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a b s t r a c t 

Reliably diagnosing faults and malfunctions has become increasingly challenging in modern technical sys- 

tems because of their growing complexity as well as increasingly stringent requirements on safety, avail- 

ability, and high-performance operation. Traditional methods for fault detection and diagnosis rely on 

nominal input–output data, which can contain insufficient information to support reliable conclusions. 

Recent years have witnessed a growing interest in active fault diagnosis, which addresses this issue by 

injecting input signals specifically designed to reveal the fault status of the system. This paper provides 

an overview of state-of-the-art methods for input design for active fault diagnosis and discusses the pri- 

mary considerations in the formulation and solution of the input-design problem. We also discuss the 

primary challenges and suggest avenues for future research in this rapidly evolving field. 

© 2019 Elsevier Ltd. All rights reserved. 
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1 Some authors use nominal as an antonym for faulty in the context of operation 

and models, a convention we do not follow here. 
1. Introduction 

Faults and malfunctions can happen in any modern technical

system, with potentially detrimental effects on safety, performance,

reliability, environmental footprint, and economics. In 2013, every

Boeing 787 Dreamliner was grounded indefinitely after battery fail-

ures had occurred in two planes, with enormous consequences for

the finances and reputations of the affected airlines, the manu-

facturer, and its suppliers ( Williard, He, Hendricks, & Pecht, 2013 ).

The 2005 series of explosions and fires at the bp refinery in Texas

City, in part caused by an overflowing isomerization column, re-

sulted in 15 fatalities and 180 injuries ( Khan & Amyotte, 2007;

Manca & Brambilla, 2012 ). Before losing control of El Al Flight

1862 in the 1992 accident, in which both engines on the starboard

side detached because of material fatigue, the pilots were able to

keep the plane in the air for almost fifteen minutes. Had the fault

been diagnosed during this time, followed by appropriate action,

the disaster could have been averted ( Alwi, Edwards, Stroosma, &

Mulder, 20 08; Maciejowski & Jones, 20 03 ). Reliable and timely di-

agnosis of faults is not only critical to safety, reliability, availabil-

ity, and maintainability of a system, it is also essential in ensuring

a system’s ability to function as designed ( Isermann, 2006 ). How-

ever, the growing complexity and strict performance requirements

of modern technical systems have made reliable fault diagnosis in-

creasingly challenging. 

Fault diagnosis is generally a multi-step process, commonly in-

cluding fault detection, isolation, identification , and estimation . Infor-

mally, these terms in turn refer to: determining whether or not the

system is fault free; if not, which part of the system is faulty; the

type of fault that has occurred in that part; and the magnitude of

the fault (e.g., Blanke, Kinnaert, Lunze, & Staroswiecki, 2006 ). This

paper deals with fault diagnosis in its entirety, rather than treating

these activities individually. In particular, we focus on the problem

of enhancing fault diagnosis through the design of system inputs,

which is known as active fault diagnosis , or afd . The remainder of

this section gives an overview of some common types of faults,

contrasts the active and passive approaches to fault diagnosis, dis-

cusses advantages of the active approach, highlights some connec-

tions to related branches of the control literature, and states the

objective of the paper. 

For clarity, we conform to the common practice of distin-

guishing between faults and failures, since these two terms are

sometimes conflated in the literature. While a fault may cause a

reduction in a system’s ability to perform the tasks for which it

is designed, a failure is generally understood as an event that ren-

ders the system inoperable. The two terms can thus be defined as

follows (after Blanke et al., 2006; Isermann, 2006; Varga, 2017 ). 

Definition 1 (Fault) . A fault in a dynamic system is an anomalous

variation in a characteristic system property that causes an unac-

ceptable deviation from the specified limits of normal operation. 

Definition 2 (Failure) . A failure is generally an irrecoverable event

that renders the system incapable of operating such that it fulfills

its purpose. 

Hence, a failure is more critical than a fault, and a fault may

lead to a failure unless diagnosed and managed appropriately. 

Much of the literature makes a distinction between faults that

arise from structural and gradual changes in the system. Structural

changes are discrete events, such as actuators that are stuck in

some position, the complete loss of a sensor, or a system com-

ponent that breaks entirely. Faults arising from structural changes

are often abrupt . Conversely, faults that stem form gradual changes

can increase in severity or magnitude over time; examples include

actuators that become slower to respond because of wear, sensor

biases, and system components that suffer from issues like leaks or
hanging material characteristics. Incipient faults are in their earli-

st stages, primarily of the gradual type. Finally, a structural fault

bout to happen is impending . 

.1. Active versus passive approaches to fault diagnosis 

The growing complexity of modern technical systems has made

aults possibly more frequent and harder to diagnose. Generally, an

mportant consideration in the design of technical systems is the

otential occurrence of faults and failures to ensure some level of

nherent robustness to such anomalies through the system design.

or example, sensor and actuator redundancy can enable graceful

egradation of system performance in the event of certain faults.

onetheless, systematically accounting for all potential faults in

he system design stage is impractical or impossible. This has moti-

ated the use of fault diagnostics during operation, which are typ-

cally developed once the system is designed. However, a complex

esign, as well as feedback control and system uncertainties, can

ignificantly limit the ability to diagnose faults ( Sampath, Lafor-

une, & Teneketzis, 1998 ). Therefore, there has been a growing in-

erest in the development of methods for faster and more reliable

ault diagnosis during operation ( Campbell & Nikoukhah, 2004;

hang, 1989 ). 

Fault diagnosis approaches are commonly classified as active

r passive . The latter approach, also known as non-invasive, gen-

rally relies on comparing recorded input–output data to some

eference data, which can be historical or generated through

imulation. Importantly, the system is not perturbed to in-

estigate its fault status. Comprehensive survey papers (e.g.,

enkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003, Venkata-

ubramanian, Rengaswamy, & Kavuri, 2003; Venkatasubramanian,

engaswamy, Kavuri, & Yin, 2003 ) and a growing number of

extbooks, such as Chen and Patton (1999) , Chiang, Russell, and

raatz (2001) , Blanke et al. (2006) , Isermann (2006) , Gonzalez, Qi,

nd Huang (2016) , and Varga (2017) , discuss passive methods in

etail. Algorithms for passive fault diagnosis are broadly classified

s data or model based ( Venkatasubramanian, Rengaswamy, Yin,

t al., 2003; Venkatasubramanian, Rengaswamy, & Kavuri, 2003;

enkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003 ). Model-

ased methods generally require a model for every fault. These

odels are often based on first principles, but can also be iden-

ified from data (e.g., see Ljung, 1999 ). In contrast, data-based

ethods rely less on domain knowledge about the system, with

 stronger focus on analysis of large historical data sets to charac-

erize fault-free and different types of faulty operation. 

A shortcoming of passive approaches arises from the potential

ack of diagnostically relevant information in the input–output data

enerated while the system is operated under the assumption that

o fault has occurred. We refer to this as normal operation, and say

he system then generates nominal input–output data. Note that

ormal operation does not imply that no fault has occurred, and is

hus distinct from fault-free operation . 1 That is, passive approaches

o not account for the fact that nominal operating data may not be

ufficiently informative for reliable fault diagnosis. Common rea-

ons of this lack of diagnostically relevant information include sys-

em uncertainties and the presence of feedback controllers. Incom-

lete knowledge, or uncertainty, about the system and its state

an result from inadequate measurements (including issues such

s low signal-to-noise ratio, which lowers the information content

n the measurements) and system disturbances that may not be

eadily distinguishable from faults through analysis of nominal op-

rating data. Similarly, feedback controllers, the purpose of which
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2 Note that a passive fault-tolerant controller is designed for robustness to faults; 

that is, the controller is capable of maintaining acceptable performance over a range 

of faults without reacting to the faults by modifying the control law ( Zhang & 

Jiang, 2008 ). 
s partly to compensate for system variations, can mask the effects

f faults. Thus, faults may remain undiagnosed for an extended pe-

iod of time when nominal operating data is used for fault diagno-

is. This situation can be particularly critical in the case of incipient

aults that lead to failures unless diagnosed early. 

Active fault diagnosis has primarily emerged to address the

hortcomings of the passive approach of using nominal input–

utput data. Algorithms for afd are generally model based; that is,

 set of models is used to predict the behavior of different faults.

he central idea in afd is to design input signals that, when ap-

lied to the system, increase the amount of diagnostically relevant

nformation in the input–output data. The designed input signals

an be applied to the system when some performance-monitoring

etric indicates abnormal operation ( Qin, 1998; Severson, Chai-

atanodom, & Braatz, 2016; Zagrobelny, Ji, & Rawlings, 2013 ), or as

art of a diagnostic routine, possibly periodically, to verify whether

r not a fault has occurred. Such an input signal, commonly re-

erred to as an auxiliary or test signal, is generally designed to

nsure maximal or full separation between the model predictions

orresponding to the different modes of operation. The fault hy-

otheses can then be discarded if their respective model predic-

ions are in sufficient disagreement with new measurements. Note

hat the active approach to fault diagnosis is closely related to op-

imal experiment design for model discrimination (e.g., Atkinson &

ox, 1974; Mélykúti, August, Papachristodoulou, & El-Samad, 2010 ),

here the design objective is to determine which model, among a

et of candidates, best predicts the data. Similar to classic meth-

ds for model discrimination, the early afd approaches do not rely

n numerical optimization ( Kerestecio ̆glu & Zarrop, 1991; Zhang,

989 ). This is in contrast to more recent ones, which often pose

he input-design problem as a dynamic optimization problem, as

iscussed in this paper. 

.2. Advantages of active fault diagnosis 

The main motivation for afd is to diagnose faults faster and

ore reliably relative to passive approaches. An active approach

nables proactive investigation of the system’s fault status while

ystematically accounting for uncertainty and operational con-

traints. Accounting for uncertainty is particularly important when

ealing with faults that are small in magnitude or develop slowly.

he effects of these faults may be indistinguishable from the vari-

tion arising from system uncertainty and disturbances; as a result

hey can become challenging to diagnose based on nominal input–

utput data. Injecting a test signal into the system can enable diag-

osing small-magnitude faults before their severity increases. An-

ther important feature of afd is the ability to account for system

onstraints while injecting the test signal. Physical limits on capac-

ty and actuation are common reasons for specifying constraints.

ther reasons include ensuring that the test signal does not com-

romise operational safety or leads to unacceptable reduction in

erformance while investigating the fault status. 

