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Abstract: Extreme, downslope mountain winds often generate dangerous wildfire conditions. We used the 

wildfire spread model Fire Area Simulator (FARSITE) to simulate two wildfires influenced by strong wind 

events in Santa Barbara, CA. High spatial-resolution imagery for fuel maps and hourly wind downscaled to 

100 m were used as model inputs, and sensitivity tests were performed to evaluate the effects of ignition 

timing and location on fire spread. Additionally, burn area rasters from FARSITE simulations were compared 

to minimum travel time rasters from FlamMap simulations, a wildfire model similar to FARSITE that holds 

environmental variables constant. Utilization of two case studies during strong winds revealed that FARSITE 

was able to successfully reconstruct the spread rate and size of wildfires when spotting was minimal. 

However, in situations when spotting was an important factor in rapid downslope wildfire spread, both 

FARSITE and FlamMap were unable to simulate realistic fire perimeters. We show that this is due to inherent 

limitations in the models themselves, related to the slope-orientation relative to the simulated fire spread, 

and the dependence of ember launch and land locations. This finding has widespread implications, given the 

role of spotting in fire progression during extreme wind events. 

Keywords: wildfire modeling; FARSITE; spotting; fire weather; Sundowner winds 

Wildfire behavior is determined by fuels, topography, and weather [11], commonly called the 

                                                                 

1 . Introduction 

Around the world, destructive wildfires significantly disrupt lives through personal and economic losses, 

degraded air quality [1], and an enhanced risk of landslides and debris flows [2]. Understanding future climatic 

and anthropogenic changes that will alter wildfire season and intensity is crucial for highly-populated and at-

risk locations such as southern California communities. Wet winters and dry summers in this climate lead to a 

wildfire season generally between May and October, although rising temperatures associated with climate 

change will advance fuel drying and extend the length of the fire season [3–5]. Furthermore, projected 

increases of extreme meteorological events such as heat waves [6] will affect the frequency, severity, and 

spatial distribution of wildfires. Combined with the expected changes in the regional climate, the probability 

of impactful wildfires may increase in the future in coastal Santa Barbara due to an increasing number of 

ignitions from expansion of the wildland-urban interface [7–10]. 
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“fire behavior triangle” or the “fire environment triangle”. In the case of extreme wind events, meteorological 

conditions are the leading factor that determines wildfire spread and intensity [12–18]. Extreme, downslope 

wind events in coastal Santa Barbara County are called “Sundowner winds” (or 

“Sundowners”) due to the onset of gusty winds around sunset [19,20]. Sundowners are most frequent in spring 

[21,22] when fire danger is relatively low, but they can occur year-round. These events may produce critical 

fire weather conditions throughout the evening, including gale-force winds and relative humidity below 15% 

[23,24]. Some of these events have been associated with abnormally high temperatures in the evening 

occasionally exceeding 30 ◦C after sunset during summer [19,20]. 

While strong wind events may create extreme fire weather conditions and cause rapid wildfire spread, 

no previous studies have placed emphasis on examining the sensitivity of operationally-used wildfire models 

to simulate wildfires significantly influenced by downslope wind events. This is important because Sundowners 

have rapidly spread all major wildfires on the south side of the Santa Ynez Mountains (SYM) toward a coastal 

community of ~150,000 inhabitants [25] (Figure 1). All abbreviations used in this paper are listed in Table A1, 

and statistics for all major wildfires are shown in Table 1. Among those remarkable wildfires was the Painted 

Cave fire (June 1990), which quickly spread through dense, flammable vegetation driven by strong (~26 m/s) 

winds [19,24]. Between 2016 and 2019, Sundowners rapidly spread three major wildfires in coastal Santa 

Barbara County: the Sherpa (June 2016), Thomas (December 2017), and Cave (December 2019) fires. 

Northwesterly winds around 18 m/s rapidly spread the Sherpa Fire down the sparsely inhabited western slopes 

of the SYM. Driven by Sundowner winds, the Thomas Fire spread into the SYM and claimed the title of the 

largest southern California wildfire to date. Although wildfires have undeniably affected the inhabitants and 

ecosystem in this region, only one study so far [26] has attempted to reconstruct wildfires in coastal Santa 

Barbara County using wildfire models. 

Wildland fire models such as the Fire Area Simulator (FARSITE) [27] and FlamMap [28,29] are used 

operationally to simulate prescribed burns in the national parks in the United States [30–32], and examine 

model sensitivity to fuel models and fuel moisture [33,34]. Additionally, these models provide decision support 

regarding appropriate responses on wildfire incidents [35], and FARSITE is typically selected to answer 

questions regarding fire size, location, and timing [29,35]. FARSITE and FlamMap are two-dimensional semi-

empirical wildfire models that describe how surface wind flow spreads fire at fire line and geographical scales. 

