosis, and form a basis for the main directions in current re-
search.

After presenting a fairly general state-space model, of which
the three problem formulations use special cases, we introduce
the problems in order of complexity. Arguably, the probabilistic
framework introduced by Blackmore and Williams (2006) is the
conceptually simplest, relies on the least involved mathematical
formulation, and is computationally the cheapest. The set-based
problem formulation introduced by Nikoukhah (1998) using poly-
topes, and later extended through the use of zonotopes in
a series of papers, starting with Scott, Findeisen, Braatz, and
Raimondo (2013), is mathematically more involved. The AFD prob-
lems introduced by Blackmore and Williams (2006) and Scott
et al. (2013) both involve numerically solving discrete-time dy-
namic optimization problems that share many features with those
commonly posed in model predictive control (see, e.g., Rawlings,
Mayne, & Diehl, 2017). The final approach we discuss here, most
comprehensively presented by Campbell and Nikoukhah (2004), is
distinct from the two others in several ways, as demonstrated be-
low. After presenting the basic forms of each of these problem
types, we discuss variations, special cases, and extensions to each.



40 TA.N. Heirung and A. Mesbah /Annual Reviews in Control 47 (2019) 35-50

Table 1

Classification of some primary modern input-design methods. The contributions are categorized as considering linear
or nonlinear systems, using probabilistic, set-based, or hybrid uncertainty descriptions, the number of many models
nm = ng + 1 the method is developed for. A * indicates a method that allows state constraints.

System Uncertainty Nm References
Linear Probabilistic 2 Kim et al. (2013); Blackmore and Williams (2005)*
>2 Paulson et al. (2018); Blackmore and Williams (2006 )*
Set-based 2 Nikoukhah (1998); Andjelkovic and Campbell (2011)*
>2 Tabatabaeipour (2015); Scott et al. (2014)*
Hybrid 2 -
>2  Scott et al. (2013)*; Marseglia et al. (2014)*
Nonlinear Probabilistic 2 —
>2 Mesbah et al. (2014)*; Paulson et al. (2017)*; Martin-Casas and Mesbah (2018)*
Set-based 2 Campbell et al. (2006); Andjelkovic et al. (2008)
>2  Campbell et al. (2002); Paulson et al. (2014)

We then provide an overview of AFD for nonlinear systems, fol-
lowed by Markov jump systems.

Table 1 classifies some of the primary contributions discussed
in this section. The table organizes the referenced papers accord-
ing to system type (linear or nonlinear), uncertainty description
(probabilistic, set-based, or hybrid), and the number of models
considered.

The three approaches we discuss here all consider variations
on a system with two or more linear discrete-time models of the
form

x(k+1) = Ax(k) + Bu(k) + Byw(k) +r1 (1a)
y(k) = Cx(k) + Du(k) + Dyv(k) +s (1b)

with time index k, state x(k), input u(k), disturbance w(k), output
y(k), and measurement noise v(k), all vectors with dimensions ny,
Ny, Nw, Ny, and ny,. Generally, all matrices, as well as the vectors r
and s if included, implicitly depend on k in the sense that faults are
modeled as changes in these quantities. Using i =0, 1, 2, ..., ns as
a model index, with n; the number of fault models, we sometimes
index the quantities in the formulation (1) (e.g., A;) when explicitly
distinguishing the models adds clarity. A model M; is then uniquely
defined by (A;, B, By, i 1, G, Dj, Dy 4, ;). The fault-free model is
indexed with 0 whereas i>1 represents a fault model. Note that
parts of the literature use nominal model instead of fault free; in
this paper we only use fault free to distinguish from faulty to de-
scribe models in this context.

3.1. Probabilistic AFD

The probabilistic AFD problem for multiple fault hypotheses in-
troduced by Blackmore and Williams (2006) considers a set of
models of the form (1) with r and s both zero for all models and
By and D, identity matrices of appropriate dimensions. That is, the
faults are modeled through changes in the matrices (A;, B;, C;, D;)
as opposed to through the additive signals r and s.

The uncertain quantities in this formulation are the distur-
bances w, the measurement error v, and initial state x(0), all spec-
ified with normal distributions. Specifically, w(k) ~ N (0,Q) and
v(k) ~ N(0,R) are both sequences of independent and identically
distributed random variables with Q and R known; the mean and
covariance of x(0) are also known, and x(0), w(k), and v(j) are
mutually independent for all k, j e {0,1,2,...}. Since the model
parameters are assumed known, the predicted system states and
outputs are Gaussian random variables, which makes it trivial to
calculate their expected values. When the probability distributions
have infinite support, as is the case for the normal distribution, it
is not possible to define guaranteed diagnosis through eliminating
any overlap between the predicted probability distributions. A nat-
ural problem is then designing an input sequence u that generates
an output sequence y, such that when analyzed the data minimizes

p(y| Mo, u) Pr(Mo) p(y| Mo, 1) Pr(My)

p(y| My, u) Pr(My)

y

— Ry — — Ry — | — Ry —

Fig. 1. Illustration of three regions used for hypothesis selection under the decision
rule (2). The shaded areas indicate the probability of misdiagnosis Pr(error).

the probability of selecting the wrong model, or misdiagnosing the
fault in other words. This problem can be formulated as outlined
in the following.

Central to minimizing the probability of misdiagnosis is the
Bayesian decision rule for model hypothesis selection, which mini-
mizes the risk of misclassifying observations. That is, this rule min-
imizes the risk of selecting an incorrect fault model or hypothesis,
given the a set of input-output data (Hellman & Raviv, 1970). Given
the two sequences of inputs and outputs u and y, the Bayesian de-
cision rule can be expressed as

select M;. such that i* = arg maxPr(M; |y, u), (2)
1

where Pr(M;|y,u) = p(y|M;,u) Pr(M;)/p(y|u) by Bayes’ theo-
rem.’> Here, the initial knowledge about the system’s fault status is
specified through the prior probabilities Pr(M;). Under the decision
rule (2), we can define a region R; such that (2) selects hypothesis
M; when the system observations y fall into this region. Fig. 1 illus-
trates three such regions for densities of arbitrary form. We define
these regions as

Ri: {y: p(y|M; u)Pr(M;) > p(y|M;, w) Pr(M;) ¥j #i}.