Active fault diagnosis fits into a larger context of automatic con-

rol systems that are tolerant to system uncertainties and undesir-

ble events. As recognized by Åström (1991) , “Fault diagnosis is an

ssential ingredient property of an intelligent system.” In the con-

ext of fault detection, diagnosis, and tolerance, a brief comment

n the use of the terms passive and active is in order. As described,

ctive fault diagnosis involves manipulating the system input to ac-

ively investigate the fault status. The meaning of the word active

n afd is different from its meaning in the context of fault-tolerant

ontrol, or ftc . An active fault-tolerant controller responds to diag-

osed faults through reconfiguration of the control strategy ( Zhang
 Jiang, 2008 ). That is, active refers to the controller’s response to

 diagnosed fault, as opposed to the diagnosis approach. 2 

.3. Objective of the paper 

Active fault diagnosis has matured significantly over the last

wo decades, with a diverse set of afd approaches for a wide range

f problems reported in the literature. The objective of this pa-

er is to introduce researchers unfamiliar with the topic to the

arious directions in the literature, provide a systematic overview

f available input-design methods for afd , discuss important chal-

enges and considerations involved in the formulation and solu-

ion of input-design problems, and present some opportunities and

ossible directions for future research. 

This paper is organized as follows. Section 2 first provides some

ackground on active fault diagnosis along with a discussion on

elevant concepts. An overview of the first decade of the literature

ollows, along with a brief discussion of how the modern develop-

ents relate to these early results. Section 3 provides a compre-

ensive overview of the main contributions in the literature, cen-

ered around what we consider the three primary approaches to

ormulating input-design problems in afd , along with some techni-

al detail. We then discuss extension and variations on these three

irections, followed by a discussion on results for nonlinear sys-

ems and Markov jump systems. We discuss some aspects of im-

lementation of afd methods in Section 4 , with a focus on open-

nd closed-loop approaches as well as how afd and control can

e performed simultaneously. Section 5 concludes the paper with

 brief discussion and some ideas for future research. 

. Input design for AFD 

.1. Background 

A fundamental question in fault diagnosis is whether or not

t is possible to diagnose a fault. This gives rise to the property

iagnosability , the use of which varies across the literature, and

here is no agreed-upon definition of diagnosability in the context

f active fault diagnosis. Sampath, Sengupta, Lafortune, Sinnamo-

ideen, and Teneketzis (1995) , Sampath et al. (1998) , Paoli and

afortune (2005) , and Bazille, Fabre, and Genest (2017) use defi-

itions in the context of stochastic automata and finite state ma-

hines, and Dunia and Qin (1998) posit a set of conditions based

n subspace identification; see also Saberi, Stoorvogel, Sannuti, and

iemann (20 0 0) . There are also variations in the literature in us-

ng diagnosability to refer to specific faults or to the system as a

hole. 

Here, we use the term as follows when referring to the diag-

osability of a fault and a system. For a fault to be diagnosable,

t needs to be possible to generate input–output data that is suf-

ciently informative for ascertaining, with a desired confidence in

nite time and without violating any specified constraints, whether

he fault has occurred. Note the relevance of constraints in this

ontext: considerations such as safety limits may prohibit gener-

ting the required data. A typical example of generating data that

eveals the occurrence of a fault is brake testing in a car. When

riving at a constant velocity on a straight road there is no indica-

ion whether a car’s brakes have failed. Tapping the brakes gener-

tes a response, which in turn generates data that can be analyzed

o diagnose a brake fault. If all considered faults are diagnosable,

e say the system is diagnosable. 
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When a system is diagnosable, fast and reliable fault diagnosis

relies on two key factors: the information content of the input–

output data and a diagnostic algorithm that analyzes the data to

diagnose faults. If the data contains little or no information rel-

evant to fault diagnosis, the diagnostic algorithm, no matter how

well designed, may be unable to diagnose faults in a timely and

reliable manner. Conversely, information-rich data may not be use-

ful if the diagnostic algorithm is not adequate. Hence, the problem

of active fault diagnosis consists of two components: (1) design-

ing an input signal that, when applied to the system, can generate

sufficiently informative input–output data for fault diagnosis, and

(2) analyzing the data using a suitable diagnostic algorithm to in-

fer the occurrence of faults. This is in contrast to passive fault di-

agnosis that generally relies on nominal input–output data, taking

no active steps toward increasing the information content of data.

Note that in general, these two components are not separate and

their efficacies can be significantly interdependent. That is, a test

signal that is optimal for one diagnostic algorithm may be unsuit-

able for another, and vice versa. Thus, active fault diagnosis can be

generally defined as follows. 

Definition 3 (Active fault diagnosis) . Active fault diagnosis consists

of designing an appropriate test signal, injecting it into the system,

and using the resulting input–output data for diagnosis of faults. 

It follows from this definition that input design is the main

aspect differentiating active and passive approaches to fault di-

agnosis, while the diagnostic algorithms used for passive and ac-

tive approaches generally do not differ. Diagnostic algorithms have

been thoroughly surveyed (e.g., see Blanke et al., 2006; Chiang

et al., 2001; Isermann, 2006; Venkatasubramanian, Rengaswamy,

Yin, et al., 2003; Venkatasubramanian, Rengaswamy, & Kavuri,

2003; Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003 ) and

discussing these is beyond the scope of this paper. Rather, we fo-

cus on the input-design problem . 

Problem (Input design for fault diagnosis) . Given a model of the

system, a set of fault models, and a diagnostic algorithm, design

an input signal that results in data sufficiently informative for di-

agnosing a fault with some specified or maximized confidence,

within a specified or minimal time, and without violating system

constraints. 

In the following, diagnosis experiment refers to the time period

over which the input signal is applied to the system. Generally,

input design for afd has multiple objectives: (1) ensure diagno-

sis with an acceptable (typically prescribed) confidence, (2) en-

sure the diagnosis experiment is not excessively long, (3) prevent

excessive operational disruption during the diagnosis experiment,

and (4) ensure that the system remains within the specified oper-

ational constraints during the diagnosis experiment. Specifying an

upper bound on, or minimizing the energy of, the test signal in the

input-design problem is one way of ensuring its application does

not result in excessive disruption. That is, the input signal can be

designed to be minimally intrusive to operation during the diagno-

sis experiment. This is particularly important when there are risks

associated with the experiment, or when there is a direct mone-

tary cost associated with perturbing the system with an input sig-

nal designed to improve the diagnosis. 

Modern input design for afd generally involves formulating

a dynamic optimization problem that consists of an objective

function, one model for fault-free operation and one model for

each fault, and commonly input and state constraints. The ex-

tent to which the system dynamics are nonlinear, the number

of fault models, and how system uncertainties are accounted for

all contribute to the complexity of an input-design problem. In

the simplest case of two models, one for fault-free operation and
ne fault model, the problem often simplifies significantly; see,

.g., Campbell, Horton, and Nikoukhah (2002) and Blackmore and

illiams (20 05, 20 06) . The majority of research on active fault di-

gnosis considers linear systems. The two most common model

ypes are data-driven input–output models affected by Gaussian

hite noise, such as armax , and state-space models that are gener-

lly based on first principles. In recent years, active fault diagnosis

or nonlinear systems, systems governed by differential-algebraic

quations, and jump Markov processes are receiving increasing at-

ention. 

System uncertainty is generally described using (deterministic)

ounded sets or probability distributions, although as discussed

elow there are input-design methods that rely on hybrid descrip-

ions. Modeling uncertainty with bounded sets in an input-design

roblem enables prediction of the system outputs as bounded sets.

hen there is no overlap between any of these predicted output

ets from the models, a system measurement can be reconciled

ith only one model, thus guaranteeing fault diagnosis. This ap-

roach to afd is known as set based . Conversely, when describing

ncertainties with probability distributions, the input-design ob-

ective generally involves separating the resulting predicted output

istributions. If these distributions have infinite support, they nec-

ssarily overlap to some extent. In this case, it is not possible to

uarantee diagnosis. The goal of input design is then typically ei-

her to minimize the probability of misdiagnosis or to ensure it

s below a specified value. This is referred to as a probabilistic or

tochastic approach to afd . Note that when all distributions have fi-

ite supports, probabilistic afd approaches enable guaranteed fault

iagnosis through full separation of the predicted output probabil-

ty distributions, similar to set-based approaches. 

The remainder of this section gives an overview of the early

evelopments in input design for active fault diagnosis. We outline

he field’s evolution from the early input-design methods based on

inear data-driven models before transitioning to the following sec-

ion, which focuses on modern approaches. 

.2. Early results on AFD for linear systems 

The first afd results for linear systems are presented in the

aper by Zhang and Zarrop (1988) and in the monographs by

hang (1989) and Kerestecio ̆glu (1993) . These early contributions

onsider input design for improved fault diagnosis using two ar-

ax models, one for fault-free operation and one for operation

nder a fault. These formulations rely on the assumption that

he disturbances and measurement noise are Gaussian. Zhang and

arrop (1988) introduce a measure for the statistical distance be-

ween the predicted output distributions and show that increas-

ng the generated information, as measured by this distance, leads

o faster fault diagnosis. The test signal is designed by maxi-

izing this measure of diagnostic information subject to mag-

itude and bias constraints on the input. Notably, Zhang and

arrop (1988) present an algorithm for multi-stage input design

ith implementation on a moving horizon. Zhang (1989) explores

his framework more thoroughly, including both open- and closed-

oop implementation of test signals designed to minimize di-

gnosis delay, which is the time between the onset of a fault

nd the diagnosis. Additionally, Zhang (1989) proposes a design

riterion based on the Kullback–Leibler divergence ( Kullback &

eibler, 1951 ), a measure of the similarity of two probability dis-

ributions. A large Kullback–Leibler divergence between two pre-

icted output distributions indicates the test signal causes the

odel outputs to diverge, so that there is little overlap be-

ween the distributions. For fault diagnosis, this means there is a

ow probability of misdiagnosis. Kerestecio ̆glu and Zarrop (1991)

ompare offline and online input design for two armax model

ypotheses. The design objectives here are to decrease the ex-
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ected diagnosis time and to ensure that the rate of false alarms

s below a given threshold. They formulate an online input-

esign problem as finding a static feedback gain that achieves

hese goals. The paper shows there exists a trade-off between

educing the diagnosis delay and the rate of false alarms, and

hat the test signals designed offline have a simple structure:

 sine wave with one single frequency. Later, Kerestecio ̆glu and

arrop (1994) extend their approach to multiple fault models and

onstraints on the output variance, the input energy, and the

ate of false alarms. In this more general case, the optimal sig-

als generated offline are sine waves that contain a finite number

f frequencies. Output-variance constraints are also considered by

osaki, Tanaka, and Sugiyama (1984) in the related field of model

iscrimination. Instead of using armax models, Uosaki, Takata, and

atanaka (1993) pose the input-design problem in terms of in-

reasing the Kullback–Leibler divergence for output distributions

redicted using one arx model for fault-free and one for faulty op-

ration. While not improving the diagnosis rates or worsening the

ates of false alarms, the designed test signals result in faster di-

gnosis on average. The authors later investigate a variant of this

roblem in the frequency domain ( Hatanaka & Uosaki, 1994 ), as

ell as for the case of multiple models ( Hatanaka & Uosaki, 1996;

999a; 1999b ) by maximizing the minimum Kullback–Leibler di-

ergence for any pair of models. 

