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Abstract
Assessing child growth in terms of speech and language is
a crucial indicator of long term learning ability and life-long
progress. Since the preschool classroom provides a potent op-
portunity for monitoring growth in young children’s interac-
tions, analyzing such data has come into prominence for early
childhood researchers. The foremost task of any analysis of
such naturalistic recordings would involve parsing and tag-
ging the interactions between adults and young children. An
automated tagging system will provide child interaction met-
rics and would be important for any further processing. This
study investigates the language environment of 3-5 year old
children using a CRSS based diarization strategy employing
an i-vector-based baseline that captures adult-to-child or child-
to-child rapid conversational turns in a naturalistic noisy early
childhood setting. We provide analysis of various loss functions
and learning algorithms using Deep Neural Networks to sepa-
rate child speech from adult speech. Performance is measured
in terms of diarization error rate, Jaccard error rate and shows
good results for tagging adult vs children’s speech. Distinction
between primary and secondary child would be useful for mon-
itoring a given child and analysis is provided for the same. Our
diarization system provides insights into the direction for pre-
processing and analyzing challenging naturalistic daylong child
speech recordings.
Index Terms: speech activity detection, child speech di-
arization, naturalistic environment, TO-Combo SAD, i-Vectors,
Deep Neural Networks

1. Introduction
The diversity of language background, socio-economic condi-
tions, development level, or potential communication disorders
represents a challenge in assessment of child speech and lan-
guage skills [1]. The language environment of young chil-
dren plays an important role in development of speech, lan-
guage, vocabulary and thus, thinking and learning ability, and
has an impact on the life prospects of the child. The qual-
ity and number of interaction in a rich language environment
helps in meeting essential language development outcomes in
early childhood[2]. Thus, early childhood researchers are fo-
cusing on analyzing classroom interactions of preschool chil-
dren to monitor and provide proactive support to them. Given
the huge amount of daylong recordings to be analyzed, using
automated speech processing and machine learning techniques
would be highly beneficial. Previous classroom-based speech
analysis systems have studied interaction of students in peer led

team environment but for older children to provide communica-
tion metrics like word counts and speech qualities like curios-
ity, dominance, emphasis, engagement etc. The main challenge
of such environments involve rapid short conversational turns,
overlapped speech, noise and reverberation.

The preliminary task of analyzing such data environments
involve speech diarization i.e. segmenting and tagging ’who
spoke when’. Once this basic task is completed, further process-
ing as mentioned above can be performed. In this study, we per-
form diarization on child-adult and child-child interactions of
preschool children in naturalistic active learning environments.
The audio data was collected using LENA devices[3, 4] worn
by the children in different classrooms at different times. The
recordings continue as subjects move around during a school
day and are paused during nap time.

We provide baseline results using LIUM diarization
toolkit[5] on gold standard segments. CRSS diarization toolkit
is used for improving on the baseline. In this study, we present
an i-Vector based Speaker Diarization system that performs seg-
mentation using Speech Activity Detection and classification
using a Deep Neural Network (DNN) model. Additionally,
we compare different learning algorithms along with their loss
functions to know the best performing configuration. Previous
work on this dataset[6] used much lesser data and fixed seg-
ments of length 1.5 seconds with a Support Vector Machine
(SVM) backend for classification. We have more data to im-
prove the i-Vector training but utilize a challenging smaller seg-
ment length as we use i-Vectors as our features.

2. Data specifics
The dataset in this paper consists of spontaneous conversational
speech recorded with the help of LENA units attached to the
subjects in a high quality childcare learning center in the United
States. The 48 recording sessions have children who are 3 to 5
year olds. About 15 hours (120K word tokens) of child speech
was manually transcribed by the CRSS transciption team at
UT Dallas. Another 23 hours of adult speech from 4 teach-
ers/caregivers was manually transcribed providing 300K words
in the transcripts. A total of 79 hours of speech and non-speech
child and adult data was tagged by our transcribers. Three ses-
sions have been excluded for further pre-processing/analysis,
as we were unable to extract i-Vectors. We have divided the
45 session into training, development and test sets for training
diarization system and evaluating its performance.

