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Analysis of superfast encoding performance for electronic structure simulations
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In our recent work, we examined various fermion-to-qubit mappings in the context of quantum simulation
including the original Bravyi-Kitaev superfast encoding (OSE) as well as a generalized version (GSE). We
return to OSE and compare it against the Jordan-Wigner (JW) transform for quantum chemistry considering the
number of qubits required, the Pauli weight of terms in the transformed Hamiltonians, and the L; norm of the
Hamiltonian. We considered a test set of molecular systems known as the Atomization Energy 6 (AE6) as well
as hydrogen lattices. Our results showed that the resource efficiency of OSE is strongly affected by the spatial
locality of the underlying single-particle basis. We find that OSE is outperformed by JW when the orbitals in
the underlying single-particle basis are highly overlapping, which limits its applicability to near-term quantum
chemistry simulations utilizing standard basis sets. In contrast, when orbitals are overlapping with only few
others, as is the case of hydrogen lattices with very tight orbitals, OSE fares comparatively better. Our results
illustrate the importance of choosing the right combination of basis sets and fermion-to-qubit mapping to get the
most out of a quantum device when simulating physical systems.
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I. INTRODUCTION

To utilize the power of quantum computation for elec-
tronic structure theory (see [1,2], and references therein),
it is crucial to map fermionic modes to qubits efficiently.
Efficient mapping allows the number of overall quantum gates
applied to be reduced, which is especially important given
the current limitations of quantum computing hardware due
to decoherence and noisy gates. While there are multiple
fermion-to-qubit encodings [3-7], recent work has focused
on the potential of the Bravyi-Kitaev superfast encoding for
quantum simulation [3,8,9]. Since we have also developed a
generalization of the Bravyi-Kitaev superfast encoding, called
the generalized superfast encoding (GSE) [10], we opt to
refer to the original superfast encoding as OSE. In some
settings, OSE may offer advantages over other mappings such
as the JW mapping or the Bravyi-Kitaev mapping (a separate
mapping which can be thought of as a compromise between
directly storing occupation and parity). This potential is due
to the fact that the relevant quantities (qubits, gates) scale
as a function of the number of interactions between orbitals,
rather than the number of orbitals themselves [8]. However,
the performance of OSE compared to other mappings in
the context of electronic structure problems has yet to be
explored. Our work here testing the OSE against JW can be
compared to Ref. [11], where the Bravyi-Kitaev transform
and the JW transformations were compared. Both the JW
and the Bravyi-Kitaev transforms use the same number of
qubits as spin orbitals, whereas the OSE and the GSE, in
general, utilize different qubit resources. Here, we present
the results of implementing OSE, alongside JW, for various
molecular systems, including hydrogen lattices and chains,
and molecules from a small test set [12].

In this study, we are aiming to characterize the perfor-
mance of standard quantum simulation techniques based on
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both hybrid quantum-classical and time-propagation methods.
Hence, we used two main metrics to determine the perfor-
mance of an encoding on a given fermionic Hamiltonian. The
first is simply the number of qubits required to simulate the
system after performing the mapping. This is an important
metric given that on near-term devices the number of qubits
is severely limited. Second, we also considered the tensor
weights of the transformed Hamiltonian. This is defined as
the number of all nonidentity tensor factors of a Pauli term.
The total tensor weight is the sum of all weights in the trans-
formed Hamiltonian. We also looked at other statistics such
as the average weight and the maximum tensor weight among
terms. As a metric of performance we believe the total tensor
weight is reasonable because the tensor weight will affect the
ultimate circuit depth of the quantum simulation algorithm.
We note, however, that it is not exactly analogous given the
fact that there will be terms which commute with each other
and would be able to be performed in parallel. In addition,
different techniques can be used to simulate the Hamiltonian
evolution such as Trotterization, truncated Taylor expansions,
and qubitization; see, e.g., [13,14]. The choice of simulation
technique will ultimately affect the circuit depth; however, the
tensor weight is unambiguous. Finally, motivated by recent
developments we looked at two 1-norms which have been
shown to give a bound on the scaling of various Hamiltonian
simulation algorithms [15]. In particular, we focused on the
coefficient L; norm defined as