While Bayesian statistics were used in passive fault diag-

osis before the onset of research on afd (e.g., see Chow &

illsky, 1984 ), most of the above approaches rely on statistical

ests such as the cumulative-sum, or cusum , test or sequential

robability-ratio test ( sprt ). Kerestecio ̆glu and Zarrop (1989) intro-

uce the Bayesian framework to active fault diagnosis and formu-

ate input design as a sequential decision-making problem. They

emonstrate the potential of the Bayesian formulation through

nalysis based on dynamic programming ( Bellman, 1957 ). 

All of the methods for input design discussed so far assume

hat each model hypothesis is an exact representation of the re-

pective fault dynamics, with the stochastic process disturbances

he only source of uncertainty. That is, the model parameters

nd the initial conditions are assumed known in each hypothesis.

erestecio ̆glu and Çetin (1997a) develop an afd approach for ar-

ax models that allows the fault model to have parameters that

hange in a known direction but by an unknown magnitude with

espect to the model for fault-free operation (in which the pa-

ameters are known and fixed). Separately, Kerestecio ̆glu and Çetin

1997b, 2004) consider the case where the direction of the param-

ter change in the fault model is also unknown. A main finding

s that the designed test signals have simple structures. A single-

requency sinusoidal input is sufficient when the change direction

s known. When the direction is unknown, the number of required

requencies is determined by the number of poles and zeros in

he transfer function. Furthermore, the standard trade-off between

ast diagnosis and the rate of false alarms exists in the case of a

nown change direction. However, when the direction of parame-

er change is unknown, the test signal can enable both faster diag-

osis and a lower rate of false alarms. Note that in this approach,

either a probability distribution nor a closed set is assigned to

he unknown parameters, offering a flexible framework for input

esign with a fault model that has a high level of parametric un-

ertainty. 

The literature from this first decade of research on active fault

iagnosis discussed above largely focuses on deriving closed-form

xpressions for the optimal input signals. Typical structures of

hese test signals include bang-bang ( Zhang & Zarrop, 1988 ) and

 sum of sinusoids (e.g., Kerestecio ̆glu & Çetin, 1997b ). While these

arly afd approaches rely on simple computational methods to de-

ermine optimal test signals for scalar systems, the underlying as-

umptions are somewhat restrictive and only a limited class of
nput-design problems lends itself to analytical solution. As dis-

ussed below, more general models and problem formulations en-

ble posing a range of complex problems, with optimal inputs pri-

arily designed through numerically solving dynamic optimization

roblems. 

.3. Toward modern AFD methods 

A new paradigm, utilizing more modern tools and theory,

tarted in the late 1990s, with Nikoukhah (1998) introducing a

eneral formulation of the input-design problem based on state-

pace models and set-based uncertainty formulations. In this two-

odel approach, fault-free operation and one fault are modeled

sing two linear time-varying state-space models, with process

isturbances and measurement noise described by deterministic,

ounded sets. The formulation uses convex polytopes to formu-

ate bounds on the input signal and on the uncertain disturbances

nd measurement noise. This deterministic problem formulation

nables guaranteed fault diagnosis; that is, the designed test sig-

al guarantees that the bounded sets of predicted model outputs

o not intersect. 

The use of state-space models has been prominent in the liter-

ture on active fault diagnosis since Nikoukhah ’s 1998 paper. Most

f the subsequent development can be classified as one of three

eparate directions. One of these directions is the set-based ap-

roach described above, which has been extended in a series of

apers through the introduction of a specific type of polytopes,

onotopes , to the input-design problem. A second direction consid-

rs disturbances and measurement noise that are sequences of ran-

om variables. As a consequence, this is a probabilistic framework

nd involves increasing the probability of correct diagnosis, rather

han providing a guarantee. The third direction relies on bound-

ng the energy of the uncertainty that enters the system and does

ermit guaranteed diagnosis. In the following section, we discuss

hese three directions in more detail. With that basis, we then dis-

uss the different variations and extensions proposed in the litera-

ure. 

. Optimization-based formulations and solution methods 

We here present three primary approaches to modeling the un-

ertainty within the framework of state-space models, along with

orresponding formulations of the input-design problem. These

hree formulations span a broad range of problems in active fault

iagnosis, and form a basis for the main directions in current re-

earch. 

After presenting a fairly general state-space model, of which

he three problem formulations use special cases, we introduce

he problems in order of complexity. Arguably, the probabilistic

ramework introduced by Blackmore and Williams (2006) is the

onceptually simplest, relies on the least involved mathematical

ormulation, and is computationally the cheapest. The set-based

roblem formulation introduced by Nikoukhah (1998) using poly-

opes, and later extended through the use of zonotopes in

 series of papers, starting with Scott, Findeisen, Braatz, and

aimondo (2013) , is mathematically more involved. The afd prob-

ems introduced by Blackmore and Williams (2006) and Scott

t al. (2013) both involve numerically solving discrete-time dy-

amic optimization problems that share many features with those

ommonly posed in model predictive control (see, e.g., Rawlings,

ayne, & Diehl, 2017 ). The final approach we discuss here, most

omprehensively presented by Campbell and Nikoukhah (2004) , is

istinct from the two others in several ways, as demonstrated be-

ow. After presenting the basic forms of each of these problem

ypes, we discuss variations, special cases, and extensions to each.
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Table 1 

Classification of some primary modern input-design methods. The contributions are categorized as considering linear 

or nonlinear systems, using probabilistic, set-based, or hybrid uncertainty descriptions, the number of many models 

n m = n f + 1 the method is developed for. A ∗ indicates a method that allows state constraints. 

System Uncertainty n m References 

Linear Probabilistic 2 Kim et al. (2013) ; Blackmore and Williams (2005) ∗

≥2 Paulson et al. (2018) ; Blackmore and Williams (2006) ∗

Set-based 2 Nikoukhah (1998) ; Andjelkovic and Campbell (2011) ∗

≥2 Tabatabaeipour (2015) ; Scott et al. (2014) ∗

Hybrid 2 —

≥2 Scott et al. (2013) ∗; Marseglia et al. (2014) ∗

Nonlinear Probabilistic 2 —

≥2 Mesbah et al. (2014) ∗; Paulson et al. (2017) ∗; Martin-Casas and Mesbah (2018) ∗

Set-based 2 Campbell et al. (2006) ; Andjelkovic et al. (2008) 

≥2 Campbell et al. (2002) ; Paulson et al. (2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Illustration of three regions used for hypothesis selection under the decision 

rule (2) . The shaded areas indicate the probability of misdiagnosis Pr ( error ) . 
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3 The term p ( y | u ), known as the evidence , is the same for all models and we 

therefore omit it below in the expressions that compare Pr (M i | y , u ) for different 
models M i . 
We then provide an overview of afd for nonlinear systems, fol-

lowed by Markov jump systems. 

Table 1 classifies some of the primary contributions discussed

in this section. The table organizes the referenced papers accord-

ing to system type (linear or nonlinear), uncertainty description

(probabilistic, set-based, or hybrid), and the number of models

considered. 

The three approaches we discuss here all consider variations

on a system with two or more linear discrete-time models of the

form 

x (k + 1) = Ax (k ) + Bu (k ) + B w w (k ) + r (1a)

y (k ) = Cx (k ) + Du (k ) + D v v (k ) + s (1b)

with time index k , state x ( k ), input u ( k ), disturbance w ( k ), output

y ( k ), and measurement noise v ( k ), all vectors with dimensions n x ,

n u , n w , n y , and n v . Generally, all matrices, as well as the vectors r

and s if included, implicitly depend on k in the sense that faults are

modeled as changes in these quantities. Using i = 0 , 1 , 2 , . . . , n f as

a model index, with n f the number of fault models, we sometimes

index the quantities in the formulation (1) (e.g., A i ) when explicitly

distinguishing the models adds clarity. A model M i is then uniquely

defined by ( A i , B i , B w, i , r i , C i , D i , D v, i , s i ). The fault-free model is

indexed with 0 whereas i ≥1 represents a fault model. Note that

parts of the literature use nominal model instead of fault free ; in

this paper we only use fault free to distinguish from faulty to de-

scribe models in this context. 

3.1. Probabilistic AFD 

The probabilistic afd problem for multiple fault hypotheses in-

troduced by Blackmore and Williams (2006) considers a set of

models of the form (1) with r and s both zero for all models and

B w and D v identity matrices of appropriate dimensions. That is, the

faults are modeled through changes in the matrices ( A i , B i , C i , D i )

as opposed to through the additive signals r and s . 

The uncertain quantities in this formulation are the distur-

bances w , the measurement error v , and initial state x (0), all spec-

ified with normal distributions. Specifically, w (k ) ∼ N (0 , Q ) and

v (k ) ∼ N (0 , R ) are both sequences of independent and identically

distributed random variables with Q and R known; the mean and

covariance of x (0) are also known, and x (0), w ( k ), and v(j) are

mutually independent for all k, j ∈ { 0 , 1 , 2 , . . . } . Since the model

parameters are assumed known, the predicted system states and

outputs are Gaussian random variables, which makes it trivial to

calculate their expected values. When the probability distributions

have infinite support, as is the case for the normal distribution, it

is not possible to define guaranteed diagnosis through eliminating

any overlap between the predicted probability distributions. A nat-

ural problem is then designing an input sequence u that generates

an output sequence y , such that when analyzed the data minimizes
he probability of selecting the wrong model, or misdiagnosing the

ault in other words. This problem can be formulated as outlined

n the following. 

