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Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic

degrees of freedom into qubits. Here we revisit the superfast encoding introduced by Kitaev and one of the

authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree

d to a qubit simulator Hamiltonian composed of Pauli operators of weight O(d ). A system of m Fermi modes

gets mapped to n = O(md ) qubits. We propose generalized superfast encodings (GSEs) which require the same

number of qubits as the original one but have more favorable properties. First, we describe a GSE such that

the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree

d � 6. In contrast, we prove that the original superfast encoding lacks the error correction property for d � 6.

Second, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from O(d ) to O(log d ).

The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make

simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the

new encoding to the fermionic Hubbard model on a 2D lattice.
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Quantum error correction is a vital milestone on the path

toward scalable quantum computing. It enables an arbitrarily

long reliable computation with noisy qubits and imperfect

gates, provided that the noise level is below a constant thresh-

old value, which is close to what can be achieved in the latest

experiments [1,2]. Unfortunately, realizing a computationally

universal set of logical gates in a fully fault-tolerant fashion

requires a significant overhead which may be prohibitive for

near-term quantum devices. This has lead several groups to

consider a less expensive option known as error mitigation

[3–7]. Error mitigation schemes are usually tailored to a

specific quantum algorithm such as adiabatic quantum com-

putation [8] or variational optimization [3,4]. Although the

proposed error mitigation schemes introduce less overhead

and can extend the range of applications for the available

quantum hardware [9], they are not truly scalable and do not

offer full fault tolerance.

Of particular interest for practical applications are error

mitigation schemes for quantum simulation of fermionic

systems—a fundamental problem emerging in quantum

chemistry and materials science. All quantum algorithms for

simulation of fermionic systems rely on a suitable encoding of

fermionic degrees of freedom into qubits. Notable examples

are the Jordan-Wigner transformation [10], the Verstraete-

Cirac mapping [11], Fenwick trees [12,13], and the parity

mapping [14]; see also [15–17]. Such encodings map a target
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Hamiltonian H describing m fermionic modes to a simulator

Hamiltonian H̃ describing n qubits such that V H = H̃V for

a suitable unitary map (isometry) V . This ensures that H and

H̃ are unitarily equivalent if one restricts H̃ onto the subspace

spanned by encoded states V |ψ〉.

A natural question is whether the encodings proposed for

fermionic simulations can also be used for error correction

or mitigation. Here we give the affirmative answer, for a

generalized version of the superfast encoding proposed in

Ref. [12]. We consider a system of m Fermi modes that live

at vertices of some graph with the maximum vertex degree

d ≪ m. Edges of the graph represent two-mode interactions in

the target Hamiltonian H . A distinctive feature of the superfast

encodings is that the simulator Hamiltonian H̃ includes only

few-qubit interactions described by Pauli operators of weight

O(d ). The encoding requires n = O(md ) qubits. For compar-

ison, the Jordan-Wigner and the Fenwick-tree types of encod-

ings require n = m qubits and produce a simulator Hamilto-

nian with Pauli weights �(m) and �(log m), respectively.

Here we propose generalized superfast encodings (GSEs)

improving the original superfast encoding in two respects.

First, we describe a GSE such that the corresponding quantum

code corrects any single-qubit error under mild technical

assumptions about the fermionic interaction graph. Namely,

we assume that the graph is 3-connected [18] and has vertex

degree d � 6. In contrast, we prove that the original superfast

encoding lacks the error correction property for d � 6. The

GSE requires the same number of qubits as the original

encoding, so the extra error correction capability comes at

no extra qubit cost. Additionally, the GSE produces a simpler

local simulator Hamiltonian, with Pauli weights reduced by a

factor 2 with respect to the original encoding.

Second, we describe a GSE that produces a simulator

Hamiltonian with the Pauli weight O(log d ), as opposed to
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the Pauli weight O(d ) in the original superfast encoding.

Both encodings use the same number of qubits but encode

the Majorana modes differently. This achieves a significant

reduction of the Pauli weight compared to all previously

known encodings in the regime when d ≪ m. For example,

if we assume an average degree of 32, each edge and vertex

operator in SE would cost O(32) gates whereas our new

GSE would require O(5) gates. Naturally, this is the case for

physical systems where the interactions have some degree of

locality independent of the system size m.

We expect that the proposed GSEs will find practical

applications in simulations of medium-size fermionic systems

which aim at correcting single-qubit errors that occur in noisy

devices. Our result may be relevant in the context of near-term

variational quantum eigensolver (VQE) experiments [19,20].

Such experiments aim at estimating mean values of multi-

qubit Pauli operators by measuring individual qubits in a

suitable Pauli basis and classically multiplying the measured

outcomes. The resulting approximation error grows linearly

with the weight of the measured Pauli term due to error

accumulation. Given current qubit readout error rates, this en-

ables reliable mean value measurements only for low-weight

Pauli operators. Thus reducing the maximum Pauli weight in

the mapped Hamiltonian from O(d ) to O(log d ) may lead

to dramatic improvement in the quality of near-term VQE

simulations.

The paper is organized as follows. We first define the

relevant fermionic Hamiltonians and review the superfast

encoding of Ref. [12]. Then we introduce GSEs and show that

they can exponentially reduce the Pauli weight of the simula-

tor Hamiltonian. We prove that the original superfast encoding

lacks the error correction property on low-degree graphs

(d � 6). In contrast, we demonstrate that GSEs correct all

single-qubit errors for any 3-connected interaction graph with

vertex degree at least 6. Finally, we elucidate a practical use

of GSEs by applying them to a Hubbard model on a square

lattice.

