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The vortex gas scaling regime of baroclinic turbulence
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The mean state of the atmosphere and ocean is set through
a balance between external forcing (radiation, winds, heat and
freshwater fluxes) and the emergent turbulence, which transfers
energy to dissipative structures. The forcing gives rise to jets in
the atmosphere and currents in the ocean, which spontaneously
develop turbulent eddies through the baroclinic instability. A crit-
ical step in the development of a theory of climate is to properly
include the eddy-induced turbulent transport of properties like
heat, moisture, and carbon. In the linear stages, baroclinic insta-
bility generates flow structures at the Rossby deformation radius,
a length scale of order 1,000 km in the atmosphere and 100 km
in the ocean, smaller than the planetary scale and the typi-
cal extent of ocean basins, respectively. There is, therefore, a
separation of scales between the large-scale gradient of prop-
erties like temperature and the smaller eddies that advect it
randomly, inducing effective diffusion. Numerical solutions show
that such scale separation remains in the strongly nonlinear turbu-
lent regime, provided there is sufficient drag at the bottom of the
atmosphere and ocean. We compute the scaling laws governing
the eddy-driven transport associated with baroclinic turbulence.
First, we provide a theoretical underpinning for empirical scal-
ing laws reported in previous studies, for different formulations
of the bottom drag law. Second, these scaling laws are shown
to provide an important first step toward an accurate local clo-
sure to predict the impact of baroclinic turbulence in setting the
large-scale temperature profiles in the atmosphere and ocean.

oceanography | atmospheric dynamics | turbulence

Oceanic and atmospheric flows are subject to the combined
effects of strong density stratification and rapid planetary

rotation. On the one hand, these two ingredients add complex-
ity to the dynamics, making the flow strongly anisotropic and
inducing waves that modify the characteristics of the turbu-
lent eddies. On the other hand, they permit the derivation of
reduced sets of equations that capture the large-scale behavior
of the flow: this is the realm of quasigeostrophy (QG). The out-
come of this approach is a model that couples two-dimensional
(2D) layers of fluid of different density. QG filters out fast-wave
dynamics, relaxing the necessity to resolve the fastest timescales
of the original system. A QG model with only two fluid lay-
ers is simple enough for fast and extensive numerical studies,
and yet, it retains the key phenomenon arising from the com-
bination of stable stratification and rapid rotation (1): baroclinic
instability, with its ability to induce small-scale turbulent eddies
from a large-scale vertically sheared flow. The two-layer quasi-
geostrophic (2LQG) model offers a testbed to derive and vali-
date closure models for the “baroclinic turbulence” that results
from this instability.

In the simplest picture of 2LQG, a layer of light fluid sits
on top of a layer of heavy fluid, as sketched in Fig. 1A, in a
frame rotating at a spatially uniform rate Ω= f /2 around the
vertical axis. Such a uniform Coriolis parameter f is a strong sim-
plification compared with real atmospheres and oceans, where
the β-effect associated with latitudinal variations in f can trig-
ger the emergence of zonal jets. Nevertheless, β vanishes at the
poles of a planet, and it seems that any global parameterization
of baroclinic turbulence needs to correctly handle the limiting
case β=0, which we address in the present study. The 2LQG

model applies to motions evolving on timescales long compared
with the planetary rotation—the small Rossby number limit—
and on horizontal scales larger than the equal depths of the
two layers; refs. 2 and 3 provide more details on the deriva-
tion of QG. At leading order in Rossby number, the vertical
momentum equation reduces to hydrostatic balance,∗ while the
horizontal flow is in geostrophic balance.† These two balances
imply that both the flow field and the local thickness of each
layer can be expressed in terms of the corresponding stream
functions, ψ1(x , y , t) in the upper layer and ψ2(x , y , t) in the
lower layer. At the next order in Rossby number, the vertical
vorticity equation yields the evolution equations for ψ1(x , y , t)
and ψ2(x , y , t):

∂tq1 + J (ψ1, q1)=−νΔ4q1, [1]