Central to minimizing the probability of misdiagnosis is the

ayesian decision rule for model hypothesis selection, which mini-

izes the risk of misclassifying observations. That is, this rule min-

mizes the risk of selecting an incorrect fault model or hypothesis,

iven the a set of input–output data ( Hellman & Raviv, 1970 ). Given

he two sequences of inputs and outputs u and y , the Bayesian de-

ision rule can be expressed as 

elect M i ∗ such that i ∗ = arg max 
i 

Pr (M i | y , u ) , (2)

here Pr (M i | y , u ) = p(y | M i , u ) Pr (M i ) /p(y | u ) by Bayes’ theo-

em. 3 Here, the initial knowledge about the system’s fault status is

pecified through the prior probabilities Pr (M i ) . Under the decision

ule (2) , we can define a region R i such that (2) selects hypothesis

 i when the system observations y fall into this region. Fig. 1 illus-

rates three such regions for densities of arbitrary form. We define

hese regions as 

 i : 
{
y : p(y | M i , u ) Pr (M i ) > p(y | M j , u ) Pr (M j ) ∀ j � = i 

}
. 

ith this definition, the decision rule (2) selects M j when y ∈ R j ,

hich is a selection error when M i is the correct hypothesis. The

robability of this specific misdiagnosis is Pr (y ∈ R j , M i | u ) . The
um of this quantity over all pairs ( i, j ) is the probability of any

isdiagnosis, Pr ( error ) , which is more generally known as the

robability of hypothesis-selection error or the Bayes risk. Using

ayes’ theorem, we have 

r ( error ) = 

n f ∑ 

i =0 

n f ∑ 

j= i +1 

∫ 
R j 

p(y | M i , u ) Pr (M i ) dy . (3)

The above discussion makes that it clear that reducing the size

f the regions R i lowers the risk of misdiagnosis. A primary chal-

enge in this framework is evaluating Pr ( error ) . The multivariate
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Fig. 2. Illustration of three zonotopes that correspond to output reachable sets for 

three models at some future time. The zonotopes for the fault models M 1 and M 2 

have some overlap but the zonotope representing M 0 is fully separated. 
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ntegrals involved in determining Pr ( error ) can be expensive to

valuate numerically, and the regions R i may be difficult or im-

ossible to determine, in particular for higher-dimensional space

r arbitrary probability distributions. Various upper bounds on

r ( error ) are therefore proposed to minimize the probability of

isdiagnosis. Blackmore and Williams (2006) use the bound de-

ived by Matusita (1971) , formulated in terms of the Bhattacharyya

oefficient ( Bhattacharyya, 1943; Kailath, 1967 ), which is one mea-

ure of affinity between two distributions. This affinity measure

an be difficult to evaluate for arbitrary distributions, but when the

odels are linear with additive Gaussian disturbances and noise,

he bound can be expressed explicitly as a nonlinear function of

he control-input sequence u . 

Minimizing the selection-error bound derived by

atusita (1971) , evaluated over a finite horizon N of future

nputs and outputs, subject to the state-space model candidates,

esults in a nonconvex nonlinear program, or nlp . The nlp has

(n f + 1)(n x + n u ) variables in a straight-forward full-space im-

lementation. There is a range of methods that can efficiently

olve an nlp to local optimality, but finding the global minimum

equires more computationally intensive algorithms ( Tawarmalani

 Sahinidis, 2002 ). Since the models are linear and the Gaussian

isturbances and noise are the only model uncertainties, hard

onstraints the control inputs and expected values of the state can

e included without increasing the problem complexity. In the

ase of only two models, the expression for the bound simplifies

urther and can be minimized through solving a concave quadratic

rogram, or qp ( Blackmore & Williams, 2005 ). However, like the

ultiple-fault case, this two-model problem requires sophisticated

lgorithms to determine the global optimizer, rather than a local

olution. 

The only source of nonlinearity in this nlp is the bound on

r ( error ) , which depends on the predicted mean state values and

utput covariances. While the error bound is a function of large co-

ariance matrices that capture the output cross-correlation in time,

hese matrices are not functions of the decision variables. They can

herefore be computed prior to solving the input-design problem. 

.2. A set-based formulation 

Scott et al. (2013, 2014) develop a formulation that uses sets

o model bounded disturbances and measurement noise. The pri-

ary difference between this framework and the one introduced

y Nikoukhah (1998) is the use of zonotopes rather than stan-

ard convex polytopes to specify uncertainty bounds and the abil-

ty to consider more than one fault model. Furthermore, rather

han framing the diagnosis problem directly in terms of mod-

ls, Scott, Findeisen, Braatz, and Raimondo (2014) diagnose fault

cenarios , defined as a sequence of models, with one model for

ach time index k on the horizon of interest. The frameworks of

ikoukhah (1998) and Scott et al. (2014) both involve determin-

ng a separating input sequence , which generates outputs that are

uaranteed to be consistent with at most one fault model or sce-

ario. In other words, the reachable output sets that correspond to

he fault scenarios must be disjoint. This idea is illustrated using

onotopes for a three-model problem in Fig. 2 , in which the out-

ut reachable sets are not fully separated. 

Scott et al. (2014) use r and s in (1) to model additive

aults, such as actuator and sensor biases. Unlike Blackmore and

illiams (2006) , who specify uncertainty in the disturbances

 ( k ), noise v ( k ), and initial state x (0) with normal distributions,

cott et al. assume that x (0) ∈ X 0 and w ( k ) ∈ W, v ( k ) ∈ V for all k on

he finite horizon of interest N , where X 0 , W , and V are zonotopes.

n contrast to general convex polytopes, which can be defined as

he intersection of a set of half-spaces, zonotopes are centrally

ymmetric convex polytopes that can be described as Minkowski
ums of line segments. In the generator representation used by

cott et al. (2014) , an n -dimensional zonotope Z is defined by its

enter c ∈ R 
n and a set of generators g 1 , g 2 , . . . , g n g as 

 = { Gξ + c : ξ ∈ R 
n g , ‖ ξ‖ ∞ ≤ 1 } , (4)

here G = [ g 1 g 2 · · · g n g ] . The paper motivates the use zono-

opes to specify uncertainty from a computational point of view.

n the approach developed by Nikoukhah (1998) , in which X 0 , W ,

nd V are specified as convex polytopes, characterizing the set of

eparating inputs involves determining the complement of a con-

ex polytope, and this polytope is determined through projection.

cott et al. (2014) argue that this operation, an Nn u -dimensional

rojection of a polytope of dimension N(n y + n u ) , is computation-

lly intractable for polytopes of dimension higher than about 10.

y contrast, zonotopes enable efficiently and reliably computing

he reachable sets and the set of separating inputs. 

The input-design problem posed here is minimizing a quadratic

ost function subject to a given set of fault scenarios formulated in

erms of the linear state-space models of the form (1) and a set of

onstraints. This latter set includes constraints that ensure the in-

ut sequence is separating, linear input constraints, and constraints

hat specify the system states remain robustly within a given poly-

ope for all considered scenarios. Scott et al. (2014) show that each

f the separation constraints, one for every pair of fault scenarios,

an be formulated as a linear program ( lp ). This permits formu-

ating the input-design problem as a bilevel program, which can

e reformulated into a single-level program by replacing the in-

er linear programs with their necessary and sufficient optimal-

ty conditions. Since the inner complementarity constraints for the

agrange multipliers are nonconvex, they can be included as con-

traints in the outer program by introducing binary variables to the

roblem. These integer-valued variables render the design problem

 mixed-integer quadratic program, or miqp . 

The computational complexity of an miqp is primarily deter-

ined by the number of integer variables. In the proposed for-

ulation, there are 2 Qn g binary variables, where Q is the num-

er of scenarios and n g the number of zonotope generators used

o represent the separation constraint for each scenario pair,

ssuming the same number of generators are used in each. The

uthors suggest two approaches to reduce the number of binary

ariables. The first of these involves a systematic method for elim-

nating scenario pairs (reducing Q ) as well as a discussion of how

ver-approximating the zonotopes significantly reduces the num-

er of binary variables at the cost of a potential small increase in

he optimal objective-function value. The other approach relies on

bserver-based diagnosis, which through a more conservative defi-

ition of a separating input reduces the required number of gener-

tors n g by a factor of N . This more conservative requirement im-

oses only that the output of the set-based observers are separated

t time N , which reduces the dimension of the sets that define
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separation from (N + 1) n y to n y . Removing N from the complex-

ity consideration enables applying this method to problems that

require a long horizon for guaranteed separation. 

The miqp formulation developed by Scott et al. (2014) allows

some flexibility in the choice of objective. While the authors min-

imize the two-norm of the input sequence in the paper, they note

that the separation condition can be used within a predictive con-

trol formulation while retaining the miqp structure of the dynamic

optimization problem. 

3.3. AFD with energy-bounded uncertainty 

The discrete-time two-model input-design problem posed by

Campbell and Nikoukhah (2004) uses a state-space formulation

that differs slightly from (1) in that the disturbances and noise are

collected in one vector ν� (k ) = [ w 
� (k ) , v � (k )] . Accordingly, the

matrices M ν = [ B w , 0] and N ν = [0 , D v ] are used instead of B w and

D v , with the 0s representing zero-block matrices of appropriate di-

mensions, such that M νν( k ) replaces B w w ( k ) and N νν( k ) replaces
D v v ( k ). 

4 The vectors r and s do not appear in this formulation.

Campbell and Nikoukhah demonstrate how parametric model un-

certainty can be included through augmenting ν( k ) with a signal

that depends on the specified uncertainty. They also consider the

slightly more general problem of using part of the input signal for

control and the other part for active diagnosis, replacing Bu ( k ) in

the state-space model (1) with B v (k ) + B̄ u (k ) where v ( k ) is the test

signal. In this subsection, we do not consider simultaneous afd and

control and therefore disregard B̄ u (k ) . To keep the notation con-

sistent with Campbell and Nikoukhah (2004) , we here use v ( k ) to

denote the test signal, as opposed to measurement noise. 

Broadly, the framework involves bounding the uncertainty that

arises from the unknown initial condition x i (0) and the additive

signal ν i (0) for both models i = 0 , 1 . The uncertainty in x i (0) is

specified with respect to some known x i (0) and the additive signal

has bounded energy, rather than being bounded at every point in

time. Together this forms the uncertainty-measure bound 

S i ( v , k ) = ( x i ( 0 ) − x i ( 0 ) ) 
� 
P −1 
i ( 0 ) ( x i ( 0 ) − x i ( 0 ) ) 

+ 

k ∑ 

j=0 

ν� 
i ( j ) J i νi ( j ) < 1 , ∀ k ∈ [ 0 , N − 1 ] (5)

with P i (0) a symmetric positive definite matrix used to specify

the initial-state uncertainty and J i a diagonal matrix with +1 and

−1 entries that specify which uncertain components are bounded.

When there is additive uncertainty only, J i is the identity and

k = N − 1 . This type of energy bound is motivated by cases when

the uncertainty is primarily in the power density of the exogenous

signals ( Nikoukhah, Campbell, & Delebecque, 20 0 0 ). 

The uncertainty bound (5) is used to determine whether or

not some given input–output data { v ( j) , y ( j) } N j=0 can be recon-

ciled with one or both of the models. That is, if the given data

results in S i ( v, k ) < 1 for both i = 0 and 1 it is inconclusive whether

a fault has occurred. Conversely, if S i ( v, k ) < 1 holds for only one

model, the occurrence of a fault is unambiguous. Since the frame-

work assumes that one of the two models describes the behavior

of the system at any given time k , it is never the case that S i ( v,

k ) ≥1 for i = 0 and 1 simultaneously. The input-design problem is

thus to synthesize a signal v for which S i ( v, k ) < 1 holds for either

i = 0 or 1 but not both simultaneously. An input signal that ac-

complishes this separates the models and is called proper . Accord-

ingly, v is proper if no set of noise, input, output, and state trajec-

tories exists that satisfies the model equations (1) and the energy

bound (5) for both i = 0 and 1 simultaneously. That is, the input
4 Note that the matrix M ν has no relation to the model M i . 

