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Abstract: Algebraic statistics uses tools from algebra (especially from multilinear al-
gebra, commutative algebra and computational algebra), geometry and combinatorics
to provide insight into knotty problems in mathematical statistics. In this survey we
illustrate this on three problems related to networks, namely network models for rela-
tional data, causal structure discovery and phylogenetics. For each problem we give an
overview of recent results in algebraic statistics with emphasis on the statistical achieve-
ments made possible by these tools and their practical relevance for applications to other
scientific disciplines.

1. Introduction

Algebraic statistics is a branch of mathematical statistics that focuses on the use of algebraic,
geometric and combinatorial methods in statistics. The term “Algebraic Statistics” itself was
coined as the title of a book on the use of techniques from commutative algebra in experi-
mental design (Pistone et al., 2001). An early influential paper (Diaconis and Sturmfels, 1998)
connected the problem of sampling from conditional distributions for the analysis of categori-
cal data to commutative algebra, thereby showcasing the power of the interplay between these
areas. In the two decades that followed, growing interest in applying new algebraic tools to
key problems in statistics has generated a growing literature.

The use of algebra, geometry and combinatorics in statistics did not start only two decades
ago. Combinatorics and probability theory have gone hand-in-hand since their beginnings.
The first standard mathematical method in statistics may be the Method of Least Squares,
which has been used extensively since shortly after 1800 and relies heavily on systems of
linear equations. Non-linear algebra has played a major role in statistics since the 1940s;
see for example Wilks (1946), Votaw (1948), James (1954), Andersson (1975), Bailey (1981),
and Jensen (1988). In addition, the development of the theory of exponential families relied
heavily on convex geometry (Barndorff-Nielsen, 1978). However, with Diaconis and Sturmfels
(1998) and Pistone et al. (2001), new algebraic disciplines including modern computational
algebraic geometry and commutative algebra were introduced in statistics. In this review,
we concentrate on the developments in algebraic statistics in the last two decades and in
particular on applications to networks.

The analysis of networks as relational data and to represent probabilistic interactions be-
tween variables is becoming increasingly popular, with applications in fields including the
social sciences, genomics, neuroscience, economics, linguistics and medicine. Theoretical and
algorithmic developments for exploring such datasets are found at the intersection of statis-
tics, applied mathematics, and machine learning. In this review we focus on some of the key
statistical problems and their solutions using algebraic techniques in three application areas:
network models (based on relational data encoded as observations on the edges of a random
network), causal structure discovery (based on multivariate data encoded as observations on
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the nodes of an unknown underlying causal network), and phylogenetics (a particular network
structure discovery problem where the underlying network is a tree with latent variables).

Section 2 focuses on statistical models for relational data, typical uses of which arise in
the social and biological sciences. In these applications, nodes in the network may represent
individuals, organizations, proteins, neurons, or brain regions, while links represent observed
relationships between the nodes, such as personal or organizational affinities, social/financial
relationships, binding between proteins or physical links between brain regions. A key problem
in this area is to test whether a proposed statistical model fits the data at hand; such a test
typically involves generating a sufficiently large and generic sample of networks from the model
and comparing it to the observed network. Perhaps somewhat surprisingly, algorithms for
sampling networks with given network statistics for goodness-of-fit testing are often efficiently
encoded by algebraic constraints. In Section 2, we outline how techniques from commutative
algebra and combinatorics are applied to this problem for several families of network models
for which a formal test is otherwise unavailable.

In Section 3, we turn to applications where the network structure cannot directly be observed
and we only have access to observations on the nodes of the network. Such applications range
from data on consumer behavior to click statistics for ads or websites, DNA sequences of related
species, gene expression data, etc. The use of such data to gain insight into complex phenomena
requires characterizing the relationships among the observed variables. Probabilistic graphical
models explicitly capture the statistical relationships between the variables as a network.
A good representation of a complex system should not only enable predicting the state of
one component given others, but also the effect that local operations have on the global
system. This requires causal modeling and making use of interventional data. In Section 3, we
discuss the role that algebraic and discrete geometry play in analyzing prominent algorithms
for causal structure discovery and in developing the first provably consistent algorithms for
causal inference from a mix of observational and interventional data.