The training, development and test set divisions in terms
of children, their sessions and total child-adult speech dura-
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tions are shown in table 1. Gold standard speech segments
are used for training and development while 0.5 second speech
segments based on Threshold Optimized-ComboSAD(TO-
ComboSAD)[7] evaluations are used in the testing stage. Al-
though our SAD system provides highly accurate results, we
can only select segments that can be assigned a reference
speaker, given the segment start time and duration. This is due
to fixed segment size of 0.5 seconds which eliminates segments
that may have multiple speakers or overlapped speech and re-
duces the test evaluation data to 11 hours, 13 minutes and 52
seconds.

Set Child
ID

Sessions Duration
(hh:mm:ss)

Training Set

1 3 4:14:49
2 2 3:22:52
3 2 3:35:28
4 2 2:48:42
5 2 2:28:01
6 1 1:26:55
7 1 6:31:44
8 1 2:14:07
9 1 32:40
10 1 2:10:49

Aggregate sum 10 16 29:26:08

Development Set

11 2 1:32:26
12 2 2:38:07
13 2 5:50:26
14 1 54:44
15 1 1:17:59

Aggregate sum 5 8 12:13:42

Testing Set

16 3 4:27:52
17 3 1:43:47
18 3 3:19:00
19 2 2:37:39
20 2 3:19:30
21 2 5:17:19
22 2 5:17:11
23 2 8:23:47
24 1 1:45:41
25 1 1:01:19

Aggregate sum 10 21 37:45:18

Table 1: Setwise Database Details

3. Method
Our task is to tag quick conversational turns from the LENA au-
dio data as being from Primary Child (PC), Secondary Children
(SC) or Adults (AD). Here, PC carries the LENA recording de-
vice on his person, while SC/AD are the other children/adults
that are recorded by the PC’s LENA device.

3.1. Speech Activity Detection

Our toolkit TO-ComboSAD has performed extremely well with
such long duration data [4, 7, 8]. TO-Combo SAD computes
five noise robust features at the frame level for each segment
and projects it into a single 1-dimensional space using Principal
Component Analysis. The goal is to classify each audio file
into speech and non-speech regions based on feature values at
the frame level.

So in our case of daylong childcare center LENA unit
recordings, each complete audio file is split into files of 20 min-
utes duration and then TO-ComboSAD is applied. This leads
to better performance than entire 8-10 hours of audio recording,
as there is sufficient data to train the model and computationally
efficient. It trains a two-mixture GMM and finds the means for
speech and non-speech regions. Let us denote the means by νhs
for speech and νhp for background. The mixture with larger
mean value is hypothesized to contain speech and vice-versa.
This is from the fact that Combo features are designed to have
higher values for speech and lower values for noise, background
and silence.

Further, the mixture means are used to compute SAD
thresholds which are used for speech/non-speech decisions.A
large mixture Gaussian Mixture Model(GMM) model is learned
from features extracted from annotated corpora of Switchboard
and Fisher data. The mth mean of the N mixture GMM is pro-
jected in the Combo-SAD dimension. Let the projected esti-
mate of the mean be ν̂n and it’s mean be νts. Thus, νts can
be seen as the prior model of speech based on standard datasets
and νhs will be the posterior model of the speech trained on the
data. The threshold value α is computed as a convex combina-
tion of the estimated Gaussian means of the projected Combo
features and is given by:

α = kmax(νhs, νts)+(1− k)(νhp) (1)

3.2. I-Vectors for Speaker Characteristics

I-Vectors [9] are fixed length vectors that characterize speaker
identity from arbitrary length sequential data (i.e. speech sam-
ples). Factor analysis is performed to separate speaker de-
pendent and speaker independent factors to represent unique
attributes of the speaker. I-Vectors have been used for
speaker recognition[10], language recognition[11], accent
recognition[12], emotion recognition[13] etc. Within the child
speech area, they have been used for speaker recognition
[14, 15], age group identification [16] and screening children
that can be ’at risk’ of child speech disorders [17].

