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In our recent work, we examined various fermion-to-qubit mappings in the context of quantum simulation

including the original Bravyi-Kitaev superfast encoding (OSE) as well as a generalized version (GSE). We

return to OSE and compare it against the Jordan-Wigner (JW) transform for quantum chemistry considering the

number of qubits required, the Pauli weight of terms in the transformed Hamiltonians, and the L1 norm of the

Hamiltonian. We considered a test set of molecular systems known as the Atomization Energy 6 (AE6) as well

as hydrogen lattices. Our results showed that the resource efficiency of OSE is strongly affected by the spatial

locality of the underlying single-particle basis. We find that OSE is outperformed by JW when the orbitals in

the underlying single-particle basis are highly overlapping, which limits its applicability to near-term quantum

chemistry simulations utilizing standard basis sets. In contrast, when orbitals are overlapping with only few

others, as is the case of hydrogen lattices with very tight orbitals, OSE fares comparatively better. Our results

illustrate the importance of choosing the right combination of basis sets and fermion-to-qubit mapping to get the

most out of a quantum device when simulating physical systems.
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I. INTRODUCTION

To utilize the power of quantum computation for elec-

tronic structure theory (see [1,2], and references therein),

it is crucial to map fermionic modes to qubits efficiently.

Efficient mapping allows the number of overall quantum gates

applied to be reduced, which is especially important given

the current limitations of quantum computing hardware due

to decoherence and noisy gates. While there are multiple

fermion-to-qubit encodings [3–7], recent work has focused

on the potential of the Bravyi-Kitaev superfast encoding for

quantum simulation [3,8,9]. Since we have also developed a

generalization of the Bravyi-Kitaev superfast encoding, called

the generalized superfast encoding (GSE) [10], we opt to

refer to the original superfast encoding as OSE. In some

settings, OSE may offer advantages over other mappings such

as the JW mapping or the Bravyi-Kitaev mapping (a separate

mapping which can be thought of as a compromise between

directly storing occupation and parity). This potential is due

to the fact that the relevant quantities (qubits, gates) scale

as a function of the number of interactions between orbitals,

rather than the number of orbitals themselves [8]. However,

the performance of OSE compared to other mappings in

the context of electronic structure problems has yet to be

explored. Our work here testing the OSE against JW can be

compared to Ref. [11], where the Bravyi-Kitaev transform

and the JW transformations were compared. Both the JW

and the Bravyi-Kitaev transforms use the same number of

qubits as spin orbitals, whereas the OSE and the GSE, in

general, utilize different qubit resources. Here, we present

the results of implementing OSE, alongside JW, for various

molecular systems, including hydrogen lattices and chains,

and molecules from a small test set [12].

In this study, we are aiming to characterize the perfor-

mance of standard quantum simulation techniques based on

both hybrid quantum-classical and time-propagation methods.

Hence, we used two main metrics to determine the perfor-

mance of an encoding on a given fermionic Hamiltonian. The

first is simply the number of qubits required to simulate the

system after performing the mapping. This is an important

metric given that on near-term devices the number of qubits

is severely limited. Second, we also considered the tensor

weights of the transformed Hamiltonian. This is defined as

the number of all nonidentity tensor factors of a Pauli term.

The total tensor weight is the sum of all weights in the trans-

formed Hamiltonian. We also looked at other statistics such

as the average weight and the maximum tensor weight among

terms. As a metric of performance we believe the total tensor

weight is reasonable because the tensor weight will affect the

ultimate circuit depth of the quantum simulation algorithm.

We note, however, that it is not exactly analogous given the

fact that there will be terms which commute with each other

and would be able to be performed in parallel. In addition,

different techniques can be used to simulate the Hamiltonian

evolution such as Trotterization, truncated Taylor expansions,

and qubitization; see, e.g., [13,14]. The choice of simulation

technique will ultimately affect the circuit depth; however, the

tensor weight is unambiguous. Finally, motivated by recent

developments we looked at two 1-norms which have been

shown to give a bound on the scaling of various Hamiltonian

simulation algorithms [15]. In particular, we focused on the

coefficient L1 norm defined as

‖A‖c =
∑

j

|c j | for A =
∑

j

c jPj . (1)