In Section 4, we discuss a particular directed network model, namely phylogenetic trees,
for evolutionary reconstruction. Algebra and related areas have always been present in the
study of evolutionary processes, but have played minor roles relative to combinatorics or
optimization. However, since the beginning of this century, the developments in algebraic
statistics have given rise to techniques with a major impact on three different problems in
phylogenetics: model selection, model identifiability, and phylogenetic reconstruction. Models
that best fit the data should only be selected among those whose parameters are identifiable
and hence understanding model identifiability is crucial. The final step given an evolutionary
model and data is to reconstruct the phylogenetic tree and infer the evolutionary parameters.
In Section 4, we explain how algebraic techniques can be used to address these problems and
discuss their applications to complex evolutionary models and phylogenetic networks.

2. Network models for relational data

Network models for relational data, that is, various types of interactions between a fixed
set of entities, such as neurons, proteins, people, or corporations, have grown in popularity
in recent decades. The interactions can be directed (e.g., affinity or one-way influence) or
undirected (e.g., mutual affiliation), and may be counted with multiplicity or weight. Consider
two recently-collected data sets on statisticians who publish in five top-rated journals (Ji and
Jin, 2016). The data can be represented as a bipartite graph of authors and papers, in which a
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T T o n y C ai

Fi g 1: A ut h or n et w or ks c o nstr u ct e d fr o m t h e d at a c oll e ct e d b y Ji a n d Ji n ( Ji a n d Ji n , 2 0 1 6 ).
I n “ C o a ut h ors hi p n et w or k A ” (l eft) t h er e is a n u n dir e ct e d e d g e b et w e e n n o d es i a n d j if
a ut h ors i a n d j c o a ut h or e d at l e ast 2 p a p ers. I n “ C o a ut h ors hi p n et w or k B ” ( c e nt er) t h er e is
a n u n dir e ct e d e d g e b et w e e n n o d es i a n d j if a ut h ors i a n d j c o a ut h or e d at l e ast 1 p a p er. I n
“ Cit ati o n n et w or k ” (ri g ht), t h er e is a dir e ct e d e d g e fr o m a ut h or i t o a ut h or j if i cit e d at l e ast
1 p a p er b y j .

li n k e xists b et w e e n n o d es i a n d j if a ut h or i wr ot e p a p er j , or as a cit ati o n n et w or k, i n w hi c h
a dir e ct e d e d g e fr o m i t o j d e n ot es t h at p a p er i cit es p a p er j , or as c oll a ps e d c o a ut h ors hi p or
cit ati o n n et w or ks a m o n g a ut h ors; s e e Fi g ur e 1 .

T a ki n g a m o d el- b as e d a p pr o a c h, w e st u d y t h e e ff e cts of v ari o us t y p es of a ut h or i nt er a cti o ns
o n n et w or k a n al ysis a n d i nf er e n c e b y c o n c e ntr ati n g o n g o o d n ess of fit of a n et w or k m o d el.
T his is c e ntr al f or esti m ati n g n et w or k f e at ur es, a p pr o pri at el y si m ul ati n g d at a, a n d c orr e ctl y
i nt er pr eti n g t h e r es ults. I n a d diti o n, it is c o nsi d er e d t o b e v er y c h all e n gi n g i n t h e n et w or k
s ci e n c e c o m m u nit y d u e t o b ot h t h e si z e of t h e n et w or ks i n m a n y a p pli c ati o ns as w ell as t h eir
s p arsit y a n d p arti c ul ar str u ct ur e. M et h o ds r o ot e d i n al g e br ai c st atisti cs h el p a ns w er s u c h
q u esti o ns e ffi ci e ntl y a n d r eli a bl y f or a v ari et y of n et w or k m o d els.