∂tq2 + J (ψ2, q2)=−νΔ4q2 +drag, [2]

where the subscripts 1 and 2 refer again to the upper and lower
layers, respectively, and the Jacobian is J (f , g)= ∂x f ∂yg −
∂xg∂y f . The potential vorticities q1(x , y , t) and q2(x , y , t) are
related to the stream functions through

q1 =∇2ψ1 +
1

2λ2
(ψ2−ψ1), [3]

q2 =∇2ψ2 +
1

2λ2
(ψ1−ψ2), [4]
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Fig. 1. (A) Base state of the 2LQG system with imposed vertical shear. The interface is tilted in the y direction as a consequence of thermal wind balance.
The baroclinic stream function is proportional to−h, where h(x, y, t) is the local displacement of the interface. For this reason, the baroclinic stream function
is often referred to as the temperature field. Snapshots of the departure of the baroclinic stream function from the base state (τ ; B) and of the barotropic
vorticity (ζ; C) from a numerical simulation in the low-friction regime (arbitrary units; low values in dark blue, and large values in bright yellow). We model
the barotropic flow as a gas of vortices (D) of circulation±Γ and radius rcore∼λ. The vortex cores move as a result of their mutual interaction, with a typical
velocity V ∼Γ/`iv, where `iv is the typical intervortex distance.

where λ denotes the Rossby deformation radius.‡ In our model,
the drag term is confined to the lower-layer Eq. 2. In the
case of linear drag, drag =−2κ∇2ψ2, and in the case of
quadratic drag, drag =−µ [∂x (|∇ψ2|∂xψ2) + ∂y(|∇ψ2|∂yψ2)].
Finally, Eqs. 1 and 2 include hyperviscosity to dissipate filaments
of potential vorticity (enstrophy) generated by eddy stirring at
small scales.

A more insightful representation arises from the sum and dif-
ference of Eqs. 1 and 2: one obtains an evolution equation for
the barotropic stream function—half the sum of the stream func-
tions of both layers—which characterizes the vertically invariant
part of the flow, and an evolution equation for the baroclinic
stream function—half the difference between the two stream
functions—which characterizes the vertically dependent flow.
Because in QG the stream function is directly proportional to
the thickness of the fluid layer, the baroclinic stream function is
also a measure of the height of the interface between the two lay-
ers. A region with large baroclinic stream function corresponds
to a locally deeper upper layer: there is more light fluid at this
location, and we may thus say that on vertical average the fluid
is warmer. Similarly, a region of low baroclinic stream function
corresponds to a locally shallower upper layer, with more heavy
fluid: this is a cold region. Thus, the baroclinic stream function is
often denoted as τ and referred to as the local “temperature” of
the fluid.

The 2LQG model can be used to study the equilibration
of baroclinic instability arising from a prescribed horizontally
uniform vertical shear, which represents the large-scale flows
maintained by external forcing in the ocean and atmosphere.
Denoting the vertical axis as z and the zonal and meridional
directions as x and y , the prescribed flow in the upper and lower
layers consists of zonal motion +U ex and −U ex , respectively.
This flow is in thermal wind balance§ with a prescribed uni-
form meridional temperature gradient−U , i.e., there is a sloping
interface between the heavy and light fluid layers (Fig. 1A). This
tilt provides an energy reservoir, the available potential energy
(APE) (4), that is released by baroclinic instability, acting to flat-
ten the density interface. We denote, respectively, as ψ(x , y , t)
and τ(x , y , t) the perturbations of barotropic and baroclinic
stream functions around this base state, and consider their evo-
lution equations inside a large (horizontal) domain with periodic
boundary conditions in both x and y :

‡
The Rossby radius of deformation λ is the length scale at which rotational effects
become as important as buoyancy or gravity wave effects in the evolution of a flow.

§A flow in thermal wind balance satisfies both hydrostatic and geostrophic balance.

∂t(∇2ψ) + J (ψ,∇2ψ) + J (τ ,∇2τ) +U∂x (∇2τ) [5]

=− ν∇10ψ+ drag/2,

∂t [∇2τ −λ−2τ ] + J (ψ,∇2τ −λ−2τ) + J (τ ,∇2ψ) [6]

+U∂x [∇2ψ+λ−2ψ] =−ν∇8[∇2τ −λ−2τ ]−drag/2.

