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ABSTRACT
Training acoustic models with sequentially incoming data –
while both leveraging new data and avoiding the forgetting ef-
fect – is an essential obstacle to achieving human intelligence
level in speech recognition. An obvious approach to leverage
data from a new domain (e.g., new accented speech) is to first
generate a comprehensive dataset of all domains, by combin-
ing all available data, and then use this dataset to retrain the
acoustic models. However, as the amount of training data
grows, storing and retraining on such a large-scale dataset
becomes practically impossible. To deal with this problem,
in this study, we study several domain expansion techniques
which exploit only the data of the new domain to build a
stronger model for all domains. These techniques are aimed at
learning the new domain with a minimal forgetting effect (i.e.,
they maintain original model performance). These techniques
modify the adaptation procedure by imposing new constraints
including (1) weight constraint adaptation (WCA): keeping
the model parameters close to the original model parame-
ters; (2) elastic weight consolidation (EWC): slowing down
training for parameters that are important for previously es-
tablished domains; (3) soft KL-divergence (SKLD): restrict-
ing the KL-divergence between the original and the adapted
model output distributions; and (4) hybrid SKLD-EWC: in-
corporating both SKLD and EWC constraints. We evaluate
these techniques in an accent adaptation task in which we
adapt a deep neural network (DNN) acoustic model trained
with native English to three different English accents: Aus-
tralian, Hispanic, and Indian. The experimental results show
that SKLD significantly outperforms EWC, and EWC works
better than WCA. The hybrid SKLD-EWC technique results
in the best overall performance.

Index Terms— domain expansion,domain adaptation,
DNN-based acoustic models, speech recognition

1. INTRODUCTION

Current state-of-the-art neural network-based ASR systems
have advanced to nearly human performance in several eval-
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uation settings [1, 2]; however, these systems perform poorly
for domains1 that are not included in the original training
data [3, 4, 5, 6]. For example, if we train an ASR system
using a U.S. English dataset, the performance of the system
significantly degrades for other English accents (e.g., Aus-
tralian, Indian, and Hispanic). In order to improve perfor-
mance of the system for an unseen domain, we can adapt the
previously trained model to capture the statistics of the new
domain. However, adaptation techniques suffer from the for-
getting effect: previously learned information will be lost by
learning the new information. We need an ASR system that
not only performs well for the new domain, but also retains
performance for previously seen domains. This is the goal of
domain expansion methods.

Domain Expansion – In a domain expansion scenario,
we are given a model trained on an initial domain and a
dataset for an unseen domain, the goal is to modify the model
such that it performs well for both domains. The main dif-
ficulty of domain expansion is to preserve the functionality
(input-output mapping) of the original model (mitigating the
forgetting problem). Many approaches have been proposed
to deal with the forgetting problem in neural networks. These
approaches can be divided into three categories: architectural,
rehearsal, and regularization strategies.

1.1. Architectural strategies

In this class of methods, architectures of neural networks are
modified to mitigate the forgetting problem. Progressive neu-
ral network (PNN) [7] is a popular architectural strategy; it
freezes the previously trained network and uses its interme-
diate representations as inputs into a new smaller network.
PNN has been applied in many different applications includ-
ing speech synthesis [8], speaker identification [9] and speech
emotion recognition [9]. However, it has been shown that
PNN is not efficient for long sequences of domains, since the
number of weights in PNN increases linearly with the number
of domains [7].

1In this paper, we use the term ”domain” to refer to a group of utterances
that share some common characteristics.
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1.2. Rehearsal strategies

These approaches store part of the previous training data and
periodically replay them for future training. A full rehearsal
strategy can alleviate the forgetting effect, but it is very slow
and memory intensive. Tylor et al. proposed EXSTREAM,
a new partitioning-based approach, to address the memory
problem of the full rehearsal strategy [10]. In another ap-
proach, [11] proposed to train an encoder-decoder model that
distills information which exists in the previous domains.
Their method uses the trained encoder-decoder to simulate
pseudo patterns of the previous domains and exploits these
pseudo patterns during the training of the new domain.

1.3. Regularization strategies

Regularization refers to a set of techniques that alleviate the
forgetting effect by imposing additional constraints on updat-
ing parameters. A straightforward constraint is weight con-
straint adaptation (WCA) which penalizes the deviation of the
model parameters from the original model parameters; it adds
an l2 distance between the original and adapted weights [12].
Another popular regularization approach is learning without
forgetting (LWF) [13] that tries to learn a sequence of rele-
vant tasks without losing performance for the older ones by
imposing output stability. Jung et al. [14] explored the do-
main expansion problem for image classification tasks. They
used an l2 distance between the final hidden representations of
the original network and the adapted network. Kirkpatrick et
al. [15] introduced elastic weight consolidation (EWC) which
selectively slows down the training for weights that are im-
portant for older domains.