R el ati o n al d at a c a n b e m o d el e d usi n g r a n d o m gr a p hs, i n w hi c h t h e i nt er a cti o ns ar e m o d el e d
as r a n d o m v ari a bl es. T his r es ults i n a st atisti c al m o d el wit h r a n d o m dir e ct e d or u n dir e ct e d
e d g es o n a fi x e d s et of n o d es. T h er e is a ri c h lit er at ur e o n di ff er e nt r a n d o m gr a p h m o d els,
st arti n g fr o m t h e cl assi c al Er d ö s – R é n yi gr a p hs ( Er d ö s a n d R é n yi , 1 9 6 1 ), e x p o n e nti al r a n d o m
gr a p h m o d els ( H oll a n d a n d L ei n h ar dt , 1 9 8 1 ), a n d M ar k o v gr a p hs ( Fr a n k a n d Str a uss , 1 9 8 6 ),
t o m o d els t h at c a pt ur e m or e i ntri c at e r el ati o n al b e h a vi or, s u c h as st o c h asti c bl o c k m o d els
(H oll a n d et al. , 1 9 8 3 ), l at e nt s p a c e m o d els ( H o ff et al. , 2 0 0 2 ), a n d mi x e d m e m b ers hi p st o c h asti c
bl o c k m o d els ( Air ol di et al. , 2 0 0 9 ); s e e als o ( G ol d e n b er g et al. , 2 0 1 0 ). T h e q u esti o n w h et h er
a n y of t h es e m o d els pr o vi d es a n a d e q u at e fit t o d at a h as r e c ei v e d r el ati v el y littl e att e nti o n.

H er e w e c o nsi d er t h e br o a d a n d fl e xi bl e cl ass of e x p o n e nti al f a mil y m o d el s f o r r a n d o m
g r a p h s , als o k n o w n as E R G Ms. T o s p e cif y a n E R G M, o n e first s el e cts a v e ct or of n et w or k
c h ar a ct eristi cs T (g ) ⊂ R p t h at r e pr es e nt a n i nt er pr et a bl e a n d m e a ni n gf ul s u m m ar y of t h e
n et w or k, s u c h as t h e n u m b er of n ei g h b ors of e a c h n o d e, bl o c k m e m b ers hi p, et c. T h e r es ulti n g
m o d el is t h e c oll e cti o n of pr o b a bilit y m e as ur es M = { p θ : θ ∈ Θ } , i n d e x e d b y p oi nts i n
Θ ⊂ R p s u c h t h at f or a n y θ ∈ Θ, t h e pr o b a bilit y of o bs er vi n g a gi v e n n et w or k G = g t a k es
t h e e x p o n e nti al f or m

p θ (g ) = e x p{ T (g ), θ − ψ (θ )} ,

w h er e ψ (θ ) = l o g g e x p { T (g ), θ } is t h e n or m ali zi n g f u n cti o n ( als o k n o w n as t h e l o g-
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partition function) and T (g) is the vector of minimal sufficient statistics for M. Tools from
commutative algebra can be applied to construct a finite-sample test for goodness of fit of
such a model to the observed network, while graph-theoretic and combinatorial considerations
can render the resulting algorithms scalable and applicable in practice for large networks.

2.1. Testing model fit: state-of-the-art

Studies devoted to goodness-of-fit tests for network models fall into two categories.
Heuristic tests are based on graphical comparisons between observed statistics and the

corresponding statistics obtained from the fitted model, see (Handcock, 2003), (Carnegie et al.,
2015), (Hunter et al., 2008b). Given an observed graph gobs, the goal is to evaluate how well
a model Pθ(G) fits gobs. Let s(g) be a vector of network statistics; most popular ones include
the number of edges, triangles, or two-stars in g, the vector of counts of neighbors of every
node (the degree sequence), or other summaries of a node’s connectedness or centrality in g.
The graphical method proceeds by computing a maximum likelihood estimator (MLE) θ̂ of θ
and simulating several graphs g1, . . . , gB from Pθ̂. Departures from the model are detected by
comparing the sample distribution of s(g1), . . . , s(gB) with the observed value s(gobs). Central
to the graphical method is the choice of complementary statistics s(g) used for evaluating the
fit. While widely used, graphical tests have two limitations: First, they are not based on any
formal discrepancy measure between the model and observed network, since the choice of s(g)
is arbitrary. Second, the distribution of the complementary statistics is unknown under the
null hypothesis, so calibration and formal Type I error rates are difficult to obtain.