With this definition, the decision rule (2) selects M; when yeR;,
which is a selection error when M; is the correct hypothesis. The
probability of this specific misdiagnosis is Pr(y € R;, M;|u). The
sum of this quantity over all pairs (i, j) is the probability of any
misdiagnosis, Pr(error), which is more generally known as the
probability of hypothesis-selection error or the Bayes risk. Using
Bayes’ theorem, we have

ng  ng
Preerror) = Y~ 3> [ p(y| Mi.w) Pr(vy)dy. 3)
i=0 j=ir1”’Ri
The above discussion makes that it clear that reducing the size

of the regions R; lowers the risk of misdiagnosis. A primary chal-
lenge in this framework is evaluating Pr(error). The multivariate

3 The term p(y|u), known as the evidence, is the same for all models and we
therefore omit it below in the expressions that compare Pr(M; |y, u) for different
models M;.
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integrals involved in determining Pr(error) can be expensive to
evaluate numerically, and the regions R; may be difficult or im-
possible to determine, in particular for higher-dimensional space
or arbitrary probability distributions. Various upper bounds on
Pr(error) are therefore proposed to minimize the probability of
misdiagnosis. Blackmore and Williams (2006) use the bound de-
rived by Matusita (1971), formulated in terms of the Bhattacharyya
coefficient (Bhattacharyya, 1943; Kailath, 1967), which is one mea-
sure of affinity between two distributions. This affinity measure
can be difficult to evaluate for arbitrary distributions, but when the
models are linear with additive Gaussian disturbances and noise,
the bound can be expressed explicitly as a nonlinear function of
the control-input sequence u.

Minimizing the selection-error bound derived by
Matusita (1971), evaluated over a finite horizon N of future
inputs and outputs, subject to the state-space model candidates,
results in a nonconvex nonlinear program, or NLP. The NLP has
N(ng+ 1)(nx + ny) variables in a straight-forward full-space im-
plementation. There is a range of methods that can efficiently
solve an NLP to local optimality, but finding the global minimum
requires more computationally intensive algorithms (Tawarmalani
& Sahinidis, 2002). Since the models are linear and the Gaussian
disturbances and noise are the only model uncertainties, hard
constraints the control inputs and expected values of the state can
be included without increasing the problem complexity. In the
case of only two models, the expression for the bound simplifies
further and can be minimized through solving a concave quadratic
program, or QP (Blackmore & Williams, 2005). However, like the
multiple-fault case, this two-model problem requires sophisticated
algorithms to determine the global optimizer, rather than a local
solution.

The only source of nonlinearity in this NLP is the bound on
Pr(error), which depends on the predicted mean state values and
output covariances. While the error bound is a function of large co-
variance matrices that capture the output cross-correlation in time,
these matrices are not functions of the decision variables. They can
therefore be computed prior to solving the input-design problem.

3.2. A set-based formulation

Scott et al. (2013, 2014) develop a formulation that uses sets
to model bounded disturbances and measurement noise. The pri-
mary difference between this framework and the one introduced
by Nikoukhah (1998) is the use of zonotopes rather than stan-
dard convex polytopes to specify uncertainty bounds and the abil-
ity to consider more than one fault model. Furthermore, rather
than framing the diagnosis problem directly in terms of mod-
els, Scott, Findeisen, Braatz, and Raimondo (2014) diagnose fault
scenarios, defined as a sequence of models, with one model for
each time index k on the horizon of interest. The frameworks of
Nikoukhah (1998) and Scott et al. (2014) both involve determin-
ing a separating input sequence, which generates outputs that are
guaranteed to be consistent with at most one fault model or sce-
nario. In other words, the reachable output sets that correspond to
the fault scenarios must be disjoint. This idea is illustrated using
zonotopes for a three-model problem in Fig. 2, in which the out-
put reachable sets are not fully separated.

Scott et al. (2014) use r and s in (1) to model additive
faults, such as actuator and sensor biases. Unlike Blackmore and
Williams (2006), who specify uncertainty in the disturbances
w(k), noise v(k), and initial state x(0) with normal distributions,
Scott et al. assume that x(0) € Xy and w(k)e W, v(k) eV for all k on
the finite horizon of interest N, where Xy, W, and V are zonotopes.
In contrast to general convex polytopes, which can be defined as
the intersection of a set of half-spaces, zonotopes are centrally
symmetric convex polytopes that can be described as Minkowski

> 1

Fig. 2. Illustration of three zonotopes that correspond to output reachable sets for
three models at some future time. The zonotopes for the fault models M; and M,
have some overlap but the zonotope representing M is fully separated.

sums of line segments. In the generator representation used by
Scott et al. (2014), an n-dimensional zonotope Z is defined by its
center ¢ € R" and a set of generators g1, £, ..., &n, as

Z={GE +c:§ eR™, [|§llo =1}, (4)

where G=[g; & --- gng]- The paper motivates the use zono-
topes to specify uncertainty from a computational point of view.
In the approach developed by Nikoukhah (1998), in which Xy, W,
and V are specified as convex polytopes, characterizing the set of
separating inputs involves determining the complement of a con-
vex polytope, and this polytope is determined through projection.
Scott et al. (2014) argue that this operation, an Nn,-dimensional
projection of a polytope of dimension N(ny + ny), is computation-
ally intractable for polytopes of dimension higher than about 10.
By contrast, zonotopes enable efficiently and reliably computing
the reachable sets and the set of separating inputs.

The input-design problem posed here is minimizing a quadratic
cost function subject to a given set of fault scenarios formulated in
terms of the linear state-space models of the form (1) and a set of
constraints. This latter set includes constraints that ensure the in-
put sequence is separating, linear input constraints, and constraints
that specify the system states remain robustly within a given poly-
tope for all considered scenarios. Scott et al. (2014) show that each
of the separation constraints, one for every pair of fault scenarios,
can be formulated as a linear program (LP). This permits formu-
lating the input-design problem as a bilevel program, which can
be reformulated into a single-level program by replacing the in-
ner linear programs with their necessary and sufficient optimal-
ity conditions. Since the inner complementarity constraints for the
Lagrange multipliers are nonconvex, they can be included as con-
straints in the outer program by introducing binary variables to the
problem. These integer-valued variables render the design problem
a mixed-integer quadratic program, or MIQP.

The computational complexity of an MiQP is primarily deter-
mined by the number of integer variables. In the proposed for-
mulation, there are 2Qng binary variables, where Q is the num-
ber of scenarios and ng the number of zonotope generators used
to represent the separation constraint for each scenario pair,
assuming the same number of generators are used in each. The
authors suggest two approaches to reduce the number of binary
variables. The first of these involves a systematic method for elim-
inating scenario pairs (reducing Q) as well as a discussion of how
over-approximating the zonotopes significantly reduces the num-
ber of binary variables at the cost of a potential small increase in
the optimal objective-function value. The other approach relies on
observer-based diagnosis, which through a more conservative defi-
nition of a separating input reduces the required number of gener-
ators ng by a factor of N. This more conservative requirement im-
poses only that the output of the set-based observers are separated
at time N, which reduces the dimension of the sets that define
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separation from (N + 1)ny to ny. Removing N from the complex-
ity consideration enables applying this method to problems that
require a long horizon for guaranteed separation.