M  

v  

h  
ignal v is proper if and only if there exists at least one k between

 and N − 1 for which S i ( v, k ) ≥1 for either i = 0 or 1. To formulate

 condition on v in terms of the uncertainty measure S i ( v, k ), it is

ufficient to check the largest value max ( S 0 ( v, k ), S 1 ( v, k )). If there

xists a set of feasible realizations of the signals ( ν0 , ν1 , u , y , x 0 , x 1 )

hat results in max ( S 0 ( v, k ), S 1 ( v, k )) < 1, we can conclude that v

s not proper. Conversely, if there exists a set of these signals that

auses the largest of the uncertainty measures S i ( v, k ) to have a

inimum value that is 1 or greater for some k, v is proper. This

ondition for v being proper can be formulated as 

(v , k ) ≥ 1 for some k (6)

ith 

(v , k ) = inf 
ν0 ,ν1 ,u,y, 

x 0 ,x 1 

max (S 0 (v , k ) , S 1 (v , k )) . (7)

To develop an algorithm for synthesizing a proper test sig-

al, the authors rely on rewriting the maximum of two numbers,

ax ( c 1 , c 2 ), as max 0 ≤β≤1 (βc 1 + (1 − β) c 2 ) . They then show that in

he right-hand side of (7) , “inf max ” is equivalent to “max inf .” By

efining the function 

β (v , k ) = inf 
ν0 ,ν1 ,u,y, 

x 0 ,x 1 

βS 0 (v , k ) + (1 − β) S 1 (v , k ) , (8)

( v, k ) can be written as 

(v , k ) = max 
0 ≤β≤1 

φβ(v , k ) . (9)

he resulting optimization problem, the solution to which is the

inimum-energy proper test signal, is 

in 
v 

N ∑ 

k =0 

v � k V k v k subject to max 
0 ≤ β ≤ 1 

0 ≤ k ≤ N 

φβ( v , k ) ≥ 1 , (10)

here V k is a positive definite matrix. Note that this basic formu-

ation of this approach does not include constraints on the system

nput, state, or output. Several of the extensions discussed below

o, however, permit constraints. 

Campbell and Nikoukhah (2004) propose a solution approach

hat involves constructing φβ(v , k ) = v � 
k 
�k,βv k , with �k, β a matrix

onstructed recursively from the matrices in the models (1) and

ncertainty measure (5) . The proposed algorithm then requires the

olution of two eigenvalue problems. First, solve 

= max 
k,β

“largest eigenvalue of �k,βV 
−1 
k 

” (11)

nd denote the maximizer by ( k ∗, β∗), with k ∗ the optimal length

f the test signal. With λ and this maximizer, determine the opti-

al test signal v k ∗ by solving the eigenvalue problem 

(λv k ∗ − �k ∗,β∗ ) v k ∗ = 0 . (12)

The solution algorithm outlined here is the most straight-

orward one among the many Campbell and Nikoukhah (2004)

ropose for a range of variations on this problem. They also thor-

ughly discuss the continuous-time version of the problem. 

.4. Linear systems: Variants, extensions, and special cases 

.4.1. Probabilistic methods 

Kim, Raimondo, and Braatz (2013) study a two-model afd

roblem similar to the one considered by Blackmore and

illiams (2005) . Instead of minimizing the probability of misdi-

gnosis, however, Kim et al. use the Kullback–Leibler divergence to

uantify the distance between the predicted output distributions.

aximizing the Kullback–Leibler divergence leads to a noncon-

ex optimization problem that can become computationally pro-

ibitive. Thus, as a tractable alternative, the input-design problem
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s formulated in terms of maximizing the geometric distance be-

ween the output distributions. The latter problem has a concave

bjective function and a convex constraint set, and its solution can

e determined by solving a series of semidefinite programming

 sdp ) problems. 

Paulson, Heirung, Braatz, and Mesbah (2018) consider an

nput-design problem for multiple linear state-space models

ith Gaussian disturbances and noise, similar to Blackmore and

illiams (2006) . However, the resulting test signal maximizes the

airwise sum of the Bhattacharyya distances and the formula-

ion incorporates input constraints only. The constraint set forms

 polytopic convex feasible area, which implies that the global op-

imum is at one of its vertices. The solution can therefore be found

fficiently through full enumeration of a moderate number of ver-

ices. A major advantage of this formulation is that the number of

ertices is independent of the number of fault models n f and the

imension of the system state n x , and depends only on the horizon

ength N and input dimension n u . Including state constraints in this

pproach increases its complexity but the feasible area remains a

onvex polytope. 

.4.2. Hybrid probabilistic-deterministic formulations 

Scott, Marseglia, Magni, Braatz, and Raimondo (2013) argue

hat, in practice, probabilistic formulations for input design often

ead to acceptable confidence in fault diagnosis with test signals

hat are less aggressive than those designed by deterministic ap-

roaches. They propose a hybrid framework for input design based

n disturbances and measurement noise that have known finite-

upport uniform probability distributions, with the supports de-

cribed by zonotopes. This approach allows defining a two-fold

iagnosis objective: a high probability of diagnosis at the end of

ome specified short time horizon in addition to guaranteed diag-

osis after the full horizon N . Later, Marseglia, Scott, Magni, Braatz,

nd Raimondo (2014) relax the assumption of uniform probability.

y applying a scenario approach to solve the input-design problem,

hey develop a method that allows arbitrary probability distribu-

ions on finite supports and derive a guaranteed lower bound on

he probability of diagnosis that depends on the number of sam-

les. 

Hatanaka and Uosaki (20 0 0) also present a hybrid approach

o input design, which extends their earlier results to the case

f bounded parameter uncertainties combined with Gaussian

hite noise, resulting in a mixed stochastic-deterministic formu-

ation. Unlike the approaches discussed in the previous para-

raph ( Marseglia et al., 2014; Scott et al., 2013 ), Hatanaka and

osaki consider arx models, rather than state-space models. 

.4.3. Set-based methods 

Despite their computationally attractive features, standard

onotopes have several shortcomings that limit their applicability.

wo important shortcomings are that zonotopes are not closed

nder intersection and that they are symmetric. Hence, they

annot accurately represent strongly asymmetric sets, such as

hose that result from the intersection of two centrally symmetric

ets. Scott, Raimondo, Marseglia, and Braatz (2016) address these

ssues by introducing constrained zonotopes. Constrained zono-

opes are not necessarily centrally symmetric, and are thus more

exible than their standard counterpart. As a result, they enable

he computation of tight enclosures at moderate computational

ost and offer a simple mechanism for trading off accuracy with

omputational efficiency. Scott et al. (2016) show that their ap-

lication in fault diagnosis can lead to faster diagnosis. To further

educe the computational complexity of the approach presented

n Scott et al. (2014) , Scott et al. (2016) also introduce a zonotope

rder-reduction technique. Yang and Scott (2018) compare this

echnique to others available in the literature. Despite the potential
f these order-reduction techniques in lowering the computational

urden, the cost of solving an miqp can be prohibitive for on-

ine application. Marseglia and Raimondo (2017) propose using

ulti-parametric programming ( Dua, Bozinis, & Pistikopoulos,

002 ) to move most of the computational cost offline. While

ulti-parametric programming also involves expensive computa- 

ions, in particular for a large number of fault models, the authors

ddress this challenge by considering only two models at the time.

hey show through simulations that this simplification result in

fd performance that is comparable to considering all models

imultaneously. 

Tabatabaeipour (2015) introduces a different different set-based

pproach, relying on both zonotopes and conventional polytopes.

onotopes are here used for computational efficiency in the set

perations that need not be exact, whereas regular polytopes are

sed to avoid approximations in the part of the algorithm that fal-

ifies model hypotheses from data. 

.4.4. Formulations with energy bounds 

In the afd approaches developed by Campbell, Nikoukhah, and

oworkers, the input-design problem is typically posed as a dy-

amic optimization problem ( Campbell & Nikoukhah, 2004 ). In

ontrast to the discrete-time formulation discussed above, the

ajority of results in the bounded-energy framework apply to

ontinuous-time models. While there is some variation between

he different versions of the problem they consider, their formu-

ations generally take the form of a bi-level optimization problem.

he fundamental idea is that the inner problem ensures the test

ignal is proper, which guarantees separation of the predicted out-

ut sets, while the outer problem minimizes the energy of the

roper input. In the continuous-time version, this results in a two-

oint boundary-value problem as a necessary condition, and the

uthors discuss the development of a specialized solution algo-

ithm and its software implementation. The special case of two

ontinuous-time models and finite diagnosis time involves the so-

ution of Riccati equations ( Nikoukhah, Campbell, Horton, & Dele-

ecque, 2002 ). Campbell et al. (2002) explore other optimization-

ased formulations for the case of an arbitrary number of models,

ncluding Riccati theory, the calculus of variations, directly mini-

izing the energy of the proper input signal, and Euler–Lagrange

heory. These continuous-time input-design problems are formu-

ated for implementation in a commercially available solver for dy-

amic optimization problems. 

Nikoukhah et al. (20 0 0) address the design of a minimum-

nergy proper test signal for finite time horizons with discrete-

ime models, as presented in Section 3.3 . This paper also

nvestigates asymptotic behavior and shows that the optimal

est signal converges to pure sinusoids as the diagnosis horizon

oes to infinity. Nikoukhah, Campbell, and Delebecque (2001) ex-

end this finite-time input-design framework to include para-

etric uncertainty in the state-space models, represented by

ounded perturbations to the model matrices. The framework

s also extended by Campbell et al. (2002) to handle more

han two models and certain nonlinearities, but without un-

ertain model parameters. A different extension, developed by

ikoukhah and Campbell (2003) , generalizes the input-design

roblem to design objectives other than minimizing the energy of

he auxiliary signal. The proposed quadratic formulation of the cost

unction enables more detailed specification of desired system be-

avior during testing. Campbell and Nikoukhah (2004) comprehen-

ively discuss all of these problem variations. 

The input-design problem for incipient faults is investigated by

ikoukhah and Campbell (2006b) through representing the fault

y drift in the A, B, C , and D matrices in the model (1) . Sub-

equently, Nikoukhah and Campbell (2008) extend this frame-

ork to account for multiplicative model uncertainty. The more
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general case of simultaneous incipient faults is studied by

Fair and Campbell (2009b) for two faults and by Fair and Camp-

bell (2009a) for more than two faults; see also Nikoukhah, Camp-

bell, and Drake (2010) . 