Asymptotic tests are a natural alternative and rely on formal testing criteria for evaluating
model fit. However, classical test criteria such as the log-likelihood ratio, AIC, or BIC, cannot
be directly applied to general network models, mainly because the usual asymptotics do not
apply to models other than very simplistic ones. This is due to the fact that the iid assumption
on the random edges does not hold, which dismantles results on asymptotic distributions of
various test statistics. In addition, in many network models the number of parameters increases
with the number of nodes. This issue was first pointed out in (Fienberg and Wasserman,
1981b) and noted also in several later works (Krivitsky and Kolaczyk, 2015; Hunter et al.,
2008b; Holland and Leinhardt, 1981; Yan et al., 2016; Carnegie et al., 2015; Chatterjee et al.,
2011). In addition, many commonly-used ERGMs suffer from the lack of a natural notion of
projectability (Shalizi and Rinaldo, 2013), which relates the marginal distribution of a network
on p nodes to the same model on p+ 1 nodes, essentially ruling out consistency of MLEs.

To remedy these issues, one can derive modified asymptotic distributions, when they exist,
of various test statistics for special cases. For example, Yan et al. (2014) consider testing the
degree-corrected blockmodel with the usual stochastic blockmodel; Wang and Bickel (2017)
derive an asymptotic Gaussian distribution of the likelihood ratio test statistic for selecting
between two stochastic blockmodels with different number of communities; Gao and Lafferty
(2017) consider testing an Erdös-Rényi model against a stochastic blockmodel, construct a
chi-square-like test statistic using a combination of edge, 2-star, and triangle counts, and show
that its limiting distribution is a chi-square distribution; Lei (2016) constructs a goodness-of-
fit test for the stochastic blockmodel by using the extreme eigenvalues of a certain residual
matrix as a test statistic and deriving its asymptotic distribution; similarly, Banerjee and
Ma (2017) derive a central limit theorem for linear spectral statistics for testing an Erdös-
Rényi model against a two-block blockmodel. A common limitation of these studies is that
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the asymptotic distributions are derived in specialized asymptotic regimes that may not hold
in practice and are difficult to verify, given a single sample of a network. For instance, in
(Lei, 2016) the asymptotic null distribution of the test statistic requires that the entries of
the estimated edge probabilities be uniformly bounded away from 0 and 1, which rules out
certain types of sparse networks.

2.2. From networks to contingency tables: log-linear models

Network data on p nodes can be naturally summarized by a contingency table of format
p×p×i1×· · ·×ik, classifying the type of a relationship (directed, undirected, block-dependent,
etc.) that holds for each dyad in the graph. This representation means that certain ERGMs
can be represented by equivalent models for contingency tables that have a long history in
the statistics literature. The models amenable to such a representation are called log-linear
ERGMs, their vector of sufficient statistics is a linear function of the network. For such models
there exists a matrix A such that T (g) = Ag, where the network g has been flattened to vector
format. Log-linear ERGMs encompass many of the popular models in use today, including
all undirected and directed degree-based models (e.g., the β-model (Chatterjee et al., 2011;
Rinaldo et al., 2013)), stochastic blockmodels or SBMs with or without mixed membership
(but with known block assignment (Holland and Leinhardt, 1981; Fienberg et al., 1985; Airoldi
et al., 2009)), combinations of these (e.g., the degree-corrected SBM (Karrer and Newman,
2011)), and extensions of any of these models using covariates (Yan et al., 2018).

The connection to contingency tables dates back to three seminal papers from the 1980’s,
namely (Fienberg and Wasserman, 1981a; Fienberg et al., 1985; Fienberg and Wasserman,
1981b), which consider some (very novel at the time and still very popular today) models for
relational data. By viewing the network representation of the data as a union of independent
dyads that can appear in various configurations, they express in table format a set of models
that are now considered canonical under the ERGM framework. The first advantage of this
viewpoint, also pointed out in these early works, is that the MLE can efficiently and accurately
be computed using iterative proportional fitting, thus avoiding the usual convergence issues
that are the main drawback of MCMC approaches typically used for ERGMs; see e.g. (Hunter
et al., 2008a). The second advantage became apparent in the 2000s with the development of
tools from algebraic statistics for contingency tables: a generating set of a polynomial ideal can
be translated to a set of networks that preserve an ERGM’s sufficient statistics, then used as
input to a sampling algorithm that provides a reference set for testing model fit. Coupled with
a valid discrepancy measure for model fit also ported from the contingency table literature
into networks, this approach solves the issues outlined in 2.1.