The miQp formulation developed by Scott et al. (2014) allows
some flexibility in the choice of objective. While the authors min-
imize the two-norm of the input sequence in the paper, they note
that the separation condition can be used within a predictive con-
trol formulation while retaining the miQp structure of the dynamic
optimization problem.

3.3. AFD with energy-bounded uncertainty

The discrete-time two-model input-design problem posed by
Campbell and Nikoukhah (2004) uses a state-space formulation
that differs slightly from (1) in that the disturbances and noise are
collected in one vector v' (k) =[w' (k), v" (k)]. Accordingly, the
matrices M), = [By, 0] and N,, = [0, Dy] are used instead of B,, and
Dy, with the Os representing zero-block matrices of appropriate di-
mensions, such that M, v(k) replaces B,w(k) and N, v(k) replaces
Dyv(k).* The vectors r and s do not appear in this formulation.
Campbell and Nikoukhah demonstrate how parametric model un-
certainty can be included through augmenting v(k) with a signal
that depends on the specified uncertainty. They also consider the
slightly more general problem of using part of the input signal for
control and the other part for active diagnosis, replacing Bu(k) in
the state-space model (1) with Bv(k) + Bu(k) where v(k) is the test
signal. In this subsection, we do not consider simultaneous AFD and
control and therefore disregard Bu(k). To keep the notation con-
sistent with Campbell and Nikoukhah (2004), we here use v(k) to
denote the test signal, as opposed to measurement noise.

Broadly, the framework involves bounding the uncertainty that
arises from the unknown initial condition x;(0) and the additive
signal v;(0) for both models i =0, 1. The uncertainty in x;(0) is
specified with respect to some known X;(0) and the additive signal
has bounded energy, rather than being bounded at every point in
time. Together this forms the uncertainty-measure bound

Si(v, k) = (xi(0) —%(0)) P (0)(x;(0) — %(0))
k

+ > v (Dvi(i) <1, Vke [0, N—1] (5)
=0

with P;(0) a symmetric positive definite matrix used to specify
the initial-state uncertainty and J; a diagonal matrix with +1 and
—1 entries that specify which uncertain components are bounded.
When there is additive uncertainty only, J; is the identity and
k = N — 1. This type of energy bound is motivated by cases when
the uncertainty is primarily in the power density of the exogenous
signals (Nikoukhah, Campbell, & Delebecque, 2000).

The uncertainty bound (5) is used to determine whether or
not some given input-output data {v(j),y(j)}’}’zo can be recon-
ciled with one or both of the models. That is, if the given data
results in S;(v, k) <1 for both i = 0 and 1 it is inconclusive whether
a fault has occurred. Conversely, if Si(v, k) <1 holds for only one
model, the occurrence of a fault is unambiguous. Since the frame-
work assumes that one of the two models describes the behavior
of the system at any given time k, it is never the case that S;(v,
k)>1 for i =0 and 1 simultaneously. The input-design problem is
thus to synthesize a signal v for which S;(v, k) <1 holds for either
i=0 or 1 but not both simultaneously. An input signal that ac-
complishes this separates the models and is called proper. Accord-
ingly, v is proper if no set of noise, input, output, and state trajec-
tories exists that satisfies the model equations (1) and the energy
bound (5) for both i =0 and 1 simultaneously. That is, the input

4 Note that the matrix M, has no relation to the model M;.

signal v is proper if and only if there exists at least one k between
0 and N — 1 for which S;(v, k)>1 for either i = 0 or 1. To formulate
a condition on v in terms of the uncertainty measure S;(v, k), it is
sufficient to check the largest value max(So(v, k),S1(v, k)). If there
exists a set of feasible realizations of the signals (vg, v1,1,Y,Xg,X1)
that results in max (So(v, k),S1(v, k)) <1, we can conclude that v
is not proper. Conversely, if there exists a set of these signals that
causes the largest of the uncertainty measures S;(v, k) to have a
minimum value that is 1 or greater for some k, v is proper. This
condition for v being proper can be formulated as

o, k)>1 for some k (6)

with

o, k)= ) ivngy max(So(v, k), S1(v, k)). (7)
Kok

To develop an algorithm for synthesizing a proper test sig-
nal, the authors rely on rewriting the maximum of two numbers,
max (cq,¢3), as MaXp-g<1 (Bcy + (1 = B)cy). They then show that in
the right-hand side of (7), “infmax” is equivalent to “maxinf.” By
defining the function

$p. k) = inf BSo(w.k)+ (1 -5k, (8)

o(v, k) can be written as
k) = k). 9
o (v, k) Jnax ¢p v, k) (9)

The resulting optimization problem, the solution to which is the
minimum-energy proper test signal, is
N
. T .
mvanUk ViV, subject to 0 max Pp(v. k) =1, (10)
k=0 <B=<1

O0<k<N

where V; is a positive definite matrix. Note that this basic formu-
lation of this approach does not include constraints on the system
input, state, or output. Several of the extensions discussed below
do, however, permit constraints.

Campbell and Nikoukhah (2004) propose a solution approach
that involves constructing ¢4 (v, k) = v Qi gV, with g a matrix
constructed recursively from the matrices in the models (1) and
uncertainty measure (5). The proposed algorithm then requires the
solution of two eigenvalue problems. First, solve

A= max “largest eigenvalue of gV, " (11)
K,

and denote the maximizer by (k*, 8*), with k* the optimal length
of the test signal. With A and this maximizer, determine the opti-
mal test signal ;. by solving the eigenvalue problem

()\Uk* - Qk*,ﬁ*)vk* =0. (12)

The solution algorithm outlined here is the most straight-
forward one among the many Campbell and Nikoukhah (2004)
propose for a range of variations on this problem. They also thor-
oughly discuss the continuous-time version of the problem.

3.4. Linear systems: Variants, extensions, and special cases

3.4.1. Probabilistic methods

Kim, Raimondo, and Braatz (2013) study a two-model AFD
problem similar to the one considered by Blackmore and
Williams (2005). Instead of minimizing the probability of misdi-
agnosis, however, Kim et al. use the Kullback-Leibler divergence to
quantify the distance between the predicted output distributions.
Maximizing the Kullback-Leibler divergence leads to a noncon-
vex optimization problem that can become computationally pro-
hibitive. Thus, as a tractable alternative, the input-design problem
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is formulated in terms of maximizing the geometric distance be-
tween the output distributions. The latter problem has a concave
objective function and a convex constraint set, and its solution can
be determined by solving a series of semidefinite programming
(spbp) problems.