These are uncoupled wildfire models because they do not consider interactions between the fire and the 

atmosphere, i.e. the feedback that occurs between the fire and local wind flow. The simplicity in the treatment 

of fuels, topography, and weather as independent variables is a limitation of uncoupled wildfire models, since 

these factors can greatly impact observed fire behavior [36]. In contrast, atmospheric models, such as the 

Weather Research and Forecasting model (WRF) [37] may be combined with fire-spread models (e.g. WRF-Fire 

[36] and WRF-SFIRE [38]) to describe this coupling at fire scales (i.e. tens of meters). Although highly 

sophisticated, these coupled models are computationally expensive and rarely used operationally [27,39]. Our 

choice to use uncoupled wildfire models is justified by the simplicity and quick simulation run time, which 

would be beneficial in an operational setting. The rapid simulation time is especially critical for fires in the 

Wildland-Urban Interface (WUI) for wildfire management and evacuation planning purposes. More 

information on the use, advantages, and disadvantages of FARSITE and FlamMap can be found in [32]. 

The ability of uncoupled fire spread models, such as FARSITE and FlamMap, to simulate downslope 

wildfire spread driven by extreme, downslope winds in the Santa Barbara area has not yet been assessed. 

Moreover, evacuation planning can become critical during wind-driven wildfires in Santa Barbara; thus, 

advancing research on wildfire spread and risk with operational models is essential. The overarching goal of 

this research is to examine the skill of FARSITE in simulating downslope fire spread under extreme conditions 

by focusing on two of the most rapidly spreading wildfires that have affected the southern slopes of the SYM 

during Sundowners. Additionally, burn area rasters from simulations in FARSITE are further compared with the 

minimum travel time rasters from FlamMap simulations. The successful simulation of wildfire case studies 

using uncoupled fire spread models such as FARSITE with focus on spatiotemporal wind variability may allow 

for the creation of burn probability maps for fire risk assessment during Sundowners. This research may 

contribute to enhanced wildfire resource allocation and preparedness during extreme fire weather conditions. 

This study is organized as follows. Data sets, material, and methods are discussed in Section 2. Results and 

conclusions are presented in Section 3. Final conclusions are summarized in Section 4. A list of acronyms and 

the other figures are included in the Appendix A. 
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Figure 1. Region of interest (red rectangle; a) and perimeters of past wildfires in coastal Santa Barbara County 

between 1970 and 2019 (b), colored by the year of occurrence. The “PAINT” Fire is the Painted Cave Fire 

examined in this study. The thick, black lines indicate major roads and freeways (Highway 101 and Highway 154), 

and the two blue squares indicate weather stations used in this analysis. 

Table 1. Information on past wildfires in coastal Santa Barbara County. It should be noted that the 
Thomas Fire ignited to the east of Santa Barbara in Ventura County and spread west in the first two weeks after 

ignition. The numbers in the table are from official reports that incorporate areas in coastal Santa Barbara. 

Additionally, the structural impacts, injuries, and deaths associated with the Montecito debris flow caused by the 

Thomas Fire were not included. 

Fire Date Acres Burned Structural Impacts Injuries and Deaths 

Painted Cave June 1990 2000 ha 427 destroyed 1 death 

Tea November 2008 785 ha 210 destroyed - 

Jesusita May 2009 3500 ha 80 destroyed - 

Sherpa June 2016 3200 ha 1 destroyed 1 injury 

Thomas December 2017 110,000 ha 1000 destroyed 2 deaths 

Cave November 2019 1265 ha - - 

2. Materials and Methods 

2.1. Case Studies 

Two wildfires rapidly spread by Sundowner winds were selected to test the ability of FARSITE to 

reconstruct fires perimeters during extreme fire weather conditions. The first case study, the Sherpa Fire, was 

selected because of the availability of a high-resolution fuel map from remotely sensed data taken 

approximately two years before the fire, and multiple fire perimeters obtained in the hours after ignition, 

allowing for numerous comparisons of observed and simulated fire perimeters. The fire ignited at 1515 Pacific 

Daylight Time (PDT) on 15th June 2016 in the slopes of western SYM along the Gaviota Coast in Santa Barbara 

County from embers blown off a burning log. Sundowner winds on the first night of the fire rapidly spread the 

fire southward down canyons. Winds were strong at the nearby Refugio station (RHWC1; see Figure 1 for 

location), ranging 16–18 m/s on the evening of the fire. 

North-northwesterly winds recorded at a station downhill (south) were less than 10 m/s, illustrating the 

limited spatial extent of the Sundowner event [22]. At the time of ignition, RHWC1 reported a temperature of 

19 ◦C and relative humidity of 38% with no temperature ramps or sudden drops in moisture evident in the 

following hours. Strong, northerly winds and gusts reaching 23 m/s continued throughout the night and 

rapidly spread this fire south, resulting in evacuations and the closure of Highway 101 (Figure 1). 

The second case study was chosen because of exceptionally fast fire spread from Sundowner winds and 

the significant influence on populated areas. The arson-caused Painted Cave Fire ignited on June 27th, 1990 

at 1800 PDT off Highway 154, close to the SYM ridgeline (Figure 1). In addition to an extended three-to-four-

year drought, temperatures exceeding 38 ◦C and relative humidity values below 20% in the three-day heat 

wave preceding the fire left the dense chaparral dry and very flammable [19]. Extreme winds and gusts 

launched burning branches and flaming embers ahead of the fire front and spread the fire downhill toward 

urban Santa Barbara, travelling 3 km in the first 20 min and 6 km to Highway 101 in 1 h [19,40]. Additionally, 
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backfiring operations spread the fire eastward across Highway 154, and an upslope (southerly) wind shift 

spread the fire northwest of the ignition point on the second day. 