Superfast encoding. We start by summarizing the encoding

proposed in Ref. [12]. Consider a system of m fermionic

modes such that each mode can be either empty or occupied

by a fermionic particle. Let a
†
i and ai be the particle creation

and annihilation operators for the ith mode. They obey the

canonical commutation rules

aia j + a jai = 0 and aia
†
j + a

†
j ai = δi, jI.

Let N =
∑N

j=1 a
†
j a j be the particle number operator. A

fermionic operator H is called even if it preserves the number

of particles modulo two, that is, [H, (−1)N ] = 0. All physical

observables are known to be described by even operators. Let

F be the algebra of all even operators.

Assume that each mode i can interact only with a few other

modes j that are nearest neighbors of i on some graph G =

(V, E ) with a set of vertices V = {1, 2, . . . , m} and a set of

edges E . Such system is described by a Hamiltonian

H =
∑

(i, j)∈E

Hi, j, (1)

where Hi, j ∈ F acts nontrivially only on the pair of modes

i, j. Below we assume that G is a connected graph.

To define the superfast encoding it is convenient to rewrite

H in terms of Majorana operators

c2 j = a j + a
†
j and c2 j+1 = −i(a j − a

†
j ). (2)

These operators are Hermitian and satisfy

c jck + ckc j = 2δ jkI. (3)

The algebra of even operators F has a set of generators

B j = −ic2 jc2 j+1 for each vertex j ∈ V , (4)

A jk = −ic2 jc2k for each edge ( j, k) ∈ E . (5)

For example, fermionic operators describing hopping, exter-

nal field, and a two-body repulsion can be written as

a
†
j ak + a

†
k
a j = (−i/2)A j,k (B j − Bk ),

a
†
j a j = (1/2)(I − B j ),

a
†
j a ja

†
k
ak = (1/4)(I − B j )(I − Bk ).

Any parity-preserving fermionic operator belongs to the sub-

algebra generated by A j,k , B j . An explicit derivation of two-

body quantum chemistry and superconductivity interactions

in terms of A j,k , B j , can be found in [21]. The final expressions

are given in the Appendices.

The operators Ai, j and Bi obey commutation rules

B
†
i = Bi, A

†
i j = Ai j, (6)

B2
i = 1, A2

i j = 1, (7)

BiB j = B jBi, Ai j = −A ji (8)

Ai jBk = (−1)δik+δ jk BkAi j, (9)

Ai jAkl = (−1)δik+δil +δ jk+δ jl AklAi j, (10)

isAζ (0),ζ (1)Aζ (1),ζ (2) · · · Aζ (s−1),ζ (0) = I. (11)

In the last equation ζ is any closed loop of length s in the graph

G that consists of vertices ζ (0), ζ (1), . . . , ζ (s) = ζ (0) ∈ V .

Following Ref. [12] we shall impose one extra rule
∏

i∈V

Bi = I. (12)

Note that
∏

i∈V Bi = (−1)N . Thus Eq. (12) corresponds to

restricting the Fock space of m Fermi modes to the subspace

with even number of particles. Note that all elements of the

algebra F preserve this subspace.

To define the simulator Hamiltonian H̃ let us place a qubit

at every edge of the graph G. The total number of qubits is

n = |E | = (1/2)
∑

i∈V

d (i), (13)

where d (i) is the degree of a vertex i. Let Xi j , Yi j , and Zi j be the

Pauli operators acting on the edge (i, j) ∈ E . We shall assume

that edges incident to each vertex i are labeled by integers

1, . . . , d (i). The corresponding ordering of edges incident to i

will be denoted <i. We shall also assume that every edge (i, j)

is oriented. Define ǫi, j = 1 if i is the head and ǫi, j = −1 if i is
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the tail of the edge (i, j). Qubit counterparts of the operators

B j and A j,k are defined as

B̃ j =
∏

k:( j,k)∈E

Z jk, (14)

Ã jk = ǫ jkX jk

∏

p : ( j,p)< j ( j,k)

Z j p

∏

q :(k,q)<k (k, j)

Zkq. (15)

It can be checked that these operators satisfy commutation

rules analogous to Eqs. (6)–(10) and Eq. (12). However, the

rule Eq. (11) does not hold on the full Hilbert space of n

qubits. This rule can be satisfied by restricting the operators

Ãi, j and B̃i on a suitable subspace. For each closed loop ζ as

above define a loop operator

Ã(ζ ) ≡ isÃζ (0),ζ (1)Ãζ (1),ζ (2) · · ·Ãζ (s−1),ζ (0). (16)

Recall that s is the length of ζ . It can be readily checked that

Ã(ζ ) commutes with all operators Ãi, j and B̃i. Furthermore,

loop operators pairwise commute. Let S be the Abelian group

generated by the loop operators Ã(ζ ). In the Appendices it

is shown that −I /∈ S . Thus S can be viewed as a stabilizer

group of a quantum code with the code space

L = {|ψ〉 : Ã(ζ )|ψ〉 = |ψ〉 for all loops ζ }. (17)

The number of independent stabilizers coincides with the

number of independent loops in the graph which is known

to be s = |E | − |V | + 1 = n − m + 1. It follows that the code

S encodes k = n − s = m − 1 logical qubits into n physical

qubits, that is, dim(L) = 2m−1. The code space L can be

identified with the even-parity subspace of the fermionic Fock

space. Furthermore, the restrictions of qubit operators Ãi, j and

B̃i onto L can be identified with the fermionic operators Ai, j

and Bi restricted onto the even-parity subspace. We can now

define a simulator Hamiltonian H̃ by replacing the operators

Ai, j and Bi in the expansion of each term Hi, j by their qubit

counterparts Ãi, j and B̃i. One can easily check that H̃ is

composed of Pauli operators of weight at most 2d .