Paulson, Heirung, Braatz, and Mesbah (2018) consider an
input-design problem for multiple linear state-space models
with Gaussian disturbances and noise, similar to Blackmore and
Williams (2006). However, the resulting test signal maximizes the
pairwise sum of the Bhattacharyya distances and the formula-
tion incorporates input constraints only. The constraint set forms
a polytopic convex feasible area, which implies that the global op-
timum is at one of its vertices. The solution can therefore be found
efficiently through full enumeration of a moderate number of ver-
tices. A major advantage of this formulation is that the number of
vertices is independent of the number of fault models n; and the
dimension of the system state 1y, and depends only on the horizon
length N and input dimension ny. Including state constraints in this
approach increases its complexity but the feasible area remains a
convex polytope.

3.4.2. Hybrid probabilistic-deterministic formulations

Scott, Marseglia, Magni, Braatz, and Raimondo (2013) argue
that, in practice, probabilistic formulations for input design often
lead to acceptable confidence in fault diagnosis with test signals
that are less aggressive than those designed by deterministic ap-
proaches. They propose a hybrid framework for input design based
on disturbances and measurement noise that have known finite-
support uniform probability distributions, with the supports de-
scribed by zonotopes. This approach allows defining a two-fold
diagnosis objective: a high probability of diagnosis at the end of
some specified short time horizon in addition to guaranteed diag-
nosis after the full horizon N. Later, Marseglia, Scott, Magni, Braatz,
and Raimondo (2014) relax the assumption of uniform probability.
By applying a scenario approach to solve the input-design problem,
they develop a method that allows arbitrary probability distribu-
tions on finite supports and derive a guaranteed lower bound on
the probability of diagnosis that depends on the number of sam-
ples.

Hatanaka and Uosaki (2000) also present a hybrid approach
to input design, which extends their earlier results to the case
of bounded parameter uncertainties combined with Gaussian
white noise, resulting in a mixed stochastic-deterministic formu-
lation. Unlike the approaches discussed in the previous para-
graph (Marseglia et al., 2014; Scott et al., 2013), Hatanaka and
Uosaki consider ARX models, rather than state-space models.

3.4.3. Set-based methods

Despite their computationally attractive features, standard
zonotopes have several shortcomings that limit their applicability.
Two important shortcomings are that zonotopes are not closed
under intersection and that they are symmetric. Hence, they
cannot accurately represent strongly asymmetric sets, such as
those that result from the intersection of two centrally symmetric
sets. Scott, Raimondo, Marseglia, and Braatz (2016) address these
issues by introducing constrained zonotopes. Constrained zono-
topes are not necessarily centrally symmetric, and are thus more
flexible than their standard counterpart. As a result, they enable
the computation of tight enclosures at moderate computational
cost and offer a simple mechanism for trading off accuracy with
computational efficiency. Scott et al. (2016) show that their ap-
plication in fault diagnosis can lead to faster diagnosis. To further
reduce the computational complexity of the approach presented
in Scott et al. (2014), Scott et al. (2016) also introduce a zonotope
order-reduction technique. Yang and Scott (2018) compare this
technique to others available in the literature. Despite the potential

of these order-reduction techniques in lowering the computational
burden, the cost of solving an mIQP can be prohibitive for on-
line application. Marseglia and Raimondo (2017) propose using
multi-parametric programming (Dua, Bozinis, & Pistikopoulos,
2002) to move most of the computational cost offline. While
multi-parametric programming also involves expensive computa-
tions, in particular for a large number of fault models, the authors
address this challenge by considering only two models at the time.
They show through simulations that this simplification result in
AFD performance that is comparable to considering all models
simultaneously.

Tabatabaeipour (2015) introduces a different different set-based
approach, relying on both zonotopes and conventional polytopes.
Zonotopes are here used for computational efficiency in the set
operations that need not be exact, whereas regular polytopes are
used to avoid approximations in the part of the algorithm that fal-
sifies model hypotheses from data.

3.4.4. Formulations with energy bounds

In the AFD approaches developed by Campbell, Nikoukhah, and
coworkers, the input-design problem is typically posed as a dy-
namic optimization problem (Campbell & Nikoukhah, 2004). In
contrast to the discrete-time formulation discussed above, the
majority of results in the bounded-energy framework apply to
continuous-time models. While there is some variation between
the different versions of the problem they consider, their formu-
lations generally take the form of a bi-level optimization problem.
The fundamental idea is that the inner problem ensures the test
signal is proper, which guarantees separation of the predicted out-
put sets, while the outer problem minimizes the energy of the
proper input. In the continuous-time version, this results in a two-
point boundary-value problem as a necessary condition, and the
authors discuss the development of a specialized solution algo-
rithm and its software implementation. The special case of two
continuous-time models and finite diagnosis time involves the so-
lution of Riccati equations (Nikoukhah, Campbell, Horton, & Dele-
becque, 2002). Campbell et al. (2002) explore other optimization-
based formulations for the case of an arbitrary number of models,
including Riccati theory, the calculus of variations, directly mini-
mizing the energy of the proper input signal, and Euler-Lagrange
theory. These continuous-time input-design problems are formu-
lated for implementation in a commercially available solver for dy-
namic optimization problems.

Nikoukhah et al. (2000) address the design of a minimum-
energy proper test signal for finite time horizons with discrete-
time models, as presented in Section 3.3. This paper also
investigates asymptotic behavior and shows that the optimal
test signal converges to pure sinusoids as the diagnosis horizon
goes to infinity. Nikoukhah, Campbell, and Delebecque (2001) ex-
tend this finite-time input-design framework to include para-
metric uncertainty in the state-space models, represented by
bounded perturbations to the model matrices. The framework
is also extended by Campbell et al. (2002) to handle more
than two models and certain nonlinearities, but without un-
certain model parameters. A different extension, developed by
Nikoukhah and Campbell (2003), generalizes the input-design
problem to design objectives other than minimizing the energy of
the auxiliary signal. The proposed quadratic formulation of the cost
function enables more detailed specification of desired system be-
havior during testing. Campbell and Nikoukhah (2004) comprehen-
sively discuss all of these problem variations.

The input-design problem for incipient faults is investigated by
Nikoukhah and Campbell (2006b) through representing the fault
by drift in the A, B, C, and D matrices in the model (1). Sub-
sequently, Nikoukhah and Campbell (2008) extend this frame-
work to account for multiplicative model uncertainty. The more
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general case of simultaneous incipient faults is studied by
Fair and Campbell (2009b) for two faults and by Fair and Camp-
bell (2009a) for more than two faults; see also Nikoukhah, Camp-
bell, and Drake (2010).