2.3. Goodness-of-fit testing for log-linear ERGMs

LetMT be a log-linear ERGM, where T denotes the vector of sufficient statistics. A canonical
way to test model fit is to compute the exact p-value conditional on the sufficient statistics for
the null hypothesis that pθ̂(g) lies in the modelMT , where θ̂ is the MLE, against the general
alternative (see (Fienberg and Wasserman, 1981b) for further motivation). The p-value is
computed by comparing the observed network g against all other networks whose sufficient
statistics are the same; this set,

FT (g) := {g′ : T (g′) = T (g)}
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Fig 2: Example of a move for the ERGM with T (g) = (d1, . . . , d8) = (2, 2, 1, 2, 3, 1, 2, 1), where
di is the number of neighbors of node i. Top, in order: a starting graph g, set of blue edges
to be removed from g, set of red edges to be added to g, and the resulting graph h. Bottom:
the move b represented as a bicolored graph, with blue edges carrying weight −1 and red +1.
Since blue edges contribute ‘negative’ neighbors, T (b) = 0 and thus T (h) = T (g).

is called the fiber of g under the modelMT . In virtually all instances of interest for applications,
the fiber is too large to enumerate, so one resorts to sampling from it.

To sample from this conditional distribution for any log-linear model, Diaconis and Sturm-
fels (1998) introduce a notion of a basis that can be used as input to the Metropolis-Hastings
algorithm. In the context of networks, a Markov basis of the log-linear ERGM MT is any set
of networks B = {b1, . . . , bn} for which T (bi) = 0 and such that for any given network g and
any h ∈ FT (g), there exist bi1 , . . . , biN ∈ B that can be used to reach h from g, i.e.,

g + bi1 + . . .+ biN = h,

while walking through elements of the fiber, meaning that each partial sum u+
∑N

j=0 bij , for
any j = 1, . . . , N , represents a valid network; see Figure 2. Note that T (u) = T (u+ bi) means
that adding a move bi to any network does not change the values of the sufficient statistics, so
to remain in the fiber, we only need to ensure that adding a move did not produce negative
entries in the vector, as the count of edges in a graph cannot be negative. The resulting Markov
chain is irreducible, symmetric, and aperiodic; Drton et al. (2009, Algorithm 1.13) outlines a
vanilla implementation.

The connection to commutative algebra translates each move bi into a binomial: a difference
of products of indeterminates, each corresponding to a cell in the contingency table. In the
example from Figure 2, the depicted move can be written as e17e24e34e58− e14e23e45e78, where
eij is the indeterminate representing the dyad {i, j}. The move is thus a polynomial in the
random dyads. This translation is straightforward, but leads to a fundamental and surprising
result: a set of moves is a Markov basis if and only if the corresponding binomials generate
the toric ideal defined by T (Diaconis and Sturmfels, 1998). Consequently, each log-linear
model has a finite Markov basis, by the Hilbert basis theorem from algebra; and all the basis
elements can be computed, using combinatorial tools for computing bases of toric ideals.

Markov bases are a popular theoretical construct in algebraic statistics, but in practice pose
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Fig 3: Testing model fit for the ERGMs with node degrees a sufficient statistics. Left: histogram
of the chi-square statistics, as a measure of discrepancy, for 100,000 networks in the fiber of
the coauthorship network. Right: same information for the citation network. The vertical line
indicates the observed value of the chi-square statistic.

serious challenges in particular pertinent to large networks, and in general for large sparse
contingency tables. One is that they are complicated to compute a priori and that algebra
produces many moves inapplicable to the observed data. To circumvent this difficulty, Gross
et al. (2016); Karwa et al. (2016); Gross et al. (2019) implement a dynamic algorithm for gen-
erating Markov elements for the β and p1 models, some of the basic variants of the stochastic
blockmodels, and combinations of these, and embed them into a Metropolis-Hastings algo-
rithm to provide a scalable exact conditional test for model fit. Another concerns the mixing
time of the Markov chain constructed using Markov bases, as any Markov chain that is slow
to mix will not be scalable to large networks in practice; to this end, we will only mention
that there is a large body of literature in discrete mathematics that implies rapid mixing of
this chain for almost all fibers, for details, see (Dillon, 2016).