Generalized superfast encodings. Consider the target

Hamiltonian Eq. (1). Below we assume that the interaction

graph G = (V, E ) is connected and has only even-degree

vertices. Let us place d (i)/2 qubits at each vertex i. The total

number of qubits n is given by Eq. (13). Let Pi be the group of

Pauli operators acting on the qubits located at a vertex i ∈ V

tensored with the identity on the remaining qubits. A GSE is

defined in terms of local Majorana modes

γi,1, γi,2, . . . , γi,d (i) ∈ Pi. (18)

By definition, γi,p is a Pauli operator acting nontrivially only

on the qubits located at the vertex i. We require that the

operators γi,p generate the full Pauli group Pi and obey the

usual Majorana commutation rules

γ
†
i,p = γi,p, γi,pγi,q + γi,qγi,p = 2δp,qI (19)

for all i ∈ V and 1 � p, q � d (i). Otherwise, γi,p can be

completely arbitrarily. Hence a GSE is nonunique. Note that

local Majorana modes located at different vertices commute

with each other because they act on disjoint subsets of qubits.

Assume that the neighbors of each vertex i are labeled by

FIG. 1. Local Majorana modes for nearest-neighbor vertices j, k.

We define Ã j,k = ǫ j,kγ j,pγk,q, where ǫ j,k = ±1 is the edge orientation.

The operator B̃ j is proportional to the product of all local Majorana

modes γ j,p located at the vertex j.

integers 1, . . . , d (i) and denote the pth neighbor of i as

N (i, p). Define qubit counterparts of the operators B j and A j,k

as

B̃ j = (−i)d ( j)/2γ j,1γ j,2 · · · γ j,d ( j) (20)

and

Ã j,k = ǫ j,kγ j,pγk,q, (21)

where the integers p, q must satisfy

k = N ( j, p) and j = N (k, q).

In other words, k is the pth neighbor of j while j is the qth

neighbor of k; see Fig. 1. One can check that B̃i and Ãi, j obey

the commutation rules analogous to Eqs. (6)–(10). To satisfy

the remaining rules Eqs. (11) and (12) consider an Abelian

group S generated by the loop operators Ã(ζ ) and a code

space L stabilized by S as defined in Eqs. (16) and (17). In the

Appendices, we show that −I /∈ S and the code space L has

dimension 2m−1. Recall that G is assumed to be a connected

even-degree graph. It is a well-known fact any such graph has

an Eulerian cycle—a closed loop ζ that uses every edge of G

exactly once. The corresponding loop operator has the form

Ã(ζ ) = ±
∏

i∈V B̃i, where the sign depends on the choice of

edge orientations ǫ j,k . Thus the product of all operators B̃i

is in the stabilizer group S for a suitable choice of ǫ j,k . We

conclude that the restrictions of operators Ã j,k and B̃ j onto L

satisfy the same commutation rules as the respective fermionic

operators A j,k and B j restricted to the even-parity subspace of

the Fock space. We can now define a simulator Hamiltonian

H̃ by replacing the operators Ai, j and Bi in the expansion of

each term Hi, j by their qubit counterparts Ãi, j and B̃i.

Next let us describe a specific choice of the local Majorana

modes γi,p that results in a simulator Hamiltonian H̃ with the

Pauli weight O(log d ). Consider a vertex i ∈ V and a system

of d (i) Majorana modes γ1, . . . , γd (i). Let γ̃p be the Fenwick

tree encoding [12,13] of γp. As was shown in Ref. [13], γ̃p is

a Pauli operator of weight at most ⌈log2 d (i)⌉. Choose γi,p

as a tensor product of γ̃p on the vertex i and the identity

operator on all other vertices. Then Ãi, j has Pauli weight at

most 2⌈log2 d⌉; see Eq. (21). The Fenwick tree encoding maps

the fermionic parity operator γ1γ2 · · · γd (i) to a single-qubit

Pauli Z; see [13]. Hence B̃i has Pauli weight 1; see Eq. (20).

We conclude that H̃ has Pauli weight at most 2⌈log2 d⌉.

Lack of error correction in the superfast encoding. Let

us first discuss error-correcting properties of the original

superfast encoding. Recall that a Pauli operator P is said to be

a logical operator for a quantum code with a stabilizer group
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S if P commutes with all elements of S and the restriction of

P onto the logical subspace L is a nontrivial operator. A code

is said to correct single-qubit errors if any logical operator P

has weight at least three (i.e., P acts nontrivially on at least

three qubits). Let us show now that the stabilizer code defined

through the superfast encoding fails to correct all single-qubit

errors (regardless of how one chooses edge ordering).

Suppose first that the interaction graph G has a vertex i with

degree d (i) � 4. Note that Ãi, j and Ãi, jB̃ j are logical operators

of the code S for any (i, j) ∈ E . We claim that at least one of

these logical operators has weight 1 or 2. Indeed, let (i, j)

be the first edge incident to i according to the ordering <i.

Let e(1), . . . , e(d ) be the edges incident to j listed according

to the ordering < j . Here d ≡ d (i) � 4. Suppose (i, j) is the

pth edge incident to j, that is, (i, j) = e(p). Equation (15)

gives

Ãi, j = ǫi, jXi jZe(1) · · · Ze(p−1).

