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Abstract
The ability to assess children’s conversational interaction is crit-
ical in determining language and cognitive proficiency for typ-
ically developing and at-risk children. The earlier at-risk child
is identified, the earlier support can be provided to reduce the
social impact of the speech disorder. To date, limited research
has been performed for young child speech recognition in class-
room settings. This study addresses speech recognition research
with naturalistic children’s speech, where age varies from 2.5
to 5 years. Data augmentation is relatively under explored for
child speech. Therefore, we investigate the effectiveness of data
augmentation techniques to improve both language and acous-
tic models. We explore alternate text augmentation approaches
using adult data, Web data, and via text generated by recurrent
neural networks. We also compare several acoustic augmen-
tation techniques: speed perturbation, tempo perturbation, and
adult data. Finally, we comment on child word count rates to
assess child speech development.

1. Introduction
Assessing children’s conversational engagement is important in
determining language and cognitive proficiency for typically
developing and at-risk children (e.g. speech or language de-
layed). It is known that automatic speech recognition (ASR) for
child conversational speech is more challenging than for adults,
specifically because of the developing language planning, phys-
iology, and motor skills of young speakers. Moreover, there is
a lack of available child speech corpora. The diversity of child
speech causes issues as well, since speaking traits can vary sig-
nificantly from child to child who are typically developing, as
well as those that might be at-risk. Children’s speech structure
within the age range of 2 - 6 years differs significantly from
6 - 18 year old speakers. Most prior child speech recognition
efforts have focused on an older children group. Children in
the age range of 2 - 6 have reduced vocal system physiologies,
they are still developing their speech motor skills, pronuncia-
tion, and vocabulary. Young children do not necessarily follow
adult grammar rules and proper linguistic structure. In stud-
ies [1, 2], the language interaction traits such as a child word
count rate was shown to be important in the early stages of lan-
guage development. The relation between word count rates and
early signs of Autism has also been addressed in [3, 4, 5, 6, 7].

The motivation of this study is as follows:
• Investigate young child (age from 2.5 to 5 years) natu-

ralistic speech recognition, when speech was recorded in
active learning spaces;

• Assess the effect of data augmentation techniques for
child speech;

• Explore if word count rates can provide insight to help
separate at-risk and typically developing children.

While research has considered child ASR in the past, most
of the studies focus on the 6 - 18 age group [8, 9]. Only a
few studies have explored preschoolers speech recognition, us-
ing words, phrases, and structured human-computer interaction
scenario [10, 11, 12, 13]. In our study, the scenario is based on
naturalistic conversational interaction between child-adult and
child-child in the daycare spaces, where children and adults are
mobile with attached LENA1 recorders. We investigate young
child ASR, where age varies from 2.5 to 5 years. The extensive
work from the LENA Foundation has investigated naturalistic
speech of preschoolers. However, it has not considered ASR,
since their language assessment strategy only estimates word
count based on phoneme change sequence [14, 15, 16, 17, 18].

The corpus used in our study is comprised of 15 hours
of transcribed children audio for training. Our task is very
challenging, it is common to experience high word error rates
(WERs) for such ASR conditions. For example, on the large
2000 hours corpus adult conversational speech recognition
yields to 11% WER [19]. Meanwhile, systems with 3 hours
and 40 hours training sets, achieve about 52% and 42% WER,
respectively [20, 21, 22].

We explore data augmentation techniques for child natu-
ralistic speech recognition. Data augmentation has shown to
consistently improve performance of adult ASR systems. How-
ever, it has not been extensively studied for child speech. To
cope with a limited amount of child training data, previous stud-
ies have explored the use of adult speech (e.g. in [9, 10, 23]).
Children’s speech between 2.5 to 5 years differs significantly
from adult speech. As such, migrating adult based speech tech-
nologies towards this young child population is significantly
more challenging. In our work, we explore (1) language model
augmentation via text generated by recurrent neural networks
(RNNs) [24], (2) acoustic model augmentation using speed and
tempo perturbation [25]. These techniques have been used for
adult speech augmentation [24, 25]. However, to the best of our
knowledge, our work is the first to study these approaches for
child speech. We compare these techniques and the use of adult
data.

Finally, we investigate word count rates to assess child
speech development of typically developing, as well as those
children that might be at-risk. The word counts are estimated
based on the hypothesis of our ASR system. Word count es-
timation could provide insight in the assessment of child lan-
guage engagement in learning spaces, and identify which child
might need more teacher attention.

1http://www.lenafoundation.org/
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2. Related work
State-of-the-art speech recognition systems are usually trained
on large data sets. Large quantities of in-domain data are not
always available, especially for young children’s speech due in
part to IRB/privacy issues, as well as child speech skills diver-
sity.