In the coefficient L1 norm, coefficients are prefactors of a

decomposition into Pauli group elements P ∈ {
∏

j σ
m
j : m ∈

{x, y, z, 0}}. It is also an upper bound to the L1 induced norm

‖A‖1 = maxx �=0|Ax|1/|x|1 = max j

∑

i |ai j |.
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The calculations were performed using three different basis
set transformations: the canonical Hartee-Fock molecular or-
bitals, the symmetrically orthogonalized atomic orbital basis,
and the canonically orthogonalized atomic orbital basis which
we discuss later in Sec. II C. The calculations on the hydrogen
systems were run using a highly localized Gaussian basis set
employing symmetric orthogonalization, while the molecules
known as Atomization Energy 6 (AE6) used the STO-3G basis
set [16,17]. In the hydrogen systems, using a tight Gaussian
basis, the performance of OSE was mixed and depended on
dimension. In one dimension, the number of required qubits
was reduced at the cost of a larger total tensor weight. In
higher dimensions, the total number of qubits required is
larger than JW but the scaling of the largest tensor term is
improved; a feature that, at system sizes larger than we were
able to numerically explore for this study, is expected to lead
to a crossover in the total number of gates. The reason for the
dependence on dimension is the interaction-based nature of
OSE, which is explored in greater detail below as well as in
full detail in [9].

Previous work [8] has predicted that for the Hubbard
model, the gate count for OSE will scale more favorably than
JW. As we will discuss, our hydrogen lattice results hint at
agreement with this prediction; however, for the small size
Hydrogen lattices that we investigated here, JW still performs
better than OSE. For the AE6 molecules using STO-3G,
JW outperformed OSE in all respects. This suggests that
broad Gaussian basis sets centered on atomic nuclei are not
practicable when used with OSE and another mapping such as
JW would be preferable for such basis sets. Using OSE with
localized basis sets shows interesting potential for electronic
structure and solid state calculations, and it is hoped that this
mapping can be tested on present quantum computers [18,19].
Our results illustrate the importance of choosing the right
combination of basis sets and fermion to qubit mapping to get
the most out of a quantum device when simulating physics
and chemistry.

The remainder of this paper is organized as follows. In
Sec. II, we first provide an overview of fermion to qubit map-
pings, including JW transformation and OSE, and the single-
particle basis set rotations. Then, we describe the molecules
we studied and the computational method and metrics for
comparison we used. In Sec. III, we discuss some analytic
results including scaling in the case of complete graphs as well
as expected results using atom-centered basis sets. In Sec. IV,
we present and discuss the numerical results for the hydrogen
systems and the AE6 molecules. A comparison between JW
and OSE with different basis rotations is given. Finally, we
summarize the conclusions based on our investigations. The
notation conventions used in this paper are that N stands for
the length of hydrogen chains in atoms, M is the number of
spin-orbitals, Q denotes the number of qubits, and indices start
from 0. We will be using atomic energy units where the mass
of the electron, the electronic charge, Planck’s constant, and
(4πǫ0)−1 are all set to unity.

II. BACKGROUND

A. Jordan-Wigner transform

There exists a useful correspondence between fermionic

modes and qubits, since the occupation number of a particular

orbital can be associated with the two states of the qubits.

Direct identification between occupation of orbitals and the

two levels of qubits was first defined in the context of one-

dimensional (1D) lattice models [20] and then proposed as a

scheme for simulating fermions [21].

The raising and lowering operators for qubits, given as

σ± = 1
2
(σ x ∓ iσ y), (2)

do not in general satisfy the anticommutation relations satis-

fied by fermions:

{a j, ak} = a jak + aka j = 0, {a j, a
†
k
} = δ jk (3)

where, ai and a
†
i are the annihilation and creation operators

acting upon fermionic mode i. In order to satisfy the necessary

anticommutation relations, a string of Pauli σ z operators are

included. This then gives the necessary ingredients for the

transformation, which is defined as follows:

a
†
j ≡ 1⊗M− j−1 ⊗ σ+

j ⊗ [σ z]⊗ j, (4)

a j ≡ 1⊗M− j−1 ⊗ σ−
j ⊗ [σ z]⊗ j . (5)

Under this transformation, the fermionic Hamiltonian repre-

sented in second quantization can be mapped to a Hamiltonian

acting on a qubit Hilbert space [4,8]. Note that the string

of Pauli σ z operators included to satisfy the antisymmetry

properties of the fermionic operators can in some cases act

on a large number of qubits, thus necessitating many quantum

gates to simulate the system under consideration. There have

been techniques devised to mitigate this problem, including

the introduction of auxiliary qubits [7]. Described below, OSE

also helps in reducing this overhead.