If p � 2 then Ãi, j has weight 1 or 2. Otherwise, if p �

3, then Ãi, jB̃ j ∼ Yi jZe(p+1) · · · Ze(d ) has weight 1 or 2. Thus

the stabilizer code S fails to correct all single-qubit errors

regardless of how one orders the edges. In the Appendices,

we extend this argument to more general graphs and prove the

following.

Lemma 1. Suppose the interaction graph G has degree d

for each vertex i. If d � 6 then the superfast encoding does

not correct all single-qubit errors.

In spite of this negative result, in the Appendices we show

that in certain special cases the error correction property can

be achieved by introducing ancillary Fermi modes.

Error correction in the generalized superfast encoding.

Here we describe a GSE that can correct all single-qubit

errors. Below we consider arbitrary interaction graphs G. We

allow G to have multiple edges; that is, some pairs of vertices

can be connected by more than one edge. Recall that a graph

is called 3-connected if it remains connected after removal of

any subset of less than three vertices. Our main result is the

following.

Theorem 1. Suppose the interaction graph G is 3-connected

and each vertex i has even degree d (i) � 6. Suppose any

pair of vertices is connected by at most two edges. Then the

generalized superfast encoding corrects all single-qubit errors.

Note that the GSE lacks the error correction property if

d (i) < 6 for some vertex i. Indeed, in this case B̃i is a logical

operator with weight at most 2 (since the vertex i contains

at most two qubits). One can always satisfy conditions of

the theorem by adding dummy edges (i, j) to the interaction

graph such that the corresponding terms Hi, j in the target

Hamiltonian are zero. This would slightly increase the number

of qubits required for the encoding; see Eq. (13). With the

degree-6 interaction graph, we can always find the qubit op-

erators for local Majorana modes that guarantee single-qubit

error correction. One specific choice for qubit operators for

Majorana modes, along with the proof of Theorem 1, is given

in the Appendices.

Generalized superfast encoding for the Hubbard model. Let

us now show how to simulate the 2D Hubbard model using the

FIG. 2. Qubit encoding of the 2D Hubbard model using the GSE.

Left: Two lattices representing spin-up and spin-down Fermi modes.

Right: A local view of the interaction graph G. Each vertex contains

6 local Majorana modes (3 qubits). Dotted lines represent dummy

edges introduced to satisfy conditions of Theorem 1.

GSE. The model Hamiltonian is given as

H = −t
∑

(i, j)

∑

σ∈{↑,↓}

(a†
iσ a jσ + a

†
jσ aiσ ) + ǫ

∑

i

∑

σ∈{↑,↓}

a
†
iσ aiσ

+U
∑

i

a
†
i↓ai↓a

†
i↑ai↑, (22)

where i, j are sites of a square lattice, (i, j) stand for nearest-
neighbor sites, σ is a spin index, and t, ǫ,U are some coef-
ficients. The interaction graph G shown in Fig. 2 consists of
two copies of the lattice representing spin-up and spin-down
Fermi modes. To satisfy conditions of Theorem 1 we have
introduced two dummy edges (dotted lines) connecting each
respective pair of spin-up and spin-down vertices. The result-
ing graph G is 3-connected and has vertex degree 6. Therefore,
by Theorem 1, the corresponding GSE encoding corrects any
single-qubit error. The encoding requires 6s qubits, where s is
the number of sites in the lattice (the number of Fermi modes
is m = 2s). One can come up with a mapping (shown in the
Appendices) and check that the operators B̃ j , Ã j,k , and Ã j,kB̃ j

have Pauli weight 3, 4, and 4, respectively. The two-mode
interaction operators B̃ jB̃k have weight 6. We conclude that

the simulator Hamiltonian H̃ for the 2D Hubbard model is a
sum of Pauli terms with weight at most 6.

Conclusions. We described a GSE that maps a target Fermi
Hamiltonian on a graph of degree d into a qubit simulator
Hamiltonian with Pauli terms of weight at most d and cor-
rects all single-qubit errors. If one does not insist on the
error correction property, the Pauli weight of the simulator
Hamiltonian can be reduced to O(log d ). Future research
could address the question of whether GSEs are capable of
correcting more than one error and whether it is possible
to combine O(log d ) Pauli weight and the error correction
property.
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APPENDIX A: PROPERTIES OF THE LOOP OPERATORS

Let S be an Abelian group generated by all loop oper-

ators Ã(ζ ) constructed using the superfast encoding or its

generalized version. In this section we prove that −I /∈ S and
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thus S can be viewed as a stabilizer group of a quantum code.

We show that this code has m − 1 logical qubits. To avoid

clutter, in this section we shall omit the tilde symbol in the

notations for loop and edge operators. In other words, in the

rest of this section A(ζ ) and A j,k refer to qubit operators.

Recall that we consider a connected interaction graph

G = (V, E ). Define a path of length s as a function

ζ : {0, 1, . . . , s} → V

such that vertices ζ ( j − 1) and ζ ( j) are nearest neighbors

in the graph G for all j = 1, . . . , s. A path may intersect

itself. We shall use a shorthand notation |ζ | = s for the length

of ζ . For any path ζ let ζ̄ be the inverse path such that

|ζ̄ | = |ζ | = s and ζ̄ ( j) = ζ (s − j) for 0 � j � s. A path is

called a loop if ζ (s) = ζ (0). Finally, suppose ζi are paths of

length si, where i = 1, 2. We say that ζ1 and ζ2 are composable

if ζ1(s1) = ζ2(0). Define a composition ζ = ζ1 ◦ ζ2 as a path

of length s1 + s2 such that ζ ( j) = ζ1( j) for 0 � j � s1 and

ζ ( j) = ζ2( j − s1) for s1 � j � s1 + s2. For any path ζ define

a path operator

A(ζ ) = isAζ (0),ζ (1)Aζ (1),ζ (2) · · · Aζ (s−1),ζ (s), s ≡ |ζ |.