2.2. Wildland Fire Models 

Wildfires were simulated using the vector-based, deterministic fire model FARSITE v4 built within 

FlamMap6. FARSITE uses Huygen’s principle of wave propagation and the Rothermel fire spread equations [12] 

to simulate fire spread creating a series of ellipses at multiple vertices on the fire front [27,41]. Surface and 

crown fires are separated and use the Rothermel [12] and Van Wagner [42] models, respectively. FARSITE uses 

Albini’s equations [43] for spotting from torching vegetation and calculates the maximum distance an ember 

can travel using wind speed, topography, and ember size, shape, and density [27]. Additionally, wind speed is 

considered only horizontally, and is assumed to increase logarithmically with height above the 6.1 m (20 ft) 

input winds [27]. Required inputs include elevation, slope, aspect, fuel model, canopy cover, crown base 

height, and crown bulk density, and meteorological data, including temperature, relative humidity, horizontal 

wind speed and direction, and precipitation. 

FlamMap is another operationally-used, uncoupled wildfire model that shares many similarities with 

FARSITE, including the same input data (e.g. fuel map, crown base and stand height, bulk crown density, 

elevation, aspect, slope, temperature, humidity, wind speed and direction, precipitation). The main difference 

between FARSITE and FlamMap is the absence of time-varying winds and fuel moisture conditions in FlamMap. 

The Minimum Travel Time (MTT) model calculates fire behavior at every grid cell and independent of one 

another, providing great use for comparisons of landscape treatment processes [32]. More information on the 

differences between FARSITE and FlamMap can be found in [44]. 

2.3. Fuel and Topography Data 

Vegetation in southern California is primarily comprised of evergreen sclerophyllous shrubs, such as 

chamise and Ceanothus, as well as drought deciduous coastal sage scrub [45,46]. Both are well adapted to the 

long, dry summers and are highly flammable [15,47,48]. In our study, canonical discriminant analysis and linear 

discriminant analysis were applied to an 18 m Airborne Visible/ 

Infrared Imaging Spectrometer (AVIRIS) image from 2014 for the Sherpa Fire [49], and 12 m from 2004 

AVIRIS image for the Painted Cave Fire [50]. The 15-year gap between the Painted Cave fire and the 2004 

imagery for the Painted Cave fire is likely enough time for the recovering vegetation to mimic the conditions at 

the time of the fire [51]. The classified images were cross-walked into fuel models from Anderson’s original 13 

fire behavior fuel models [41], Scott and Burgan’s fuel models [52], and Weise and Regelbrugge’s chaparral 

models [53]. Fuel model specifications are shown in Table 2 and Figure 2a,c. These materials are available 

upon request to the corresponding author. 

Table 2. Fuel model information. 

Vegetation Name Fuel Model Number Fuel Model Source Fuel Model Name Fuel Model Code 

Short Grass 1 Anderson - - 

Chamise 15 
Weise and 

Regelbrugge 
- - 

Ceanothus 16 
Weise and 

Regelbrugge 
- - 

Coastal Sage Scrub 18 
Weise and 

Regelbrugge 
- - 

Suburban/WUI 23 Scott and Burgan 
Moderate Load 

Conifer Litter 
TL3 

Shrubs 145 Scott and Burgan 
High Load, Dry 

Climate Shrub 
SH5 

Dense Shrubs 147 Scott and Burgan 
Very High Load, Dry 

Climate Shrub 
SH7 

Trees/Riparian 162 Scott and Burgan Timber-Understory TU2 
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Figure 2. Fuel maps (a,c) and elevation (b,d) rasters for the Sherpa (a,b) and Painted Cave (c,d) fires. The black 

polygons are the fire perimeters at 1600, 1800, and 1900 PDT for the Sherpa Fire, and the final perimeter for the 

Painted Cave Fire. Fuel type numbers and names are indicated in Table 2. 

Minor modifications in burnable and unburnable classifications were applied to the fuel maps for both 

case studies; the area south of the Sherpa Fire ignition is a campsite (Rancho La Scherpa) with a combination 

of sparse and irrigated vegetation. Hence, this region was classified as unburnable. The Painted Cave Fire 

spread southward into suburban and urban Santa Barbara, which were originally classified as unburnable, 

limiting the potential extent of the simulated fire spread. A dense timber-litter fuel model was chosen for 

suburban areas to imitate these regions with intermingled vegetation and buildings. Areas consisting of 

primarily concrete roads and stucco structures considered ‘urban’ remained classified as unburnable. 

Elevation data at 30 m spatial resolution acquired from the Shuttle Radar Topography Mission [54] was 

used for the FARSITE elevation, slope, and aspect rasters for each case study (Figure 2b,d). 

2.4. Weather Data 

Given the narrow SYM (10 km) and limited availability of surface weather stations, atmospheric data were 

obtained with WRF simulations at 1 km grid spacing. For our case studies, hourly 1 km gridded 2 m 

temperature, 2 m relative humidity, and 10 m wind (east-west and north-south components) 

were created using the WRF with the configuration specified in [55]. 