Nikoukhah and Campbell (2006a) and Ashari, Nikoukhah, and

Campbell (2011) consider the problem of incorporating informa-

tion about the initial system state through bounding the total un-

certainty from the initial state and the disturbances and noise. This

approach enables accounting for known input signals to the system

(for example control signals) and handling a broader class of faults,

including those modeled by a bias. The uncertainty on the initial

condition and the additive signals are treated separately in the for-

mulation developed by Campbell and Scott (2016) , with both box-

type and ball-type bounds on the initial condition. Andjelkovic and

Campbell (2011) consider the two-model problem with bounded

multiplicative parametric model uncertainty and constraints. This

framework can handle constraints on the input as well as on the

system state. The approaches to input design by Nikoukhah, Camp-

bell, and coworkers discussed above all result in a continuously-

varying test signal. Implementing such a signal is in many cases

not practical. Choe, Campbell, and Nikoukhah (2009) address this

issue through the design of test signals that are piecewise constant,

where the length of each constant input can be different from the

measurement interval. 

Blanchini et al. (2017) propose a computationally efficient

method for guaranteed diagnosis in linear continuous-time

systems with multiple fault models. The method accounts for

disturbances and measurement noise with known bounds, and

synthesizes a test signal that is either constant or sinusoidal. Their

approach allows offline computation of the optimal inputs through

solving convex optimization problems. 

The approach developed by Andjelkovic and Campbell (2011) is

extended by Scott and Campbell (2014) to handle systems gov-

erned by a linear differential-algebraic equation ( dea ) set, poten-

tially of high index. The introduction of algebraic state variables

poses several challenges, including that an optimal test signal may

not exist. The authors show how in this case a modification to

their proposed algorithm enables the synthesis of a near-optimal

signal. 

3.5. AFD for nonlinear systems 

Active fault diagnosis for nonlinear systems has received in-

creasing attention in the last decade. However, the literature

on input design for nonlinear systems is still limited. Potential

reasons include the computational challenges associated with

uncertainty propagation through nonlinear models as well as

the increased complexity of the associated optimization problem.

Campbell et al. (2002) are among the first to address afd for

nonlinear systems. Their proposed algorithm is applicable to a

specific class of nonlinear systems: small nonlinearities in the

state, meaning the norm of the nonlinear function is bounded

by a small number for all time in the entire state space; and

control inputs that enter the state equation through a nonlinear

function. This method assumes no knowledge of the initial state,

allows more than two models, and uses minimum energy of the

auxiliary signal as the design criterion. Campbell, Drake, And-

jelkovic, Sweetingham, and Choe (2006) extend the input-design

framework of Campbell and Nikoukhah (2004) to nonlinear sys-

tems using linearization, and propose an algorithm for evaluating

the performance of the designed test signal. Andjelkovic, Sweet-

ingham, and Campbell (2008) use separate approaches to deal

with small and large nonlinearities. For smaller nonlinearities,

they show that linearization leads to acceptable input design. The

paper analyzes theoretically the consequences of linearization and

establishes conditions under which the input signal resulting from
inearization meets the specified design goals. With larger and

ore general nonlinearities, the authors directly formulate the

nput-design problem in terms of the nonlinear models and solve

he optimization problem with a direct-transcription approach. 

Paulson, Raimondo, Findeisen, Braatz, and Streif (2014) in-

estigate input design for guaranteed fault diagnosis in nonlin-

ar systems. They consider nonlinearities that are either poly-

omial or rational and assume that model parameters, noise,

nd disturbances are all unknown but bounded. The authors de-

ive a bilevel optimization problem, in which the inner prob-

em is convex for a given input signal and ensures the sys-

em output can be reconciled with exactly one model; the outer

roblem minimizes the norm of the input signal. The separat-

ng input is the solution to a convex relaxation of this problem.

esbah, Streif, Findeisen, and Braatz (2014) propose a method for

nput design for general nonlinear systems in which the model

arameters and initial conditions are unknown but have known

robability distributions. The proposed method does not consider

isturbances and measurement noise. The paper formulates a com-

utationally tractable input-design problem through approximat-

ng the probabilistic model uncertainties by truncated polyno-

ial chaos expansions ( Wiener, 1938; Xiu & Karniadakis, 2002 ).

olynomial chaos allows handling non-Gaussian distributions, in-

luding ones with finite support. The formulation proposed by

esbah et al. (2014) also incorporates constraints on the nominal

tate trajectories and hard constraints on the inputs. The objective

or input design is maximizing the sum of the Hellinger distances

etween every pair of model output predictions. In the nlp solved

o determine the optimal input, the coefficients in the polynomial

haos expansions are determined through repeated simulation of

he models. Paulson, Martin-Casas, and Mesbah (2017) propose an

nput-design method that in addition to probabilistic model uncer-

ainties in parameters and initial conditions also permits stochas-

ic disturbances and noise. The paper proposes two methods for

ropagating the probabilistic uncertainties through the nonlinear

odels, one involving linearization along predicted model trajec-

ories and another using the unscented transform. Both methods

epresent the output predictions through mean and covariance ap-

roximations, which are used to evaluate an approximate bound

n the probability of misdiagnosis, adapted from Blackmore and

illiams (2006) . Constraints on the state are formulated as joint

hance constraints, evaluated through a moment-based approxima-

ion. This results in an input-design problem formulated as an nlp

hat can be solved with standard techniques and software. Martin-

asas and Mesbah (2018) also consider nonlinear systems with

arametric uncertainty and stochastic disturbances and noise. They

evelop a sample-based distance measure, similar to the k -nearest

eighbors algorithm, to separate the predicted output distributions,

hich are propagated using generalized polynomial chaos. 

.6. Markov jump systems and AFD 

In the input-design methods discussed above, transition prob-

bilities between modes of operation are not specified. This type

f information, such as the probability of a given fault occurring

hen the system is fault free, or the probability of one specific

ault occurring right after another, may not be available in prac-

ice. When it is available, however, it may significantly benefit ac-

ive fault diagnosis. Alternatively, the probabilities can be used to

ssign priority to the faults considered most critical. A system with

nown probability transitions between different modes of behav-

or, each with separate models, is called a Markov jump system .

 key challenge in input design for this type of systems is that

he number of possible fault-mode sequences grows exponentially

ith time, rendering the problem intractable without a strategy to

imit the number of sequences considered. 



T.A.N. Heirung and A. Mesbah / Annual Reviews in Control 47 (2019) 35–50 45 

Table 2 

Some primary input-design methods classified as either open- and closed-loop implementation and according 

to the type of optimization problem solved. 

Implementation Optimization problem References 

Open loop lp Nikoukhah (1998) ; Scola, Nikoukhah, and Delebecque (2003) 

qp Blackmore and Williams (2005) 

miqp Scott et al. (2014) 

sdp Kim, Shen, Nagy, and Braatz (2013) 

nlp Blackmore and Williams (2006) 

Other Blanchini et al. (2017) ; Campbell and Nikoukhah (2004) 

Closed loop miqp Marseglia et al. (2017) ; Raimondo et al. (2013) 

nlp Martin-Casas and Mesbah (2018) ; Paulson et al. (2017) 

Other Paulson et al. (2018) 
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Šimandl, Pun ̌cochář, and Královec (2005) develop an input-

esign framework for Markov jump linear systems with Gaussian

oise and disturbances. This formulation allows unknown model

arameters and initial state but assumes these quantities have

nown probability distributions. They formulate the problem us-

ng dynamic programming and propose a computationally tractable

pproach for obtaining an approximate solution. Blackmore, Raja-

anoharan, and Williams (2008) propose an input-design method

or Markov jump linear systems with Gaussian distributions for the

nitial state, disturbances, and noise, but with no parametric uncer-

ainty. They extend their approach for multiple models ( Blackmore

 Williams, 2006 ) to the case of specified transition probabili-

ies. To limit the number of sequences considered in designing

he input, the proposed algorithm includes a feature for pruning

he tree of possible mode switches. The formulations proposed by

imandl et al. (2005) and Blackmore and Williams (2006) consider

nite time horizons. For the case of infinite horizons, Pun ̌cochář,

kach, and Šimandl (2015b) solve the input-design problem using

pproximate dynamic programming, while Škach, Pun ̌cochář, and

ewis (2016) propose the use of temporal-difference learning. 

Pun ̌cochář, Král, and Šimandl (2009) consider Markov jump

onlinear systems with a single input and a single output, whereas

un ̌cochář and Šimandl (2014) and Pun ̌cochář, Škach, and Ši-

andl (2015a) tackle the more general case of multiple inputs

nd outputs. None of these approaches make assumptions on the

ystem uncertainties except for the probability distributions be-

ng known. Pun ̌cochář et al. (2009) propose using neural nets to

odel the fault modes. In their more recent work, Pun ̌cochář and

oworkers consider both the case of perfect and imperfect state

nformation, and use approximate dynamic programming to solve

he input-design problem ( Pun ̌cochář & Šimandl, 2014; Pun ̌cochář

t al., 2015a ). Škach and Pun ̌cochář (2017) address the special

ase of Gaussian disturbances and measurement noise and use re-

nforcement learning as a solution approach, a technique closely

elated to the ones used by Pun ̌cochář and Šimandl (2014) and

un ̌cochář et al. (2015a) . Škach, Pun ̌cochář, and Straka (2017) and

kach, Straka, and Pun ̌cochář (2017) extend this framework by not

estricting the stochastic sequences to a specific type of distribu-

ion. 

. Implementation of input design for AFD 

This section provides a discussion on two implementation con-

iderations in active fault diagnosis. Of these, the most important

s whether to design the inputs in an open- or closed-loop fash-

on, which is related to the issue of online versus offline input

esign. Table 2 categorizes some of the primary methods accord-

ng to whether they implement the input signal in closed or open

oop and notes the type of optimization problem solved to de-

ermine the signal. Our discussion then focuses on afd integrated

ith feedback control. The considerations involved in the question

f whether to combine control and diagnosis objectives are largely
utside the scope of this paper. We therefore keep this discussion

rief, despite the considerable body of literature addressing this

opic. 

.1. Open- and closed-loop input design 

Input design for active fault diagnosis can be implemented as

n open-loop design problem, or as a closed-loop problem based

n updating the test signal applied to the system whenever new

nformation becomes available. Much of the literature on open-

oop afd considers offline design of an input signal that has no on-

ine dependence on the measurements. Nikoukhah et al. (20 0 0) ar-

ue this is the preferable approach to afd since a test signal that

epends on the most recent measurement establishes a feedback

hat modifies the dynamics of the system, potentially causing in-

tability. Note that online input design does not mean there is

 closed loop, in which every input depends on the most recent

easurement or state estimate. For example, in the input-design

ethod developed by Blackmore and Williams (2006) , the test sig-

al is designed based on the most recent state estimate, but not re-

esigned when subsequent measurements become available. That

s, when a fault is detected or suspected, the test signal is de-

igned online based on the state estimate at that time. The sig-

al is then applied to the system in open loop for the duration

f the planned diagnosis experiment. This online design approach,

ased on the current state information, necessitates the signal is

omputed fast enough so that the state information is not out-

ated by the time the signal is applied. Clearly, an advantage of

ffline design is that the requirements on computational complex-

ty of the input-design problem are less strict. Thus, an offline ap-

roach allows more complex problem formulations, including the

se of more rigorous models or uncertainty descriptions. How-

ver, both online and closed-loop input design can offer advantages

uch as lower risk of constraint violation and faster diagnosis (e.g.

aimondo, Braatz, & Scott, 2013 ). This is often referred to as a less

onservative approach, since using the most recent available infor-

ation in designing the input enables mitigating some uncertainty.