I-Vectors can be expressed by the following equation,

M = m+ Tw (2)

where m is the GMM supervector also known as Universal
Background Model, T is the total variability matrix or i-Vector
extractor, and w is the i-Vector. Here, T is the matrix of bases
spanning the subspace for speaker and channel variability in
the supervector space, and hence known as the total variability
space, and w is standard normally distributed latent variable.
For each observation sequence representing a speech utterance,
our i-Vector is a Maximum-A-Posteriori (MAP) point estimate
of the latent variable w.

In our system, 20-dimensional Mel-Frequency Cepstral Co-
efficients were extracted to model 256 gaussians and providing
sufficient statistics for i-Vectors of 32 dimensions. The UBM
model is trained on the development set and the TV matrix is
trained on the training data.

3.3. DNNs for Speaker Classification

The block diagrams for training and development sets (Fig. 1)
present our technique for developing the DNN Model, while
block diagram for testing set (Fig. 2) presents our testing strat-
egy using the trained DNN model. We used a Deep Neural Net-
work (implemented in keras [18]) for classifying the labels as it
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Figure 1: Block diagram for training and development data.

Figure 2: Block diagram for testing data.

should be able to learn non-linear high level features for clas-
sification task. Previously i-Vectors have been used along with
DNNs for classifcation tasks with good results[19, 20]. An-
other reason being, it provided high recall for PC versus mul-
tiple other classifiers including SVMs. This specific architec-
ture first learns complex features in a high-dimensional space
and then reduces number neurons in the last two layers, to pro-
vide the effect of dimensionality reduction. Various combina-
tion of layers, number of neurons, activation functions etc. were
trained on training set and the current configuration was chosen
based on performance on the validation set.

4. Results and Discussion
4.1. Equal Error Rate

Equal Error Rate can be defined as the error rate at the point of
the detection error tradeoff curve where the False Alarm Rate
is equal to the False Rejection Rate. For the task of Speech
Activity Detection, our test dataset provides an average Equal
Error Rate of 1.35%.

4.2. Diarization Error Rate

Diarization results are presented in terms of diarization error
rate (DER) that can be defined as the sum of errors due to incor-
rect speaker (Espkr), missed speech (EMISS), false alarm speech
(EFA) and overlapping speakers (Eovl).

Espkr : Percentage of scored time that a speaker ID is as-
signed to the wrong speaker.

EMISS : Percentage of scored time that a hypothesized non-

Parameter Value
Number of layers 7
Batch size 128
Number of epochs 8
Input dimension 32 dimensions
Intermediate layer di-
mensions

[48,48,256,512,512,256,48]

Learning rate 0.002
Dropout rate 0.3
Layer numbers having
droupout

[3,4,5,6]

Output dimensions 3 dimensions
Activation Function Exponential Linear Unit
Loss Function Categorical Cross Entropy

(CCE), Mean Squared Er-
ror (MSE), Logcosh

Algorithms Adadelta, Adam, Adamax

Table 2: DNN Architecture Experimental Setup

speech segment corresponds to a speaker segment.
EFA : Percentage of scored time that a hypothesized

speaker segment is labelled as non-speech in the reference.
Eovl : Percentage of scored time that some of the multiple

speakers in a segment do not get assigned to any speaker.

DER = Espkr +EMISS +EFA +Eovl (3)

Applying LIUM diarization toolkit[5] to gold standard test
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speech segments provided an average DER in excess of 100%.
So we did not try more experiments of fixed length segments.

4.3. Jaccard Error Rate

We also report Jaccard Error Rate (JER), a metric introduced for
DIHARD II[21] that is based on the Jaccard index. The Jaccard
index is a similarity measure typically used to evaluate the out-
put of image segmentation systems and is defined as the ratio
between the intersection and union of two segmentations. To
compute Jaccard error rate, an optimal mapping between refer-
ence and system speakers is determined and for each pair the
Jaccard index of their segmentations is computed. The Jaccard
error rate is then 1 minus the average of these scores.