Lemma 2. Path operators have the following properties:

(1) For any path ζ one has A(ζ̄ )A(ζ ) = I .

(2) A(ζ1 ◦ ζ2) = A(ζ1)A(ζ2) for any composable paths.

(3) If ζ is a loop then A(ζ ) commutes with all path

operators.

(4) If ζ is a loop then A(ζ )† = A(ζ ).

Proof. We shall use the commutation rules

A
†
j,k

= A j,k, A2
j,k = I, Ak, j = −A j,k, (A1)

A j,kA j′,k′ = A j′,k′A j,k (−1)|{ j,k}∩{ j′,k′}|. (A2)

Let ζ be a path of length s. By definition,

A(ζ̄ )A(ζ ) =(−1)sAζ (s),ζ (s−1) · · · Aζ (1),ζ (0)Aζ (0),ζ (1) · · ·

Aζ (s−1),ζ (s).

From Eq. (A1) one gets Aζ ( j),ζ ( j−1)Aζ ( j−1),ζ ( j) = −I for all

j. Thus A(ζ̄ )A(ζ ) = (−1)s(−1)sI = I . Property 2 follows

directly from the definitions. Suppose ζ is a loop. Consider

an arbitrary edge ( j, k) ∈ E . To prove Property 3 it suffices

to check that A(ζ ) commutes with A j,k . From Eq. (A2) one

infers that A j′,k′ anticommutes with A j,k iff ( j′, k′) is an edge

incident to the subset { j, k}. However, since ζ is a loop, it

contains an even number of edges incident to any subset of

vertices. Thus A(ζ ) commutes with A j,k proving Property 3.

To prove Property 4 suppose that ζ = ζ ′ ◦ e for some path

ζ ′ and some edge e (considered as a path of length one).

The same argument as above shows that A(e) commutes with

A(ζ ′). Likewise, if ζ = ζ ′ ◦ e ◦ ζ ′′ for some nonempty paths

ζ ′, ζ ′′ and some edge e then A(e) anticommutes with A(ζ ′) and

A(ζ ′′). Repeatedly applying these commutation rules gives

Aζ (s−1),ζ (s) · · · Aζ (1),ζ (2)Aζ (0),ζ (1)

= (−1)sAζ (0),ζ (1)Aζ (1),ζ (2) · · · Aζ (s−1),ζ (s)

and proves Property 4. �

Let T ⊆ E be some fixed spanning tree of G with a fixed

root vertex. For any vertex j ∈ V let ω j be the unique path in

T that starts at the root and ends at j. If ζ is a loop of length s

then

A(ζ ) = isA(ω̄ζ (0))A(ωζ (0))Aζ (0),ζ (1)

× A(ω̄ζ (1))A(ωζ (1)) · · · A(ω̄ζ (s−1))A(ωζ (s−1))

× Aζ (s−1),ζ (s)A(ω̄ζ (0))A(ωζ (0)). (A3)

Here we used Property 1 of Lemma 2 and noted that ζ (s) =

ζ (0). Note that

iAζ ( j−1),ζ ( j) = A(e j ), e j ≡ [ζ ( j − 1), ζ ( j)].

Here e j is a path of length one that starts at ζ ( j − 1) and ends

at ζ ( j). Regrouping the terms in Eq. (A3) using Property 2

gives

A(ζ ) = A(ω̄ζ (0))A(ζ 1)A(ζ 2) · · · A(ζ s)A(ωζ (0)),

where

ζ j = ωζ ( j−1) ◦ e j ◦ ω̄ζ ( j).

Note that ζ j is a loop that starts and ends at the root. Finally,

Properties 1 and 3 give

A(ζ ) = A(ω̄ζ (0))A(ωζ (0))A(ζ 1)A(ζ 2) · · · A(ζ s)

= A(ζ 1)A(ζ 2) · · · A(ζ s),

and all operators A(ζ p) pairwise commute. If e j belongs to the

spanning tree T then ζ j is a composition of a path from the

root to one of the vertices ζ ( j − 1), ζ ( j) and the inverse path.

Properties 1 and 2 imply that A(ζ j ) = I whenever e j ∈ T . We

conclude that any loop operator A(ζ ) belongs to the group

generated by the loop operators A(ζ j ) with e j /∈ T . In other

words,

S = 〈A(ζ j ) : e j /∈ T 〉. (A4)

We claim that the set of generators of S defined in Eq. (A4)

is independent. Consider first the superfast encoding. Then

A(ζ j ) is the only generator that anticommutes with the Pauli

Z acting on the edge e j which implies the independence

property. Consider now the generalized superfast encoding

and some generator A(ζ j ). Let p be the integer such that

ζ ( j) is the pth neighbor of ζ ( j − 1). Then A(ζ j ) is the only

generator that anticommutes with the local Majorana mode

γζ ( j−1),p which implies the independence property. Property 4

implies that each generator A(ζ j ) is Hermitian. Thus S is an

Abelian group that has a set of independent Hermitian Pauli

generators. The standard stabilizer formalism then implies

that −I /∈ S . Note that the number of generators in Eq. (A4)

is s = |E | − |T | = |E | − |V | + 1. Thus the stabilizer code S

has |E | − s = |V | − 1 = m − 1 logical qubits.