The system releases APE by developing eddy motion through
baroclinic instability, and the goal is to characterize the sta-
tistically steady turbulent state that ensues. How energetic is
the barotropic flow? How strong are the local temperature
fluctuations? Most importantly, what is the eddy-induced merid-
ional heat flux? The latter quantity is a key missing ingre-
dient required to formulate a theory of the mean state of
the atmosphere and ocean as a function of external forcing
parameters (5).

Traditionally, these questions have been addressed using
descriptions of the flow in spectral space, focusing on the cas-
cading behavior of the various invariants (6). In contrast with
this approach, Thompson and Young (7) describe the system in
physical space and argue that the barotropic flow evolves toward
a gas of isolated vortices. Despite this intuition, Thompson and
Young (7) cannot derive the scaling behavior of the quantities
mentioned above and resort to empirical fits instead. Focusing on
the case of linear drag, they conclude that the temperature fluc-
tuations and meridional heat flux are extremely sensitive to the
drag coefficient: they scale exponentially in inverse drag coeffi-
cient. This scaling dependence was recently shown by Chang and
Held (8) to change if linear drag is replaced by quadratic drag:
the exponential dependence becomes a power law dependence
on the drag coefficient. However, Chang and Held (8) acknowl-
edge the failure of standard cascade arguments to predict the
exponents of these power laws, and they resort to curve fitting
as well.

In this work, we supplement the vortex gas approach of
Thompson and Young (7) with statistical arguments from point
vortex dynamics to obtain a predictive scaling theory for the eddy
kinetic energy, the temperature fluctuations, and the meridional
heat flux of baroclinic turbulence. The resulting scaling theory
captures both the exponential dependence of these quantities on
the inverse linear drag coefficient and their power law depen-
dence on the quadratic drag coefficient. Our predictions are
thus in quantitative agreement with the scaling laws diagnosed
empirically by both Thompson and Young (7) and Chang and
Held (8). Following Pavan and Held (9) and Chang and Held
(8), we finally show how these scaling laws can be used as a
quantitative turbulent closure to make analytical predictions in
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situations where the system is subject to inhomogeneous forcing
at large scale.

The QG Vortex Gas
Denoting as 〈·〉 a spatial and time average and as ψx = ∂xψ
the meridional barotropic velocity, our goal is to determine
the meridional heat flux 〈ψx τ〉, or equivalently, the diffusivity
D = 〈ψx τ〉 /U that connects this heat flux to minus the back-
ground temperature gradient U . A related quantity of interest
is the mixing length 	=

√〈τ2〉/U . This is the typical distance
traveled by a fluid element carrying its background temperature
before it is mixed with the environment and relaxes to the local
background temperature. It follows that the typical temperature
fluctuations around the background gradient are of the order of
U 	. We seek the dependence of D and 	 on the various exter-
nal parameters of the system. It was established by Thompson
and Young (7) that, for a sufficiently large domain, the mixing
length saturates at a value much smaller than the domain size
and independent of it. The consequence is that the size of the
domain is irrelevant for large-enough domains. The small-scale
dissipation coefficient—a hyperviscosity in most studies—is also
shown by Thompson and Young (7) to be irrelevant when low
enough. The quantities D and 	 thus depend only on the dimen-
sional parameters U , the Rossby deformation radius λ, and the
bottom drag coefficient denoted as κ in the case of linear fric-
tion (with dimension of an inverse time) and as μ in the case of
quadratic drag (with dimension of an inverse length) (8, 10). In
dimensionless form, we thus seek the dependence of the dimen-
sionless diffusivity D∗ =D/Uλ and mixing length 	∗ = 	/λ on
the dimensionless drag κ∗ =κλ/U or μ∗ =μλ.