Hourly temperature, relative humidity, and precipitation data from a selected point were input to 

FARSITE through a weather stream file [56] created using WRF data and applied over the entire domain. In 

coastal Santa Barbara County, there are significant gradients in weather conditions between the SYM slopes 

and areas near the coast [55,57]. Therefore, the location used for the weather stream file data must be 

representative of conditions close to the fire. For these two case studies, we created 

weather stream files using the WRF grid cell closest to the ignition sites. 

Wildfire spread is exceedingly sensitive to local winds, especially extreme winds [12,14,57], and the 

utilization of gridded wind data in wildfire modeling has improved the agreement between simulated and 

observed perimeters [18,58,59]. Mass-conserving meteorological wind downscalers such as WindNinja [60,61] 

have been used to increase resolution of gridded winds and have produced more accurate fire perimeters in 

FARSITE and FlamMap in some case studies [28,34,62–64]. To capture the variability of winds over the complex 

terrain in coastal Santa Barbara County, the 1 km WRF wind output was downscaled to 100 m using WindNinja 
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(henceforth “WN”). This software requires an elevation raster and single-point or gridded wind data, and 

outputs wind speed and direction in raster format. Figure 3 illustrates differences in winds as a consequence 

of different grid spacing at 

1 km (WRF) compared to 100 m (WN) at the time of ignition for the Sherpa and Painted Cave fires. Smoothing 

effects as a consequence of the grid spacing at 1 km (WRF) and 100 m (WN) will influence simulated fire 

spread. It is also important to note the height differences between the 10 m agl WRF surface wind files and 

the 6.1 m agl WN surface wind files. 

To determine potential errors associated with temperature, relative humidity, and wind speed, we 

compared station observations acquired from Mesowest [65] with the closest WRF and WN (for wind speed 

only) grid cell for each case study (Figure 4). We compared model output with RHWC1 during the Sherpa Fire 

because of its close proximity to the fire. The Santa Barbara airport station (henceforth KSBA; see Figure 1 for 

location) was the only weather station installed during the Painted Cave fire, and was thus used to validate 

meteorological variables. This station did not archive data in the early morning hours, resulting in breaks in 

station data (Black lines in Figure 4d–f). RHWC1 is a Remote Automatic Weather Station (RAWS) owned by the 

U.S. Forest Service, whereas KSBA is an Automated Surface Observing System owned by the National Weather 

Service. It’s important to note that RHWC1 records all wind measurements at 6.1 m agl and non-wind 

measurements (e.g. temperature, relative humidity) at 2 m agl. KSBA measures wind at 10 m agl and measures 

non-wind variables at 2 m agl. WRF surface files were bilinearly interpolated to 2 m for temperature and 

relative humidity, and 10 m agl for wind, whereas WN produces wind rasters at 6.1 m agl. 

Although there was generally high agreement in wind speed between the WRF and WN grid cells 

(Figure 4), we observe biases in temperature and relative humidity between WRF and stations; RAWS are 

usually placed in locations that are normally exposed to high wind speeds, other near canyons and passes. 

These topographic features are mostly smoothed in 1 km grid simulations, largely explaining differences in 

wind speeds between model output and station observations. Biases between WRF and KSBA have been 

shown in previous studies [24,55,57] and are attributed to the station’s proximity to the ocean, and the 

representation of the transition between the marine and coastal boundary layer in simulations. The choice of 

WRF parameterizations and implications for simulations are discussed in [55]. 

  
Figure 3. Examples of gridded wind data from WRF at 1 km resolution (a,c) and WN at 100 m resolution 

(b,d) at the time of ignition for the two wildfire case studies. It’s important to note that output is at 

10 m (~30 ft) for the WRF surface winds and at 6.1 m (20 ft) for WN surface winds used in this analysis. The black 

polygons are the fire perimeters at 1600, 1800, and 1900 PDT for the Sherpa Fire, and the final perimeter for the 

Painted Cave Fire. 
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Figure 4. Observed (black) and simulated with WRF (blue) temperature (a,d), relative humidity (b,e), and wind (c,f) 

at the nearest weather stations for the Sherpa (RWHC1) and Painted Cave (KSBA) fires. 

WindNinja data was added for wind plots (green lines in (c,f)) and observed gust data was available at RHWC1 (grey 

line in (c)). The vertical red line indicates the time of ignition for each fire. 

Interestingly, the simulated temperature and relative humidity values around the ignition times were 

fairly close to observations during both case studies (Figure 4a,b,d,e). WRF and WN underestimated wind 

speeds, and this difference was largest in the evening during the Sherpa Fire (Figure 4c) when the observed 

winds were ~5 m/s higher and observed wind gusts were more than 10 m/s higher than simulated winds. 

During the Painted Cave fire, simulated winds typically underestimated KSBA wind speeds by less than 2 m/s 

(Figure 4f). The underestimation of simulated 

winds at these grid cells may produce underestimations in simulated fire perimeters. 

2.5. Gust Factor 

Wind gusts play a crucial role in wildfire spread, intensity, and spotting [12,29,66], but are not simulated 

by WRF. As suggested in [67], gusts provide value for understanding extreme winds from an observational and 

wildfire-focused standpoint based on differing calculation methods. Wind speeds reported at RAWS such as 

RHWC1 are the average of winds in the 10-min prior to every hour, whereas gusts are the maximum wind 

recorded in the previous hour. Previous studies [67–70] utilized station observations to create a wind gust 

approximation termed the ‘gust factor’. The gust factor (GF) is calculated by dividing the gust speed by the 

wind speed, and varies between stations due to sampling length and frequency, averaging interval, and 

instrument mounting height [70]. 

