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Abstract: Incorporating streamflow forecasts into reservoir operations can improve water resources management efficiency, yet the forecast
value in multipurpose reservoir systems is rarely investigated, let alone the relationship between forecast accuracy and value in multiobjective
reservoir operation. Here, we propose a forecast-informed framework to derive multiobjective operating rules based on radial basis functions
and the Pareto archived dynamically dimensioned search optimization algorithm and subsequently develop indicators reflective of Pareto
fronts with and without forecast information to characterize forecast value. Based on a case study of the Hanjiang cascade of reservoirs in the
Yangtze River Basin, China, the optimal inclusion of streamflow forecasts notably improves the performance of multiobjective reservoir
operations, mainly by significantly increasing the hydropower generation. The relationship between forecast accuracy and value is explored
by comparing four accuracy indicators (Nash–Sutcliffe efficiency, mutual information, correlation coefficient, and Kullback–Leibler
distance) and forecast value. The correlation coefficient is found to be the most suitable forecast indicator given its high correlation with
forecast value and stability in the regression. For multiobjective forecast-informed reservoir systems, it is critical to understand and define
the relationship between forecast accuracy and forecast value; if improvements in accuracy lead to steep gains in value, investing in further
forecast model development may be warranted. DOI: 10.1061/(ASCE)WR.1943-5452.0001229. © 2020 American Society of Civil
Engineers.

Author keywords: Reservoir operation; Radial basis functions; Forecast-informed reservoir operating rules; Forecast value; Multiobjective
optimization.

Introduction

Rapid socioeconomic development and the subsequent increasing
demand on water resources in many locations globally is challenging
strategies to sufficiently supply water for things such as consump-
tion, power generation, and ecosystem protection. Built infrastruc-
ture, namely, multipurpose reservoirs, remains one of the most
common approaches to mitigate water scarcity and balance compet-
ing water interests. Developing an effective infrastructure manage-
ment framework is equally critical and can lead to significant
increases in benefits and cost savings (Bolouri-Yazdeli et al. 2014;
Gleick and Palaniappan 2010; Labadie 2004; Stedinger et al. 1984;
Yang et al. 2017b).

Seasonal and subseasonal streamflow forecasts provide a non-
infrastructural management approach, given their recent significant

advancements (Gibbs et al. 2018; Ismail and Bogacki 2017;
Mortensen et al. 2018; Sene et al. 2018). In these studies, the ac-
curacy and lead time in streamflow forecast are increased by using
climate-index and error-correction techniques (such as data assimi-
lation). For example, Gibbs et al. (2018) used a rainfall-runoff
model with state updating and representative calibration-period
selection to obtain monthly streamflow forecasts in southern
Australia, with Nash–Sutcliffe efficiency (NSE) values greater than
0.75. Sene et al. (2018) obtained net inflow forecasts for Lake
Malawi and Lake Victoria with lead times up to 4–5 months by
using prior streamflow, rainfall, and climate indices. Skillful pre-
dictions from weeks to seasons are commonly applied to improve
reservoir operation efficiency (Anghileri et al. 2016; Faber and
Stedinger 2001; Sankarasubramanian et al. 2009) by explicitly
incorporating forecasts into reservoir decision-making models
using various techniques (Ficchì et al. 2015; Lu et al. 2017; Wang
and Liu 2013; Yu et al. 2014). For example, Ficchì et al.
(2015) integrated ensemble streamflow forecasts into operational
models for four reservoirs in France using the model predictive
control (MPC) method and demonstrated that the application of
forecast information can significantly reduce flood control cost.
Sankarasubramanian et al. (2009) optimized a reservoir operation
model in conjunction with streamflow forecasts for the maximiza-
tion of expected net revenue from water allocation. They found that
streamflow forecasts can increase the annual yield and that forecast
information is more valuable in water allocation systems with low
storage-to-demand ratios.

In many cases, forecast-informed reservoir operations outperform
traditional (static operations) approaches, with the added benefit de-
fined as forecast value. In general—but not ubiquitously—more
skillful streamflow forecasts are expected to lead to more effective
decision-making and reservoir allocation strategies; however,
improvement in forecast quality may not be linearly nor fully
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translated into an increase in forecast value (Laio and Tamea 2007;
Watkins and Wei 2008). This is partially attributable to reservoir
specifics, including operational objectives, targets, and physical
design (Boucher et al. 2012; Georgakakos 1989; Rosenberg
et al. 2011). Numerous studies have investigated the relationship
between forecast skill and value for different operating objectives
such as hydropower generation (Alemu et al. 2010; Lamontagne and
Stedinger 2018; Voisin et al. 2006) and water supply (Anghileri et al.
2016; Georgakakos et al. 2005; Sankarasubramanian et al. 2009;
Turner et al. 2017). For example, Alemu et al. (2010) refined hydro-
power operating rules by using medium-range forecasts and
concluded that the use of forecast information can significantly im-
prove economic profits. Anghileri et al. (2016) developed a forecast-
based adaptive management framework to guide the operation of
water supply systems in snow-dominated river basins and evaluate
the value of seasonal and interannual forecast data. Lamontagne and
Stedinger (2018) generated synthetic streamflow forecasts with spe-
cific precision using the generalized maintenance of variance exten-
sion (GMOVE) method and applied it to a stochastic optimization
model of a single reservoir hydropower system to illustrate how
more skillful forecasts lead to improvements in system operations.