Example: Considering the largest connected component of the citation network of authors, Ji
and Jin (2016) count the neighbors in this directed graph and propose using them for author
rankings. We perform an exact test of model fit for the ERGM whose sufficient statistics is
this vector of neighbor counts, namely, the p1 model with dyad-dependent reciprocation. The
test is done by running the Markov chain described in Gross et al. (2016). After N = 100, 000
steps, the estimated p-value is 0.0072. As a measure of discrepancy between the observed graph
and the MLE, we use the chi-square statistic. The p-value reported is the proportion of the
sampled networks in the fiber whose chi-square value is at least as large as that of gobs. This
result indicates that the p1 model does not fit the citation network of authors, and therefore
the network may posses transitive effects and the dyads may not be independent. Similarly,
we perform an exact test of model fit for the β model in the largest connected component of
the coauthorship network A. The p-value from the goodness-of-fit test obtained by running
the Markov chain for N = 100000 steps is 0.997. This suggests that node degrees are a (almost
surprisingly) good summary of the graph and that the degree of an author could be used to
determine an author ranking. However, this graph was obtained by thresholding the original
data (a popular technique in network analysis used to avoid multiple edges), as well as by
reducing multi-author papers to pairs of authors. These two tests are summarized in Figure 3,
which depicts the sampling distributions of the chi-square statistic. That the Markov chains
converged fairly well was checked using the usual MCMC diagnostics in R.
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2.4. Generalizations to weighted graphs

The previous example opens up several interesting questions: how can we preserve the under-
lying data structure and still use an interesting network model with scalable estimation and
goodness-of-fit methods? Karwa and Petrović (2016) argue that thresholding and reducing to
a graph is not necessary; one can instead work with a hypergraph representation of the data,
which preserves more of the coauthorship structure than the network representation. For I
authors, J research areas and K journals, consider an I × I × J ×K contingency table whose
(i, i′, j, k) entry counts the number of times author i cites author i′ in research area j and
journal k. A similar representation can be obtained for the coauthorship network, where we
count the number of times authors i and j wrote a joint paper. These representations preserve
the citation and coauthorship count data. We can then collapse the table to an I × I author-
by-author table and fit log-linear models to the citation counts. In essence, we seek to avoid
thresholding, as in the generalized β model discussed in Rinaldo et al. (2013) for weighted
networks represented in table form. Generalizing to weighted or multiple graphs is straight-
forward in the contingency table setting, with MLE algorithms unaffected, and Markov basis
algorithms becoming–perhaps surprisingly–more efficient and easier to implement. This opens
up several lines of research on generalizing these models and enriches the network science
literature with goodness-of-fit tests for many popular ERGMs.

By definition, log-linearity means that the sufficient statistics are a linear function of the
graph, which in turn implies dyadic independence. The assumption of dyadic independence
may seem restrictive; but Yan et al. (2018) show that it includes many popular models and
avoids the degeneracy that plagues other ERGMs. In addition, (Karwa et al., 2016) develop
goodness-of-fit testing methods combining the Bayesian and algebraic approaches for mixture
models of log-linear ERGMs, which do not assume dyadic independence.

3. Causal structure discovery

From random graph models, where each edge of the network is associated with a random
variable, we now turn to graphical models, where each node of the network is associated
with a random variable. In most applications, the underlying network is unknown and needs
to be learned from data on the nodes. We here consider the problem of learning the causal
relationships among the nodes.

Causal inference is the basis of scientific discovery, because it asks ‘why?’. The gold standard
for inferring causal relationships is randomized controlled trials. However, in many applications
running such trials to test for a causal effect is impractical, unethical or prohibitively expensive.
So there have been large efforts to develop a theory of causal inference based purely on
observational data. This began with two crucial advances made independently in the 1920s.
Jerzy Neyman established a formal distinction between random variables under randomization
and ordinary random variables via the potential outcome notation (Neyman, 1923). Sewall
Wright independently pioneered the use of graphs to represent cause-effect relationships using
structural equation models (Wright, 1921, 1934). However, skepticism amongst statisticians
resulted in the causal interpretation of structural equation models being overlooked and almost
forgotten (see Pearl (2012) for a historical account). The reemergence of causal inference from
observational data in statistics began in the 1970s and led to major contributions by Pearl
(2000), Robins (1999), Rubin (1974, 2005), and Spirtes et al. (2001).
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While it has in general been unethical, too expensive or even impossible to perform large-
scale interventional studies, the development of genome editing technologies in biological stud-
ies (Cong et al., 2013) as well as the explosion of interventional data in online advertisement
and education represents a unique opportunity for the development of new causal inference
methodologies. It is now possible to obtain large-scale interventional datasets relatively easily.
This calls for a theoretical and algorithmic framework for learning causal networks from a mix
of observational and interventional data.