To mimic the effect of gusts on simulated wildfire spread, we applied a GF to WN rasters. We chose to 

apply a gust factor to the WN gridded wind files because WRF and WN underestimated winds in both case 

studies (Figure 4c,f). Underestimates of wind speed will result in underestimated fire spread. However, the 

spatiotemporal variability of wind gusts is difficult to simulate, and the application of a constant GF over the 

domains and at all times may lead to overestimated fire spread. Wind gust data were not available during the 

Painted Cave Fire, but were available during the Sherpa Fire at RHWC1 (Figure 4c). At the time of ignition for 

the Sherpa Fire, the GF was 1.71, although increased wind speeds and gusts later in the evening decreased the 

GF to 1.28 at 1800 PDT. The average GF between the time of ignition and the last observed perimeter of that 

first evening (1500 to 1900 PDT) was 1.38, demonstrating the variability of the GF through the use of different 

temporal subsets. While GFs have not been extensively analyzed in coastal Santa Barbara, studies on Santa 

Ana and Diablo winds calculated an average GF of 1.7 [67–69]. In this study, the Sherpa and Painted Cave fires 

were simulated multiple times using no gust factor, a 1.4 GF, and a 1.7 GF. We then compared the simulated 

and observed fire perimeters using these differing wind inputs. 
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2.6. Perimeter Data 

Perimeter data for both fires are available from the Santa Barbara County Fire Department [71]. The 

Sherpa Fire has observed perimeters at 1600, 1700, 1800, and 1900 PDT. Only one, the final perimeter, is 

available for the Painted Cave Fire, although the southward fire spread rate and parts of the fire perimeter 

were estimated from recollections (see Case Studies Section). 

Simulated and observed perimeters were quantitively analyzed using the Sorensen metric (SM) [72,73], 

defined as: 

SM = 2a/((2a + b + c)) 

where a is the area burned by both the observed and simulated fires, b is the area burned by only the observed 

fire, and c is the area burned by only the simulation. SM values closer to 0 indicate little agreement between 

observed and simulated perimeters, and values closer to 1 indicate high agreement. This metric has been used 

to compare wildfire perimeters in [31,74–76]. 

3. Results and Discussion 

3.1. Sherpa Fire 

Figure 5 shows observed and simulated perimeters for the Sherpa Fire, with simulations run applying no 

GF (henceforth 1.0 GF), a 1.4 GF, and a 1.7 GF. All FARSITE simulations used the vegetation and spotting 

specifications in Table 3 and started at 1500 PDT. The area burned and SM values for the observed perimeters 

and all simulations are shown in Table 4. After one hour (at 1600 PDT), the 1.0 GF simulation had best 

agreement with observed perimeters in terms of fire shape and size, but greatly underestimated all other 

perimeters later in the evening (Figure 5a). At 1700 PDT, the 1.4 GF simulation underestimated the perimeter 

(Figure 5b) and the 1.7 GF simulation overestimated the perimeter (Figure 5c), notably resulting in equal SM 

values for different reasons. At 1800 PDT, the 1.4 GF simulation had the highest SM value (0.64; see Table 4) 

and highest agreement in burned area of all simulations at this time. While the 1.4 GF simulation had the 

highest SM value at 1900 PDT, all GF simulations underestimated the total amount of area burned (Table 4). 

The 1.7 GF simulation had the closest amount of burned area to that observed, underestimating by less than 

10 ha. The higher SM value for the 1.4 GF simulation is explained by the reduction of area burned compared 

to the 1.7 GF simulation. 

  
Figure 5. Sherpa fire ignition (blue dot), observed perimeters at 1600, 1700, 1800, and 1900 PDT (black 

polygons), and the simulated FARSITE burn areas (colored polygons) for simulations with (a) 1.0 GF, (b) 1.4 GF, 

and (c) 1.7 GF. 

Table 3. Specifications for both wildfire case study simulations. 

Distance Resolution 30 m 

Perimeter Resolution 30 m 

Time Step 10 min 
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Fuel Properties 
Canopy Cover 10% 

Stand Height 3 m 

Base Stand Height 0.1 m 

Canopy Bulk Density 0.2 kg m−3 

Foliar Moisture Content 50% 

Spotting Settings 
Spot Probability 5 % 

Spot Delay 0 min 

Min. Spot Distance 12 m 

Background Spot Grid Resolution 6 m 

Table4. QuantitativemetricsfortheSherpa(top)andPaintedCave(bottom)simulations. Thesimulation with the 

burned area closest to observed and the highest SM value at each time is in bold. The all-FM1 

simulation was assessed separately. 