Nikoukhah and Campbell (2006a) and Ashari, Nikoukhah, and
Campbell (2011) consider the problem of incorporating informa-
tion about the initial system state through bounding the total un-
certainty from the initial state and the disturbances and noise. This
approach enables accounting for known input signals to the system
(for example control signals) and handling a broader class of faults,
including those modeled by a bias. The uncertainty on the initial
condition and the additive signals are treated separately in the for-
mulation developed by Campbell and Scott (2016), with both box-
type and ball-type bounds on the initial condition. Andjelkovic and
Campbell (2011) consider the two-model problem with bounded
multiplicative parametric model uncertainty and constraints. This
framework can handle constraints on the input as well as on the
system state. The approaches to input design by Nikoukhah, Camp-
bell, and coworkers discussed above all result in a continuously-
varying test signal. Implementing such a signal is in many cases
not practical. Choe, Campbell, and Nikoukhah (2009) address this
issue through the design of test signals that are piecewise constant,
where the length of each constant input can be different from the
measurement interval.

Blanchini et al. (2017) propose a computationally efficient
method for guaranteed diagnosis in linear continuous-time
systems with multiple fault models. The method accounts for
disturbances and measurement noise with known bounds, and
synthesizes a test signal that is either constant or sinusoidal. Their
approach allows offline computation of the optimal inputs through
solving convex optimization problems.

The approach developed by Andjelkovic and Campbell (2011) is
extended by Scott and Campbell (2014) to handle systems gov-
erned by a linear differential-algebraic equation (DEA) set, poten-
tially of high index. The introduction of algebraic state variables
poses several challenges, including that an optimal test signal may
not exist. The authors show how in this case a modification to
their proposed algorithm enables the synthesis of a near-optimal
signal.

3.5. AFD for nonlinear systems

Active fault diagnosis for nonlinear systems has received in-
creasing attention in the last decade. However, the literature
on input design for nonlinear systems is still limited. Potential
reasons include the computational challenges associated with
uncertainty propagation through nonlinear models as well as
the increased complexity of the associated optimization problem.
Campbell et al. (2002) are among the first to address AFD for
nonlinear systems. Their proposed algorithm is applicable to a
specific class of nonlinear systems: small nonlinearities in the
state, meaning the norm of the nonlinear function is bounded
by a small number for all time in the entire state space; and
control inputs that enter the state equation through a nonlinear
function. This method assumes no knowledge of the initial state,
allows more than two models, and uses minimum energy of the
auxiliary signal as the design criterion. Campbell, Drake, And-
jelkovic, Sweetingham, and Choe (2006) extend the input-design
framework of Campbell and Nikoukhah (2004) to nonlinear sys-
tems using linearization, and propose an algorithm for evaluating
the performance of the designed test signal. Andjelkovic, Sweet-
ingham, and Campbell (2008) use separate approaches to deal
with small and large nonlinearities. For smaller nonlinearities,
they show that linearization leads to acceptable input design. The
paper analyzes theoretically the consequences of linearization and
establishes conditions under which the input signal resulting from

linearization meets the specified design goals. With larger and
more general nonlinearities, the authors directly formulate the
input-design problem in terms of the nonlinear models and solve
the optimization problem with a direct-transcription approach.

Paulson, Raimondo, Findeisen, Braatz, and Streif (2014) in-
vestigate input design for guaranteed fault diagnosis in nonlin-
ear systems. They consider nonlinearities that are either poly-
nomial or rational and assume that model parameters, noise,
and disturbances are all unknown but bounded. The authors de-
rive a bilevel optimization problem, in which the inner prob-
lem is convex for a given input signal and ensures the sys-
tem output can be reconciled with exactly one model; the outer
problem minimizes the norm of the input signal. The separat-
ing input is the solution to a convex relaxation of this problem.
Mesbabh, Streif, Findeisen, and Braatz (2014) propose a method for
input design for general nonlinear systems in which the model
parameters and initial conditions are unknown but have known
probability distributions. The proposed method does not consider
disturbances and measurement noise. The paper formulates a com-
putationally tractable input-design problem through approximat-
ing the probabilistic model uncertainties by truncated polyno-
mial chaos expansions (Wiener, 1938; Xiu & Karniadakis, 2002).
Polynomial chaos allows handling non-Gaussian distributions, in-
cluding ones with finite support. The formulation proposed by
Mesbah et al. (2014) also incorporates constraints on the nominal
state trajectories and hard constraints on the inputs. The objective
for input design is maximizing the sum of the Hellinger distances
between every pair of model output predictions. In the NLP solved
to determine the optimal input, the coefficients in the polynomial
chaos expansions are determined through repeated simulation of
the models. Paulson, Martin-Casas, and Mesbah (2017) propose an
input-design method that in addition to probabilistic model uncer-
tainties in parameters and initial conditions also permits stochas-
tic disturbances and noise. The paper proposes two methods for
propagating the probabilistic uncertainties through the nonlinear
models, one involving linearization along predicted model trajec-
tories and another using the unscented transform. Both methods
represent the output predictions through mean and covariance ap-
proximations, which are used to evaluate an approximate bound
on the probability of misdiagnosis, adapted from Blackmore and
Williams (2006). Constraints on the state are formulated as joint
chance constraints, evaluated through a moment-based approxima-
tion. This results in an input-design problem formulated as an NLP
that can be solved with standard techniques and software. Martin-
Casas and Mesbah (2018) also consider nonlinear systems with
parametric uncertainty and stochastic disturbances and noise. They
develop a sample-based distance measure, similar to the k-nearest
neighbors algorithm, to separate the predicted output distributions,
which are propagated using generalized polynomial chaos.

3.6. Markov jump systems and AFD

In the input-design methods discussed above, transition prob-
abilities between modes of operation are not specified. This type
of information, such as the probability of a given fault occurring
when the system is fault free, or the probability of one specific
fault occurring right after another, may not be available in prac-
tice. When it is available, however, it may significantly benefit ac-
tive fault diagnosis. Alternatively, the probabilities can be used to
assign priority to the faults considered most critical. A system with
known probability transitions between different modes of behav-
ior, each with separate models, is called a Markov jump system.
A key challenge in input design for this type of systems is that
the number of possible fault-mode sequences grows exponentially
with time, rendering the problem intractable without a strategy to
limit the number of sequences considered.
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Table 2

Some primary input-design methods classified as either open- and closed-loop implementation and according

to the type of optimization problem solved.