In this section, we showcase how methods from algebraic geometry, combinatorics, graph
theory and discrete geometry have been brought to bear in the analysis and development of
causal structure discovery algorithms. In Section 3.1, we introduce the framework of structural
equation models for causal modeling and then discuss open problems in combinatorics and
graph theory related to the degree of identifiability of causal effects. In Section 3.2, we will
review a prominent causal structure discovery algorithm. This algorithm relies on the so-called
faithfulness assumption, and using algebraic geometry we will show that this assumption is
very restrictive and hard to satisfy in practice. In Section 3.3, we will discuss an alternative
algorithm that makes critical use of discrete geometry to overcome the limitations of the
faithfulness assumption and leads to the first provably consistent algorithm for causal inference
from a mix of observational and interventional data. Finally, in Section 3.4 we discuss various
open problems and related literature in algebraic statistics.

3.1. Structural equation models and Markov equivalence

We represent a causal network by a directed graph G = (V,E) consisting of vertices V =
{1, . . . , p} and directed edges E representing direct causal relationships. We make the common
assumption that G is a directed acyclic graph (DAG), meaning there are no directed cycles
i0 → i1 → · · · → im → i0, since causal effects only act forward in time. In a structural equation
model (Wright, 1921, 1934), each node i ∈ V is associated with a random variable Xi and is
a deterministic function of its parents, denoted by pa(i), and independent noise, denoted by
εi. For example, a structural equation model on the 4-node DAG 1→ 2, 2→ 3, 3→ 4, 1→ 4
is given by

X1 = f1(ε1), X2 = f2(X1, ε2), X3 = f3(X2, ε3), X4 = f4(X1, X3, ε4). (1)

Gaussian linear structural equation models are special instances of this model class, where
Xj =

∑
i∈pa(j) aijXi+εj and the noise ε = (ε1, . . . , εp) follows a Gaussian distribution N (0, D),

where the covariance matrix is diagonal. In this case, the joint distribution of X = (X1, . . . , Xp)
is a Gaussian N (0,Σ), where Σ−1 = (I − A)D−1(I − A)T and A is the weighted adjacency
matrix ofG containing the causal effects aij. While this model is of interest for its mathematical
simplicity, in many applications including genomics the linear and Gaussian assumptions are
often violated and it is preferable to work with the general non-parametric model in (1).

A structural equation model not only encodes the observational distribution, i.e., the distri-
bution of X, but also the interventional distributions. For instance, in the example above an
intervention on node X3 by setting it’s value to 0 would change the distribution of the nodes
X3 and X4, but not the others, since they are not downstream of X2. Such an intervention
could for example be used to model a gene knockout experiment, where the expression of
certain genes is set to zero (Cong et al., 2013).
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p 1 2 3 4 5 6 7
# MEC 1 2 11 185 8782 1067825 312510571

(# MEC)/(# DAG) 1.00000 0.66667 0.44000 0.34070 0.29992 0.28238 0.27443
(# MEC1)/(# MEC) 1.00000 0.50000 0.36364 0.31892 0.29788 0.28667 0.28068

p 8 9 10
# MEC 212133402500 326266056291213 1118902054495975141

(# MEC)/(# DAG) 0.27068 0.26888 0.26799
(# MEC1)/(# MEC) 0.27754 0.27590 0.27507

Table 1
The number of MECs, along with the ratios of the numbers of MECs to DAGs and the ratios of the counts of

MECs of size 1 (MEC1) to the total number of MECs up to 10 nodes (Gillispie and Perlman, 2001).