IAlle =Y lejl  forA="c¢;P;. (1)
J J

In the coefficient L; norm, coefficients are prefactors of a
decomposition into Pauli group elements P € {] [ o':me
{x,y, z, 0}}. It is also an upper bound to the L; induced norm
[All1 = max,zolAx| /|x|; = max; ), |aj;|.
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The calculations were performed using three different basis
set transformations: the canonical Hartee-Fock molecular or-
bitals, the symmetrically orthogonalized atomic orbital basis,
and the canonically orthogonalized atomic orbital basis which
we discuss later in Sec. II C. The calculations on the hydrogen
systems were run using a highly localized Gaussian basis set
employing symmetric orthogonalization, while the molecules
known as Atomization Energy 6 (AE6) used the STO-3G basis
set [16,17]. In the hydrogen systems, using a tight Gaussian
basis, the performance of OSE was mixed and depended on
dimension. In one dimension, the number of required qubits
was reduced at the cost of a larger total tensor weight. In
higher dimensions, the total number of qubits required is
larger than JW but the scaling of the largest tensor term is
improved; a feature that, at system sizes larger than we were
able to numerically explore for this study, is expected to lead
to a crossover in the total number of gates. The reason for the
dependence on dimension is the interaction-based nature of
OSE, which is explored in greater detail below as well as in
full detail in [9].

Previous work [8] has predicted that for the Hubbard
model, the gate count for OSE will scale more favorably than
JW. As we will discuss, our hydrogen lattice results hint at
agreement with this prediction; however, for the small size
Hydrogen lattices that we investigated here, JW still performs
better than OSE. For the AE6 molecules using STO-3G,
JW outperformed OSE in all respects. This suggests that
broad Gaussian basis sets centered on atomic nuclei are not
practicable when used with OSE and another mapping such as
JW would be preferable for such basis sets. Using OSE with
localized basis sets shows interesting potential for electronic
structure and solid state calculations, and it is hoped that this
mapping can be tested on present quantum computers [18,19].
Our results illustrate the importance of choosing the right
combination of basis sets and fermion to qubit mapping to get
the most out of a quantum device when simulating physics
and chemistry.

The remainder of this paper is organized as follows. In
Sec. II, we first provide an overview of fermion to qubit map-
pings, including JW transformation and OSE, and the single-
particle basis set rotations. Then, we describe the molecules
we studied and the computational method and metrics for
comparison we used. In Sec. III, we discuss some analytic
results including scaling in the case of complete graphs as well
as expected results using atom-centered basis sets. In Sec. IV,
we present and discuss the numerical results for the hydrogen
systems and the AE6 molecules. A comparison between JW
and OSE with different basis rotations is given. Finally, we
summarize the conclusions based on our investigations. The
notation conventions used in this paper are that N stands for
the length of hydrogen chains in atoms, M is the number of
spin-orbitals, O denotes the number of qubits, and indices start
from 0. We will be using atomic energy units where the mass
of the electron, the electronic charge, Planck’s constant, and
(4meg)~" are all set to unity.

II. BACKGROUND

A. Jordan-Wigner transform

There exists a useful correspondence between fermionic
modes and qubits, since the occupation number of a particular

orbital can be associated with the two states of the qubits.
Direct identification between occupation of orbitals and the
two levels of qubits was first defined in the context of one-
dimensional (1D) lattice models [20] and then proposed as a
scheme for simulating fermions [21].

The raising and lowering operators for qubits, given as

o = (0" Fio"), 0

do not in general satisfy the anticommutation relations satis-
fied by fermions:

{aj, &t} = aja + qpa; =0, {aja} =8 (3
where, a; and alT are the annihilation and creation operators
acting upon fermionic mode i. In order to satisfy the necessary
anticommutation relations, a string of Pauli o° operators are
included. This then gives the necessary ingredients for the
transformation, which is defined as follows:

a; =127 g0l @[01%, )

a; =17 @0 @[07]%. ®)

Under this transformation, the fermionic Hamiltonian repre-
sented in second quantization can be mapped to a Hamiltonian
acting on a qubit Hilbert space [4,8]. Note that the string
of Pauli 0% operators included to satisfy the antisymmetry
properties of the fermionic operators can in some cases act
on a large number of qubits, thus necessitating many quantum
gates to simulate the system under consideration. There have
been techniques devised to mitigate this problem, including
the introduction of auxiliary qubits [7]. Described below, OSE
also helps in reducing this overhead.