Few studies (Denaro et al. 2017; Turner et al. 2017) evaluated
the forecast value for multiobjective reservoir systems. Turner et al.
(2017) incorporated streamflow forecasts into a multipurpose res-
ervoir system, focusing on the relationship between the forecast
value and skill for a single-objective operation only (by considering
target releases and target storage objectives separately.) For true
multiobjective reservoir operations, there exists a trade-off among
many different operating targets (Xu et al. 2015); an improvement
gained for one target may only be achieved by making concessions
to another target. This motivates the need for coincident consider-
ation of numerous reservoir operation objectives when evaluating
forecast value. Although Denaro et al. (2017) considered two
reservoir operating targets (flood control and water supply) simul-
taneously in forecast value evaluation, until now, the relationship
between multiobjective reservoir operation forecast value and
forecast skill has never been investigated. Here, we propose a
forecast-informed framework to derive multiobjective operating
rules (MOOR) and use the forecast value indicator for multiob-
jective reservoir operation (Denaro et al. 2017) to search for the
relationship with forecast accuracy. Specifically, we explore how
forecast information affects the MOOR by addressing the follow-
ing questions:
1. How can streamflow forecasts be incorporated into MOOR?
2. How does forecast information from MOOR improve the multi-

objective reservoir operation?
3. What is the relationship between forecast skill and value in mul-

tiobjective reservoir operations?
The framework proposed here starts with generating streamflow

forecasts by adding an error term (Georgakakos and Graham 2008;
Maurer and Lettenmaier 2004; Sankarasubramanian et al. 2009),
conditioned on a specified forecast accuracy (Yan et al. 2014).
Next, MOOR are parameterized using radial basis functions
(RBFs) (Buşoniu et al. 2011; Giuliani et al. 2014, 2015a) and sub-
sequently optimized by applying the Pareto archived dynamically
dimensioned search (PA-DDS; Asadzadeh and Tolson 2013) evolu-
tionary algorithm. The process is repeated without forecast-
informed streamflow to illustrate the expected forecast value of
MOOR by comparing the Pareto fronts obtained from the optimi-
zation with and without forecast information. This final step in-
cludes describing the relationship between forecast accuracy and
MOOR performance. We select a case study in the Yangtze River
Basin to demonstrate the framework and provide quantitative
assessment.

This work contributes to a framework integrating the forecast
information into MOOR, an improved understanding of how
streamflow forecast accuracy relates to systems requiring MOOR,
and may further inform continued development of streamflow fore-
cast products and methodologies for integrating with reservoir
decision-making.

Study Area and Data

Hanjiang Cascade of Reservoirs and Operating Rules

The Hanjiang River, the largest tributary to the Yangtze River in
China, has a basin area of approximately 159,000 km2 and length
of 1,570 km. The river originates in the southwestern part of the
Shaanxi province, flows east across the southern part of that prov-
ince, and merges with the Yangtze River at Wuhan, the provincial
capital with more than 10 million inhabitants. The annual mean
temperature is 15°C–16°C and annual precipitation varies from
700 to 1,800 mm, with 70%–80% of the total amount occurring
in the wet season from May to October (Li et al. 2009). The
Hanjiang cascade includes the Ankang and Danjiangkou multipur-
pose reservoirs (Fig. 1) with streamflow records extending back more
than 30 years. The average annual natural runoff (1980–2010) to the
Ankang reservoir and intervening basin between the Ankang and the
Danjiangkou reservoirs is 17.80 and 17.24 billionm3, respectively.

The Ankang reservoir, located in the upper reach of the
Hanjiang River, has an active storage volume of 1.47 billionm3

and serves as an important hydropower base in Shaanxi province
in China. The reservoir is mainly used for hydroelectric power gen-
eration (installed capacity: 800 MW), with secondary objectives
of flood control. The downstream Danjiangkou reservoir, with
an active storage of 19.05 billionm3, is in the middle reach of
the Hanjiang River. The Danjiangkou controls 60% of the catch-
ment area, serves as a key flood control project, and provides
allocations for water supply and hydropower generation (installed
capacity: 900 MW). The characteristic parameter values of the
Ankang and Danjiangkou reservoirs are listed in Table 1.

In this study, the objective of flood control in the operation of
the two reservoirs is to disallow exceeding prespecified water levels
during the flood season (water level limits in Fig. 2), thus it can be
translated into the constraints of the control problem. The Ankang
reservoir mainly uses water releases for power generation (Chinese
National Committee on Large Dams 2011) under some conven-
tional constraints. As for the Danjiangkou reservoir, it primarily
serves as a supply for the south-to-north water transfer project
in China, and secondarily for power generation. Water supply
releases of 135, 260, 300, 350, and 420 m3=s are required based
on reservoir water levels in Regions 1, 2, 3, 4, and 5, respectively
(see operating rule curves in Fig. 2). For the south-to-north project,
water is directly released from the reservoir through a special canal
and thus is not available for power generation, while water releases
for power generation can also be used to meet the discharge
requirement downstream of the Danjiangkou reservoir (greater than
490 m3=s) for navigation and ecosystem habitat. After meeting the
discharge requirements, priorities are water supply and power gen-
eration, respectively (Sun et al. 2017; Yang et al. 2017a).