B. OSE mapping

OSE is a mapping from fermionic operators to qubit oper-

ators which is, in essence, based on the interactions between

fermionic modes rather than the occupancy of the modes as in

JW. An interaction graph is defined based on the interaction

between modes in the Hamiltonian which is to be encoded.

The vertices of the graph correspond to the modes. If there is a

term in the fermionic Hamiltonian which couples two modes,

an edge connecting the two corresponding vertices is included

in the graph. Qubits are then identified with the edges of the

graph, and operators which act on the qubits are defined. In

particular, there are two types of operators: edge operators

which act on qubits in a small neighborhood of the edge in

question and vertex operators which act on all edges incident

to the vertex in question. The transformation from fermionic

operators to qubit operators is then defined by the edge and

vertex operators.

First, the fermionic modes are expressed as Majorana

modes:

c2 j = a j + a
†
j , (6)

c2 j+1 = −i(a j − a
†
j ). (7)
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TABLE I. Second quantized molecular Hamiltonian operators in terms of edge operators in the original superfast encoding (OSE) and

the expressions for edge operators in terms of qubit Pauli operators (see [9]). In the edge operator expression, n( j) denotes the set of indices

corresponding to neighbors of vertex j and ǫpq = +1 for p < q and ǫpq = −1 for p > q.

Operator type Second quantized form OSE form

Pair creation operator a†
i a†

j + aia j −i(Ai jB j − BiAi j )/2

Number operator hiia
†
i ai hii(1 − Bi )/2

Coulomb/exchange operator hi j jia
†
i a†

j a jai hi j ji(1 − Bi )(1 − B j )/4

Excitation operator hi j (a
†
i a j + a†

j ai ) −ihi j (Ai jB j + BiAi j )/2

Number-excitation operator hi j jk (a†
i a†

j a jak + a†
ka†

j a jai ) −ihi j jk (AikBk + BiAik )(1 − B j )/4

Double-excitation operator hi jkl (a
†
i a†

j akal + a†
l a†

ka jai ) hi jkl Ai jAkl (−1 − BiB j + BiBk + BiBl + B jBk

+B jBi − BkBl − BiB jBkBl )/8

Operator type OSE operator Pauli representation

Vertex operator Bi

∏

j:(i j)∈E σ z
i j

Edge operator Apq ǫpqσ
x
pq

∏n(p)

l<q σ z
l p

∏n(q)

s<q σ z
sq

Then edge and vertex operators are defined over the Majo-

ranas:

B j = −ic2 jc2 j+1 for each vertex, (8)

A jk = −ic2 jc2k for each edge ( j, k) ∈ E . (9)

These edge and vertex operators satisfy the algebra

Bi = B
†
i , Ai j = A

†
i j, (10)

B2
i = 1, A2

i j = 1, (11)

BiB j = B jBi, Ai j = −A ji, (12)

Ai jBk = (−1)δik+δ jk BkAi j, (13)

Ai jAkl = (−1)δik+δil δ jk+δ jl AklAi j, (14)

ipA j0 j1 A j1 j2 · · · A jp−2 jp−1
A jp−1 j0 = 1 (15)

for any closed loop of p edges on the graph.

The qubit representation of the edge and vertex operators

is given in Table I. These qubit operators satisfy all of the

conditions in (10)–(14); however, they do not in general sat-

isfy the loop condition (15). The loop condition is, however,

satisfied in a subspace of the total Hilbert space, so we use

this condition to specify a restricted subspace, which we

call the code space, that is stabilized by the loop operators.

Restricting to the code space completes the transformation.