  Burned Area (ha)   SM  

SHERPA 1600 1700 1800 1900 1600 1700 1800 1900 

Observed Perimeters 3.0 11.8 46.6 246.6 - - - - 

1.0 GF 3.8 8.0 13.8 33.0 0.84 0.66 0.37 0.17 
1.4 GF 5.1 8.2 32.9 128.6 0.64 0.68 0.64 0.25 
1.7 GF 5.2 14.3 95.2 237.5 0.57 0.68 0.40 0.21 

  Burned Area (ha)   SM  

PAINTED CAVE 1900 2000 2100 2200 1900 2000 2100 2200 

Observed Perimeter 1792 (final) 1792 (final) 1792 (final) 1792 (final) - - - - 

1.0 GF 37 153 296 407 0.05 0.16 0.28 0.37 
1.4 GF 43 162 265 351 0.04 0.17 0.26 0.33 
1.7 GF 64 195 298 380 0.07 0.20 0.29 0.36 
2.0 GF 95 210 247 256 0.10 0.21 0.24 0.25 

1.7 GF—all FM1 156 587 1097 1720 0.16 0.49 0.71 0.76 

It should be noted that the observed fire spread further west than the simulated perimeters at 1800 and 

1900 PDT due to firefighting efforts limiting the eastward spread toward populated regions [40]. It is possible, 

however, that local wind shifts and/or terrain effects may have contributed to the observed westward spread, 

although these were not evident in observations (from RHWC1), WRF, or WN. Additional simulations were 

performed in which “barriers” (unburnable areas) were applied to limit the eastward spread (not shown). 

Nevertheless, strong northwesterly winds drove the fire into the barriers and caused the simulated fire to 

extinguish rather than change direction. 

We examined FARSITE sensitivity to initial conditions by running additional simulations with ignitions at 

1300, 1400, 1600, and 1700 PDT, and applying a 1.7 GF (see Appendix A). Including the original simulation with 

an ignition time at 1500 PDT, the five simulations ranged in southward extents three and four hours after 

ignition, where ignitions with later start times spread further south due to the presence of stronger northerly 

winds later in the evening (Figure A1a,b). The sensitivity to ignition location was analyzed by running 

simulations with ignition sites approximately  km to the west, southwest, southeast, and east of the original 

ignition location. Simulations with the west and southwest ignition sites did not spread as far south as the east 

and southeast ignition sites because of the unburnable region to the south, which limited potential simulated 

fire spread (Figure A1c,d). As expected, we observed differences in simulated fire spread perimeters when the 

ignition time or location varied. Nonetheless, there was less agreement between simulations when ignition 

time varied because of the temporal wind variability. These sensitivity tests demonstrate how relatively small 

changes in model input can affect FARSITE perimeter accuracy. 

3.2. Painted Cave Fire 

Simulations for the Painted Cave Fire started at 1800 PDT, and all perimeters were compared to the one, 

final perimeter and firefighter recollections (see Case Studies Section) to examine southward spread. FARSITE 

parameterizations were the same as the Sherpa Fire (Table 3). The simulations using the fuel map (Figure 2c) 



Fire 2020, 3, 29 10 of 22 

and GF values of 1.0, 1.4, and 1.7 produced perimeters that significantly underestimated firefighter 

observations. As previously stated, the observed fire reached San Antonio 

Creek Rd (~3 km) 20 min after ignition; however, it took over 3 h to reach this location in the simulations 

(Figure A2). In an attempt to simulate faster fire spread, we applied a new fuel map with different chaparral 

fuels (Figure 6). The new fuel models (FM), FM145 and FM147 [52], replaced FMs 15 and 

16 [53], respectively, and were most prominent in the region south of the ignition point (Table 2). 

The original FMs have produced smaller perimeters compared to the use of Anderson’s fuel models [41] from 

lower fuel loadings [77], and the new fuel map should produce larger simulated perimeters and faster fire 

spread. 

  
Figure 6. New fuel map for the Painted Cave fire, incorporating FM145 and FM147. 

Simulations were performed using GFs of 1.0, 1.4, and 1.7 (Figure 7), and the burned area and SM at each 

time step during each GF simulation are shown in Table 4. As expected, the perimeters spread south more 

rapidly using the new fuel map, especially one and two hours after ignition. However, the fire still did not reach 

San Antonio Creek Rd until three hours after ignition in the 1.7 GF simulation (Figure 7c). Nonetheless, the 

simulated fire reached the road within two hours when a 2.0 GF was utilized (Figure 7d). Regardless of the GF, 

all simulations vastly underestimated the time to reach San Antonio Creek Rd, and no simulations reached 

Highway 101 even after four hours. Furthermore, all simulations stopped around the same location after four 

hours, even though there were burnable fuels downwind of the fire front. Similar to the Sherpa Fire, we 

examined the sensitivity to varied fire ignition time and location (see Appendix A). These simulations produced 

marginally different fire spread perimeters, and all significantly underestimated the observed perimeter 

(Figure A3). 

Finney (1998) suggested that FARSITE can produce reasonable fire perimeters with proper judgement 

and adjustments [78]. In an attempt to simulate very rapid spread during the Painted Cave Fire, we developed 

an additional FARSITE sensitivity test with an all-grass (FM1) fuel map and a 

1.7 GF, retaining all other inputs and parameterizations. Albeit a homogeneous fuel map is unrealistic for this 

region, the simulated fire spread significantly further and grew more laterally than the original run (Figure 8a). 