Data and Parameter Settings

Observed inflow (10-day average, 1980–2010) and other meteoro-
logical data (temperature, precipitation, etc.) are provided by the
Changjiang Water Resources Commission of China. Reservoir
characteristics data and basic reservoir operating rules are provided
by the Hanjiang Group. Inflow to the Ankang reservoir and
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intervening basin flow between the Ankang and Danjiangkou res-
ervoirs are expressed as Qin

i−1;t (m3=s) and Qinter
i;t (m3=s), respec-

tively, illustrated in Fig. 3. The inflow to Danjiangkou reservoir
is the sum of the outflow from the Ankang reservoir and the

intervening basin flow, described in Eq. (4). The water year is de-
fined as May to April.

In general, a longer lead time results in higher forecast values,
given a certain forecast accuracy, for significantly large reservoirs.
Many publicly available monthly datasets, such as climate hazards
group infrared precipitation with station data (CHIRPS, Funk et al.
2015) and the Tropical Rainfall Measuring Mission’s 3B43
(Huffman et al. 2007), provide high-resolution monthly global
meteorological data which can serve as potential streamflow predic-
tors; thus, a forecast lead time (time step) of one month (essentially
three 10-day periods) is advantageous.

Methodology

The procedure for integrating forecasts and assessing forecast value
in MOOR (Fig. 4) is introduced in this section.
• First, the general reservoir operating rules (without considering

forecasts) described by the RBFs (of observed data) are

Fig. 1. Locations of the Hanjiang basin and cascade reservoirs.

Table 1. List of characteristic parameter values of the Ankang and
Danjiangkou reservoirs

Reservoir Unit Danjiangkou Ankang

Total storage Billion m3 33.04 3.20
Flood control storage in summer Billion m3 14.10 0.36
Flood control storage in autumn Billion m3 11.10 0.36
Crest elevation m 176.6 338.0
Normal pool water level m 170.0 330.0
Flood limited water level
in summer

m 160.0 325.0

Flood limited water level
in autumn

m 163.5 325.0

Dead water level m 150.0 305.0
Fluctuating water level m 145.0 300.0
Install capability MW 900 800
Annual generation Billion kW · h 3.8 2.8
Regulation ability — Multiyear Annually
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Fig. 2. Designed operation rule curves of the Danjiangkou reservoir.
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Fig. 3. The 10-day average inflow of Ankang reservoir and intervening
basin flow between reservoirs during 1980–2010, respectively.
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optimized using the PA-DDS algorithm; the no-forecast Pareto
front (NPF) is obtained after the multiobjective optimization.

• Second, synthetic forecasts with a specified accuracy and bias
are generated from observed streamflow data (Yan et al. 2014)
and used to derive the forecast-informed reservoir operating
rules [Eq. (9)].

• Third, the forecast-informed reservoir operating rules are opti-
mized using the PA-DDS algorithm, and the forecast-informed
Pareto front (FPF) is obtained. In the multiobjective optimiza-
tion, parameters for both the RBFs for observed data and
RBFs for forecasts are updated until termination criteria are
satisfied.

• Fourth, the forecast value in MOOR is evaluated by comparison
of Pareto fronts from the optimal reservoir operating rules with
and without forecast information. Higher forecast values occur
for wider separation between Pareto fronts (Fig. 4, bottom left
panel.) More details regarding forecast value are presented in
the following sections.

• Finally, the relationship between forecast accuracy and value is
evaluated by regressing forecast value against several forecast
accuracy indicators. The most suitable forecast accuracy indica-
tor is then selected to assess the forecast value of the multiob-
jective reservoir operation framework with a linear regression
between the forecast accuracy and the forecast value (Fig. 4,
bottom right panel.) The slope of the regression line represents
the sensitivity of forecast value to accuracy.

Multiobjective Reservoirs Operation Model

Objective Equations
In addition to flood control, water supply and power generation are
the most important reservoir functions. Thus, the objective func-
tions can be expressed as the maximization of power generation
and water supply for the reservoirs [Eqs. (1) and (2)]. The flood
control (Fig. 2) and irrigation objectives are translated into water

release constraints. The ranking between different objectives is not
considered in this multiobjective reservoir operation model

MaxW ¼
XT
t¼1

QW
t · Δt ð1Þ

MaxE ¼
XN
i¼1

XT
t¼1

Pi;t ·
Δt
3600

; Pi;t ¼ Ki · QP
i;t · Hi;t ð2Þ

where W and E = sum of the water supply (m3) and energy gen-
eration (kW · h), respectively; t ¼ tth time period; i ¼ ith reser-
voir; T = total number of operational periods; N = total number
of reservoirs; QW

t (m3=s) = water supply flow of the Danjiangkou
reservoir in period t; ðΔts) = amount of time during a single period;
Pi;t (kW) = power output of the ith reservoir in period t;
Ki = hydropower generation efficiency of the ith reservoir;
QP

i;t (m
3=s) = water release for power generation of the ith reservoir

in period t; and Hi;t (m) = average hydropower head of the ith res-
ervoir in period t. Only the downstream (Danjiangkou) reservoir is
used for the water supply, which is controlled by the established
operating rule curves (Fig. 2) and is withdrawn directly from
the reservoir for the south-to-north water transfer project in China.