Most corpora containing children’s speech focus on the
6 - 18 age group. The data sets of this age range con-
sist of isolated words, read and prompted speech e.g. CU
kids’ [13], CID [26], CMU KIDS [27], TIDIGITS [28], and
PF-STAR [29]. Spontaneous children-machine dialogues are
collected in corpora such as NICE fairy-tale [30], CU kids’
summarized stories [13], child-robot interaction AIBO [31] and
PF-STAR [29], child-machine interaction [32], and Wizard-of-
Oz [33]. The CHILDES corpora [34] comprise child-human
conversational speech. Most of these data sets were collected
in the relatively quiet settings. For the preschoolers up to 6
year age there are only few data sets. The speech of preschool-
ers appears in the subsets of CU kids’ [13] and PF-STAR [29]
corpora (4 - 6 years). The recordings contain isolated words,
sentences, short spontaneous story telling, and child-robot in-
teraction. The corpus of LENA Natural Language [35] com-
prises very young children (1 to 4 years) naturalistic speech. It
is based on child-adult speech interaction in a naturalistic home
environment. The CHILDES corpora [34] also contain natural-
istic speech of young children ranging in age from 1 to 6 years.

Some automatic speech recognition studies have been per-
formed for preschoolers within the age range of 2 - 6 years,
while usually such systems have investigated older children.
Isolated word and phrase recognition for 3 to 6 years children
with speech disorders is analyzed in [10, 11, 13]. When 6 -
18 age group is explored, besides isolated word and sentence
recognition, the studies also include continuous child speech
[9, 36, 37, 38, 39, 40, 23, 41, 42, 43, 44].

Most of the previous studies explore older children’s speech
recorded in a relatively quiet environment, where spontaneous
speech is based on children-machine dialogues. Our work fo-
cuses on very young children’s speech (2.5 to 5 years), when
spontaneous recordings are obtained from naturalistic conversa-
tions between child-adult and child-child during daily activities
in the noisy daycare spaces.

3. Data
All experiments reported in this study use American English
child spontaneous conversations captured in a high quality
childcare learning center in the United States. Data was col-
lected from 33 children of age 2.5 to 5 years, and from 4
adults/teachers (3 females and 1 male). Based on actual diag-
nosis eight of the children are at-risk (e.g. speech or language
delayed). The speech data was gathered in three inclusive early
childhood classrooms during naturally occurring morning and
afternoon activities. Teachers were told to go about their typ-
ical morning activities and routines. The classrooms operated
within a center-based program in a large urban community in a
Southern state. As illustrated in Figure 1, the recordings con-
tain speech in various environments such as science, art, books,
music, dining space, indoor and outdoor playground. The learn-
ing spaces are open and noisy, resulting in distractions such as
crowd/babble noise, and competing speech. The data was gath-
ered wearing LENA recording units (see Figure 2), which are
light-weight compact audio recorders, that cause minimal self-
awareness for the speakers, allowing voice capture during nat-

uralistic conversations. The LENA system consists of an audio
recording device and speech recognition software [45]. In our
work only LENA recorders are used.

The child training corpus contains about 15 hours manu-
ally transcribed audio, where transcripts have 120K word to-
kens. Adult data consists of 23 hours of manually transcribed
audio, with 300K words in the transcripts. In addition to data
gathered from the childcare learning center, an out-of-domain
conversational-like Web text corpus [46] was also used, con-
sisting of 2.6 million word tokens. All results are reported from
3 hours test data set of child speech. For development, a 1.5
hour data set was used. No speaker appeared simultaneously in
the training and test sets.

Figure 1: A typical high quality childcare learning center.

Figure 2: LENA recording device.

4. Baseline recognition system
In our experiments, an ASR system is constructed using 15
hours of transcribed conversational child speech within an age
range of 2.5 - 5 years, as described in Section 3. Acoustic
models are tied-state, left-to-right 3-state HMMs with Gaussian
mixture observation densities. Also, triphone-based models are
word position-dependent. The acoustic models are trained on
39-dimensional Mel-Frequency Cepstral Coefficients (MFCC).
The features are 9 frame spliced and projected into 40 dimen-
sions using linear discriminant analysis (LDA) and maximum
likelihood linear transform (MLLT). Next, speaker adaptive
training (SAT) is performed using a single feature-space maxi-
mum likelihood linear regression (fMLLR).

The 3-gram back-off language model is built using manual
transcriptions from the child corpus (more details in Section 3).
The lexicon is from [46], which consists of the most frequent
150K words found in the Web corpus. To build the system, we
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Table 1: Results for GMM-HMM contrastive language model training conditions: manual children transcriptions (trs), manual adult
transcriptions (adult), Web-texts (web), RNN generated texts based on child transcripts (rnn). In all experiments, acoustic models are
based on children transcribed audio.