The simulation reached San Antonio Creek Rd within the first two hours and Highway 

101 within the first four hours. Three and four hours after ignition, the simulated areas burned were 

1097 and 1720 ha and the SM values (compared to the final perimeter) were 0.71 and 0.76, respectively. 
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Figure 7. Painted Cave fire ignition site (light grey dot), official fire perimeter (black polygon), and simulated burn 

areas (colored polygons) for (a) GF 1.0, (b) GF 1.4, (c) GF 1.7, and (d) GF 2.0. The green lines indicate important 

reference roads; the dark green line in the southern part of the fire perimeter is Highway 101, the dark green line 

in the eastern part of the fire perimeter is Highway 154, and the light green line in the middle of the perimeter is 

San Antonio Creek Rd. 
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Figure 8. (a) Similar to Figure 7, except the simulated burn areas (colored polygons) are from the all-grass fuel map 

simulation. Blue dots indicate ember launch locations for spot fires. (b) Same as (a) 

with elevation colored. 

3.3. Spotting Limitations 

Understanding spotting is crucial for realistically simulating wildfires in this region, and in many other 

mountain areas with similar fire weather regimes. Firefighters recall the significant amount of spotting that 

resulted in the rapid, downslope spread of the Painted Cave fire [40]. However, in our simulations, FARSITE 

produced spotting only in valleys towards uphill slopes (to the south), shown in Figure 8b. Thus, if spotting was 

a major factor for the observed rapid spread of this fire, limitations in simulating spotting locations likely led to 

large underestimations in fire spread, regardless of fuel model or wind speed. 

To analyze spotting in FARSITE using a simple simulation, we created east-west oriented ridges and valleys 

with 10◦, 20◦, and 30◦ slopes. Simulations were performed using a constant fuel model (FM15) and wind (13.41 

m/s from 315◦) over the entire domain with a 5% spot probability (same as all previous simulations). Figure 9 

shows ember launch and landing locations for these simulations. The ridge and valley simulations with slopes 

less than 10◦ produced little to no spotting. In simulations with steeper slopes, the ember launch site was 

always lower in elevation than the landing site, and this was consistent with spotting patterns in the Sherpa 

and Painted Cave fire simulations (Figure 8). As expected by the spotting equations used in FARSITE [43], 

embers landed in the direction the wind was blowing (southeast in the idealized case). One potential 

explanation for the lack of upslope-landing embers is that embers were launched during downslope fire 

spread, but extinguished mid-air from the loss of density and volume during burning [27]. Another limitation 

of FARSITE is that only horizontal winds are simulated, precluding a more realistic three-dimensional structure 

of turbulence in spotting parameterizations. Furthermore, embers are not launched in simulated backing fires 

due to lower intensities [27], which may contribute to the lack of spotting during our downslope fire spread. 

To summarize, spotting and the overall simulated wildfire spread during fires driven by strong downslope 

winds is limited by the inability of landing embers downslope and thresholds for maximum distance or time 

before ember burnout in FARSITE. 
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Figure 9. Spotting launch (light blue) and land (dark blue) locations on an idealized east-west oriented ridge (top) or 

valley (bottom) with differing slopes from the same ignition point (black dot in upper-left corner). Constant 13.41 

m/s (30 mph) NW (315◦) winds were applied. The fuel map used was all FM15 (chamise), although results are 

consistent with other fuel models tested such as FM1 (grass) and FM16 (ceanothus). 

3.4. FlamMap Comparisons 

FlamMap MTT simulations were completed for the Sherpa and Painted Cave fires to examine whether 

FlamMap has the potential to produce more accurate fire perimeters than FARSITE when compared to the 

observed perimeters. As explained in the Introduction, FlamMap and FARSITE are similar in that they use the 

same surface fire, crown fire, and spotting models. Therefore, the spotting limitations found in FARSITE were 

also present in FlamMap. 

The maindifferencebetween thetwo modelsis theinability forFlamMap touse temporally-variable gridded 

winds. To properly compare simulations between FlamMap and FARSITE, both models were run using only the 

WN raster at the respective ignition times with a 1.7 GF. The Sherpa Fire simulations in both FARSITE and 

FlamMap underestimated the actual area burned by the fire (Figure A4), primarily because winds later in the 

evening were stronger than those at the time of ignition, and the simulated fire was run into the unburnable 

area south of the ignition point, thus extinguishing. This finding highlights the importance of simulating 

wildfires with models that allow for spatially and temporally variable wind input during extreme winds, 

although the simulated fire was underestimated in both FARSITE and FlamMap potentially from 

underestimated wind input. 

Figure 10 shows the observed Painted Cave Fire perimeter and the FARSITE and FlamMap local time 

perimeters. While FlamMap underestimated southward spread compared to the observed perimeter, it 

simulated fire spread further south and laterally. Interestingly, FlamMap and FARSITE produced similar 

perimeters in the first hour after ignition, but FlamMap spread more west, south, and east in all subsequent 

hours. The simulated fires grew to approximately the same southward point, near San Antonio Creek Rd, 

before significantly slowing spread. Upon investigation, WN produced slower winds in this region that likely 

decelerated southward fire spread. The differences shown in Figure 10 likely result from inherent differences 

in the model’s equations; FARSITE uses Huygen’s wave propagation principle to simulate wildfire spread, 

whereas FlamMap MTT calculates fire behavior at each grid cell individually [32]. Importantly, the same 

spotting limitations were evident in both models, which led to the significant underestimation in spread during 

the Painted Cave Fire. This is essential to understand when applying these models in operational settings for 

emergency management and evacuation planning, particularly in regions with complex terrain and downslope 

of mountains. 
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Figure 10. Same as Figure 7 with the FlamMap and FARSITE burn areas (thin, black polygons) at (a) 1900, (b), 

2000, (c) 2100, and (d) 2200 PDT. 