Equations and Constraints

Water Balance. The reservoir water balance describing the change
in storage is as follows:

Si;tþ1 ¼ Si;t þ ðQin
i;t −Qout

i;t Þ · Δt 0 − ESi;t ð3Þ

where Si;t (m3) and Si;tþ1 (m3) = storage of the ith reservoir in
period t and tþ 1, respectively; Qin

i;t (m
3=s) and Qout

i;t (m3=s) =
inflow and total water release of the ith reservoir in period t,
respectively; Δt 0 (s) = time step (10 days in this study); and
ESi;t (m3) = sum of evaporation and seepage from the ith reservoir

Fig. 4. Procedure for integrating the forecasts and assessing the forecast value in multiobjective reservoir operation.
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in period t. For situations in which the water supply is withdrawn
directly from the reservoir, the Danjiangkou reservoir total release
consists of the water used for water supply and power generation.
Reservoir Inflow. The inflow of the Ankang reservoir is the afore-
mentioned Qin

i−1;t (Fig. 3), and the inflow into the Danjiangkou
reservoir can be expressed as

Qin
i;t ¼ Qout

i−1;t þQinter
i;t ð4Þ

where Qout
i−1;t (m3=s), Qinter

i;t (m3=s), and Qin
i;t (m

3=s) = outflow from
the Ankang reservoir, intervening tributary and overland flow
between the Ankang and Danjiangkou reservoirs, and inflow into
the Danjiangkou reservoir in period t, respectively.
Reservoir Storage. The physical constraints of the reservoirs can
be expressed as

Smin
i;t ≤ Si;t ≤ Smax

i;t ð5Þ
where Smin

i;t (m3) and Smax
i;t (m3) = minimum and maximum water

storage of the ith reservoir in period t, respectively.
Reservoir Releases. Reservoir releases are contingent on down-
stream demands, specifically

Qmin
i;t ≤ Qout

i;t ≤ Qmax
i;t ð6Þ

where Qmin
i;t (m3=s) and Qmax

i;t (m3=s) = minimum and maximum
releases of the ith reservoir in period t for all downstream uses,
respectively, which are determined by the downstream discharge
requirement.
Power Generation Limits.

Pmin
i;t ≤ Pi;t ≤ Pmax

i;t ð7Þ
where Pmin

i;t (kW) and Pmax
i;t (kW) = minimum and maximum power

generation of the ith reservoir in period t, which are determined
based on the installed capacity and turbines features.
Mass Conservation.

Si;t ¼
�
Sbegini t ¼ 1

Sendi t ¼ T
ð8Þ

where Sbegini (m3) and Sendi (m3) = beginning and ending storage in
the ith reservoir at the start and completion of each simulation,
respectively. The storage of each reservoir at the end of the simu-
lation time horizon is equivalent to the storage at the beginning of
the simulation in this study. This constraint is included to ensure
water is retained in the reservoir for future operations. If excluded,
the model will empty the reservoir by the end of the simulation
horizon to maximize water supply or power generation artificially.

Forecast-Informed Operating Rules

To determine the total water release for each reservoir, we use the
RBF model to integrate available information into reservoir
operating rules. The information used in the RBFs here includes
observed data (e.g., reservoir inflow and storage) in the current
period and forecasted data. For each reservoir, we select the
corresponding reservoir storage, inflow, and seasonal information
τ t [where τ t refers to the position of the current period t within
a water year, e.g., it equals 1 when t is 1ð36 × 0þ 1Þ;
37ð36 × 1þ 1Þ; 73ð36 × 2þ 1Þ : : : , considering that there are 36
periods within a water year] in the current period as observed input
variables, and select the average streamflow forecast across the next
month (i.e., the forecast lead time is 1 month) as forecasted input
variables in this study. The decision time step in the reservoir
operation is 10 days and the optimization horizon is 31 years

(1980–2010,) i.e., there are 1116 (31 × 36) time steps in the opti-
mization horizon.

The Gaussian RBF model is demonstrated to possess strong
mathematical properties of universal approximation (Tikk et al.
2003), thus the adoption of the universal approximator (Gaussian
RBF) can ensure flexibility to the structure of the operating rules
[for more applications of the RBF model in reservoir operation see
Deisenroth et al. (2013) and Giuliani et al. (2014, 2015a)]. There-
fore, the forecast-informed reservoir operating rules are defined
with Gaussian RBFs by the following equations:

Qout
t ¼

XU
u¼1

ωuφuðXtÞ þ
XF
f¼1

ωfφfðYtÞ; t ¼ 1; : : : ;T ð9Þ

φuðXtÞ¼ exp

�
− 1

b2u

XM
j¼1

½ðXtÞj−cj;u�2
�

cj;u ∈ ½−1;1�; bu ∈ ð0;1�

ð10Þ

φfðYtÞ ¼ exp

�
− 1

b2f

XL
j¼1

½ðYtÞj − cj;f�2
�

cj;f½−1;1�; bf ∈ ð0;1�

ð11Þ

where Qout
t (m3=s) = reservoir water release in period t; φuð·Þ and

φfð·Þ = RBFs using the observed and forecasted data, respectively;
U and F = total number of RBFs and ωu and ωf = RBF weights for
the observed and forecasted data, respectively; M and L = total
number of observed input variables Xt and forecasted input vari-
ables Yt, respectively; and cj and b = center and radius of the RBFs,
respectively.