Since the encoded fermionic operators commute with the loop

operator, once the system is initialized into the code space,

time evolution according to the encoded Hamiltonian will

only occur within the code space. As is suggested by the

presence of stabilizers, OSE carries error correcting proper-

ties; namely, if the degree of the interaction graph is at least

6 then it is possible to correct single-qubit errors [9]. The

molecular Hamiltonian operators are presented along with

their expression in terms of edge operators in Table I.

C. Rotations of the single-particle basis set

In this work, we fix the single particle basis set, e.g. STO-

3G [16], as well as customized basis sets, but consider three

different rotations of the given basis set. The single-particle

functions are in general nonorthogonal with an overlap matrix

possessing an eigendecomposition S = UsU † and Si j = 〈i| j〉.

We have considered three procedures to orthogonalize them:

the canonical (AOC), the symmetrical (AOS), and the Hartree-

Fock molecular orbital bases. While we considered three,

there are an infinite number of possible bases to choose

from, parameterized by X = Us−1/2W for any unitary matrix

W . If W = 1 then the basis is called the canonical orthog-

onalized basis, while if W = U † the basis is symmetrically

orthogonalized. Beginning with the eigendecomposition of S,

the corresponding orthogonalizing matrices are X S = S−1/2 =

Us−1/2U † and XC = Us−1/2 for AOS and AOC respectively.

In our calculations on hydrogen chains and lattices we give

particular focus to the symmetrical orthogonalization due to

its important feature that the resulting othogonalized functions

are those that minimize the L2 distance between the initial and

final sets of basis functions [22]. This feature is especially

attractive as we have chosen basis sets which seek to minimize

the overlaps, and preserving locality is essential.

However, note that when the basis set, here {φi}, has

linear dependence or near linear dependence, eigenvalues will

approach zero, and might be small enough to lead to machine

precision errors in calculating s−1/2. Canonical orthogonaliza-

tion is used to fix this problem. Similar to symmetric orthog-

onalization, if the basis set is nearly linearly dependent, then

eigenvalues of S can approach zero, causing s−1/2 to not be

ill defined. In this case, the eigenvalues which cause machine

precision errors can be removed and a truncated matrix X̃ can

be constructed. In X̃ only eigenvectors corresponding to the

nontrivial eigenvalues are kept [23].

D. Molecules studied

Molecular test sets containing experimentally validated

results and values are often used to test new developments in

electronic structure theory. This is especially important in the

context of density functional theory [24,25], where there is not
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a systematic way to improve the results of a given function.

Other newly developed methods are also tested using test sets.

Thus far, quantum computing for quantum chemistry has

relied heavily on the hydrogen molecule as a prototypical

example. Here we move beyond molecular hydrogen to ex-

amine a small test set of six molecules. The set we look at,

named AE6, was first introduced in [12] as a selected repre-

sentative of a much larger database of electronic structure test

instances. The AE6 testset includes silane (SiH4), sulfur (S2),

propyne (C3H4), silicon monoxide (SiO), glyoxal (C2H2O2),

and cyclobutane (C4H8) with all input geometries extracted

from [12].

For the purposes of theoretical simplicity, we also ex-

plored model metallic hydrogen chains and lattices with nu-

clei spaced one angstrom apart on a rectilinear grid. Similar

studies of hydrogen chains were used as a simple model and

as an algorithmic benchmark for state-of-the-art numerical

methods [26]. With these two sets, we are aiming to bench-

mark the use of OSE in theoretically simple settings and in

standard deployment areas for electronic structure methods in

molecular physics.

E. Software and setup

This work was done using PSI4, an open source software

for quantum chemistry [27], and OPENFERMION [28], an open

source software for quantum fermionic mappings. A plugin,

developed by the OPENFERMION developers, “OPENFERMION-

PSI4,” was used to interface the two.

III. ANALYTIC RESULTS

A. Complete graph upper bounds

Here, we look at the largest qubit operators generated by

OSE as a function of the number of spin orbitals M when the

graph (pair of graphs, one for each spin sector) is complete.