We follow the key intuition of Thompson and Young (7)
that the flow is better described in physical space than in spec-
tral space. In Fig. 1, we provide snapshots of the barotropic
vorticity and baroclinic stream function from a direct numeri-
cal simulation in the low-drag regime (the numerical methods
are in SI Appendix): the barotropic flow consists of a “gas” of
well-defined vortices, with a core radius substantially smaller
than the intervortex distance 	iv . Vortex gas models were intro-
duced to describe decaying 2D (purely barotropic) turbulence.
It was shown that the time evolution of the gross vortex statis-
tics, such as the typical vortex radius and circulation, can be
captured using simpler “punctuated Hamiltonian” models (11–
13). The latter consist of integrating the Hamiltonian dynamics
governing the interaction of localized compact vortices (14),
interrupted by instantaneous merging events when two vortices
come close enough to one another, with specific merging rules
governing the strength and radius of the vortex resulting from
the merger. These models were adapted to the forced dissipative
situation by Weiss (15) through injection of small vortices with
a core radius comparable with the injection scale and removal
of the largest vortices above a cutoff vortex radius. The result-
ing model captures the statistically steady distribution of vortex
core radius observed in direct numerical simulations of the 2D
Navier–Stokes equations (16): P(rcore)∼ r−4

core for rcore above
the injection scale. One immediate consequence of such a steeply
decreasing distribution function is that the mean vortex core
radius is comparable with the injection scale. Similarly, the aver-
age vortex circulation is dominated by the circulation of the
injected vortices. In the following, we will thus infer the transport
properties of the barotropic component of the two-layer model
by focusing on an idealized vortex gas consisting of vortices with
a single “typical” value of the vortex core radius rcore compa-
rable with the injection scale and circulations ±Γ, where Γ is
the typical magnitude of the vortex circulation. For baroclinic
turbulence, both linear stability analysis (2, 3) and the multi-
ple cascade picture (6) indicate that the barotropic flow receives
energy at a scale comparable with the deformation radius λ. As

discussed above, the typical vortex core radius is comparable
with this injection scale, and we obtain rcore∼λ. We stress the
fact that such a small core radius is fully compatible with the
phenomenology of the inverse energy cascade: inverse energy
transfers result in the vortices being farther apart, with little
increase in core radius. The resulting velocity structures have
a scale comparable with the large intervortex distance, even
though the intense vortices visible in the vorticity field have a
small core radius, comparable with the injection scale. Finally, it
is worth noting that there is encouraging observational evidence
both in the atmosphere and ocean that eddies have a core radius
close to the scale at which they are generated through baroclinic
instability (17, 18).

A schematic of the resulting idealized vortex gas is provided
in Fig. 1D: we represent the barotropic flow as a collection
of vortices of circulation ±Γ and of core radius rcore∼λ, and
thus, a velocity decaying as ±Γ/r outside the core (19). The
vortices move as a result of their mutual interactions, with a
typical velocity V ∼Γ/	iv . Through this vortex gas picture, we
have introduced two additional parameters 	iv and V—or alter-
natively, Γ= 	iv V—for a total of five parameters: D , 	, 	iv,
V , and a drag coefficient (κ or μ). We thus need four rela-
tions between these five quantities to produce a fully closed
scaling theory.

The first of these relations is the energy budget: the meridional
heat flux corresponds to a rate of release of APE, U 〈ψx τ〉 /λ2 =
DU 2/λ2, which is balanced by frictional dissipation of kinetic
energy in statistically steady state. The contribution from the
barotropic flow dominates this frictional dissipation in the low-
drag asymptotic limit, and the energy power integral reads [e.g.,
Thompson and Young (7)] (SI Appendix)

DU 2

λ2
=

{
κ
〈
u2

〉
for linear drag ,

μ
2

〈|u|3〉 for quadratic drag,
[7]

where u=−∇× (ψ ez ) denotes the barotropic velocity field.
Our approach departs from both Thompson and Young (7) and
Chang and Held (8) in the way that we evaluate the velocity
statistics that appear on the right-hand side: we argue that a
key aspect of vortex gas dynamics is that the various velocity
moments scale differently and cannot be estimated simply as V
above. Indeed, consider a single vortex within the vortex gas. It
occupies a region of the fluid domain of typical extent 	iv. The
vorticity is contained inside a core of radius rcore∼λ� 	iv, and
the barotropic velocity u has a magnitude Γ/2πr outside the vor-
tex core, where r is the distance to the vortex center. The velocity
variance is thus

〈
u2〉= 1

π	2iv

∫ �iv

rcore

Γ2

4π2r2
2πrdr ∼V 2 log

(
	iv

λ

)
. [8]

This estimate for
〈
u2

〉
exceeds that of Thompson and Young (7)

by a logarithmic correction that captures the fact that the velocity
is strongest close to the core of the vortex. This correction will
turn out to be crucial to obtain the right scaling behaviors for D∗
and 	∗. In a similar fashion, we estimate the third-order moment
of the barotropic velocity field as

〈|u|3〉= 1

π	2iv

∫ �iv

rcore

Γ3

8π3r3
2πrdr ∼V 3 	iv

λ
, [9]

where we have used the fact that rcore∼λ� 	iv. Again, this
estimate exceeds that of Chang and Held (8) by the factor
	iv/λ, a correction that arises from the vortex gas nature of the
flow field.