If
P

F
f¼1 ωfφfðYtÞ in Eq. (9) is not included [i.e., Qout

t ¼P
U
u¼1 ωuφuðXtÞ], the equation collapses to the general (no-

forecast-informed) reservoir operating rules. To fully express the
reservoir operating policies, the number of RBFs describing the
reservoir operating rules is determined through a sensitivity analy-
sis, i.e., increasing the RBFs until the benefits of optimal solutions
do not change significantly. Ultimately, the number of RBFs for
observed and forecasted flow data in the MOOR are set as four
[as in Yang et al. (2017b)] and three, respectively. Thus for each
reservoir, M ¼ 3 (the three variables are reservoir storage, inflow,
and seasonal information τ t), U ¼ 4, F ¼ 3, and L ¼ 1 (for An-
kang: the average forecast of reservoir inflow; for Danjiangkou: the
intervening flow between the Ankang and Danjiangkou reservoirs
across the next month) in Eqs. (9)–(11); there are 20 and 9 param-
eters to be calibrated for the sum of RBFs for the observed and
forecasted data, respectively. Therefore, for the cascade reservoir
operation, there are 40ð20 × 2Þ and 58½ð20 × 2Þ þ ð9 × 2Þ� param-
eters in general and forecast-informed reservoir operating rules,
respectively.

We optimize these parameters based on a simulation-
optimization model (Rani and Moreira 2010) using the PA-DDS
evolutionary algorithm as previously applied to water resources
management (Yang et al. 2017a). To produce the Pareto front,
the PA-DDS algorithm adopts the Pareto archived evolution strat-
egy, where its simplest form uses a local and single-solution-based
optimization strategy to explore the search space and archives all
the nondominated solutions during the search procedure (Knowles
and Corne 1999). The procedure of the PA-DDS algorithm has
been described in detail by Asadzadeh and Tolson (2013) and is
described in the following steps:
1. Initialize the starting solutions by using the DDS algorithm

(Tolson and Shoemaker 2007) to maximize each objective
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(water supply and power generation) and randomly generating
solutions between the bounds.

2. Calculate the crowding distance (which is described by the aver-
age distance of two neighboring solutions) of solutions in the
external set and select a nondominated solution based on crowd-
ing distance.

3. Generate new solutions by perturbing the randomly selected
decision variables of the current solution with a probability
which decreases as the number of iterations (from Step 1 to
Step 5) increase from one to the maximum number of function
evaluations.

4. Check the dominance of the newly generated solutions against
the external set of solutions. If the new solution is nondomi-
nated, the current solution is updated with the new solution;
otherwise, a new current solution is selected from the external
set of the nondominated solutions. For no-forecast and forecast-
informed rules, the parameters in

P
U
u¼1 ωuφuðXtÞ andP

U
u¼1 ωuφuðXtÞ þ

P
F
f¼1 ωfφfðYtÞ are updated, respectively.

As illustrated in Fig. 4, only the parameters of RBFs for obser-
vations are updated to produce the NPF; however, the para-
meters of RBFs for both observations and forecasts are
updated to produce the FPF.

5. Repeat Steps 2–4 until the maximum number of function eva-
luations is exceeded. The number can be user-defined before the
optimization according to the complexity of the problem.

There are two parameters in the PA-DDS optimization algo-
rithm: the neighborhood perturbation size parameter (r) and the
maximum of the function evaluation. Given the relative insensitiv-
ity of the multiobjective optimization performance to parameter
settings in the PA-DDS algorithm, r is set to its default value (0.2)
(Asadzadeh and Tolson 2009) and the maximum of the function
evaluation is set to 50,000.

To investigate potential improvement in reservoir operations
when including forecast information, we optimize the RBFs for
the observed data first and subsequently the RBFs for the fore-
casted data, in lieu of optimizing the RBFs simultaneously. In this
way, each point on the NPF will produce a Pareto front, and the FPF
may be constructed by combining all Pareto fronts (Fig. 5). Two
directions from NPF to FPF are possible (Fig. 5) for the two-
objective optimization problem, and the direction of improvement
conditioned on forecasts may vary even for the same NPF and FPF.

Forecast Streamflow Simulation

A Monte Carlo approach is used to generate synthetic streamflow
forecast series with a specified accuracy, based on historical stream-
flow data. It is assumed that the relative forecast error εt at each
time period is approximately normally distributed (Stedinger
et al. 2008). The NSE (Nash 1970) is selected as an indicator of
streamflow forecast precision. The general procedure is presented
here; for additional details readers are encouraged to review Yan
et al. (2014).

NSE is mathematically represented by the equation

NSE ¼ 1 −
P

T
t¼1 ðy 0

t − ytÞ2P
T
t¼1 ðyt − ȳÞ2 ð12Þ

where y 0
t and yt = forecast and observed streamflow in time period

t, respectively; ȳ = mean of the observed streamflow; and T = total
number of streamflow data time periods.