This will be the case in which OSE is likely not the ideal

choice of mapping but it is instructive to see the effect that, for

example, many tightly packed basis functions has on the map-

ping. Suppose that corresponding to each spin sector we have

a complete graph of fermionic modes, KM/2. We then have

2
(

M/2

2

)

edges present in the graph, which is also the number of

qubits required. Vertex operators Bi will consist of a product

of σ z operators, one for each edge incident to vertex i, giving

a weight M/2 − 1. Edge operators Ai j are of variable length

depending on the indices i, j. They consist of a product of

one σ x and two strings of σ z operators each of average length

M/4. Fermionic double-excitation operators a
†
i a

†
j akal will on

average be mapped to the Pauli terms with the largest tensor

weight and they are also the most numerous provided that

none of the integrals fall below the specified cutoff. Thus, we

will consider those operators in determining the polynomial

scaling. There will be O(M4) such operators present in the

second quantized Hamiltonian. Double excitation operators

are mapped to a sum of products of edge and vertex operators,

having the form given in Table I. The largest weight term

in the sum is typically Ai jAkl BiB jBkBl . Due to cancellations

in the σ z strings between Ai j and the vertex operators Bi

and B j, there will on average be M/2 such σ z tensor factors

being contributed from the i, j indices as well as another M/2

TABLE II. OSE upper and lower bounds on the number of qubits

required for AE6 molecules denoted by QU and QL respectively. The

JW qubit number is included for comparison.

Molecules QU QL QJW

Silane 156 90 26

SiO 182 92 28

Sulfur 306 180 36

Propyne 342 90 38

Glyoxal 462 120 44

Cyclobutane 756 120 56

from the k, l indices, so the weight of each double excitation

operator scales linearly as O(M ). The worst-case scaling on

the total tensor weight for an OSE fermionic Hamiltonian of

M modes is therefore O(M5). This worst-case scaling is in

line with previous results for estimating the gate cost scaling

of simulating quantum chemistry with JW [29].

B. Atom-centered basis sets lower bounds

For a given atom-centered basis set, there exists a lower

bound for the number of qubits required. As the basis

functions become more localized, interaction terms between

orbitals disappear; therefore, the number of qubits required

decreases. However, even if there are no interactions between

modes centered on different atoms, the interactions between

orbitals centered on each atom persist. This leads to a lower

bound on the number of edges needed within molecules. This

lower bound for the atom-centered basis sets can be expressed

as

QL = 2
∑

a=atom

(

Ma

2

)

(16)

with Ma as the number of orbitals (spin up or spin down) on

atom a. Take SiO as an example. There are 14 spatial orbitals

(28 spin orbitals), which includes 9 orbitals from Si and 5

orbitals contributed by O. With very tight orbitals, there is no

differential overlap, therefore, no edges between the orbitals

for Si and orbitals for O. The total edges for a SiO molecule

would be 2(
9

2) + 2(
5

2) = 92. The lower and upper bounds for

AE6 molecules are summarized in Table II. We also include

qubits for JW as comparison. From Table II, it is clear that

the qubits required by JW are much fewer than OSE for the

AE6 molecules. A numerical investigation of the relationship

between qubit requirements and localized orbitals follows in

the next section.

C. Empty graphs and odd-parity state preparation

It is possible through the choice of very narrow basis

functions or an exceptionally high cutoff to have a Hamil-

tonian which takes the diagonal form of Hd =
∑

j h jn j +
∑

i j Wi jnin j . Observing the transformation of these terms as

found in Table I, we note that no Apq terms are required

by the interactions. Thus the Hamiltonian requires no edges

to simulate the interactions. However, in the case of zero

qubits, one should think of the only possible state being that of

032337-4



ANALYSIS OF SUPERFAST ENCODING PERFORMANCE … PHYSICAL REVIEW A 100, 032337 (2019)

FIG. 1. Overlap between pairs of Gaussian orbitals of different

widths centered on neighboring sites 1 angstrom apart.

the vacuum fermionic state. To prepare additional states, i.e.,

a†
ma†

n|�〉, then edge (m, n) must be included. Once additional

edges are present, the Hamiltonian Hd can then determine the

energy of the distinct states.