In this study, we explore approaches to address the do-
main expansion problem for the deep neural network (DNN)-
based acoustic models. To the best of our knowledge, this
is the first study that explores domain expansion for speech
recognition. We investigate several existing and proposed
regularization strategies to alleviate the forgetting effect in
domain expansion. We employ WCA and EWC as the base-
line techniques for the domain expansion problem; we also
propose two new domain expansion techniques: soft KL-
divergence (SKLD) and hybrid SKLD-EWC. SKLD penal-
izes the KL-divergence (KLD) between the original model’s
output and the adapted model’s output as a measure of the
deviation of the model. We will demonstrate that the pro-
posed SKLD and EWC are complementary to each other,
and combining them can lead to a better domain expansion
technique which we refer to as SKLD-EWC. We will com-
pare the efficacy of these methods in an accent adaptation
task in which we adapt a DNN acoustic model trained with
native English to three different English accents: Australian,
Hispanic, and Indian. Our results will show that the proposed
hybrid technique, SKLD-EWC, results in the best overall per-
formance and SKLD performs significantly better than EWC
and WCA.

2. DOMAIN EXPANSION APPROACHES

In this section, we explain details of four domain expansion
techniques (i.e., weight constraint adaptation (WCA), elastic
weight consolidation (EWC), soft KL-Divergence (SKLD),
and hybrid SKLD-EWC) that we investigate in this study.

Problem Setup – In the domain expansion task, we are
given an original model Mo, trained on an original domain
Do, and a dataset for an unseen domainDn, where the goal is
to find a new modelMn that performs well for both Do and
Dn.

2.1. Weight Constraint Adaptation (WCA)

WCA was first proposed in [12] to regularize the adaptation
process for discriminative classifiers. In another study [13],
WCA was employed for continual learning in a sequence of
disjoint tasks. This technique tries to find a solution that per-
forms well for the new domain, Dn, which is also close to the
original model,Mo.

According to [15], for a given neural network architec-
ture, there are many configurations of model parameters that
lead to comparable performance. Therefore, there are many
configurations that can efficiently represent our new domain
Dn. Among such configurations, an effective solution for do-
main expansion is the one that stands closer to the original
model Mo. Different distance metrics can be used to mea-
sure the similarity between models. WCA benefits from the
Euclidean distance between the learnable parameters of Do

and Dn. This idea can be implemented by imposing an addi-
tional L2 constraint on the optimization loss function of the
neural network:

JWCA(θ
n) = Jcross(θ

n) +
λw
2
||θn − θo||2, (1)

where θo and θn are the learnable parameters ofMo andMn,
respectively; Jcross(θn) is the main optimization loss (cross-
entropy loss function); JWCA(θ

n) is the regularized loss with
the WCA technique; ||.||2 is the L2 norm; and λw is a regu-
larization parameter that determines how far the parameters
could diverge from their initial values to learn the new do-
main.

2.2. Elastic Weight Consolidation (EWC)

The WCA technique considers all weights equally. Therefore,
it is unable to find an efficient compromise to maintain the
model performance for the original domain Do and learning
the new domainDn. However, all weights are not equally im-
portant, and using an approach that takes weight importance
into account would perform better than a naive WCA.

Intuitively, after training a DNN with sufficient iterations,
the model converges to a local minimum point of the opti-
mization landscape. At such a point, the sensitivity of the loss
function w.r.t. the i-th learnable weight, θni , can be calculated
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by the curvature of the loss function along the direction spec-
ified by θni changes. High curvature for a weight means that
the loss function is sensitive to small changes to that weight.
Therefore, to preserve the performance of the network for the
previous domain, we must prevent modifying the parameters
with high curvature. On the other hand, parameters with low
curvature values are proper choices to be tuned with new data
without losing the model performance for the original data.

The curvature of the loss function is equivalent to the di-
agonal of the Fisher information matrix F [16]. EWC offers
a straightforward method to incorporate the importance of the
learnable weights (curvature of the loss function w.r.t. the
weights) in the adaptation process. The method is similar to
WCA; the only difference is that EWC employs a weighted
L2 norm instead of the regular L2 norm in WCA:

JEWC(θ
n) = Jcross(θ

n)+
λe
2

∑
i

diag{F}i(θni −θoi )2, (2)

where diag{F}i is the i-th element of the diagonal of the
Fisher information matrix F (representing the importance of
the i-th learnable weight); θni and θoi are the i-th weight of the
new and original models, respectively; and the summation is
taken over all learnable weights of the network. diag{F} can
be easily calculated by the variance of the first order deriva-
tives of the loss function w.r.t. the learnable weights (i.e.,
V ar{∂J(θ)/∂θi}) [16].