Eq. (12) can be expressed by

XT
t¼1

ðyt − ȳÞ2ð1 − NSEÞ ¼
XT
t¼1

ðy 0
t − ytÞ2 ¼

XT
t¼1

ðε2t y2t Þ ð13Þ

where εt ¼ ðy 0
t − ytÞ=yt = relative forecast error.

Suppose that the relative error is unbiased and normally distrib-
uted, εt ∼ Nð0;σ2

εÞ, where σε is related to forecast accuracy
(i.e., smaller values of σε correspond with more accurate forecasts),
then the expected value of the relative forecast error can be obtained
by Eðε2t Þ ¼ VarðεtÞ þ E2ðεtÞ ¼ σ2

ε.
The expected value of the left side of Eq. (13) can be ex-

pressed as

E

�XT
t¼1

ðyt − ȳÞ2ð1 − NSEÞ
�
¼

XT
t¼1

ðyt − ȳÞ2ð1 − NSEÞ ð14Þ

where E½x� = expected value of x.
The expected value of the right side of Eq. (13) can be ex-

pressed as

E

�XT
t¼1

ðε2t y2t Þ
�
¼

XT
t¼1

½Eðε2t Þy2t � ¼ σ2
ε

XT
t¼1

y2t ð15Þ

According to Eq. (13),
P

T
t¼1 ðyt − ȳÞ2ð1 − NSEÞ should be

equal to σ2
ε
P

T
t¼1 y

2
t , thus the variance σ2

ε can be calculated by
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Fig. 5. Pareto fronts illustrating the direction in improvement of reser-
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the outcome condition on forecast-informed rules. Two directions
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σ2
ε ¼

P
T
t¼1 ðyt − ȳÞ2ð1 − NSEÞP

n
t¼1 y

2
t

ð16Þ

Finally, the streamflow forecast series can be simulated using

y 0
t ¼ yt þ εtyt ð17Þ

Synthetic unbiased streamflow forecasts are generated by
varying NSE. To systematically add potential forecast bias across
flow conditions, streamflow categories (dry, normal, and wet) are
selected based on observations within the ranges of percentile
(0, 0.1), (0.1, 0.9), and (0.9, 1.0), respectively, and a bias represent-
ing underestimation and overestimation of observed streamflow
by 10% and 20% is imposed. For instance, Wetp20% implies there
is a 20% (positive) increase for forecast values falling in the wet
range, i.e., y 0

t ¼ ðyt þ εtytÞ × 1.2; Drym10% is a 10% (negative)
reduction for forecast values falling in the dry category.

Indicators of Forecast Accuracy and Value

Three indicators (in addition to NSE as utilized above) are intro-
duced to assess streamflow forecast performance: mutual informa-
tion (Cover 1991), correlation coefficient, and Kullback–Leibler
distance (KLD) (Kullback and Leibler 1951). The definition of
these indicators is described below.

Mutual information (MI) is a widely used measure to define
dependency between variables. Given two random variables x and
y, their MI is defined in terms of their probabilistic density func-
tions pðxÞ, pðyÞ, and pðx; yÞ as below:

MIðX;YÞ ¼
X
y∈Y

X
x∈X

pðx; yÞ log
�

pðx; yÞ
pðxÞpðyÞ

�
ð18Þ

Correlation coefficients (CC) quantify the strength of linear
relationships between variables, ranging from −1 (perfect negative
relationship) to 0 (no relationship) to 1 (perfect positive relationship):

CC ¼ Covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞVarðyÞp ρx;y ∈ ½−1; 1� ð19Þ

KLD is a measure of how two probability distributions diverge
from one another. Given two random variables x and y, KLD is
defined in terms of their probabilistic density functions pðxÞ
and pðyÞ as below:

KLDðX;YÞ ¼
X
y∈Y

X
x∈X

pðxÞ log
�
pðxÞ
pðyÞ

�
ð20Þ

The goal of this work is not to assess simply the streamflow
forecast performance but rather the forecast value of reservoir
operations resulting from a specified performance. For single-
objective reservoir operation, the forecast value can be expressed
by comparing objectives (e.g., power generation) with and without
using forecast information. Forecast values for MOOR systems are
more complicated, however, given the trade-offs between different
targets (e.g., power generation and water supply). To address this,
we use the difference in Pareto fronts resulting from the forecast
and no-forecast approaches (represented as the width of the sepa-
ration between Pareto fronts in Fig. 4, bottom left panel) to describe
the MOOR forecast value. Given a specific no-forecast point Pi
(the ith point in the NPF), the closest point in the FPF can be found.
We calculate the Euclidean distance between the two points
(Dmini) for all points in the NPF and use their average value as
the forecast value. This Euclidean-distance-based matrix has been

introduced and used by Giuliani et al. (2015b) and Denaro et al.
(2017) in multiobjective reservoir operation.

Given different objective types and units of measure, the objec-
tives are normalized before the calculation of forecast value to min-
imize possible biases. For example, both power generation and
water supply in this study are translated into economic profits, spe-
cifically, 0.21 Yuan RMB per kW · h (the electricity price for the
Hanjiang cascade reservoirs) for hydropower and 0.13 Yuan RMB
per m3 (the water price) for water transfers in the south-to-north
project, as in Yang et al. (2017b). Because the Euclidean-distance-
based forecast value indicator calculates the shortest Euclidean
distance (Dmini) between the NPFs and FPFs, the forecast value
here can be explained as the minimum monetary profit which can
be obtained by using forecast-informed rules on average.