B. OSE mapping

OSE is a mapping from fermionic operators to qubit oper-
ators which is, in essence, based on the interactions between
fermionic modes rather than the occupancy of the modes as in
JW. An interaction graph is defined based on the interaction
between modes in the Hamiltonian which is to be encoded.
The vertices of the graph correspond to the modes. If there is a
term in the fermionic Hamiltonian which couples two modes,
an edge connecting the two corresponding vertices is included
in the graph. Qubits are then identified with the edges of the
graph, and operators which act on the qubits are defined. In
particular, there are two types of operators: edge operators
which act on qubits in a small neighborhood of the edge in
question and vertex operators which act on all edges incident
to the vertex in question. The transformation from fermionic
operators to qubit operators is then defined by the edge and
vertex operators.

First, the fermionic modes are expressed as Majorana
modes:

czjzaj+a;, (6)

c2jp1 = —ilaj — aj). (7
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TABLE 1. Second quantized molecular Hamiltonian operators in terms of edge operators in the original superfast encoding (OSE) and
the expressions for edge operators in terms of qubit Pauli operators (see [9]). In the edge operator expression, n(j) denotes the set of indices

corresponding to neighbors of vertex j and €,, = +1 for p < g and €,,, = —1 for p > q.

Operator type Second quantized form OSE form

Pair creation operator ajaj. + a;a; —i(A;jB; — BiA;j)/2
Number operator h[la;."ai hi(1 — B;)/2
Coulomb/exchange operator h[_,_,iaj'ajfa_,a[ hijjii(1 = Bi)(1 — B;)/4

Excitation operator
Number-excitation operator

Double-excitation operator

hij(a;a; + aja;)
hijjx(a; a;ajak + aza;aja,-)

ot ot
hiju(a; a;aia; + q a,a;a;)

—ihij(A;;B; + BiAj)/2
—ihij ik (A By + BiAyg )(1 — B;) /4
hijiAijAx(—1 — BiBj + BBy + B;B; + BBy
+B;B; — B\B, — B;B;B/B,)/8

Operator type OSE operator Pauli representation
Vertex operator B; ]_[_/: (e OF

n(p) _z 779 Lz
Edge operator Apg €0, L1120 0, [ 152 05,

Then edge and vertex operators are defined over the Majo-
ranas:

Bj = —icyjcajp1  for each vertex, ®)

Ajx = —icyjey  foreach edge (j, k) € E. )

These edge and vertex operators satisfy the algebra

B;=B], A;=A], (10)
Bi=1 A;=1, (11)
Bl'Bj = BJ'B,‘, A,’j = —AJ'[, (12)
AijBi = (1)’ PrBiA,;, (13)
AijAkl — (_1)8ik+5i18/’k+(SﬂAk1AU’ (14)
iijolejljz o .AjprjpflAjp—le =1 (15)

for any closed loop of p edges on the graph.

The qubit representation of the edge and vertex operators
is given in Table 1. These qubit operators satisfy all of the
conditions in (10)—(14); however, they do not in general sat-
isfy the loop condition (15). The loop condition is, however,
satisfied in a subspace of the total Hilbert space, so we use
this condition to specify a restricted subspace, which we
call the code space, that is stabilized by the loop operators.
Restricting to the code space completes the transformation.
Since the encoded fermionic operators commute with the loop
operator, once the system is initialized into the code space,
time evolution according to the encoded Hamiltonian will
only occur within the code space. As is suggested by the
presence of stabilizers, OSE carries error correcting proper-
ties; namely, if the degree of the interaction graph is at least
6 then it is possible to correct single-qubit errors [9]. The
molecular Hamiltonian operators are presented along with
their expression in terms of edge operators in Table 1.