APPENDIX B: LACK OF ERROR CORRECTION

IN THE SUPERFAST ENCODING

In this section we prove Lemma 1. Suppose G = (V, E )

is a d-regular graph; that is, every vertex has exactly d

incident edges. We assume that edges incident to each vertex

i are labeled by integers p ∈ [d] ≡ {1, 2, . . . , d}. This can be

described by a map

ω : V × [d] → E
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such that ω(i, 1), . . . , ω(i, d ) are the edges incident to a vertex

i ∈ V . For any p, q ∈ [d] let Ep,q ⊆ E be the subset of edges

labeled by p, q, that is,

Ep,q = {e = (i, j) ∈ E : e = ω(i, p) = ω( j, q) or

e = ω(i, q) = ω( j, p)}. (B1)

By definition, Ep,q = Eq,p.

Proposition 1. Suppose the superfast encoding corrects all

single-qubit errors. Then E1,p = Ed,p = ∅ for p ∈ {1, 2} and

p ∈ {d − 1, d}.

Proof. Consider an edge (i, j). If (i, j) ∈ E1,p with p = 1, 2

then Ãi, j has weight �2. If (i, j) ∈ E1,p with p = d, d − 1

then Ãi, jB̃i or Ãi, jB̃ j has weight �2. If (i, j) ∈ Ed,p with

p = 1, 2 then Ãi, jB̃i or Ãi, jB̃ j has weight �2. If (i, j) ∈ Ed,p

with p = d, d − 1 then Ãi, jB̃iB̃ j has weight �2. �

Below we say that an edge is singular if it belongs to E1,p

or Ed,p for some p ∈ [d].

Lemma 3. Suppose the interaction graph G has degree

d � 5. Then the superfast encoding does not correct all single-

qubit errors.

Proof. Assume the contrary and show that this leads to a

contradiction. Note that every vertex i has at least two incident

singular edges, namely, ω(i, 1) and ω(i, d ). Thus the total

number of singular edges is at least 2|V |. Here we noted that

E1,1 = E1,d = Ed,d = ∅ by Proposition 1.

On the other hand, suppose e = (i, j) is a singular edge

such that e = ω(i, 1) or e = ω(i, d ). By Proposition 1 e =

ω( j, p) where p �= 1, 2 and p �= d, d − 1. This is only pos-

sible if d = 5 and p = 3. Thus the total number of singular

edges is at most |V |. This is a contradiction. �

Lemma 4. Suppose the interaction graph G has degree

d = 6. Then the superfast encoding does not correct all single-

qubit errors.

Proof. Assume the contrary and show that this leads to a

contradiction. The same argument as above shows that the

total number of singular edges is at least 2|V |. On the other

hand, suppose e = (i, j) is a singular edge such that e =

ω(i, 1) or e = ω(i, d ). By Proposition 1 e = ω( j, p) where

p �= 1, 2 and p �= d, d − 1. This is only possible if p = 3 or

p = 4. Thus the number of singular edges is at most 2|V |.

This is only possible if there are exactly 2|V | singular edges

and every vertex i has exactly four incident singular edges,

namely, ω(i, 1), ω(i, d ), ω(i, 3), ω(i, 4).

Consider some vertex i and edges e = ω(i, 3), f = ω(i, 4)

incident to i. The above shows that e and f are singular. Let

e = (i, j) and f = (i, k) for some vertices j, k ∈ V . Consider

two cases.

Case 1. j �= k. Then one of the operators

Ãi, jÃi,k, Ãi, jÃi,kB̃ j, Ãi, jÃi,kB̃k, Ãi, jÃi,kB̃ jB̃k

acts nontrivially only on the qubits e, f . Since these are logical

operators, we get a contradiction.

Case 2. j = k. Then e = ω( j, 1), f = ω( j, d ) or e =

ω( j, d ), f = ω( j, 1). In both cases the operator

ÃeÃ f B̃ j

acts nontrivially only on the qubits e, f . This is a contradiction

since ÃeÃ f B̃ j is a logical operator. �

APPENDIX C: ERROR CORRECTION IN GENERALIZED

SUPERFAST ENCODING

Here we prove Theorem 1. Suppose one can choose the

local Majorana modes γi,p such that the following conditions

hold for each vertex i ∈ V and for each 1 � p < q � d (i)

(here |O| denotes the weight of a Pauli operator O):

|B̃i| � 3, |γi,p| � 2, |B̃iγi,p| � 2, |B̃iγi,pγi,q| � 2.

(C1)

An explicit choice of γi,p satisfying Eq. (C1) is shown below.

Assume that P is a logical operator with weight less than 3 and

show that this assumption leads to a contradiction. Let V (P) ⊆

V be the set of vertices i ∈ V such that P acts nontrivially on

some qubit of i. By assumption, |V (P)| � 2.