An optimal mapping between speakers is determined using
the Hungarian algorithm so that each reference speaker is paired
with at most one system speaker and each system speaker with
at most one reference speaker. Then, for each reference speaker,
the speaker-specific Jaccard error rate is (EFA +EMISS)

ETOTAL
.

ETOTAL: The duration of the union of reference and sys-
tem speaker segments; if the reference speaker was not paired
with a system speaker, it is the duration of all reference speaker
segments.

EFA: The total system speaker time not attributed to the
reference speaker; if the reference speaker was not paired with
a system speaker, it is 0.

EMISS: The total reference speaker time not attributed to
the system speaker; if the reference speaker was not paired with
a system speaker, it is equal to TOTAL.

The Jaccard error rate then is the average of the speaker
specific Jaccard error rates. Results for current system in terms
of DER and JER are presented in Table 3.

Algorithm Loss function DER JER

Adadelta MSE 39.1% 63.9%
Adam MSE 39.9% 66.4%
Adamax MSE 39.9% 63.7%
Adadelta Logcosh 38.1% 64.2%
Adam Logcosh 39.5% 64.1%
Adamax Logcosh 41.8% 65.2%
Adadelta CCE 40.8% 62.5%
Adam CCE 40.2% 70.5%
Adamax CCE 37.3% 62.0%

Table 3: Diarization error rate and Jaccard error rate diariza-
tion results

The best results are provided by adamax algorithm with cat-
egorical cross entropy loss function. Table 4 shows the confu-
sion matrix for the three classes (in terms of accuracy), we aim
to predict for the best (algorithm-loss function) combination.
Accuracy can be defined as the fraction of samples that belong
to a class and have been predicted correctly. Our unweighted
average recall (50.2%) is better than chance (33.3%) and the
adults’ class shows the highest accuracy followed by secondary
children and primary child. This signfies that i-Vectors are able
to capture adult patterns in the data correctly. Around half of
the PC and SC speech segments are predicted as adults. This
means better feature modelling techniques would be desired for
recognizing children’s speech using i-Vectors. This could also
be due to the data imbalance working in favor of AD (49,854 ut-
terances)> SC (18,040 utterances) and AD> PC (20,799 utter-

R
ef

er
en

ce

System

PC SC AD

PC 24.2% 26.9% 48.9%

SC 9.1% 40.7% 50.2%

AD 4.3% 10.2% 85.5%

Table 4: Confusion Matrix for Primary Child, Sec-
ondary Children and Adults using Adamax algorithm
and Categorical Cross Entropy Loss function

ances). Additionaly, PC (24.23%) is harder to predict than SC
(40.73%). Thus, class balanced metrics could provide comple-
mentary information while evaluating system performance and
data imbalance should be taken into account while modelling
future systems. Also, 26.86% of the PC data was recognized
as SC, while only 9.07% of SC data was tagged as PC, despite
there being more PC utterances. Thus, better strategies need to
be devised for separating PC and SC.

5. Conclusions and Future work
This study presents a preliminary system for diarization of day-
long child speech recordings in a child care learning environ-
ment. A combination of I-Vector and DNN Classification sys-
tem provides effective diarization error rate and Jaccard error
rate. The complete pre-processing pipeline includes excellent
Speech Activity Detection followed by tagging 0.5 seconds
speech segments. Further work towards an improved diariza-
tion system could be the initial step for multiple Child Speech
Processing systems including Automatic Speech Recognition,
Word Counting and Vocabulary Diversity measurement sys-
tems, screening kids with Speech Sound Disorders etc. Signal
processing enhancement techniques, data augmentation, DNN
embeddings and advanced DNN architectures can provide bet-
ter results in terms of DER. Distance from microphone can be
utilized for better recognition of PC from SC in future. Fea-
tures enhancing child-specific speech characteristics would be
helpful in improving adult versus child classifications. Also we
would like to reduce the segment lengths to 0.25 seconds and
also test with different segment durations.
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