Results and Discussion

Multiobjective Reservoir Operation with Forecasted
Flow Data

By varying the NSE value [from 0.40, 0.45, 0.50, : : : , 0.95; 12
series; Eq. (17)], the forecast of the Ankang reservoir inflow
and tributary flow between the Ankang and Danjiangkou reservoirs
are simulated for Hanjiang cascade operations. Some comparisons
of observed and forecasted streamflow are illustrated in Appen-
dix S1 in the Supplemental Data. Considering that the same NSE
can be achieved with very different forecasts, we repeat the gen-
eration of synthetic forecast for each NSE value and bias five times.
The accuracy indicators (bias, NSE, CC, MI, and KLD) are calcu-
lated and their empirical frequency distributions are plotted in Fig. 6
as histograms. Clearly, the frequency or percentage of unbiased
forecast series is higher than that of biased series. For normal
streamflow, the percentage of unbiased (bias <5%) series in all
the simulations is about 50%. The percentage of biased forecasts
decrease with the degree of the bias, which is generally less than
20%. In contrast to the unevenly distributed MI and KLD values,
NSE and CC are more evenly distributed (0.45–0.95 and 0.8–0.98,
respectively).

The no-forecast and forecast-informed multiobjective
optimization-based Pareto fronts for the Hanjiang cascade are ini-
tially compared for the unbiased forecasts across NSE values
(Fig. 7). As NSE increases, the FPF moves in the direction of more
power generation and water supply. To minimize the effects of the
RBFs (RBFs for forecast-informed operating rules provide more
flexibility than those for no-forecast reservoir operating rules),
the results of reservoir operating rules with the worst forecast
(NSE = 0) are also considered and found similar to the results
of no-forecast multiobjective optimization. Recall from Eq. (12)
that when NSE = 0, the mean value of the streamflow is used
for the forecast.

Impact of Forecasts on Multiobjective Reservoir
Operation

The directions of improvement in multiobjective Hanjiang cascade
reservoirs operation caused by forecast information are shown
in Fig. 8 with NPFs and FPFs. Most lines connecting the no-
forecast and forecast-informed solutions in Fig. 8 are approxi-
mately parallel to the x-axis, which indicates that forecasts tend
to improve the reservoir operation mainly by increasing the power
generation. For the multiobjective system, the forecast-informed
reservoir operation rules lead to more energy generation (additional
100 million kW · h per year) than those for no-forecast reser-
voir operating rules (Fig. 7). Thus, for this case study, forecast
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information appears to have a more significant impact on power
generation than water supply, which is consistent with the findings
in Turner et al. (2017).

One reason is that water supply is mainly controlled by water
supply rule curves, which limits the impact of forecasts. Because
water supply is determined by the reservoir water level and remains
the same value within the same region (there are five regions in
total; Fig. 2), water supply is not overly sensitive to reservoir re-
leases and thus is not easily affected by forecasts. For example, the
boundaries defining Region 2 from October to December are so
wide (Fig. 2) that a change in water release conditioned on forecast
information may not be sufficient to move the reservoir water
level out of Region 2, thus not triggering a change in water supply

during the time period. Another reason is that the value of the
seasonal streamflow forecast tends to increase with a decrease in
the capacity-inflow ratio (ratio of active reservoir capacity to
annual reservoir inflow volume) (Anghileri et al. 2016). Thus,
the Ankang reservoir (capacity-inflow ratio ¼ 0.082), primarily
utilized for power generation, may be more significantly influenced
by forecasts than the Danjiangkou reservoir (capacity-inflow
ratio ¼ 0.541.)

The no-forecast rules and forecast-informed rules (using the
forecast with NSE = 1) are optimized for power generation, and
the corresponding annual mean reservoir water levels are compared
with the perfect trajectory (the optimal reservoir water release in
each time step across the full time horizon) optimized with dynamic
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Fig. 6. Empirical frequency of accuracy indicators (bias, NSE, CC, MI, and KLD) of synthetic forecasts. The top and bottom panels describe the
distribution of the bias and accuracy, respectively.
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programming (Fig. 9). It is evident that forecast-informed rules give
the water levels of the Ankang and Danjiangkou reservoirs a
closer-to-perfect trajectory than the no-forecast rules, which high-
lights the value of forecast information. Specifically, the forecast-
informed rules force the Ankang reservoir water level to be lower
during the flood season than the no-forecast rules do, which in-
creases the power generation of the Hanjiang cascade. Compared
with the no-forecast rules, the forecast-informed rules tend to keep
lower and higher water levels for the Ankang and Danjiangkou
reservoirs, respectively, in wet years, but the other way around
in dry years.

Forecast Value in Multiobjective Reservoir Operation

Using the observed data and synthetically generated forecasts,
the forecast accuracy metrics (NSE, CC, MI, and KLD) can be cal-
culated with Eqs. (12), and (18)–(20). A strong correlation exists
between forecast accuracy and value, as evidenced by the increase
in forecast value with increasing NSE, CC, and MI and decreasing
KLD (Fig. 10). The coefficient of determination (r2) between the
forecast value and NSE and CC is greater than between the forecast
value andMI and KLD, indicating a stronger relationship with fore-
cast value. Strikingly different outcomes between unbiased and
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biased forecasts make it difficult to identify a stable relationship
between forecast accuracy and value, especially when the informa-
tion about forecast bias is unavailable.