Suppose first that V (P) = {i} is a single vertex or V (P) =

{i, j} for some pair of vertices i �= j such that (i, j) /∈ E . Since

P commutes with the stabilizers Ã(ζ ), it must commute with

γi,pγi,q whenever there exists a closed loop ζ such that p, q are

the labels of edges incident to i that belong to ζ . In the case

V (P) = {i, j} we additionally require that ζ does not contain

the vertex j. We claim that such loop ζ exists for all 1 � p <

q � d (i). Indeed, let s = N (i, p) and t = N (i, q) be the pth

and the qth neighbors of i. By assumption, j /∈ {s, t}. Let G′

be the graph obtained from G by removing the vertices i, j

and all edges incident to these vertices. By assumption, G′

is connected. Let ζ ′ be any path in the graph G′ connecting

s and t . Complete ζ ′ to a loop ζ in the graph G by adding

the edges (i, s) and (i, t ). By construction, Ã(ζ ) acts on the

vertex i as γi,pγi,q and acts trivially on the vertex j. It follows

that P commutes with γi,pγi,q for all 1 � p < q � d (i). This

is possible only if P ∼ B̃i. This contradicts to the assumption

that P acts on at most two qubits, per Eq. (C1).

Suppose now that V (P) = {i, j} for some pair of vertices

i �= j such that (i, j) ∈ E . We have to consider two cases.

Case 1. There is a single edge connecting i and j. Suppose

j is the rth neighbor, j = N (i, r). Choose any integers 1 �

p < q � d (i) such that r /∈ {p, q}. The same argument as

above shows that the restriction of P onto the vertex i must

commute with γi,pγi,q. This is possible only if P acts on i as

γi,r or B̃iγi,r . According to Eq. (C1), one can check that γi,r

and B̃iγi,r have weight at least 2 for all r. Likewise, suppose

i is the qth neighbor of j, that is, i = N ( j, q). The same

argument shows that P acts on j as γ j,q or B̃ jγ j,q. Again, these

operators have weight at least 2. Thus P = PiPj , where Pi and

Pj have weight at least 2. Therefore P has weight at least 4

which is a contradiction.

Case 2. There are two edges connecting i and j. Suppose

j is the rth and sth neighbor of i for some r �= s. The same

argument as above shows that the restriction of P onto the

vertex i must commute with γi,pγi,q for any 1 � p < q � d (i)

such that r, s /∈ {p, q}. This is possible only if the restriction

of P onto the vertex i belongs to the group generated by γi,r ,

γi,s, and B̃i. Likewise, the restriction of P onto the vertex

j belongs to the group generated by γ j,t , γ j,u, and B̃ j for

some 1 � t < u � d ( j). Using Eq. (C1) one can check that

P = PiPj has weight at most 2 only if P ∼ γi,rγi,sγ j,tγ j,u.

However, such P is proportional to the stabilizer Ã(ζ ) where

ζ here is a loop formed by the two edges connecting i, j.
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This is impossible since P is a logical operator. To summarize,

Theorem 1 follows from Eq. (C1).

Let us show how to satisfy Eq. (C1) in the special case of

degree-6 graphs. In this case each vertex i contains 3 qubits.

We shall denote Pauli operators acting on the qubits located at

a vertex i as (QRT )i, where Q, R, T ∈ {I, X,Y, Z}. Choose

γi,1 = (ZXI )i, γi,2 = (ZY I )i,

γi,3 = (IZX )i, γi,4 = (IZY )i,

γi,5 = (XIZ )i, γi,6 = (Y IZ )i. (C2)

Note that B̃ j = (ZZZ ) j . One can easily check that these

operators obey the commutation rules Eq. (19) and weight

constraints Eq. (C1), therefore proving Theorem 1 for degree-

6 graphs. A generalization of Eq. (C2) to arbitrary even vertex

degree d (i) � 6 can be found in Appendix D.

APPENDIX D: LOCAL MAJORANA MODES

FOR VERTEX DEGREE d � 6

In this section we show how to choose the local Majorana

modes γi,p that satisfy the error correction condition Eq. (C1)

for any even vertex degree d (i) � 6. For example, if d (i) = 8

or d (i) = 10 one can satisfy Eq. (C1) by choosing

γi,1 = ZZXI, γi,2 = ZZY I,

γi,3 = IZZX, γi,4 = IZZY,

γi,5 = XIIZ, γi,6 = Y IIZ,

γi,7 = ZXII, γi,8 = ZY II,

and

γi,1 = ZZXII, γi,2 = ZZY II,

γi,3 = IZZXI, γi,4 = IZZY I,

γi,5 = IIZZX, γi,6 = IIZZY,

γi,7 = XIIZZ, γi,8 = Y IIZZ,

γi,9 = ZXIIZ, γi,10 = ZY IIZ.

Suppose now that d (i)/2 = 2k + 1 for some integer k. Set

γi,1 = Z · · · Z
︸ ︷︷ ︸

k

X I · · · I
︸ ︷︷ ︸

k

, γi,2 = Z · · · Z
︸ ︷︷ ︸

k

Y I · · · I
︸ ︷︷ ︸

k

,

and choose the remaining modes γi,p as 2k cyclic shifts of γi,1

and γi,2. If d (i)/2 = 2k for some integer k then set

γi,1 = Z · · · Z
︸ ︷︷ ︸

k

X I · · · I
︸ ︷︷ ︸

k−1

, γi,2 = Z · · · Z
︸ ︷︷ ︸

k

Y I · · · I
︸ ︷︷ ︸

k−1

,

γi,2k+1 = X I · · · I
︸ ︷︷ ︸

k

X Z · · · Z
︸ ︷︷ ︸

k−1

, γi,2k+2 = Y I · · · I
︸ ︷︷ ︸

k

Y Z · · · Z
︸ ︷︷ ︸

k−1

,

and choose the remaining modes γi,p as k − 1 cyclic shifts of

γi,1, γi,2, γi,2k+1, γi,2k+2. One can easily check that such local

Majorana modes have the desired property Eq. (C1).