2.3. Soft KL-Divergence (SKLD)

A major difficulty of the domain expansion task is to preserve
the functionality (input-output mapping) of the original model
Mo. WCA and EWC achieve this by providing a link be-
tween the learnable weights of the new model Mn and the
original modelMo. According to the experiments performed
in [14], linking the learnable parameters is not an efficient
way of preserving the functionality of the parameters, since
applying slight changes to some of the parameters may sig-
nificantly modify the input-output mapping of the network.
Another method for preserving the functionality ofMo is to
impose new constraints on the outputs of the model [17]. By
constraining the outputs ofMn to be consistent with the out-
puts ofMo, we can assure that these two models are similar
to each other. SKLD leverages this idea through two steps:
(1) it takes the original modelMo and the data of the new do-
main Dn; it then generates the output ofMo for all samples
of the dataset. (2) next, SKLD trains the new modelMn by
initializing it fromMo and using a regularized loss function
that can be expressed by:

JSKLD(θn) = (1− λs)Jcross(θn)+

λs
∑
i∈I

DKL(Mn(xi),Mo(xi)), (3)

where I is the total number of samples; DKL is the KL dis-
tance; xi is the i-th input feature vector;Mo(xi) andMn(xi)

are the outputs of the original and the new models obtained for
the i-th sample xi; and 0 ≤ λs ≤ 1 is a regularization hyper-
parameter that provides a compromise between learning the
new domain (by optimizing Jcross) and preserving the input-
output mapping of the original model (by optimizing DKL).
λs = 0 results in the conventional pre-training/fine-tuning
adaptation. By increasing the value of λs, we can ensure a
balanced trade-off between learning the new domain and mit-
igating the forgetting effect problem. For this study, we tune
λs to achieve the best performance for both domains.

Equation (3) uses the KL divergence between Mo(xi)
and Mn(xi) to deal with the forgetting problem. However,
some parts of the KL divergence are not related to the learn-
able parameters of Mn. In [18], it is demonstrated that by
removing these parts, the KL divergence will be simplified to
the cross-entropy:

JSKLD(θn) = (1− λs)Jcross(θn)+

λs
∑
i∈I

Jcross(Mo(xi),Mn(xi)),

Jcross(Mo(xi),Mn(xi)) =∑
c∈C
Mo

c(xi) log(Mn
c (xi)), (4)

where C is the total number of classes;Mo
c(xi) andMn

c (xi)
are the probability of the c-th class generated byMo andMn

for an input vector xi.
In neural networks, we typically use a softmax with tem-

perature T = 1 to produce the probability for each class.
However, Hinton et al. [19] suggested that using T > 1
that increases the probability of small logits, performs bet-
ter in transferring the functionality of a large network to a
smaller one. Therefore, we also consider tuning the temper-
ature to examine its effects in preserving the functionality of
the model for the original data. We consider using a softmax
with adjustable temperature to produce the output distribution
for bothMo andMn in the constraint term of equations (4).
Note that we use T = 1 for the tuning loss as well as in the
evaluation phase.

2.4. Hybrid SKLD-EWC

In the previous sections, we explained both SKLD and EWC
approaches. Each one has its advantages and disadvantages.
The advantage of EWC is that it computes the Fisher infor-
mation matrix (that quantifies the importance of the weights)
based on the original data during the initial training. How-
ever, SKLD does not exploit such information about the im-
portance of the weights. On the other hand, EWC uses a fixed
fisher matrix that is estimated for the initial model. How-
ever, fisher matrix changes during the adaptation procedure
and therefore the fixed assumption of the EWC method is not
reliable. The advantage of SKLD is that it is more efficient
in preserving the functionality of the original model as the
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efficacy of SKLD does not change during the adaptation pro-
cedure. We propose to combine these two techniques into a
new hybrid approach SKLD-EWC. Our proposed technique
can be implemented by imposing both SKLD and EWC con-
straints on the tuning loss:

JSKLD−EWC(θ
n) = (1− λs)Jcross(θn)+

λs
∑
i∈I

Jcross(Mo(xi),Mn(xi))+

λe
∑
i

diag{F}i(θni − θoi )2. (5)