Language model #Tokens Ppx % WER

trs (baseline) 120K 68 71.77
trs + adult 420K 60 73.24
trs + web 2.6M 56 73.33
trs + rnn 30M 66 71.80
trs + adult + web + rnn 33M 57 71.68

Table 2: Results for GMM-HMM, DNN-HMM contrastive acoustic model training conditions: manually transcribed children audio
(trs), copies of children training set with different speed perturbation factors (speed perturbed), with different tempo perturbation factors
(tempo perturbed), adult transcribed audio (adult). Different amount of hours for training is used (#Hrs).

Acoustic model Perturbation factors #Hrs % WER
GMM DNN

trs - 15 71.68 66.26
trs + adult - 38 76.21 66.82
trs + speed perturb 0.9, 1.1 45 71.37 63.78
trs + tempo perturb 0.9, 1.1 45 71.96 65.36
trs + speed perturb 0.8, 0.9, 1.1, 1.2 75 72.63 64.86
trs + tempo perturb 0.8, 0.9, 1.1, 1.2 75 72.07 66.85
trs + speed perturb + tempo perturb 0.8, 0.9, 1.1, 1.2 135 72.17 66.11
trs + speed perturb + tempo perturb + adult 0.8, 0.9, 1.1, 1.2 158 71.42 63.74

use the Kaldi speech recognition toolkit [47]. ASR performance
is measured with WER.

This baseline model was used to decode the core open test
data set, resulting in a WER of 71.77% (Table 1). A rela-
tively high WER is expected, given the spontaneous young-
child multi-speaker conversational language environment.

5. DNN system
A deep-neural network (DNN) system is trained to estimate
the HMM state likelihoods [48]. The DNN uses the same fea-
tures as our SAT GMM-HMM system described in Section 4:
features are spliced using a context of 9 frames, followed by
LDA+MLLT+fMLLR. Alignments are produced by the SAT
GMM-HMM system. In the experiments with original child
training data set, we use DNN topology: 2 hidden layers, 2048
neurons per layer, and the output layer is based on softmax.
Sequence-discriminative training is applied with sMBR objec-
tive [49]. The learning rate is 1e-5, and the number of epochs
is 5. In this study, we perform acoustic model augmentation ex-
periments using DNN systems, with training data ranging from
15 to 158 hours. For all experiments, the same DNN topology
is used, but a different number of hidden layers is employed.
When the audio data set is augmented from 38 to 75 hours, 4
hidden layers are used. Furthermore, when increasing the quan-
tity of training data, we expand the DNN to 6 hidden layers.

6. Data augmentation
The constraint given for this ASR task is that the quantity of
texts and available transcribed audio data for spontaneous child
speech is limited. In this section, alternate data augmentation
approaches are analyzed for both language and acoustic models
enhancement.

6.1. Language model augmentation

To improve the language model, three alternate data augmenta-
tion techniques are investigated: adding adult data, Web texts,

and producing additional texts via RNNs [24]. The language
model is estimated using supplemental text resources and inter-
polated with the original baseline language model. The expec-
tation maximization (EM) algorithm is used for interpolation to
minimize the perplexity of the development set.

Adult data usage. The use of manually annotated adult tran-
scriptions is investigated for data augmentation. All conversa-
tional alike adult data was recorded in childcare center, as de-
scribed in Section 3.

Web data usage. Extra conversational-like Web text data is
explored to improve the language model (see in Section 3).

RNN based text generation. We also investigate additional
text generation using an RNN as proposed in [24]. The RNN
has 2 hidden layers and 512 units per layer. We randomly shuf-
fled the training transcripts and split into five non-overlapping
subsets. For each split, the RNN was trained using four sets
and the fifth set used for validation. The RNN finds long con-
textual regularities, produces quite meaningful sentences, and
maintains the same vocabulary.

To assess the improvement derived from the use of supple-
mental text resources, contrastive experiments are performed
with alternate language models. From Table 1 it is observed that
word perplexity is improved using all data augmentation tech-
niques. The WER improvement is achieved only with the lan-
guage model incorporating adult training transcripts, Web texts,
and RNN generated texts, resulting in texts with 33M word to-
kens (bottom entry). In this case, the perplexity is reduced by
11 points (68 vs 57), with a corresponding tiny gain of 0.09%
absolute WER over the baseline (71.77% vs 71.68%).

6.2. Acoustic model augmentation

Acoustic data augmentation is assessed via three alternate ap-
proaches: speed, tempo perturbation as described in [25], and
adult data set use. We investigate the impact of different pertur-
bation coefficients and alternate number of copies of the original
child data set (15 hours).