C. Rotations of the single-particle basis set

In this work, we fix the single particle basis set, e.g. STO-
3G [16], as well as customized basis sets, but consider three
different rotations of the given basis set. The single-particle
functions are in general nonorthogonal with an overlap matrix
possessing an eigendecomposition S = UsU " and S;; = (i j).
We have considered three procedures to orthogonalize them:
the canonical (AOC), the symmetrical (AOS), and the Hartree-
Fock molecular orbital bases. While we considered three,
there are an infinite number of possible bases to choose
from, parameterized by X = Us~!/2W for any unitary matrix
W. If W =1 then the basis is called the canonical orthog-
onalized basis, while if W = U the basis is symmetrically
orthogonalized. Beginning with the eigendecomposition of S,
the corresponding orthogonalizing matrices are X5 = S~1/2 =
Us~'2U" and X€ = Us~"/? for AOS and AOC respectively.

In our calculations on hydrogen chains and lattices we give
particular focus to the symmetrical orthogonalization due to
its important feature that the resulting othogonalized functions
are those that minimize the L, distance between the initial and
final sets of basis functions [22]. This feature is especially
attractive as we have chosen basis sets which seek to minimize
the overlaps, and preserving locality is essential.

However, note that when the basis set, here {¢;}, has
linear dependence or near linear dependence, eigenvalues will
approach zero, and might be small enough to lead to machine
precision errors in calculating s~'/2. Canonical orthogonaliza-
tion is used to fix this problem. Similar to symmetric orthog-
onalization, if the basis set is nearly linearly dependent, then
eigenvalues of S can approach zero, causing s~'/? to not be
ill defined. In this case, the eigenvalues which cause machine
precision errors can be removed and a truncated matrix X can
be constructed. In X only eigenvectors corresponding to the
nontrivial eigenvalues are kept [23].

D. Molecules studied

Molecular test sets containing experimentally validated
results and values are often used to test new developments in
electronic structure theory. This is especially important in the
context of density functional theory [24,25], where there is not
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a systematic way to improve the results of a given function.
Other newly developed methods are also tested using test sets.

Thus far, quantum computing for quantum chemistry has
relied heavily on the hydrogen molecule as a prototypical
example. Here we move beyond molecular hydrogen to ex-
amine a small test set of six molecules. The set we look at,
named AE6, was first introduced in [12] as a selected repre-
sentative of a much larger database of electronic structure test
instances. The AE6 testset includes silane (SiHy), sulfur (S,),
propyne (C3Hy), silicon monoxide (SiO), glyoxal (C,H,0,),
and cyclobutane (C4Hg) with all input geometries extracted
from [12].

For the purposes of theoretical simplicity, we also ex-
plored model metallic hydrogen chains and lattices with nu-
clei spaced one angstrom apart on a rectilinear grid. Similar
studies of hydrogen chains were used as a simple model and
as an algorithmic benchmark for state-of-the-art numerical
methods [26]. With these two sets, we are aiming to bench-
mark the use of OSE in theoretically simple settings and in
standard deployment areas for electronic structure methods in
molecular physics.

E. Software and setup

This work was done using PS14, an open source software
for quantum chemistry [27], and OPENFERMION [28], an open
source software for quantum fermionic mappings. A plugin,
developed by the OPENFERMION developers, “OPENFERMION-
Ps14,” was used to interface the two.

III. ANALYTIC RESULTS

A. Complete graph upper bounds

Here, we look at the largest qubit operators generated by
OSE as a function of the number of spin orbitals M when the
graph (pair of graphs, one for each spin sector) is complete.
This will be the case in which OSE is likely not the ideal
choice of mapping but it is instructive to see the effect that, for
example, many tightly packed basis functions has on the map-
ping. Suppose that corresponding to each spin sector we have
a complete graph of fermionic modes, Ky ». We then have