APPENDIX E: SUPERFAST ENCODING

FOR HUBBARD MODEL

Here we derive an encoding for the Hubbard model using

the original superfast algorithm that incorporates single-qubit

FIG. 3. Encoding of the Hubbard model using the superfast

encoding.

error correction. Note that the distance of the graph necessary

to do this is d = 8. We use the same lattice structure as the one

used in the main text for the GSE, e.g., two square lattices of

opposite spins connected by vertical edges. The Hamiltonians

for the two lattices are given in Eq. (22) in the main text.

We transform the creation and annihilation operators of

each spin square lattice to edge operators. The graph G

describing one of the two spin lattices for the 2D Hubbard

model is shown in Fig. 3. Fermi modes (blue dots) lie on the

vertices and the edges represent hopping operators. Qubits of

the superfast encoding live on edges of the lattice (green dots).

The relevant stabilizer operators correspond to the elementary

loops (plaquettes). For example, the loop ζ = (u, v, x,w)

shown in Fig. 3 gives rise to a stabilizer

Ã(ζ ) = Ãu,vÃv,xÃx,wÃw,u = XuvXvxXxwXwu · · · ,

where the dots represent a product of Pauli Z on some edges

incident to u, v, x,w that depend on the chosen edge ordering.

Let S be the stabilizer group generated by all loop operators.

There are three distinct terms that appear in the Hub-

bard model, excitation term, number operator term, and the

Coloumb operator term. Based on the expressions found in

[21], we know the edge operator representation of all three

terms that appear in the Hubbard model. Therefore, for H↑

we get

H↑ = −t
∑

i j

−i

2
(Ai j↑B j↑ + Bi↑Ai j↑) + ǫ

∑

i

(
1 − Bi↑

2

)

.

The spin-density interaction terms are given by

U
∑

i

ni↑ni↓ = U
∑

i j

(
1 − Bi↑

2

)(
1 − Bi↓

2

)

.

As discussed in Appendix B, the set of stabilizers available

proves to be insufficient to correct all the single-qubit errors in

the Hubbard model, if we do not introduce auxiliary ancillary

modes. These auxiliary modes contribute to edges in the

graph but do not have fermionic terms appearing in the target

Hamiltonian. For each plaquette in the original lattice we

introduce an auxiliary mode at its center which “interacts”

with all the vertices of the plaquette; see Fig. 4. We get four

extra edges per one auxiliary mode in the model, which give

us four smaller independent stabilizer loops. We can then use

the Bi vertex operators at the auxiliary mode as stabilizers.

To prove that the code corrects all single-qubit Pauli errors

it suffices to show that each single-qubit error has a unique
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FIG. 4. 4 × 4 Hubbard model lattice with auxiliary modes in-

serted. The blue vertices are the modes present due to the original

problem and the green vertices correspond to the auxiliary modes

introduced for error correction. The vertical and horizontal solid line

edges correspond to the original fermionic problem Hamiltonian.

The dashed lines correspond to the edges introduced due to the

auxiliary mode.

syndrome. From Eqs. (4) and (5) it is easy to see that the

ordering of the edges will affect the analytical expressions of

the stabilizers. This in turn affects whether it is possible to get

unique syndromes for all the single-qubit errors or not. The

ordering that we used is given on a unit cell in Fig. 4. The

fermionic modes in the original problem are represented with

numbers without dashes, while auxiliary modes are numbered

with a dash. We use the ordering 1′ < 2′ < 3′ · · · < 1 < 2 <

3 · · · . The bottom most row is numbered from left to right

and then the numbering continues for the rows above it. So,

the mode numbers increase from left to right and from bottom

TABLE I. Edge operator representation for even fermionic

operators.

Second quantized form Edge operator representation

a†
i ai (1 − Bi )/2

a†
i a†

j a jai (1 − Bi )(1 − B j )/4

(a†
i a j + a†

j ai ) −i(Ai jB j + BiAi j )/2

(a†
i a†

j a jak + a†
ka†

j a jai ) −i(AikBk + BiAik )(1 − B j )/4

(a†
i a†

j + aia j ) −i(Ai jB j − BiAi j )/2

(a†
i a†

j akal + a†
l a†

ka jai ) Ai jAkl (−1 − BiB j + BiBk + BiBl+

B jBk + B jBl − BkBl − BiB jBkBl )/8

to top. In Fig. 4, for any mode, the mode left and above it

will have a higher index. Due to the ordering choice, we can

prove single-qubit error correction for a unit cell in terms

of stabilizers around it. Indeed, it is easy to check that all

single-qubit errors in the unit cell “6-7-11-10” have distinct

syndromes. Note that this encoding requires 12s qubits, where

s is the number of sites in the original lattice.

APPENDIX F: FERMIONIC OPERATORS

IN TERMS OF EDGE OPERATORS

Operators Ai j and Bi can generate the algebra of all even

fermionic operators. This is the case for a generic quantum

chemistry Hamiltonian:

H =
∑

i j

hi ja
†
i a j +

∑

i jkl

hi jkl a
†
i a

†
j akal . (F1)

Here, there are five different types fermionic operators,

namely, number operator a
†
i ai, excitation operator a

†
i a j , num-

ber excitation operator a
†
i a

†
ja jak , Coloumb operator a

†
i a

†
j a jai,

and double excitation operator a
†
i a

†
j akal . Their expressions in

terms of edge operators are given in Table I. We have also

included derivation of a superconductivity interaction of the

form a
†
i a

†
j + aia j .
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