Implementation  Optimization problem

References

Open loop LP Nikoukhah (1998); Scola, Nikoukhah, and Delebecque (2003)
QP Blackmore and Williams (2005)
MIQP Scott et al. (2014)
SDP Kim, Shen, Nagy, and Braatz (2013)
NLP Blackmore and Williams (2006)
Other Blanchini et al. (2017); Campbell and Nikoukhah (2004)
Closed loop MIQP Marseglia et al. (2017); Raimondo et al. (2013)
NLP Martin-Casas and Mesbah (2018); Paulson et al. (2017)
Other Paulson et al. (2018)

Simandl, Puncochaf, and Kralovec (2005) develop an input-
design framework for Markov jump linear systems with Gaussian
noise and disturbances. This formulation allows unknown model
parameters and initial state but assumes these quantities have
known probability distributions. They formulate the problem us-
ing dynamic programming and propose a computationally tractable
approach for obtaining an approximate solution. Blackmore, Raja-
manoharan, and Williams (2008) propose an input-design method
for Markov jump linear systems with Gaussian distributions for the
initial state, disturbances, and noise, but with no parametric uncer-
tainty. They extend their approach for multiple models (Blackmore
& Williams, 2006) to the case of specified transition probabili-
ties. To limit the number of sequences considered in designing
the input, the proposed algorithm includes a feature for pruning
the tree of possible mode switches. The formulations proposed by
Simandl et al. (2005) and Blackmore and Williams (2006) consider
finite time horizons. For the case of infinite horizons, Puncochdf,
Skach, and Simandl (2015b) solve the input-design problem using
approximate dynamic programming, while Skach, Puntochéf, and
Lewis (2016) propose the use of temporal-difference learning.

Puncochaf, Kral, and Simandl (2009) consider Markov jump
nonlinear systems with a single input and a single output, whereas
Pun¢ochaf and Simandl (2014) and Puncochdf, Skach, and Si-
mandl (2015a) tackle the more general case of multiple inputs
and outputs. None of these approaches make assumptions on the
system uncertainties except for the probability distributions be-
ing known. Puncochar et al. (2009) propose using neural nets to
model the fault modes. In their more recent work, Puncochar and
coworkers consider both the case of perfect and imperfect state
information, and use approximate dynamic programming to solve
the input-design problem (Puncochai & Simandl, 2014; Puncochaf
et al, 2015a). Skach and Puncochdf (2017) address the special
case of Gaussian disturbances and measurement noise and use re-
inforcement learning as a solution approach, a technique closely
related to the ones used by Puncochaf and Simandl (2014) and
Puncochéf et al. (2015a). Skach, Puncochaf, and Straka (2017) and
Skach, Straka, and Puncochaf (2017) extend this framework by not
restricting the stochastic sequences to a specific type of distribu-
tion.

4. Implementation of input design for AFD

This section provides a discussion on two implementation con-
siderations in active fault diagnosis. Of these, the most important
is whether to design the inputs in an open- or closed-loop fash-
ion, which is related to the issue of online versus offline input
design. Table 2 categorizes some of the primary methods accord-
ing to whether they implement the input signal in closed or open
loop and notes the type of optimization problem solved to de-
termine the signal. Our discussion then focuses on AFD integrated
with feedback control. The considerations involved in the question
of whether to combine control and diagnosis objectives are largely

outside the scope of this paper. We therefore keep this discussion
brief, despite the considerable body of literature addressing this
topic.

4.1. Open- and closed-loop input design

Input design for active fault diagnosis can be implemented as
an open-loop design problem, or as a closed-loop problem based
on updating the test signal applied to the system whenever new
information becomes available. Much of the literature on open-
loop AFD considers offline design of an input signal that has no on-
line dependence on the measurements. Nikoukhah et al. (2000) ar-
gue this is the preferable approach to AFD since a test signal that
depends on the most recent measurement establishes a feedback
that modifies the dynamics of the system, potentially causing in-
stability. Note that online input design does not mean there is
a closed loop, in which every input depends on the most recent
measurement or state estimate. For example, in the input-design
method developed by Blackmore and Williams (2006), the test sig-
nal is designed based on the most recent state estimate, but not re-
designed when subsequent measurements become available. That
is, when a fault is detected or suspected, the test signal is de-
signed online based on the state estimate at that time. The sig-
nal is then applied to the system in open loop for the duration
of the planned diagnosis experiment. This online design approach,
based on the current state information, necessitates the signal is
computed fast enough so that the state information is not out-
dated by the time the signal is applied. Clearly, an advantage of
offline design is that the requirements on computational complex-
ity of the input-design problem are less strict. Thus, an offline ap-
proach allows more complex problem formulations, including the
use of more rigorous models or uncertainty descriptions. How-
ever, both online and closed-loop input design can offer advantages
such as lower risk of constraint violation and faster diagnosis (e.g.
Raimondo, Braatz, & Scott, 2013). This is often referred to as a less
conservative approach, since using the most recent available infor-
mation in designing the input enables mitigating some uncertainty.

In closed-loop approaches to input design, the current input
is at any given time dependent on the most recent state esti-
mate. This does not necessarily imply that an input-design prob-
lem is solved online at a regular interval, since the mapping
from state estimate to input can be computed offline; e.g., see
Puncochaf et al. (2015b). The majority of the input-design meth-
ods discussed in the previous sections do not consider closed-loop
implementation of the design procedure. However, the attention
toward this approach is increasing, with moving-horizon strategies
the most common. While closed-loop input design has been inves-
tigated since some of the earliest work on active fault diagnosis
(Zhang & Zarrop, 1988), the following contributions are more rep-
resentative of the modern approach to moving-horizon input de-
sign.
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Simandl et al. (2005) address the problem of closed-loop in-
put design for stochastic linear systems using dynamic program-
ming. Since the resulting Bellman equation is intractable to solve
directly, they propose an approximate rolling-horizon solution
method. Raimondo et al. (2013) propose two moving-horizon ap-
proaches to AFD for linear systems with set-based uncertainty
descriptions. The first is based on solving the open-loop input-
design problem developed by Scott et al. (2013) at every sam-
pling time and applying the first element of the resulting in-
put sequence. They show that this approach leads to significant
advantages relative to applying the entire initial open-loop in-
put sequence. The advantages include faster diagnosis and smaller
input norm while ensuring guaranteed diagnosis within the spec-
ified time. However, the computational cost associated with on-
line solution of the input-design problem is significant, which may
render this closed-loop AFD approach impractical. This motivates
the development of their other moving-horizon approach, which
uses an explicit control law to shift most of the computational
burden offline. While this approach also achieves faster diagno-
sis and smaller input norm relative to applying the precomputed
open-loop input sequence, the improvements are not as signif-
icant as in the first approach. Both of the closed-loop AFD al-
gorithms proposed by Raimondo et al. (2013) are further devel-
oped using constrained zonotopes by Raimondo, Marseglia, Braatz,
and Scott (2016). Paulson et al. (2018) develops a computation-
ally efficient solution method for moving-horizon input design in
stochastic linear systems that enables updating the test signal
at a high frequency, which leads to a low rate of misdiagnosis.
For stochastic nonlinear systems with parametric uncertainty, both
Paulson et al. (2017) and Martin-Casas and Mesbah (2018) pro-
pose closed-loop input-design methods. Paulson et al. (2017) com-
pare their closed-loop approach to implementing the first input se-
quence in open loop and find that redesigning the test signal on a
moving horizon results in a lower rate of misdiagnosis.