This hybrid method requires two regularization parame-
ters: λs and λe defined for regularizing the outputs and
the weights, respectively. These two parameters provide a
more flexible data expansion technique, but at the expense of
more difficult hyper-parameter tuning.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Dataset – We evaluate the efficacy of the domain expansion
techniques for a DNN-HMM-based ASR system. To train
the original model for native English, we use the 100h part
of the LIBRISPEECH corpus (Libri) [20]. This part has
higher recording quality and the speakers’ accents are closer
to the native English compared to the rest of the corpus.
For the domain expansion experiments, we use UT-CRSS-
4EnglishAccent corpus [21] that contains speech data from
3 non-US English accents, namely Hispanic (HIS), Indian
(IND) and Australian (AUS). The data for each accent con-
sists of 100 speakers, with session content that consists of
read and spontaneous speech. In this corpus, for each accent,
there is more than 28h of training data, 5h of development and
5h of evaluation data. We use the standard language model
(LM) provided for Libri to decode the original data (i.e.,
Libri) [20]. However, for the other accents, since we have
spontaneous utterances too, we train a 3-gram and a 4-gram
LM by pooling transcriptions of Fisher, Switchboard, and
UT-CRSS-4EnglishAccent. The decoding procedure used for
Libri and other accents is the same.

Model structure – We implement the domain expan-
sion techniques for a DNN-HMM based ASR system using
Kaldi [22] and Tensorflow [23]. In all experiments, we ex-
tract 40-dimensional Mel-filterbank coefficients [22] for each
25ms frame with a skip rate of 10ms. Each frame is expanded
by stacking 5 frames from each side; therefore, the input to
the network is the Mel-filterbank coefficients of 11 succes-
sive frames. The acoustic model is a 5-layer fully connected
network with 1024 neurons at each hidden layer and 3440
output units that produce a distribution over senones. We
use “ReLU” activation function in intermediate layers and
“softmax” in the output layer that generates the probabilities

Table 1: WERs of different domain expansion methods on
the original (Org) and the new domains (New). For each
approach, among the different settings of regularization pa-
rameters, the one that results in the best overall performance
for both original and new domains (i.e., the lowest average of
WERs) is reported. The relative WER increase of the methods
compared to multi-condition (MC) training is also reported
(Rel-MC)

Method Org New Avg Rel-MC

AUS

MC 8.35 10.7 9.52 —
Original 8.10 23.04 15.57 63.5

Fine-Tuned 20.3 9.64 14.97 57.2
WCA 10.23 12.2 11.22 17.74
EWC 9.27 12.71 11 15.38
SKLD 8.84 11.23 10.03 5.35

SKLD-EWC 8.49 11.48 9.98 4.8

IND

MC 8.29 15.96 12.12 —
Original 8.10 28.68 18.39 51.6

Fine-Tuned 22.54 15.56 19.05 57.1
WCA 10.66 17.61 14.13 16.5
EWC 10.26 17.6 13.93 14.8
SKLD 9.29 16.45 12.87 6.14

SKLD-EWC 8.92 16.61 12.76 5.2

HIS

MC 8.21 11.65 9.93 —
Original 8.10 20.09 14.1 41.9

Fine-Tuned 16.14 11.52 13.83 39
WCA 8.65 12.84 10.74 8.2
EWC 8.72 12.61 10.66 7.4
SKLD 9.26 12.0 10.63 7.0

SKLD-EWC 8.29 12.5 10.39 4.7

of senones. We initialize all weights using the “he-normal”
initialization technique [24]. The loss function for training
the baseline model and also adaptation (i.e., Jcross(θ) in our
equations) is the cross-entropy between the forced aligned
senone labels and the model outputs.

Model training – In all experiments, we use Adam op-
timizer to train or adapt the DNN models [25]. For training
the original model with Libri, we use a learning rate (LR) of
0.001; however, we found that smaller learning rates perform
better for adapting the original model. Our initial experiments
showed that the learning rate of 0.0001 is an effective choice
for the model expansion experiments. To train the original
model, we employ the early-stopping technique to deal with
the over-training problem. Early-stopping is performed by
monitoring the performance of the model on a held-out vali-
dation set [26, 27]. However, applying early-stopping is not
efficient for the domain expansion task [13]; it is because the
data of the original domain is not available and performing
the early-stopping only on the data of the new domain is just
beneficial for the new domain, and it may significantly re-
duce the model performance on the original domain [13]. In
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Fig. 1: Visualizing WER of different techniques on original and new datasets. These curves are generated by changing the
hyper-parameters that control the trade-off between the performance of the original and the new domains.
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Fig. 2: Visualizing the forgetting effect of fine-tuning the
original model to the AUS accent. The performance of SKLD
in the same setting is also reported, which demonstrates the
efficacy of SKLD to preserve the learned knowledge while
adapting to the new domain. FT-Original: performance of the
fine-tuned model on Libri; FT-New: performance of the fine-
tuned model on AUS; FT-Avg: average of FT-Original and
FT-new; SKLD-Original: performance of SKLD on Libri;
SKLD-New: performance of SKLD on AUS; SKLD-Avg: av-
erage of SKLD-Original and SKLD-New