As shown in the top panels of Fig. 6, the bias in synthetic
streamflow forecasts can be as high as 20%, which decentriliazes
the points, resulting in r2 values lower than unbiased datapoints and
even altering the regression line in Fig. 10. The regression line al-
teration is obvious in KLD (with the most significant difference
both in slope and in intercept between the regression with all data-
points and unbiased datapoints) but barely noticeable in CC. The
polynominal regression results between forecast accuracy indica-
tors and forecast value (Table 2) also illustrate the impact of a
biased forecast on r2. Although the NSE and CC result in very high
r2 values for an unbiased forecast, only the CC always demon-
strates an r2 value greater than 0.8 when biased forecasts are in-
cluded in the regression. Thus, from the aspects of precision
and stability, the CC is the best indicator to evaluate the impact
of forecasts on reservoir operation. Overall, the value of including
forecasts in multiobjective operations for the Hanjiang cascade

reservoirs results in approximatley 10 million and 20 million Yuan
annually when the CC is 0.75 and 0.90, respectively (Fig. 10).

For the biased forecast, the NSE is a measure of precision that
does not capture the systematic error (Lamontagne and Stedinger
2018), which means that the NSE treats the bias (or systematic
error) as the forecast error. However, the systematic error caused
by bias is different from the forecast error because it can be sig-
nificantly corrected by statistical methods. Compared with the
CC, which can capture both the precision and systematic error,
the NSE tends to overestimate the forecast error if the systematic
error can be corrected.

Conclusions

The application of streamflow forecasts can improve reservoir op-
eration efficiency considering multiple targets; however, forecast
value in multipurpose reservoir systems is rarely investigated, es-
pecially in terms of its relationship with forecast skill. This work
explicitly incorporates streamflow forecasts into reservoir operat-
ing rules to explore the impact of forecast information on multiob-
jective reservoir operations.

Using the Hanjiang cascade reservoirs in the Yangtze River
Basin, China, we propose a forecast-informed framework to derive
MOOR, evaluate the forecast value in MOOR by comparing Pareto
fronts of the no-forecast and forecast-informed rules, and search for
the relationship between forecast value and forecast skill by evalu-
ating synthetic streamflow forecasts with varying skill. The main
conclusions of this study are summarized as follows:
1. The proposed forecast-informed reservoir operating rules can

notably improve the performance of multiobjective reservoir
operations; implementing forecast-informed rules could increase
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Fig. 10. Regression results between the forecast value and accuracy indicators (NSE, CC, MI, and KLD) in Hanjiang cascade reservoir operations. r2

refers to the coefficient of determination in the regression; the data obtained from unbiased forecasts and all (including biased and unbiased) forecasts
are regressed separately. If the two regression lines are similar to each other, the relationship between the forecast value and accuracy indicator is
assumed to be robust and resistant to bias in the forecasts.

Table 2. Coefficient of determination (r2) for the polynomial regression
between four forecast accuracy indicators and forecast values for unbiased
and all (biased + unbiased) data points

Data points Unbiased data points All data points

Degree of polynomial One Two Three One Two Three

NSE 0.930 0.931 0.933 0.695 0.749 0.749
CC 0.931 0.931 0.935 0.835 0.838 0.838
MI 0.857 0.891 0.908 0.661 0.661 0.669
KLD 0.853 0.869 0.869 0.411 0.542 0.542
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power generation by 100 million kW · h per year for the
Hanjiang system.

2. Streamflow forecasts tend to improve Hanjiang reservoir opera-
tions predominantly by increasing hydropower generation; the
Ankang reservoir (small capacity-inflow ratio) is more sensitive
to forecast information than the Danjiangkou reservoir (large
capacity-inflow ratio.)

3. A linear relationship between forecast skill and value in multi-
objective reservoir operations is evident; the correlation co-
efficient (CC) between observed and forecasted flow is less
influenced by forecast bias in the relationship between forecast
accuracy and forecast value than other candidate forecast accu-
racy indicators.
In summary, we have answered the three questions posed in

the introduction regarding how forecast information affects the
MOOR: (1) streamflow forecasts can be effectively incorporated
into MOOR by combining RBFs from both observed and forecast
data; (2) forecast information can improve multiple reservoir oper-
ating objectives simultaneously; however, improvement varies with
the objective selected, specifically, power generation is more sen-
sitive to streamflow forecast information than water supply for this
case study; and (3) forecast value in multiobjective reservoir oper-
ations increases with forecast skill, and the strength and stability of
their relationship highly depends on the indicator describing the
streamflow forecast skill.

These findings can inform the expected value of integrating
forecasts into MOOR and potential additional benefits resulting
from further improvements in forecast model accuracy. This work
is primarily focused on evaluating the impacts of forecast quality
and operation objectives on forecast value, although reservoir char-
acteristics may also be an important determinant. Further work
could consider the synergistic effects of both forecast flow and
reservoir characteristics to better gauge expected forecast value.
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