A second challenge faced by this mapping is the restriction

to even and odd particle number sector. Note that odd products

of fermionic operators cannot be constructed from edge oper-

ators and the vacuum state. If a particle is desired in mode k,

an ancillary fermionic mode, s, would have to be introduced

and an edge placed between the vertex corresponding to the

desired mode and the ancillary one. The edge is then acted

upon by the pair creation operator:

a
†
k
a†

s + asak =
−i

2
(Ak,sBs − BkAk,s). (17)

This is the way in which states with odd parity can be con-

structed. The ancillary mode then takes no part in dynamics

generated by the Hamiltonian.

FIG. 2. Numerical results (total tensor weight, average tensor weight, maximum tensor weight and L1 norm in JW and OSE transformed

qubit Hamiltonians with different customized basis sets) for hydrogen chains and AE6 molecules. First column (a)–(d): 1D hydrogen chain.

Second column (e)–(h): 3D cubic lattice of hydrogen atoms. Third column (i)–(l): AE6 molecules (OSE only).
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TABLE III. Scaling of qubit requirement and maximum tensor

weight for JW and OSE in simulation of nearest-neighbor lattice

models in 1D, 2D, and 3D. N is length in lattice spacing.

Geometry QJW QOSE Max JW Max OSE

N 2N 2(N − 1) O(1) O(d )

N × N 2N2 4(N2 − N ) O(N ) O(d )

N × N × N 2N3 6(N3 − N2) O(N2) O(d )

IV. NUMERICAL RESULTS

A. Hydrogen chains and lattices

Due to the interaction-based construction of OSE, the

setting in which it offers possibly the greatest potential is

the simulation of systems in which the fermionic modes

are coupled to few others, especially those involving nearest

neighbor couplings. A classic well-studied fermionic system

of nearest-neighbor interactions on a lattice exhibiting rich

physics is the Hubbard model involving hopping terms and

Coulomb terms, and its simulation on a quantum computer

has previously been studied [30]. The Hubbard model can be

interpreted as a chain or lattice of hydrogen atoms under an

approximation neglecting differential overlaps, setting hi jkl =

γi jδilδ jk [31].

In order to investigate the performance of the encoding in

systems with local interactions, we have considered configu-

rations of hydrogen atoms in one, two, and three dimensions.

We have made the simplification of limiting to a single

Gaussian basis function. Symmetric orthogonalization is also

used to preserve locality. Note that our intention here was not

to examine the performance of OSE in realistic molecular

systems as we have done with the AE6 molecular test set.

Rather, we are attempting to illustrate in explicit detail the

dependence on the degree and dimension in the performance

of the mapping as applied to lattice systems. To that end,

we have varied the Gaussian basis functions from broad to

narrow in their spatial extent as illustrated in Fig. 1. When

the orbitals are delocalized many modes interact, resulting

in an interaction graph of relatively high degree. When the

Gaussians are narrow and sharply peaked, interactions other

than nearest neighbor are negligible at the cutoff of 10−7. The

transition from tight to broad Gaussian orbitals appears clearly

in the data as a large increase in both number of qubits as well

as total operator tensor weight.

It can be seen in Fig. 2 that for very broad basis functions,

except in the case of very few particles, OSE is greatly

outperformed both in number of qubits and total tensor weight

by the JW mapping. For tight basis functions resulting in local

interactions between modes, the performance of OSE is within

the same of order of magnitude in terms of total tensor weight

as JW.

Based on the counting of terms, one can determine the

required number of qubits for a given lattice size as well as the

scaling of the maximum tensor weight term. We have done so

for chains of length N and for square and cubic grids of side

lengths N . The results in Table III show that, at the cost of a

constant factor in the number of qubits, the maximum weight

of Pauli terms in the transformed Hamiltonian can be bounded

by a constant, the graph degree. This is in contrast to being

extensive in the size of the lattice as in JW. In higher than

one dimension, this will eventually lead to a crossover beyond

which OSE mapping will lead to a smaller total tensor weight:

however, that point appears to be beyond the sizes of systems

which we were able to analyze in this study.

For the hydrogen systems, the coefficient L1 norms were

similar between the two mappings. This is expected given

that the term coefficients are changed little by the mappings.