2(M2/ 2) edges present in the graph, which is also the number of
qubits required. Vertex operators B; will consist of a product
of 0% operators, one for each edge incident to vertex i, giving
a weight M/2 — 1. Edge operators A;; are of variable length
depending on the indices i, j. They consist of a product of
one o* and two strings of ¢* operators each of average length
M /4. Fermionic double-excitation operators ajaj.akal will on
average be mapped to the Pauli terms with the largest tensor
weight and they are also the most numerous provided that
none of the integrals fall below the specified cutoff. Thus, we
will consider those operators in determining the polynomial
scaling. There will be O(M*) such operators present in the
second quantized Hamiltonian. Double excitation operators
are mapped to a sum of products of edge and vertex operators,
having the form given in Table I. The largest weight term
in the sum is typically A;;Ax;B;B;BB;. Due to cancellations
in the o° strings between A;; and the vertex operators B;
and B;, there will on average be M/2 such o* tensor factors
being contributed from the i, j indices as well as another M/2

TABLE II. OSE upper and lower bounds on the number of qubits
required for AE6 molecules denoted by Qy and Q; respectively. The
JW qubit number is included for comparison.

Molecules Ou (o)} Ow
Silane 156 90 26
SiO 182 92 28
Sulfur 306 180 36
Propyne 342 90 38
Glyoxal 462 120 44
Cyclobutane 756 120 56

from the k, [ indices, so the weight of each double excitation
operator scales linearly as O(M). The worst-case scaling on
the total tensor weight for an OSE fermionic Hamiltonian of
M modes is therefore O(M?). This worst-case scaling is in
line with previous results for estimating the gate cost scaling
of simulating quantum chemistry with JW [29].

B. Atom-centered basis sets lower bounds

For a given atom-centered basis set, there exists a lower
bound for the number of qubits required. As the basis
functions become more localized, interaction terms between
orbitals disappear; therefore, the number of qubits required
decreases. However, even if there are no interactions between
modes centered on different atoms, the interactions between
orbitals centered on each atom persist. This leads to a lower
bound on the number of edges needed within molecules. This
lower bound for the atom-centered basis sets can be expressed

as
0.=2 Y (”g) 16)

with M, as the number of orbitals (spin up or spin down) on
atom a. Take SiO as an example. There are 14 spatial orbitals
(28 spin orbitals), which includes 9 orbitals from Si and 5
orbitals contributed by O. With very tight orbitals, there is no
differential overlap, therefore, no edges between the orbitals
for Si and orbitals for O. The total edges for a SiO molecule
would be 2(2) + 2(;) = 92. The lower and upper bounds for
AE6 molecules are summarized in Table II. We also include
qubits for JW as comparison. From Table II, it is clear that
the qubits required by JW are much fewer than OSE for the
AE6 molecules. A numerical investigation of the relationship
between qubit requirements and localized orbitals follows in
the next section.

C. Empty graphs and odd-parity state preparation

It is possible through the choice of very narrow basis
functions or an exceptionally high cutoff to have a Hamil-
tonian which takes the diagonal form of H; = ) jhinj +
> i W;jnin;. Observing the transformation of these terms as
found in Table I, we note that no A,, terms are required
by the interactions. Thus the Hamiltonian requires no edges
to simulate the interactions. However, in the case of zero
qubits, one should think of the only possible state being that of
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Pairs of adjacent Gaussian basis functions edges are present, the Hamiltonian H; can then determine the
energy of the distinct states.

A second challenge faced by this mapping is the restriction
to even and odd particle number sector. Note that odd products
of fermionic operators cannot be constructed from edge oper-
ators and the vacuum state. If a particle is desired in mode k,
an ancillary fermionic mode, s, would have to be introduced
and an edge placed between the vertex corresponding to the
desired mode and the ancillary one. The edge is then acted
upon by the pair creation operator:

Amplitude

T T T T T T T T T

Position ald’ + aya = %’(Ak,sBs — BiAry). (17)

FIG. 1. Overlap between pairs of Gaussian orbitals of different
widths centered on neighboring sites 1 angstrom apart.
This is the way in which states with odd parity can be con-
the vacuum fermionic state. To prepare additional states, i.e., structed. The ancillary mode then takes no part in dynamics
a’ a’|Q), then edge (m, n) must be included. Once additional ~ generated by the Hamiltonian.