The next steps of the scaling theory are common to linear
and quadratic drag. As in any mixing-length theory, we will
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express the diffusion coefficient D as the product of the mix-
ing length and a typical velocity scale. In the vortex gas regime,
one can anticipate that the mixing length ` scales as the typi-
cal intervortex distance `iv, an intuition that will be confirmed
by Eq. 11 below. However, a final relationship for the rele-
vant velocity scale is more difficult to anticipate as we have
seen that the various barotropic velocity moments scale differ-
ently. The goal is thus to determine this velocity scale through
a precise description of the transport properties of the assembly
of vortices.

Stirring of a tracer like temperature takes place at scales larger
than the stirring rods: in our problem, the vortices of size λ.
At scales much larger than λ, the τ -equation [6] reduces to
(7, 20, 21)

∂tτ + J (ψ, τ) =Uψx − ν∆4τ. [10]

Uψx represents the generation of τ -fluctuations through stirring
of the large-scale temperature gradient −U , and the Jacobian
term represents the advection of τ -fluctuations by the barotropic
flow. Eq. 10 is thus that of a passive scalar with an externally
imposed uniform gradient −U stirred by the barotropic flow.
To check the validity of this analogy, we have implemented such
passive tracer dynamics into our numerical simulations: in addi-
tion to solving Eqs. 5 and 6, we solve Eq. 10 with τ replaced
by the concentration c of a passive scalar and −U replaced
by an imposed meridional gradient −Gc of scalar concentra-
tion. In the low-drag simulations, the resulting passive scalar
diffusivity Dc = 〈ψxc〉 /Gc equals the temperature diffusivity D
within a few percent, whereas D is significantly lower than Dc

for larger drag, when the intervortex distance becomes compa-
rable with λ. This validates our assumption that the diffusivity
is mostly due to flow structures larger than λ in the low-drag
regime, the impact of which on the temperature field is accu-
rately captured by the approximate Eq. 10. We can thus safely
build intuition into the behavior of the temperature field by
studying Eq. 10.

A natural first step would be to compute the heat flux associ-
ated with a single steady vortex. However, this situation turns out
to be rather trivial: the vortex stirs the temperature field along
closed circles until it settles in a steady state that has a vanish-
ing projection onto the source term Uψx , and the resulting heat
flux 〈ψx τ〉 vanishes up to hyperviscous corrections. Instead of a
single steady vortex, the simplest heat-carrying configuration is
a vortex dipole, such as the one sketched in Fig. 2A: two vor-
tices of opposite circulations ±Γ are separated by a distance `iv
much larger than their core radius rcore∼λ. This dipole mim-
ics the two nearest vortices of any given fluid element, which we
argue is a sufficient model to capture the qualitative transport
properties of the entire vortex gas. Without loss of generality, the
vortices are initially aligned along the zonal axis, and as a result

of their mutual interaction, they travel in the y direction at con-
stant velocity Γ/2π`iv . For the configuration sketched in Fig. 2A,
the meridional velocity is positive between the two vortices and
becomes negative at both ends of the dipole. For positive U , this
corresponds to a heat source between the vortices and two heat
sinks away from the dipole. These heat sources and sinks are pos-
itively correlated with the local meridional barotropic velocity so
that there is a net meridional heat flux 〈ψx τ〉 associated with this
configuration. We have integrated numerically Eq. 10 for this
moving dipole over a time `iv/V , which corresponds to the time
needed for the dipole to travel a distance `iv . This is the typi-
cal distance traveled by these two vortices before pairing up with
other vortices inside the gas. Fig. 2 C and D shows the resulting
temperature field and local flux ψx τ at the end of the numerical
integration (SI Appendix has details). A suite of numerical sim-
ulations for such dipole configurations indicates that, at the end
time of the numerical integration, the local mixing length and
diffusivity obey the scaling relations:

`∼ `iv , [11]

D ∼ `ivV , [12]

while the variance and third-order moment of the vortex dipole
flow field satisfy [8] and [9] at every time. It is interesting that
the velocity scale arising in the diffusivity [12] is V and not the
rms velocity

〈
u2
〉1/2. This is because the fluid elements that are

trapped in the immediate vicinity of the vortex cores do not carry
heat, in a similar fashion that a single vortex is unable to trans-
port heat. Only the fluid elements located at a fraction of `iv away
from the vortex centers carry heat, and these fluid elements have
a typical velocity V .

The relations [11] and [12] hold for any passive tracer. How-
ever, temperature is an active tracer so that the velocity scale
in turn depends on the temperature fluctuations, providing the
fourth scaling relation. This relation can be derived through a
simple heuristic argument: consider a fluid particle, initially at
rest, that accelerates in the meridional direction by transforming
potential energy into barotropic kinetic energy by flattening the
density interface as a result of baroclinic instability. In line with
the standard assumptions of a mixing-length model, we assume
that the fluid particle travels in the meridional direction over a
distance ` before interacting with the other fluid particles. Bal-
ancing the kinetic energy gained over the distance ` with the
difference in potential energy between two fluid columns a dis-
tance ` apart, we obtain the final barotropic velocity of the fluid
element: vf ∼U `/λ. This velocity estimate does not hold for
the particles that rapidly loop around a vortex center, with lit-
tle changes in APE; it holds only for the fluid elements that
travel in the meridional direction, following a somewhat straight

A B C D

Fig. 2. Heat transport by a barotropic vortex dipole. A is a schematic representation of the heat sources and sinks induced by the dipolar velocity field.
B–D show the barotropic vorticity, temperature field, and local meridional heat flux, respectively, at the end time of a numerical solution of [10] where the
dipole travels over a distance `iv in the meridional direction y.

4494 | www.pnas.org/cgi/doi/10.1073/pnas.1916272117 Gallet and Ferrari

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

A
R

IE
S

 o
n 

A
ug

us
t 2

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916272117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1916272117


EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

trajectory (these fluid elements happen to be the ones that carry
heat according to the dipole model described above). Such fluid
elements have a typical velocity V , which we identify with vf to
obtain

V ∼U 	/λ. [13]

A similar relation was derived by Green (22), who computes
the kinetic energy gained by flattening the density interface over
the whole domain. In the present periodic setup, the mean
slope of the interface is imposed, and the estimate [13] holds
locally for the heat-carrying fluid elements traveling a distance
	 instead. The estimate [13] is also reminiscent of the “free-
fall” velocity estimate of standard upright convection, where
the velocity scale is estimated as the velocity acquired during a
free fall over one mixing length (23–25). The conclusion is that
the typical velocity is directly proportional to the mixing length.
The baroclinic instability is sometimes referred to as slantwise
convection, and the velocity estimate [13] is the corresponding
“slantwise free-fall” velocity. To validate [13], one can notice

Fig. 3. Dimensionless mixing length �* and diffusivity D* as functions of
dimensionless drag for both linear and quadratic drag. Symbols correspond
to numerical simulations, while the solid lines are the predictions [15–18]
from the vortex gas scaling theory.

that, when combined with [11] and [12], it leads to the simple
relation

D∗∼ 	2∗. [14]
Anticipating the numerical results presented in Fig. 3, this rela-
tion is well satisfied in the dilute low-drag regime, 	� 10λ, with
the solid lines in Fig. 3 being precisely related by [14] above. A
relation very close to [14] was reported by Larichev and Held
(21) using turbulent cascade arguments. Their relation is writ-
ten in terms of an “energy-containing wavenumber” instead of
a mixing length. If this energy-containing wavenumber is inter-
preted to be the inverse intervortex distance of the vortex gas
model, then their relation becomes identical to [14].