4.2. AFD and closed-loop control

There are two primary ways in which active fault diagnosis
and closed-loop control interact. In the first, the test signal de-
signed for AFD is applied to a system that is under closed-loop
control. That is, the feedback control law is given a priori and
must be accounted for in the input design. In the other, the sys-
tem input is designed with a dual purpose: to control the system
and to improve diagnosis. The overall design goal is optimizing
some overall performance metric, and this strategy is thus simi-
lar to the dual control paradigm (Feldbaum, 1961). The methods
in this latter class are distinct from the others discussed in this
paper in that their design objective is not only improving fault
diagnosis.

Ashari, Nikoukhah, and Campbell (2009a, 2009b, 2009c, 20123,
2012b) investigate input design for systems under static linear
feedback control. The test signal is designed offline and added
to the control signal so that the sum is injected into the sys-
tem. The main findings are that for finite-horizon input design,
feedback control cannot reduce the worst-case input energy re-
quired for guaranteed diagnosis. However, feedback control can
improve performance during the testing period as measured by
the quadratic control cost (Ashari, Nikoukhah, & Campbell, 2012b).
Furthermore, (Ashari, Nikoukhah, & Campbell, 2012a) find that for
infinite-horizon input design, the optimal test signal is always si-
nusoidal.

Marseglia, Raimondo, Magni, and Mesbah (2017) also consider
active fault diagnosis for a system under feedback control, adding
the test signal to the control input. In their approach, however,
an open-loop test signal is calculated at every sampling time on
a moving horizon, with the first element of this input sequence

being added to the control signal. The open-loop sequence is de-
signed to separate the output set from the model that currently
best matches the system measurements from those of the other
models. Their analysis shows that the presence of the feedback
controller can increase the diagnosis time, but when compared
to the closed-loop AFD approach of Raimondo et al. (2016), input
design under feedback control can reduce the cost of the online
computations and result in faster diagnosis with an input that has
smaller norm.

The other approach to combined AFD and closed-loop control,
which is analogous to dual control, does not involve input design
with the feedback law given a priori. Rather, the aim is design-
ing inputs that strike an appropriate balance between fault diag-
nosis and control objectives while ensuring fast and reliable di-
agnosis. An early approach to this problem involves designing a
controller that improves fault isolation by making the effect of
any fault clearer from the input-output data. Nett, Jacobsen, and
Miller (1988) and Jacobsen and Nett (1991) propose using the four-
parameter controller (Nett, 1986) for this purpose. Their approach
involves integrated design that considers control and diagnostic
performance together. The analysis demonstrates the interaction
between control and diagnosis and identifies benefits of consid-
ering both simultaneously. Niemann and Poulsen (2005) propose
a similar approach for active diagnosis of parametric faults where
the feedback controller is defined in terms of four parameters,
designed using Youla-Jabr-Bongiorno-Kucera (YJBK) parameteriza-
tion. A series of papers extends this framework to cases such as
more than one fault model (Niemann, Poulsen, & Bakgaard, 2007)
and multiple-input multiple-output (MimMo0) systems (Niemann &
Poulsen, 2014). See Ding (2009) for a comprehensive review of
these and related methods.

Another approach to integrating AFD and control is to add di-
agnosis constraints to a control formulation. One such method is
developed by Raimondo, Marseglia, Braatz, and Scott (2013), in
which a robust model predictive control (Mpc) formulation is aug-
mented with constraints that guarantee separation of all model
output sets at the end of the prediction horizon. Xu, Olaru, Puig,
Ocampo-Martinez, and Niculesco (2014) propose a similar robust
mpc framework, also relying on integrating active fault diagnosis
through modifying the constraints. This approach, however, can
handle sensor faults only and the constraints are modified when a
fault is detected. Heirung and Mesbah (2017) and Heirung, Santos,
and Mesbah (2019) develop mpc frameworks for stochastic non-
linear systems with model-structure uncertainty and demonstrate
how their approaches can actively improve fault diagnosis. The
latter control algorithm minimizes a multi-objective cost function
that includes an approximate bound on the probability of select-
ing the wrong model (similar to Paulson et al., 2017) in addition to
standard control objectives.

Simandl and Pun¢ochéf (2009) pose the problem of integrated
control and AFD as a stochastic optimal control problem. They an-
alyze the problem using dynamic programming and pose three
special cases that arise by varying a single parameter in the for-
mulation: optimal control without AFD, optimal AFD without con-
trol, and a combination. Simandl, Siroky, and Puncochar (2011) in-
vestigate this approach further. A simple solution strategy that
avoids dynamic programming and instead relies on open-loop op-
timization is proposed by Siroky, Simandl, Axehill, and Puncochaf
(2011). Here the integrated problem of control and active diag-
nosis is posed in three different ways: minimizing the input en-
ergy subject to an upper bound on the probability of misdiagno-
sis, minimizing the probability of misdiagnosis subject to an upper
bound on the input energy, and minimizing a weighted sum of the
input energy and the probability of misdiagnosis. These stochas-
tic methods, among others, are summarized and compared by
Skach and Puncochéf (2015); see also Puncochaf and Skach (2018),



TA.N. Heirung and A. Mesbah/Annual Reviews in Control 47 (2019) 35-50 47

which includes a thorough discussion of the four-parameter ap-
proach we discuss above.

5. Discussion and opportunities for future research

Active fault diagnosis is fundamentally a problem of resolving
uncertainty through model-based input design. In addition to the
uncertainty that arises from the system’s unknown fault status,
each fault model can contain uncertain parameters and initial con-
ditions and the system can be affected by exogenous uncertainties
such as measurement noise and disturbances. The choices made
in modeling faults and uncertainty dictate the formulation com-
plexity of an input-design problem. Formulations with bounded
non-probabilistic uncertainty generally guarantee diagnosis by en-
suring separation of the output sets predicted from the fault mod-
els. Other important considerations in these formulations include
minimizing the input energy or the length of the diagnosis exper-
iment. Conversely, using probability distributions to describe un-
certainty can result in some overlap between the predicted output
sets. Instead of requiring full separation of these sets, a natural ob-
jective in probabilistic input design is minimizing either the over-
lap between the output distributions or the probability of misdi-
agnosis. Input-design problems for AFD can also be formulated as
minimum-time problems, in which the goal typically is to mini-
mize the time required for achieving full output separation or a
specified probability of misdiagnosis, subject to input and state
constraints, such as a bound on the available input energy. Alter-
natively, a weighted sum of two or more of these goals can form a
preferable objective for AFD. In this type of multi-objective input-
design problems, the choice of weights for the different objective
terms can be guided by Pareto-analysis. In general, deciding how
to formulate an input-design problem to achieve the desired di-
agnostic performance is a challenging task. For example, in prob-
abilistic input-design problems it is not necessarily clear whether
minimizing the misdiagnosis probability or the input energy, sub-
ject to a bound on the other, would result in a more effective test
signal. There are currently no comprehensive studies available that
investigate the consequences of such formulation choices, which
warrants further research.