Speed perturbation. Speed perturbation emulates both pitch
and tempo variations in the speech signal. Speed modification
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Table 3: Word counts of each child in test set: the number of words in references (WC ref), in hypothesis (WC hyp).
#ID child WC ref WC hyp #ID child WC ref WC hyp
1 (at-risk) 726 605 5 3794 3296
2 (at-risk) 2780 2510 6 3825 3514
3 (at-risk) 3126 2887 7 7989 7289
4 (at-risk) 3634 3428

is achieved by resampling the signal. We used the speed com-
mand of sox2 tool to modify the speed of the signal. We explore
augmentation of the training data set by changing the speed of
the audio signal, resulting in four versions of the original child
training data with speed factors of 0.8, 0.9, 1.1, and 1.2.

Tempo perturbation. The tempo of the signal is modi-
fied, while the pitch and spectral envelope of the signal is not
changed. To perform tempo perturbation, we used the sox with
tempo command. The training data set was enlarged by creat-
ing four additional copies of the original child training data by
modifying the tempo factors to 0.8, 0.9, 1.1, and 1.2.

Adult data usage. We joined child and adult training data
sets. The adult data set is comprised of 23 hours of transcribed
audio, where most speakers are females. All data was recorded
in childcare center (see Section 3).

Acoustic model augmentation results are provided in Ta-
ble 2. In the experiments, we use a language model where
child training transcriptions are interpolated with adult, Web,
and RNN generated texts.

Table 2 shows that for GMM-HMM system, the highest
WER improvement is obtained by incorporating two copies of
child transcribed audio with speed factors 0.9, 1.1. In this case,
45 hours of training data is used, with WER improved by 0.31%
absolute compared to original child training audio set (71.68%
vs 71.37%).

The performance of DNN-HMM systems is also summa-
rized in Table 2. The top line indicates that with the original
children transcribed audio set, improvement of 5.42% abso-
lute is obtained using DNN-HMM training over GMM-HMM.
Comparing DNNs performance with different acoustic model
sets, it can be observed that an absolute WER reduction of
2.48% is achieved using 45 hours data set which incorporates
speed perturbed audio signals with 0.9, 1.1 factors (66.26% vs
63.78%). No improvement is obtained adding tempo pertur-
bation with factors varying from 0.8 to 1.2. Other perturba-
tion combinations are beneficial compared to the original child
training audio set, but not better than using two copies of the
speed perturbation. Finaly, we investigate the 158 hours data
set that additionally includes transcribed adult data. In this case,
the highest improvement of 8.03% is achieved over the baseline
(71.77% vs 63.74%).

7. Word count estimation
The environment of the early childhood classroom settings is
important for child speech learning. There is a need to identify
which children are at-risk for low language/communication en-
gagement, and these children should receive more teacher sup-
port during learning activities.

In this section, we assess children’s speech development us-
ing word count rates. The word counts are estimated based on
the hypothesis of our best ASR system. The results of word
count estimation for children’s speech are provided in Table 3.
Comparing the word counts from references (Table 3, column

2http://sox.sourceforge.net/

WC ref) with counts in hypothesis (column WC hyp), it can be
seen that even if there are ASR system errors, it is still possi-
ble to establish which children have low conversational interac-
tion and are at-risk (child#1, child#2, and child#3). The system
reorders child#4 and child#5 based on word counts in the hy-
pothesis. Due to challenges in this naturalistic child-child and
adult-child learning space, the word counts are not completely
accurate, however they are consistent, and we are still able to
establish which children have low conversational interaction.
These children should get more teacher support in social and
pre-academic learning during activities in the daycare center.

8. Conclusions
This research has investigated the benefits of applying data
augmentation techniques for young child (age from 2.5 to
5 years) in assessing child naturalistic engagement through
speech recognition. We explored several data augmentation
techniques to advance language and acoustic models, and
showed which provided gains in ASR performance. We also
explored assessment of child language development via word
count rates. The results showed that even lower performing
ASR systems can contribute to effective conversation engage-
ment assessment.

Alternate text augmentation approaches were investigated
to increase the limited amount of original transcribed conversa-
tional child speech using: (i) adult data, (ii) Web data, and (iii)
texts generated by RNN. Interpolating these texts collectively
leads to a perplexity improvement of 11 points, but unfortu-
nately there is little/no WER gain observed over the original
baseline.

Next, acoustic augmentation techniques for child speech
were explored based on: (i) speed perturbation, (ii) tempo per-
turbation, and (iii) adult data. The experiments were performed
with training data varying from 15 to 158 hours. Both speed and
tempo perturbation were shown to improve WER, with speed
perturbation factors of 0.9, 1.1 to be the most beneficial. The
greatest WER reduction of 8.03% absolute was achieved over
the baseline after incorporating all augmented audio data sets,
the improved language model, and using DNN system.

Conversational interaction using word counts was explored
to assess children’s speech engagement. The system helped to
establish a relative rank ordering of children’s conversational
interaction, and therefore served to provide a separation grade
between at-risk and typically developing children within such
child-adult active learning spaces.
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