The overall trend in the coefficient norm that we saw was

that, as the basis functions were tightened, the norm tended

to increase. We did not investigate the effect of the tightened

basis sets on the contributions from the kinetic and from the

potential terms.

The coefficient L1 norm of the two mappings differed

slightly but in most cases only in the second or third decimal

place. The notable exception was the smallest system we stud-

ied, H2. This is primarily due to the parity constraint of OSE

discussed in Sec. III C. Terms that violate the restriction to the

even-particle sector must vanish under OSE mapping. Since

the JW mapping has no such constraint, such terms remain

and contribute to the coefficent L1 norm of the Hamiltonian.

B. AE6 molecules

In this section, we report results from the study of OSE as

applied to the AE6 ensemble. The STO-3G basis set [labeled

as Exponent 1 in Fig. 2 (third column)] were used in the

Hartree-Fock calculations to get the one- and two-body inte-

grals. AOC and AOS rotations were also studied in addition to

the Hartree-Fock molecular orbitals. Figure 3 shows the total

tensor weight for the different basis set rotations for all six

AE6 molecules with different cutoffs. The total tensor weights

with cutoff 10−7 are comparable for AOS, AOC, and MO.

However, the AOS rotation dramatically reduced the tensor

weight for both JW and OSE at cutoff 10−4. Another major

point illustrated by Fig. 3 is that OSE fails to perform better

than the JW transformation. With the JW transformation,

the number of qubits required is equal to the number of

fermion modes present in the system. For example, silane,

SiO, sulfur, propyne, glyoxal, and cyclobutane need 26, 28,

36, 38, 44, and 56 qubits respectively. For OSE, the number

of qubits required depends on the basis set chosen. Upper

and lower bounds are compared with JW in Table II. Using

STO-3G, OSE interaction graphs for each spin sector were

fully connected so the qubit number equals the upper bound in

Table II.

We considered the effect of localizing basis sets for the

AE6 molecules as well. Similarly to the previous section, the

investigation of tightened basis functions was not intended to

report accurate energies but to investigate the limits of atom-

centered orbitals for OSE. With the STO-3G basis set, three

primitive Gaussian orbitals are fitted to a single Slater-type

orbital. Dropping off Gaussian functions with small exponents

and choosing larger exponents are two methods to make the

orbitals sharper and more localized. Here, we began with

the STO-3G orbitals with the most diffuse (exponent 0.169)

Gaussian primitive of hydrogen removed. Then all remain-

ing Gaussian primitive exponents were scaled uniformly to

produce the various orbitals used within our tests. We have
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FIG. 3. Total tensor weight of all operators in JW and OSE

transformed qubit Hamiltonians for the AE6 moleculas with dif-

ferent rotation of the basis set (STO-3G). (a) Cutoff = 10−7,

(b) cutoff = 10−4.

referred to the basis set used as “Exponent x,” where x is

the multiplicative factor applied to all kept orbital exponents.

For example, “Exponent 3” indicates all exponents were

tripled.

As the orbitals become localized (example localized orbital

are shown in Fig. 1), the total energies of the molecules

deviate far from the values found when using STO-3G. For

example, the total energy for silane with STO-3G basis is

−281.91 hartrees. However, that value is −194.14 hartrees

with the most localized basis set. Figures 2(i), 2(g), 2(k), and

2(l) show the comparison of metrics, which includes total ten-

sor weight, average tensor weight, maximum tensor weight,

and L1 between different basis sets with AOS and cutoff 10−7.

As the exponents increase, the total qubits required by OSE

transformation for silane and SiO stayed the same as for

STO-3G. However, qubits for other molecules were decreased

(306 to 302 for sulfur, 342 to 330 for propyne, 462 to 432

for glyoxal and 756 to 708 for cyclobutane), indicating that

some exchange between fermions had already disappeared. A

clearer trend was obtained with cutoff 10−4. However, even

with extremely localized orbitals (Exponent 6), the total qubit

number with OSE transformation is still much larger than that

of JW. For example, there are 26 orbitals for silane, therefore

26 qubits are needed with JW transformation. However, for

OSE, the number of qubits is 136 for OSE even with the most

localized basis set we chose.