—A H2_JW —o-- H10JW —»%— H6_OSE —A- H8_JW —@- H64 JW  —4— H64_OSE —&— Silane  —@— Sulfur —*— Glyoxal

(a)

—#- H6_JW  —4— H2_OSE —e— H10_OSE —#*— H8_OSE —#*— Si0 —4— Propyne  —e— Cyclobutane (i)

(e)

Total Tensor Weight

Average Tensor Weight

£ 200 A
S 20 4
2
150 1
5 15 A
@
c
Q
= 100 4
£ 101
£
H 50 4
T 54
2 5
T 0
2 3 4 5 6 7 8 9
(d) (h) (1)
200
1500 4 1500 4
150 1
£
5 1000 + 1000
2 1
Z 100
jal
500 .——a\*—*/ﬂ/.
N M ]
04 ol ,”‘s——/‘—’/‘/‘ 0‘0\,_5/‘/’
T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
Exponent Exponent Exponent

FIG. 2. Numerical results (total tensor weight, average tensor weight, maximum tensor weight and L; norm in JW and OSE transformed
qubit Hamiltonians with different customized basis sets) for hydrogen chains and AE6 molecules. First column (a)—(d): 1D hydrogen chain.
Second column (e)—(h): 3D cubic lattice of hydrogen atoms. Third column (i)—(1): AE6 molecules (OSE only).
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TABLE III. Scaling of qubit requirement and maximum tensor
weight for JW and OSE in simulation of nearest-neighbor lattice
models in 1D, 2D, and 3D. N is length in lattice spacing.

Geometry Ow QosE Max JW Max OSE
N 2N 2(N—-1) o(l) o)
N x N 2N? 4(N*> = N) O(N) o(d)
N xNxN 2N3 6(N> — N?) O(N?) o)

IV. NUMERICAL RESULTS

A. Hydrogen chains and lattices

Due to the interaction-based construction of OSE, the
setting in which it offers possibly the greatest potential is
the simulation of systems in which the fermionic modes
are coupled to few others, especially those involving nearest
neighbor couplings. A classic well-studied fermionic system
of nearest-neighbor interactions on a lattice exhibiting rich
physics is the Hubbard model involving hopping terms and
Coulomb terms, and its simulation on a quantum computer
has previously been studied [30]. The Hubbard model can be
interpreted as a chain or lattice of hydrogen atoms under an
approximation neglecting differential overlaps, setting h; j;; =
VijSidjx [31].

In order to investigate the performance of the encoding in
systems with local interactions, we have considered configu-
rations of hydrogen atoms in one, two, and three dimensions.
We have made the simplification of limiting to a single
Gaussian basis function. Symmetric orthogonalization is also
used to preserve locality. Note that our intention here was not
to examine the performance of OSE in realistic molecular
systems as we have done with the AE6 molecular test set.
Rather, we are attempting to illustrate in explicit detail the
dependence on the degree and dimension in the performance
of the mapping as applied to lattice systems. To that end,
we have varied the Gaussian basis functions from broad to
narrow in their spatial extent as illustrated in Fig. 1. When
the orbitals are delocalized many modes interact, resulting
in an interaction graph of relatively high degree. When the
Gaussians are narrow and sharply peaked, interactions other
than nearest neighbor are negligible at the cutoff of 10~7. The
transition from tight to broad Gaussian orbitals appears clearly
in the data as a large increase in both number of qubits as well
as total operator tensor weight.

It can be seen in Fig. 2 that for very broad basis functions,
except in the case of very few particles, OSE is greatly
outperformed both in number of qubits and total tensor weight
by the JW mapping. For tight basis functions resulting in local
interactions between modes, the performance of OSE is within
the same of order of magnitude in terms of total tensor weight
as JW.

Based on the counting of terms, one can determine the
required number of qubits for a given lattice size as well as the
scaling of the maximum tensor weight term. We have done so
for chains of length N and for square and cubic grids of side
lengths N. The results in Table III show that, at the cost of a
constant factor in the number of qubits, the maximum weight
of Pauli terms in the transformed Hamiltonian can be bounded

by a constant, the graph degree. This is in contrast to being
extensive in the size of the lattice as in JW. In higher than
one dimension, this will eventually lead to a crossover beyond
which OSE mapping will lead to a smaller total tensor weight:
however, that point appears to be beyond the sizes of systems
which we were able to analyze in this study.