In closed-loop approaches to input design, the current input

s at any given time dependent on the most recent state esti-

ate. This does not necessarily imply that an input-design prob-

em is solved online at a regular interval, since the mapping

rom state estimate to input can be computed offline; e.g., see

un ̌cochář et al. (2015b) . The majority of the input-design meth-

ds discussed in the previous sections do not consider closed-loop

mplementation of the design procedure. However, the attention

oward this approach is increasing, with moving-horizon strategies

he most common. While closed-loop input design has been inves-

igated since some of the earliest work on active fault diagnosis

 Zhang & Zarrop, 1988 ), the following contributions are more rep-

esentative of the modern approach to moving-horizon input de-

ign. 
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Šimandl et al. (2005) address the problem of closed-loop in-

put design for stochastic linear systems using dynamic program-

ming. Since the resulting Bellman equation is intractable to solve

directly, they propose an approximate rolling-horizon solution

method. Raimondo et al. (2013) propose two moving-horizon ap-

proaches to afd for linear systems with set-based uncertainty

descriptions. The first is based on solving the open-loop input-

design problem developed by Scott et al. (2013) at every sam-

pling time and applying the first element of the resulting in-

put sequence. They show that this approach leads to significant

advantages relative to applying the entire initial open-loop in-

put sequence. The advantages include faster diagnosis and smaller

input norm while ensuring guaranteed diagnosis within the spec-

ified time. However, the computational cost associated with on-

line solution of the input-design problem is significant, which may

render this closed-loop afd approach impractical. This motivates

the development of their other moving-horizon approach, which

uses an explicit control law to shift most of the computational

burden offline. While this approach also achieves faster diagno-

sis and smaller input norm relative to applying the precomputed

open-loop input sequence, the improvements are not as signif-

icant as in the first approach. Both of the closed-loop afd al-

gorithms proposed by Raimondo et al. (2013) are further devel-

oped using constrained zonotopes by Raimondo, Marseglia, Braatz,

and Scott (2016) . Paulson et al. (2018) develops a computation-

ally efficient solution method for moving-horizon input design in

stochastic linear systems that enables updating the test signal

at a high frequency, which leads to a low rate of misdiagnosis.

For stochastic nonlinear systems with parametric uncertainty, both

Paulson et al. (2017) and Martin-Casas and Mesbah (2018) pro-

pose closed-loop input-design methods. Paulson et al. (2017) com-

pare their closed-loop approach to implementing the first input se-

quence in open loop and find that redesigning the test signal on a

moving horizon results in a lower rate of misdiagnosis. 

4.2. AFD and closed-loop control 

There are two primary ways in which active fault diagnosis

and closed-loop control interact. In the first, the test signal de-

signed for afd is applied to a system that is under closed-loop

control. That is, the feedback control law is given a priori and

must be accounted for in the input design. In the other, the sys-

tem input is designed with a dual purpose: to control the system

and to improve diagnosis. The overall design goal is optimizing

some overall performance metric, and this strategy is thus simi-

lar to the dual control paradigm ( Feldbaum, 1961 ). The methods

in this latter class are distinct from the others discussed in this

paper in that their design objective is not only improving fault

diagnosis. 

Ashari, Nikoukhah, and Campbell (20 09a, 20 09b, 20 09c, 2012a,

2012b) investigate input design for systems under static linear

feedback control. The test signal is designed offline and added

to the control signal so that the sum is injected into the sys-

tem. The main findings are that for finite-horizon input design,

feedback control cannot reduce the worst-case input energy re-

quired for guaranteed diagnosis. However, feedback control can

improve performance during the testing period as measured by

the quadratic control cost ( Ashari, Nikoukhah, & Campbell, 2012b ).

Furthermore, ( Ashari, Nikoukhah, & Campbell, 2012a ) find that for

infinite-horizon input design, the optimal test signal is always si-

nusoidal. 

Marseglia, Raimondo, Magni, and Mesbah (2017) also consider

active fault diagnosis for a system under feedback control, adding

the test signal to the control input. In their approach, however,

an open-loop test signal is calculated at every sampling time on

a moving horizon, with the first element of this input sequence
eing added to the control signal. The open-loop sequence is de-

igned to separate the output set from the model that currently

est matches the system measurements from those of the other

odels. Their analysis shows that the presence of the feedback

ontroller can increase the diagnosis time, but when compared

o the closed-loop afd approach of Raimondo et al. (2016) , input

esign under feedback control can reduce the cost of the online

omputations and result in faster diagnosis with an input that has

maller norm. 

The other approach to combined afd and closed-loop control,

hich is analogous to dual control, does not involve input design

ith the feedback law given a priori. Rather, the aim is design-

ng inputs that strike an appropriate balance between fault diag-

osis and control objectives while ensuring fast and reliable di-

gnosis. An early approach to this problem involves designing a

ontroller that improves fault isolation by making the effect of

ny fault clearer from the input–output data. Nett, Jacobsen, and

iller (1988) and Jacobsen and Nett (1991) propose using the four-

arameter controller ( Nett, 1986 ) for this purpose. Their approach

nvolves integrated design that considers control and diagnostic

erformance together. The analysis demonstrates the interaction

etween control and diagnosis and identifies benefits of consid-

ring both simultaneously. Niemann and Poulsen (2005) propose

 similar approach for active diagnosis of parametric faults where

he feedback controller is defined in terms of four parameters,

esigned using Youla–Jabr–Bongiorno–Kucera ( yjbk ) parameteriza-

ion. A series of papers extends this framework to cases such as

ore than one fault model ( Niemann, Poulsen, & Bækgaard, 2007 )

nd multiple-input multiple-output ( mimo ) systems ( Niemann &

oulsen, 2014 ). See Ding (2009) for a comprehensive review of

hese and related methods. 

Another approach to integrating afd and control is to add di-

gnosis constraints to a control formulation. One such method is

eveloped by Raimondo, Marseglia, Braatz, and Scott (2013) , in

hich a robust model predictive control ( mpc ) formulation is aug-

ented with constraints that guarantee separation of all model

utput sets at the end of the prediction horizon. Xu, Olaru, Puig,

campo-Martinez, and Niculesco (2014) propose a similar robust

pc framework, also relying on integrating active fault diagnosis

hrough modifying the constraints. This approach, however, can

andle sensor faults only and the constraints are modified when a

ault is detected. Heirung and Mesbah (2017) and Heirung, Santos,

nd Mesbah (2019) develop mpc frameworks for stochastic non-

inear systems with model-structure uncertainty and demonstrate

ow their approaches can actively improve fault diagnosis. The

atter control algorithm minimizes a multi-objective cost function

hat includes an approximate bound on the probability of select-

ng the wrong model (similar to Paulson et al., 2017 ) in addition to

tandard control objectives. 

Šimandl and Pun ̌cochář (2009) pose the problem of integrated

ontrol and afd as a stochastic optimal control problem. They an-

lyze the problem using dynamic programming and pose three

pecial cases that arise by varying a single parameter in the for-

ulation: optimal control without afd , optimal afd without con-

rol, and a combination. Šimandl, Široký, and Pun ̌cochář (2011) in-

estigate this approach further. A simple solution strategy that

voids dynamic programming and instead relies on open-loop op-

imization is proposed by Široký, Šimandl, Axehill, and Pun ̌cochář

2011) . Here the integrated problem of control and active diag-

osis is posed in three different ways: minimizing the input en-

rgy subject to an upper bound on the probability of misdiagno-

is, minimizing the probability of misdiagnosis subject to an upper

ound on the input energy, and minimizing a weighted sum of the

nput energy and the probability of misdiagnosis. These stochas-

ic methods, among others, are summarized and compared by

kach and Pun ̌cochář (2015) ; see also Pun ̌cochář and Škach (2018) ,
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hich includes a thorough discussion of the four-parameter ap-

roach we discuss above. 

. Discussion and opportunities for future research 

Active fault diagnosis is fundamentally a problem of resolving

ncertainty through model-based input design. In addition to the

ncertainty that arises from the system’s unknown fault status,

ach fault model can contain uncertain parameters and initial con-

itions and the system can be affected by exogenous uncertainties

uch as measurement noise and disturbances. The choices made

n modeling faults and uncertainty dictate the formulation com-

lexity of an input-design problem. Formulations with bounded

on-probabilistic uncertainty generally guarantee diagnosis by en-

uring separation of the output sets predicted from the fault mod-

ls. Other important considerations in these formulations include

inimizing the input energy or the length of the diagnosis exper-

ment. Conversely, using probability distributions to describe un-

ertainty can result in some overlap between the predicted output

ets. Instead of requiring full separation of these sets, a natural ob-

ective in probabilistic input design is minimizing either the over-

ap between the output distributions or the probability of misdi-

gnosis. Input-design problems for afd can also be formulated as

inimum-time problems, in which the goal typically is to mini-

ize the time required for achieving full output separation or a

pecified probability of misdiagnosis, subject to input and state

onstraints, such as a bound on the available input energy. Alter-

atively, a weighted sum of two or more of these goals can form a

referable objective for afd . In this type of multi-objective input-

esign problems, the choice of weights for the different objective

erms can be guided by Pareto-analysis. In general, deciding how

o formulate an input-design problem to achieve the desired di-

gnostic performance is a challenging task. For example, in prob-

bilistic input-design problems it is not necessarily clear whether

inimizing the misdiagnosis probability or the input energy, sub-

ect to a bound on the other, would result in a more effective test

ignal. There are currently no comprehensive studies available that

nvestigate the consequences of such formulation choices, which

arrants further research. 

Input-design methods for afd rely on separate models for each

ossible fault. When there is limited knowledge on the dynamic

ffects of a fault, developing an adequate fault model can pose a

ignificant challenge. As faults are rare occurrences, it is unlikely

hat input–output data that can accurately describe faults is avail-

ble, rendering data-driven model development an impractical op-

ion. Furthermore, the formulation of each fault model, as well as

he total number of models, can have a significant impact on the

omputational complexity of the input-design problem. Some im-

ortant modeling considerations include the degree of fidelity of

he models, such as whether or not to include nonlinear effects

ith minor impact on the system behavior, whether and how to

ccount for system uncertainties that may be of lesser importance

or diagnosis, and the number of potential faults accounted for in

he input-design problem. Arguably, another key choice is whether

o model uncertainties using bounded sets or probability distribu-

ions (or some combination), in particular since exact bounds or

robability distributions are rarely known in practice. Since mod-

ls are generally imperfect representations of a system, especially

n the case of faults exhibiting behavior that is difficult to predict,

he value of using accurate uncertainty descriptions remains elu-

ive. That is, an accurate uncertainty description offers question-

ble value if propagated through an inaccurate model. In other

ords, a test signal that guarantees diagnosis in theory does not

ffer the same guarantee when applied to the actual system if the

odels are imperfect and the uncertainty descriptions are inaccu-

ate. Similarly, a theoretic upper bound on the probability of mis-
iagnosis may not relate to the frequency of diagnostic errors ob-

erved in practice. If the diagnosis performance is deemed inade-

uate using a particular method, the input-design problem can be

eformulated by reconsidering the diagnosis objectives and con-

traints, as discussed above, or switching between set-based and

robabilistic uncertainty descriptions. 