As compared to the hydrogen systems, the trend in the

norms was less clear; however, the tightest basis functions

also gave rise to the greatest coefficient L1 norms of the

transformed Hamiltonians. The AE6 molecules also saw little

difference between JW and OSE. This agrees with the results

of the hydrogen chains that mapping has a much smaller effect

on the norms than on the tensor weight.

V. CONCLUSIONS

Our conclusions from this paper are twofold. First, the re-

sults from the AE6 calculations show that for small molecules

using standard basis sets based on atomic orbitals, in par-

ticular STO-3G, OSE performs much worse than JW on all

metrics of comparison. Indeed, the interaction graph (or pair

of graphs: one for each spin sector) on which the transforma-

tion is based was in many cases complete. Thus it required

many more qubits and longer Pauli terms than are necessary

following a JW transformation. We conclude from this that

OSE is not suited to molecular simulations which use standard

atomic orbital basis sets. In order to illustrate the dependence

on basis function size, we varied the orbital exponent. While

accuracy is lost, the reduction in resource requirements due to

the locality of the basis could be observed.

Second, the investigation of hydrogen lattices showed that

performance was highly dependent on the width of the single

Gaussian orbital used per atom. As with the AE6 results,

the broadest orbitals used resulted in a complete or nearly

complete interaction graph and thus showed far worse per-

formance for OSE when compared to JW. For tight orbitals,

we see performance in the number of qubits and the absolute

total tensor weight which is more comparable to JW. The

performance was also dependent both on the dimension and

size of the lattice.

In 1D, OSE required two fewer qubits (one for each spin)

than JW for all chain lengths and a larger total tensor weight

by a factor of up to 1.59 in the largest chain. In 2D and

3D, OSE performed worse in all metrics compared to JW

for the sizes of systems considered, except for maximum

tensor weight in 3D for the largest system considered. The

largest 3D system considered showed a larger total tensor

weight by a factor of about 3.61 while the number of qubits

is larger, being given by 6(N3 − N2) versus 2N3 for JW.

Finally, we extrapolated these results to lattices of arbitrary

size N and showed that given a sufficiently large lattice OSE

would actually perform better in the total tensor weight. From

this, we infer that in the presumptive future regime of large

numbers of qubits, a real space tiling of orbitals combined

with OSE mapping would be better than other strategies.

We also saw that the choice of mapping has little effect

on the coefficient L1 norm of the Hamiltonians, therefore

tensor weight should be the consideration when choosing a

mapping.

For the future, we are planning to extend our inquiry

into other fermion to qubit mappings, especially the recent

generalization of the OSE. Additionally, as the quantum de-

vice architecture stabilizes, we may soon be able to take the

qubit connectivity into account when considering the locality

properties of the mappings. We also intend to investigate
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strategies to mitigate the effects of noise and techniques to

overcome device connectivity constraints in conjunction with

various mappings [32,33]. Further, we want to consider these

mappings in other contexts where fermions play an important

role, such as high energy physics [34,35]. The immediate

extension of this work would be to consider basis functions

that are not centered on the atom but rather tile space. In

this case, the center-to-center distances and the width of the

orbitals can be traded off to achieve more realistic descriptions

of small molecules and metallic hydrogen.

ACKNOWLEDGMENTS

The authors would like to thank the US Department of

Energy for supporting this work as part of the Quantum

Computation for Quantum Chemistry (QCQC) Collaboration

(Grant No. DE-SC0019374). J.D.W. is also supported by

the NSF under Grant No. PHYS-1820747 and by the US

Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, under the Quantum Comput-

ing Application Teams program (Award No. 1979657).

[1] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X.

Yuan, arXiv:1808.10402.

[2] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,

153 (2014).

[3] S. B. Bravyi and A. Yu Kitaev, Ann. Phys. (NY) 298, 210

(2000).

[4] J. T. Seeley, M. J. Richard, and P. J. Love, J. Chem. Phys. 137,

224109 (2012).

[5] F. Verstraete and J. I. Cirac, J. Stat. Mech.: Theory Exp. (2005)

P09012.

[6] R. C. Ball, Phys. Rev. Lett. 95, 176407 (2005).

[7] M. Steudtner and S. Wehner, New Journ. Phys. 20, 063010

(2018).
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