For the hydrogen systems, the coefficient L; norms were
similar between the two mappings. This is expected given
that the term coefficients are changed little by the mappings.
The overall trend in the coefficient norm that we saw was
that, as the basis functions were tightened, the norm tended
to increase. We did not investigate the effect of the tightened
basis sets on the contributions from the kinetic and from the
potential terms.

The coefficient L; norm of the two mappings differed
slightly but in most cases only in the second or third decimal
place. The notable exception was the smallest system we stud-
ied, H,. This is primarily due to the parity constraint of OSE
discussed in Sec. III C. Terms that violate the restriction to the
even-particle sector must vanish under OSE mapping. Since
the JW mapping has no such constraint, such terms remain
and contribute to the coefficent L; norm of the Hamiltonian.

B. AE6 molecules

In this section, we report results from the study of OSE as
applied to the AE6 ensemble. The STO-3G basis set [labeled
as Exponent 1 in Fig. 2 (third column)] were used in the
Hartree-Fock calculations to get the one- and two-body inte-
grals. AOC and AOS rotations were also studied in addition to
the Hartree-Fock molecular orbitals. Figure 3 shows the total
tensor weight for the different basis set rotations for all six
AE6 molecules with different cutoffs. The total tensor weights
with cutoff 10~7 are comparable for AOS, AOC, and MO.
However, the AOS rotation dramatically reduced the tensor
weight for both JW and OSE at cutoff 10~*. Another major
point illustrated by Fig. 3 is that OSE fails to perform better
than the JW transformation. With the JW transformation,
the number of qubits required is equal to the number of
fermion modes present in the system. For example, silane,
SiO, sulfur, propyne, glyoxal, and cyclobutane need 26, 28,
36, 38, 44, and 56 qubits respectively. For OSE, the number
of qubits required depends on the basis set chosen. Upper
and lower bounds are compared with JW in Table II. Using
STO-3G, OSE interaction graphs for each spin sector were
fully connected so the qubit number equals the upper bound in
Table II.

We considered the effect of localizing basis sets for the
AE6 molecules as well. Similarly to the previous section, the
investigation of tightened basis functions was not intended to
report accurate energies but to investigate the limits of atom-
centered orbitals for OSE. With the STO-3G basis set, three
primitive Gaussian orbitals are fitted to a single Slater-type
orbital. Dropping off Gaussian functions with small exponents
and choosing larger exponents are two methods to make the
orbitals sharper and more localized. Here, we began with
the STO-3G orbitals with the most diffuse (exponent 0.169)
Gaussian primitive of hydrogen removed. Then all remain-
ing Gaussian primitive exponents were scaled uniformly to
produce the various orbitals used within our tests. We have
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—A- MO_W
—# AOC_W
—e- AOS_JW
—— MO_OSE
—%— AOC_OSE
—e— AOS_OSE

(a) 107

107 4

Total Tensor Weight

Sulfur Propyne Glyoxal Cyclobutane

Molecular

A MO_W
1071 —* nAocw
—e- AOS_JW
—— MO_OSE
—%— AOC_OSE
—e— AOS_OSE

(b) 104

Total Tensor Weight
=
o
o

* / /‘/ A/'/
1054 A& —— 7 - ’_/_,.’
- — . _ -
Silane Sio Sulfur Propyne Glyoxal Cyclobutane
Molecular

FIG. 3. Total tensor weight of all operators in JW and OSE
transformed qubit Hamiltonians for the AE6 moleculas with dif-
ferent rotation of the basis set (STO-3G). (a) Cutoff = 1077,
(b) cutoff = 107+,

referred to the basis set used as “Exponent x,” where x is
the multiplicative factor applied to all kept orbital exponents.
For example, “Exponent 3” indicates all exponents were
tripled.