continual learning, a common approach is to perform a fixed
number of iterations to train the new model [28]. In this study,
we found that fine-tuning the original model converges to an
optimum solution in 20 epochs. To investigate the efficacy of
each approach, we evaluate their performance in three inde-
pendent scenarios that consider IND, AUS, and HIS accents
as the new domains.

3.2. Results

We conduct several experiments to evaluate the performance
of the domain expansion methods explored in this study. As
mention in previous sections, each domain expansion tech-
nique has a controlling hyper-parameter that provides a com-
promise between keeping the model performance for the orig-
inal data and learning the new domains. In the first set of
experiments, we tune these hyper-parameters to achieve the
best overall performance for both the original and the new
domains. The results for all approaches are summarized in
Table 1. We also report the results of multi-condition training
[29] in which the model is trained with both original and new

domains by pooling their data. The performance of the multi-
condition system can be considered as an upper bound for the
performance of domain-expansion methods.

In figure 1, we study the effect of changing the above-
mentioned hyper-parameters for three model expansion tech-
niques: WCA, EWC and SKLD. This figure shows which
method is better in proving a trade-off between retaining the
original model and learning the new domain.

Forgetting effect. The original model performs well for
the Libri clean test set that matches the training set condi-
tions; however, for the unseen domains, the performance of
the model degrades significantly. Fine-tuning (FT) this model
to the unseen domains results in a significant improvement in
WER for the new domains, but the model performance for
the original domain drops dramatically (Table 1). Figure 2
shows the rate of forgetting the information of the original
data as we fine-tune the model to AUS accent (FT-Original).
We also show how the SKLD approach performs in the same
setting. SKLD can successfully preserve the model perfor-
mance for the original data while learning the new data. The
overall performance of the model on both old and new do-
mains demonstrates that SKLD performs significantly better
than naive fine-tuning for domain expansion.

The performance of WCA and EWC. WCA as a naive
domain expansion method performs significantly better than
fine-tuning in finding a compromise between the performance
of the original and new domains. For EWC experiments,
since the diagonal of the Fisher information matrix F is zero
for many of the original model’s weights, simply applying
EWC does not preserve the model performance. We found
that adding an empirically determined value of 1 to the ele-
ments of the matrix addresses the problem. EWC outperforms
WCA in all the experiments (Table 1 and Figure 1), which
demonstrates the efficacy of the Fisher information matrix in
preserving the learned information of the original data. For
example, for IND accent in Table 1, both approaches achieve
17.6 WER for the new data, while EWC achieves a relative
WER improvement of +3.8% vs. WCA.

The performance of SKLD and Hybrid SKLD-EWC.
SKLD significantly outperforms all other single domain-
expansion approaches yielding a relative WER improvement
of +8.8% and +7.6% vs. EWC for AUS and IND accent,
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respectively (Table 1). For HIS accent, SKLD is still slightly
better than EWC. The hybrid SKLD-EWC that benefits from
both SKLD and EWC results in the best overall performance.
Comparing the performance of domain expansion techniques
with multi-condition training in Table 1 indicates that we
have achieved comparable performance with multi-condition
training which uses the original training data we consider
unavailable for the domain expansion approaches.

4. CONCLUSIONS

In this paper, we explore several continual learning-based do-
main expansion techniques as an effective solution for domain
mismatch problem in ASR systems. We examine the efficacy
of the approaches through experiments on adapting a model
trained with native English to three different English accents:
Australian, Hispanic and Indian. We demonstrate that simply
adapting the original model to the target domains results in
a significant performance degradation of the adapted model
for the original data. However, we demonstrate that SKLD
and hybrid SKLD-EWC are effective in adapting the native
English model to the new accents while retaining the perfor-
mance of the adapted model for native English. The proposed
SKLD-EWC outperformed other existing approaches such as
fine-tuning, WCA, and EWC.
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