The four relations needed to establish the scaling theory are
[7] and [11]–[13]. In the case of linear drag, their combination
leads to log(	∗)∼ 1/κ∗ or simply,

	∗ = c1 exp

(
c2
κ∗

)
, [15]

where c1 and c2 are dimensionless constants. The vortex gas
approach thus provides a clear theoretical explanation to the
exponential dependence of 	 on inverse drag reported by Thomp-
son and Young (7), which is shown to stem from the logarithmic
factor in [8] for the dissipation of kinetic energy. It is remark-
able that these authors could extract the correct functional
dependence of 	∗ with κ∗ from their numerical simulations. We
have performed similar numerical simulations in large-enough
domains to avoid finite-size effects and at low-enough hypervis-
cosity to neglect hyperdissipation in the kinetic energy budget.
The numerical implementation of the equations as well as the
parameter values of the various numerical runs are provided in
SI Appendix. In Fig. 3, we plot 	∗ as a function of κ∗. We obtain an
excellent agreement between the asymptotic prediction [15] and
our numerical data using c1 =3.2 and c2 =0.36. The dimension-
less diffusivity is deduced from 	∗ using the relation [14], which
leads to

D∗ = c3 exp

(
2c2
κ∗

)
. [16]

Once again, on choosing c3 =1.85, this expression is in excellent
agreement with the numerical data (Fig. 3).

When linear friction is replaced by quadratic drag, only the
energy budget [7] is modified. As can be seen in Eq. 9, the main
difference is that quadratic drag operates predominantly in the
vicinity of the vortex cores, which has a direct impact on the scal-
ing behaviors of 	∗ and D∗. Indeed, combining [7] and [11]–[13]
yields

	∗ =
c4√
μ∗

, [17]

which, using [14], leads to the diffusivity

D∗ =
c5
μ∗
. [18]

Using the values c4 =2.62 and c5 =2.0, the predictions are
again in very good agreement with the numerical data, although
the convergence to the asymptotic prediction for D∗ seems
somewhat slower for this configuration (Fig. 3).

Using These Scaling Laws as a Local Closure
We now wish to demonstrate the skill of these scaling laws
as local diffusive closures in situations where the heat flux
and the temperature gradient have some meridional variations.
For simplicity, we consider an imposed heat flux with a sinu-
soidal dependence in the meridional direction y . The modified
governing equations for the potential vorticities q1;2 of each
layer are

∂tq1 + J (ψ1, q1)=Q sin(y/L)− νΔ4q1, [19]
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∂tq2 + J (ψ2, q2) =−Q sin(y/L)− ν∆4q2 + drag. [20]

It becomes apparent that the Q terms represent a heat flux when
the governing equations are written for the (total) baroclinic and
barotropic stream functions τ and ψ: the τ -equation, obtained
by subtracting [20] from [19] and dividing by two, has a source
term Q sin(y/L) that forces some meridional temperature struc-
ture. By contrast, the ψ-equation obtained by adding [19] and
[20] has no source terms. The goal is to determine the tempera-
ture profile associated with the imposed meridionally dependent
heat flux. This slantwise convection forced by sources and sinks
is somewhat similar to standard upright convection forced by
sources and sinks of heat (26, 27). We focus on the statistically
steady state by considering a zonal and time average denoted
as ·. Neglecting the dissipative terms, the average of both Eqs.
19 and 20 leads to

Q sin(y/L) =− 1

λ2
∂yψx τ . [21]

Provided that the imposed heat flux varies on a scale L much
larger than the local mixing length `, we can relate the local
flux ψx τ(y) to the local temperature gradient U (y) =−∂yτ
by the diffusive relation ψx τ(y) =DU (y) =D∗λ|U (y)|U (y). In
the case of quadratic drag, inserting this relation into [21] and
substituting the scaling law [18] for D∗(µ∗) yields

− c5
µ∗
∂y [|∂yτ |∂yτ ]=Q sin(y/L). [22]

In terms of the dimensionless temperature τ∗= τ/λ2√Q , the
solution to this equation is

τ∗(y/L) = 2

(
L

λ

)3/2√
µ∗
c5
E
( y

2L
|2
)

, [23]

where E denotes the incomplete elliptic integral of the sec-
ond kind. Expression [23] holds for y/L∈ [−π/2;π/2], the
entire graph being easily deduced from the fact that τ∗(y/L)
is symmetric to a translation by π accompanied by a sign
change.