Input-design methods for AFD rely on separate models for each
possible fault. When there is limited knowledge on the dynamic
effects of a fault, developing an adequate fault model can pose a
significant challenge. As faults are rare occurrences, it is unlikely
that input-output data that can accurately describe faults is avail-
able, rendering data-driven model development an impractical op-
tion. Furthermore, the formulation of each fault model, as well as
the total number of models, can have a significant impact on the
computational complexity of the input-design problem. Some im-
portant modeling considerations include the degree of fidelity of
the models, such as whether or not to include nonlinear effects
with minor impact on the system behavior, whether and how to
account for system uncertainties that may be of lesser importance
for diagnosis, and the number of potential faults accounted for in
the input-design problem. Arguably, another key choice is whether
to model uncertainties using bounded sets or probability distribu-
tions (or some combination), in particular since exact bounds or
probability distributions are rarely known in practice. Since mod-
els are generally imperfect representations of a system, especially
in the case of faults exhibiting behavior that is difficult to predict,
the value of using accurate uncertainty descriptions remains elu-
sive. That is, an accurate uncertainty description offers question-
able value if propagated through an inaccurate model. In other
words, a test signal that guarantees diagnosis in theory does not
offer the same guarantee when applied to the actual system if the
models are imperfect and the uncertainty descriptions are inaccu-
rate. Similarly, a theoretic upper bound on the probability of mis-

diagnosis may not relate to the frequency of diagnostic errors ob-
served in practice. If the diagnosis performance is deemed inade-
quate using a particular method, the input-design problem can be
reformulated by reconsidering the diagnosis objectives and con-
straints, as discussed above, or switching between set-based and
probabilistic uncertainty descriptions.

Isolated and integrated design: With stricter requirements and
growing complexity of modern technical systems, ensuring safe,
reliable, and high-performance operation has become increasingly
challenging. In particular, this exacerbates the nuanced interactions
between the design of test signals and the controller (Simandl &
Puncochaf, 2009), the test signal and the fault diagnoser, the fault
detector and fault diagnoser (Kerestecioglu & Zarrop, 1989; 1991),
and the engineered system itself (Sampath et al., 1998). As a re-
sult, it is prohibitively challenging to consider all these interactions
simultaneously in an integrated design of all these components.
Common practice is therefore isolated design, often the system,
the controller, the fault detector and diagnoser, and the test signal,
in that order. Further research is necessary to gain a deeper un-
derstanding of these interactions and the consequences of various
simplifying assumptions made in developing tractable approaches
to design. In particular, controllers with an integrated capability to
initiate AFD after the detection of a fault, while ensuring continued
operation, have the potential to expand the system’s capabilities
for self maintenance in a manner that is less disruptive than in-
jecting a pure test signal.

Computational complexity: The majority of approaches to in-
put design for active fault diagnosis involves solving challenging
nonconvex dynamic optimization problems. Much of the computa-
tional work can be done offline, either by computing a mapping
from state estimate to input through some approximate method
(e.g., Puncochar et al., 2015b) or by having the input be indepen-
dent of the state estimate (Nikoukhah et al., 2000). As discussed in
this paper, however, the literature largely focuses on the design of
input signals with given uncertain initial conditions. Furthermore,
the implementation of this design methodology on a receding hori-
zon is receiving increased attention (e.g., Paulson et al., 2018; Paul-
son et al., 2017; Raimondo et al., 2016). Widespread adoption of
closed-loop AFD, either through a receding-horizon implementation
or through determining an approximate mapping offline are partly
held back by the computational challenges involved in these ap-
proaches. Thus, investigations into problem formulations and so-
lution algorithms that significantly lower the computational com-
plexity can greatly contribute to the application of these methods
to a broader array of problems. This is of particular importance for
real-time applications and in large-scale systems.

Uncertainty propagation: Rigorous propagation of uncertainty
is a significant source of computational complexity in many of
the approaches discussed in this paper. This issue arises in both
linear and nonlinear systems, and in both probabilistic and set-
based problem formulations. Except for the linear-Gaussian case
(Blackmore & Williams, 2006), predicting the output distributions
or sets involves trading off computational cost against accuracy
and precision. Significant progress in this area will help enable ap-
plications where computational cost is a limiting factor. This is of
particular relevance for nonlinear systems, where further work in
this area is also necessary to provide the diagnosis probabilities
and guarantees available in the linear case. Note that some meth-
ods, such as the one proposed by Blanchini et al. (2017), avoid
explicit uncertainty propagation, shift the computational burden
offline, and can guarantee diagnosis for moderately large linear
systems. This approach thus represents a potentially promising av-
enue for future research. The method developed by Blackmore and
Williams (2006) is capable of locally optimal input design for large
linear systems, owing to the low computational cost of propagat-
ing Gaussian probability densities through linear models. However,
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the extent to which globally optimal test signals, which can be
prohibitively expensive to compute, are necessary for acceptable
performance on large systems, is an open question. The issue of
whether the minimized upper bound on the probability of misdi-
agnosis is sufficiently tight to be a suitable objective also warrants
further research.

Distributed AFD: An interesting direction for lowering the com-
putational requirements is distributing the ArD effort over con-
nected subsystems. A distributed approach® involves designing a
set of modules, each specific to a subsystem, that communicate
with each other to accomplish a common task. This is in con-
trast to designing one central algorithm for the entire system.
The promising results on decentralized AFD (that is, with no com-
munication between subsystem-specific modules) demonstrated by
Raimondo, Boem, Gallo, and Parisini (2016) motivate further re-
search on this type of design approach, potentially opening up new
areas of application through posing simpler problems and easier
integration with existing control systems.

Defining diagnosability: A rigorous and readily applicable defini-
tion of diagnosability (cf. the discussion in Section 2.1) does not
currently exist in the literature. Whether or not a system is diag-
nosable, or in some sense partially diagnosable, and under which
conditions, are fundamental questions in AFD. A definition that is
both precise and easily translated into a test of diagnosability has
the potential to greatly advance the theoretical foundation for ac-
tive fault diagnosis. Moreover, a diagnosability test can guide the
initial system and control designs as well as inform the design of
the test signal.

Practical applications: Active fault diagnosis has not seen
widespread adoption in practical applications. The field would
greatly benefit from research on real-world systems, with demon-
strations of the viability and benefits of AFD. Such results will help
identify new areas of application as well as clarify the most critical
challenges and obstacles that require increased attention from the
research community.
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