4. Conclusions 

This study investigates the performance of FARSITE in simulating rapidly spreading wildfires on the 

southern slopes of the SYM in coastal Santa Barbara. Understanding wildfire risk is especially important in the 

wildland-urban interface in areas such as coastal Santa Barbara, where advances in evacuation planning and 

emergency management preparedness will increase resilience to these natural hazards. This study is also 

applicable to other regions where downslope windstorms are frequent. Two case studies in coastal Santa 

Barbara County were selected to simulate wildfires significantly influenced by extreme fire weather conditions 

associated with downslope winds known as Sundowners. The 2016 Sherpa Fire and the 1990 Painted Cave Fire 

were simulated using FARSITE by downscaling 1 km WRF output run to 100 m resolution using WN. In Sherpa 

Fire simulations, perimeters were generally underestimated with a 1.0 and 1.4 GF applied to WN rasters, and 

overestimated with a 1.7 GF except for the 1900 PDT perimeter, which underestimated the area burned by 

less than 10 ha. In all cases, the final simulated burned areas did not reproduce the substantial southwestward 

growth of the actual fire. This exposes the inability of the SM to account for directional differences of the 

burned areas under examination. In general, utilizing a wind downscaling software and applying a gust factor 

produced more accurate fire perimeters for the Sherpa Fire. 
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In contrast, all simulated Painted Cave Fire perimeters were underestimated, including the all-grass fuel 

map simulation which produced the fastest fire spread. We hypothesize that these discrepancies can be largely 

explained by enhanced spotting during this event, visually documented by fire fighters. The wind inputs to 

FARSITE and FlamMap are two-dimensional. Consequently, the simulations are unable to track embers lofted 

into terrain following wind fields which would likely land downslope more quickly than the simulations allow. 

Understanding the spotting limitations found here in FARSITE and FlamMap is exceedingly important for 

operational purposes, especially for wildfires in complex terrain or during downslope fire spread. Another 

factor that may have caused the underestimated growth rate is the algorithm the fire model uses to assimilate 

the fuel characteristics of the various dead and live components, especially the different sizes. A concurrent 

study currently in publication review suggests that maintaining the size characteristics of the fine fuels may 

enhance the simulated spread rates [79]. 

FARSITE has the potential to provide reliable perimeters for simulating wildfires in Santa Barbara 

influenced by Sundowner winds, although it may not capture extreme cases with large amounts of spotting 

downslope of the mountains. Future work should be carried out to estimate the spatiotemporal variability of 

the gust factor during Sundowner events and apply a methodology to gridded wind data for use in wildfire 

modeling. This would be particularly important in regions with complex terrain and highly variable wind and 

gust patterns. The authors believe inherent limitations in FARSITE are preventing downslope spotting and thus 

underestimating simulated fire perimeters in cases with a significant amount of spotting. This problem may be 

solved by examination and improvement of the spotting algorithm in the software. Additionally, FARSITE can 

be useful for wildfires spreading upslope, or in cases where downslope winds are not the dominant variable 

controlling fire spread, although this requires further testing. Advancing knowledge on weather and fire 

modeling in coastal Santa Barbara will increase resilience and allow for improved fire risk management and 

city planning. 
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Appendix A 

Table A1. Descriptions of all abbreviations used in the manuscript. 

ABBREVIATION DESCRIPTION 

FARSITE Fire Area Simulator 

FM Fuel model 

GF Gust factor 

KSBA Santa Barbara Airport weather station 

MTT Minimum Travel Time 

RAWS Remote Automatic Weather Station 

RHWC1 Refugio weather station 

SM Sorensen Metric 

SYM Santa Ynez Mountains 

WN WindNinja 

WRF Weather Research and Forecasting model 
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Figure A1. (a) Sherpa fire ignition site (black dot), observed perimeters (black contours) at 1800 PDT, and the 

count of overlapping simulations three hours after ignition in the varied ignition time simulations. (b) Same as 

(a) with the 1900 PDT observed perimeter added and the count of overlapping simulations four hours after 

ignition. (c) same as (a) with the count of overlapping simulations in the varied location simulations three hours 

after ignition. (d) same as (c) four hours after ignition. 
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Figure A2. Same as Figure 7c using the original fuel map (shown in Figure 2c). 

 

Figure A3. Painted Cave fire perimeter and reference roads (see Figure 7 for details). Colored polygons in (a) 

are the count of simulations four hours after ignition in the varied ignition time simulations. (b) The count of 

simulations four hours after ignition using varied ignition locations. 
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Figure A4. Sherpa fire perimeters with FlamMap local time burnt areas (colored polygons), FARSITE perimeters 

(thin black polygons), and observed perimeters (thick black polygons) at (a) 1600 PDT, (b) 1700 PDT, (c) 1800 

PDT, and (d) 1900 PDT. 
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