As the orbitals become localized (example localized orbital
are shown in Fig. 1), the total energies of the molecules
deviate far from the values found when using STO-3G. For
example, the total energy for silane with STO-3G basis is
—281.91 hartrees. However, that value is —194.14 hartrees
with the most localized basis set. Figures 2(i), 2(g), 2(k), and
2(1) show the comparison of metrics, which includes total ten-
sor weight, average tensor weight, maximum tensor weight,
and L; between different basis sets with AOS and cutoff 10~".
As the exponents increase, the total qubits required by OSE
transformation for silane and SiO stayed the same as for
STO-3G. However, qubits for other molecules were decreased
(306 to 302 for sulfur, 342 to 330 for propyne, 462 to 432
for glyoxal and 756 to 708 for cyclobutane), indicating that
some exchange between fermions had already disappeared. A
clearer trend was obtained with cutoff 10~*. However, even
with extremely localized orbitals (Exponent 6), the total qubit
number with OSE transformation is still much larger than that
of JW. For example, there are 26 orbitals for silane, therefore
26 qubits are needed with JW transformation. However, for
OSE, the number of qubits is 136 for OSE even with the most
localized basis set we chose.

As compared to the hydrogen systems, the trend in the
norms was less clear; however, the tightest basis functions
also gave rise to the greatest coefficient L; norms of the
transformed Hamiltonians. The AE6 molecules also saw little
difference between JW and OSE. This agrees with the results
of the hydrogen chains that mapping has a much smaller effect
on the norms than on the tensor weight.

V. CONCLUSIONS

Our conclusions from this paper are twofold. First, the re-
sults from the AE6 calculations show that for small molecules
using standard basis sets based on atomic orbitals, in par-
ticular STO-3G, OSE performs much worse than JW on all
metrics of comparison. Indeed, the interaction graph (or pair
of graphs: one for each spin sector) on which the transforma-
tion is based was in many cases complete. Thus it required
many more qubits and longer Pauli terms than are necessary
following a JW transformation. We conclude from this that
OSE is not suited to molecular simulations which use standard
atomic orbital basis sets. In order to illustrate the dependence
on basis function size, we varied the orbital exponent. While
accuracy is lost, the reduction in resource requirements due to
the locality of the basis could be observed.

Second, the investigation of hydrogen lattices showed that
performance was highly dependent on the width of the single
Gaussian orbital used per atom. As with the AE6 results,
the broadest orbitals used resulted in a complete or nearly
complete interaction graph and thus showed far worse per-
formance for OSE when compared to JW. For tight orbitals,
we see performance in the number of qubits and the absolute
total tensor weight which is more comparable to JW. The
performance was also dependent both on the dimension and
size of the lattice.

In 1D, OSE required two fewer qubits (one for each spin)
than JW for all chain lengths and a larger total tensor weight
by a factor of up to 1.59 in the largest chain. In 2D and
3D, OSE performed worse in all metrics compared to JW
for the sizes of systems considered, except for maximum
tensor weight in 3D for the largest system considered. The
largest 3D system considered showed a larger total tensor
weight by a factor of about 3.61 while the number of qubits
is larger, being given by 6(N> — N?) versus 2N* for JW.
Finally, we extrapolated these results to lattices of arbitrary
size N and showed that given a sufficiently large lattice OSE
would actually perform better in the total tensor weight. From
this, we infer that in the presumptive future regime of large
numbers of qubits, a real space tiling of orbitals combined
with OSE mapping would be better than other strategies.
We also saw that the choice of mapping has little effect
on the coefficient L; norm of the Hamiltonians, therefore
tensor weight should be the consideration when choosing a
mapping.

For the future, we are planning to extend our inquiry
into other fermion to qubit mappings, especially the recent
generalization of the OSE. Additionally, as the quantum de-
vice architecture stabilizes, we may soon be able to take the
qubit connectivity into account when considering the locality
properties of the mappings. We also intend to investigate
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strategies to mitigate the effects of noise and techniques to
overcome device connectivity constraints in conjunction with
various mappings [32,33]. Further, we want to consider these
mappings in other contexts where fermions play an important
role, such as high energy physics [34,35]. The immediate
extension of this work would be to consider basis functions
that are not centered on the atom but rather tile space. In
this case, the center-to-center distances and the width of the
orbitals can be traded off to achieve more realistic descriptions
of small molecules and metallic hydrogen.
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