In the case of linear drag, we substitute the scaling law
[16] for D∗(κ∗) =D∗(λκ/|∂yτ |) instead. The integration of the
resulting ordinary differential equation yields the dimensionless
temperature profile:

τ∗(y/L) =
κL

c2λ
√
Q

∫ y/L

0

W

(
c2
κ

√
LQ

c3λ
cos s

)
ds, [24]

whereW denotes the Lambert function. Once again, [24] holds
for y/L∈ [−π/2;π/2], the entire graph being easily deduced
from the fact that τ∗(y/L) is symmetric to a translation by π
accompanied by a sign change.

To test these theoretical predictions, we solved numerically
Eqs. 19 and 20 inside a domain (x , y)∈ [0; 2πL]2 with periodic
boundary conditions for both linear and quadratic drag. We com-
pute the time and zonally averaged temperature profiles and
compare them with the theoretical predictions using the val-
ues of the parameters c1;2;3;4;5 deduced above. In Fig. 4, we
show snapshots of the temperature field in statistically steady
state together with meridional temperature profiles. The pre-
dictions [23] and [24] are in excellent agreement with the
numerical results for both linear and quadratic drag, and this
good agreement holds provided the various length scales of
the problem are ordered in the following fashion: λ� `�L.
The first inequality corresponds to the dilute vortex gas regime
for which the scaling theory is established, while the second
inequality is the scale separation required for any diffusive clo-
sure to hold. For fixed L/λ, the first inequality breaks down
at large friction, κ∗∼ 1 or µ∗∼ 1, where the system becomes
a closely packed “vortex liquid” (10, 28). The second inequal-
ity breaks down at low friction when `∼L. From the scaling
laws [15] and [17], this loss of scale separation occurs for κ∗.
1/ log(L/λ) and µ∗. (λ/L)2 for linear and quadratic drag,
respectively.

Discussion
The vortex gas description of baroclinic turbulence allowed us
to derive predictive scaling laws for the dependence of the mix-
ing length and diffusivity on bottom friction and to capture the
key differences between linear and quadratic drag. The scaling
behavior of the diffusivity of baroclinic turbulence seems more
“universal” than that of its purely barotropic counterpart. This
is likely because many different mechanisms are used in the lit-
erature to drive purely barotropic turbulence. For instance, the
power input by a steady sinusoidal forcing (29, 30) strongly dif-
fers from that input by forcing with a finite (31) or vanishing
(32) correlation time, with important consequences for the large-
scale properties and diffusivity of the resulting flow. By contrast,
baroclinic turbulence comes with its own injection mechanism—
baroclinic instability—and the resulting scaling laws depend only
on the form of the drag. We demonstrated the skills of these
scaling laws when used as local parameterizations of the turbu-
lent heat transport in situations where the large-scale forcing
is inhomogeneous. While this theory provides some qualita-
tive understanding of turbulent heat transport in planetary

A B

Fig. 4. Testing the diffusive closure. Snapshots and meridional profiles of the dimensionless temperature τ/λ2Q1/2. The solid lines are the zonal and time
mean from the numerical simulations, while the dashed lines are the theoretical expressions [23] and [24]. (A) Linear drag, with κ/Q1/2 = 0.5 and λ/L = 0.02.
(B) Quadratic drag, with µ* = 10−2 and λ/L = 0.01.
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atmospheres, it should be recognized that the scale separation
is at best moderate in Earth atmosphere, where meridional
changes in the Coriolis parameter also drive intense jets. How-
ever, our firmly footed scaling theory could be the starting point
to a complete parameterization of baroclinic turbulence in the
ocean, a much-needed ingredient of global ocean models. Along
the path, one would need to adapt the present approach to
models with multiple layers, possibly going all of the way to
a geostrophic model with continuous density stratification or
even back to the primitive equations. The question would then
be whether the vortex gas provides a good description of the
equilibrated state in these more general settings. Even more

challenging would be the need to include additional physical
ingredients in the scaling theory: the meridional changes in f
mentioned above, but also variations in bottom topography and
surface wind stress. Whether the vortex gas approach holds in
those cases will be the topic of future studies.

Data Availability. The data associated with this study are available
within the paper and SI Appendix.
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