Isolated and integrated design : With stricter requirements and

rowing complexity of modern technical systems, ensuring safe,

eliable, and high-performance operation has become increasingly

hallenging. In particular, this exacerbates the nuanced interactions

etween the design of test signals and the controller ( Šimandl &

un ̌cochář, 2009 ), the test signal and the fault diagnoser, the fault

etector and fault diagnoser ( Kerestecio ̆glu & Zarrop, 1989; 1991 ),

nd the engineered system itself ( Sampath et al., 1998 ). As a re-

ult, it is prohibitively challenging to consider all these interactions

imultaneously in an integrated design of all these components.

ommon practice is therefore isolated design, often the system,

he controller, the fault detector and diagnoser, and the test signal,

n that order. Further research is necessary to gain a deeper un-

erstanding of these interactions and the consequences of various

implifying assumptions made in developing tractable approaches

o design. In particular, controllers with an integrated capability to

nitiate afd after the detection of a fault, while ensuring continued

peration, have the potential to expand the system’s capabilities

or self maintenance in a manner that is less disruptive than in-

ecting a pure test signal. 

Computational complexity : The majority of approaches to in-

ut design for active fault diagnosis involves solving challenging

onconvex dynamic optimization problems. Much of the computa-

ional work can be done offline, either by computing a mapping

rom state estimate to input through some approximate method

e.g., Pun ̌cochář et al., 2015b ) or by having the input be indepen-

ent of the state estimate ( Nikoukhah et al., 20 0 0 ). As discussed in

his paper, however, the literature largely focuses on the design of

nput signals with given uncertain initial conditions. Furthermore,

he implementation of this design methodology on a receding hori-

on is receiving increased attention (e.g., Paulson et al., 2018; Paul-

on et al., 2017; Raimondo et al., 2016 ). Widespread adoption of

losed-loop afd , either through a receding-horizon implementation

r through determining an approximate mapping offline are partly

eld back by the computational challenges involved in these ap-

roaches. Thus, investigations into problem formulations and so-

ution algorithms that significantly lower the computational com-

lexity can greatly contribute to the application of these methods

o a broader array of problems. This is of particular importance for

eal-time applications and in large-scale systems. 

Uncertainty propagation : Rigorous propagation of uncertainty

s a significant source of computational complexity in many of

he approaches discussed in this paper. This issue arises in both

inear and nonlinear systems, and in both probabilistic and set-

ased problem formulations. Except for the linear-Gaussian case

 Blackmore & Williams, 2006 ), predicting the output distributions

r sets involves trading off computational cost against accuracy

nd precision. Significant progress in this area will help enable ap-

lications where computational cost is a limiting factor. This is of

articular relevance for nonlinear systems, where further work in

his area is also necessary to provide the diagnosis probabilities

nd guarantees available in the linear case. Note that some meth-

ds, such as the one proposed by Blanchini et al. (2017) , avoid

xplicit uncertainty propagation, shift the computational burden

ffline, and can guarantee diagnosis for moderately large linear

ystems. This approach thus represents a potentially promising av-

nue for future research. The method developed by Blackmore and

illiams (2006) is capable of locally optimal input design for large

inear systems, owing to the low computational cost of propagat-

ng Gaussian probability densities through linear models. However,
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the extent to which globally optimal test signals, which can be

prohibitively expensive to compute, are necessary for acceptable

performance on large systems, is an open question. The issue of

whether the minimized upper bound on the probability of misdi-

agnosis is sufficiently tight to be a suitable objective also warrants

further research. 

Distributed AFD : An interesting direction for lowering the com-

putational requirements is distributing the afd effort over con-

nected subsystems. A distributed approach 5 involves designing a

set of modules, each specific to a subsystem, that communicate

with each other to accomplish a common task. This is in con-

trast to designing one central algorithm for the entire system.

The promising results on decentralized afd (that is, with no com-

munication between subsystem-specific modules) demonstrated by

Raimondo, Boem, Gallo, and Parisini (2016) motivate further re-

search on this type of design approach, potentially opening up new

areas of application through posing simpler problems and easier

integration with existing control systems. 

Defining diagnosability : A rigorous and readily applicable defini-

tion of diagnosability (cf. the discussion in Section 2.1 ) does not

currently exist in the literature. Whether or not a system is diag-

nosable, or in some sense partially diagnosable, and under which

conditions, are fundamental questions in afd . A definition that is

both precise and easily translated into a test of diagnosability has

the potential to greatly advance the theoretical foundation for ac-

tive fault diagnosis. Moreover, a diagnosability test can guide the

initial system and control designs as well as inform the design of

the test signal. 

Practical applications : Active fault diagnosis has not seen

widespread adoption in practical applications. The field would

greatly benefit from research on real-world systems, with demon-

strations of the viability and benefits of afd . Such results will help

identify new areas of application as well as clarify the most critical

challenges and obstacles that require increased attention from the

research community. 
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kach, J. , Straka, O. , & Pun ̌cochář, I. (2017). Efficient active fault diagnosis

using adaptive particle filter. In IEEE conference on decision and control
(pp. 5732–5738) . Melbourne, Australia. 

Tabatabaeipour, S. M. (2015). Active fault detection and isolation of discrete-time

linear time-varying systems: A set-membership approach. International Journal
of Systems Science, 46 (11), 1917–1933 . 

Tawarmalani, M. , & Sahinidis, N. V. (2002). Convexification and global optimiza-
tion in continuous and mixed-Integer nonlinear programming. theory, algo-

rithms, software, and applications. Nonconvex Optimization and Its Applications . 
Springer . 
osaki, K. , Takata, N. , & Hatanaka, T. (1993). Optimal auxiliary input for on-line fault
detection and fault diagnosis. In IFAC world congress (pp. 4 41–4 46) . Sydney, Aus-

tralia. 
Uosaki, K. , Tanaka, I. , & Sugiyama, H. (1984). Optimal input design for autoregres-

sive model discrimination with constrained output variance. IEEE Transactions
on Automatic Control, 29 (4), 348–350 . 

Varga, A. (2017). Solving fault diagnosis problems. linear synthesis techniques. Stud-
ies in Systems, Decision and Control : 84. Springer . 

Venkatasubramanian, V. , Rengaswamy, R. , & Kavuri, S. N. (2003). A review of process

fault detection and diagnosis. part II: Qualitative models and search strategies.
Computers & Chemical Engineering, 27 (3), 313–326 . 

enkatasubramanian, V. , Rengaswamy, R. , Kavuri, S. N. , & Yin, K. (2003). A review
of process fault detection and diagnosis. part III: Process history based methods.

Computers & Chemical Engineering, 27 (3), 327–346 . 
enkatasubramanian, V. , Rengaswamy, R. , Yin, K. , & Kavuri, S. N. (2003). A review

of process fault detection and diagnosis. part I: Quantitative model-based meth-

ods. Computers & Chemical Engineering, 27 (3), 293–311 . 
iener, N. (1938). The homogeneous chaos. American Journal of Mathematics, 60 (4),

897–936 . 
Williard, N. , He, W. , Hendricks, C. , & Pecht, M. (2013). Lessons learned from the 787

dreamliner issue on lithium-ion battery reliability. Energies, 6 (9), 4682–4695 . 
iu, D. , & Karniadakis, G. E. (2002). The Wiener-Askey polynomial chaos for stochas-

tic differential equations. SIAM Journal on Scientific Computing, 24 (2), 619–644 . 

u, F. , Olaru, S. , Puig, V. , Ocampo-Martinez, C. , & Niculesco, S.-I. (2014). Sensor-fault
tolerance using robust MPC with set-based state estimation and active fault iso-

lation. In IEEE conference on decision and control (pp. 4 953–4 958) . Los Angeles,
CA. 

Yang, X. , & Scott, J. K. (2018). A comparison of zonotope order reduction techniques.
Automatica, 95 , 378–384 . 

agrobelny, M. , Ji, L. , & Rawlings, J. B. (2013). Quis custodiet ipsos custodes? Annual

Reviews in Control, 37 (2), 260–270 . 
hang, X. J. (1989). Auxiliary signal design in fault detection and diagnosis . Springer . 

hang, X. J. , & Zarrop, M. B. (1988). Auxiliary signals for improving on-line fault
detection. In IEE international conference on control (pp. 414–419) . Oxford, UK. 

hang, Y. , & Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant
control systems. Annual Reviews in Control, 32 (2), 229–252 . 

http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0105
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0105
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0105
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0105
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0106
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0106
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0106
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0106
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0106
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0107
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0107
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0107
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0107
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0108
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0109
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0110
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0111
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0111
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0111
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0111
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0111
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0112
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0112
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0112
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0112
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0112
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0113
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0114
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0115
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0116
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0116
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0117
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0117
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0117
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0117
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0118
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0119
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0119
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0119
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0119
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0119
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0120
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0120
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0121
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0121
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0121
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0121
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0121
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0122
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0123
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0124
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0124
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0125
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0126
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0126
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0126
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0126
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0127
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0128
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0128
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0128
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0128
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0129
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0129
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0129
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0129
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0129
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0130
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0130
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0131
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0131
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0131
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0131
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0131
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0132
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0132
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0132
http://refhub.elsevier.com/S1367-5788(19)30007-0/sbref0132

	Input design for active fault diagnosis
	1Introduction
	1.1Active versus passive approaches to fault diagnosis
	1.2Advantages of active fault diagnosis
	1.3Objective of the paper

	2Input design for afd
	2.1Background
	2.2Early results on afd for linear systems
	2.3Toward modern afd methods

	3Optimization-based formulations and solution methods
	3.1Probabilistic afd
	3.2A set-based formulation
	3.3afd with energy-bounded uncertainty
	3.4Linear systems: Variants, extensions, and special cases
	3.4.1Probabilistic methods
	3.4.2Hybrid probabilistic-deterministic formulations
	3.4.3Set-based methods
	3.4.4Formulations with energy bounds

	3.5afd for nonlinear systems
	3.6Markov jump systems and afd

	4Implementation of input design for afd
	4.1Open- and closed-loop input design
	4.2afd and closed-loop control

	5Discussion and opportunities for future research
	Conflict of interest
	Acknowledgments
	References