A structural equation model provides a factorization of the joint distribution, which implies
certain conditional independence (CI ) relations through the Markov property, namely Xi ⊥⊥
Xnd(i) | Xpa(i), where nd(i) denotes the non-descendents of node i; see, e.g. Lauritzen (1996)
for an introduction to graphical models. A standard approach for causal structure discovery is
to infer CI relations from the sample distribution and then infer the DAG from these relations.
However, in general a DAG is not identifiable, since multiple DAGs can encode the same set
of CI relations; such DAGs are called Markov equivalent. Verma and Pearl (1990) provided a
graphical characterization of when two DAGs are Markov equivalent, namely when they have
the same skeleton (i.e., undirected edges) and immoralities (i.e. induced subgraphs of the form
i→ j ← k).

Since from observational data it is only possible to identify a DAG up to its Markov equiva-
lence class (MEC), it is important to study the sizes of MECs and their distribution. However,
while a recurrence relation for the number of DAGs on p nodes is known (Robinson, 1973),
no such formula is known for MECs. Gillispie and Perlman (2001) enumerated all MECs up
to 10 nodes; see Table 1. The first row shows that the number of MECs grows very quickly in
the number of nodes p. The second row shows the ratio of the number of MECs to the number
of DAGs, suggesting that this sequence converges to ≈ 1/4. This combinatorial conjecture
would have important consequences for causal inference, since it would imply that on aver-
age a Markov equivalence class consists of about 4 DAGs, meaning that in general only very
few interventional experiments would be required to identify the true causal DAG. Finally,
the last row suggests that the ratio of the number of MECs of size 1 to the total number of
MECs also converges to ≈ 1/4. Importantly, this would imply that ≈ 1/4 of all causal DAGs
can be uniquely identified without any interventional data. While a combinatorial analysis
of the number of Markov equivalence classes for particular families of DAGs was initiated
in Radhakrishnan et al. (2017, 2018), these problems in general are wide open.

3.2. Causal structure discovery algorithms and faithfulness

Since the overwhelming majority of available data has been observational, most causal infer-
ence algorithms have been developed in this setting. A standard approach to causal structure
discovery is constraint-based, i.e., to treat causal inference as a constraint satisfaction problem
with the constraints being the CI relations inferred from the data. A prominent example is the
PC algorithm, which starts in the complete undirected graph and iteratively removes edges
(i, j) if there exists S ⊂ V \ {i, j} such that Xi ⊥⊥ Xj | XS. This results in the skeleton of the
DAG; the immoralities are determined in a second step using the identified CI relations.
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Unfaithful distributions: 3-node example

� �

X1 = ε1
X2 = a12X1 + ε2
X3 = a13X1 + a23X2 + ε3
ε ∼ N (0, I )

=⇒ X ∼ N (0,Σ), Σ−1 =
(I − A)(I − A)T

Faithfulness is NOT satisfied if any of the following relations hold:

X1 ⊥⊥ X2 ⇐⇒ det((Σ−1)13,23) = a12 = 0

X1 ⊥⊥ X3 ⇐⇒ det((Σ−1)12,23) = a13 + a12a23 = 0

X2 ⊥⊥ X3 ⇐⇒ det((Σ−1)12,13) = a212a23 + a12a13 + a23 = 0

X1 ⊥⊥ X2 | X3 ⇐⇒ det((Σ−1)1,2) = a13a23 − a12 = 0

X1 ⊥⊥ X3 | X2 ⇐⇒ det((Σ−1)1,3) = −a13 = 0

X2 ⊥⊥ X3 | X1 ⇐⇒ det((Σ−1)2,3) = −a23 = 0

=⇒ Faithfulness not satisfied on collection of hypersurfaces in R|E |

Caroline Uhler (MIT) From Causal Inference to Gene Regulation Princeton, Feb 2018 11 / 20

Fig 4: The unfaithful distributions for a 3-node fully connected DAG correspond to a collection
of 6 hypersurfaces, each of which is defined by the vanishing of an almost principle minor; the
3 linear hypersurfaces are shown in pink and the 3 non-linear hypersurfaces in red, blue and
green; illustration taken from Uhler et al. (2013).

For such an algorithm to output the correct Markov equivalence class it is necessary that
the inferred CI relations are faithful to the true DAG. In particular, it has to hold that

Xi⊥6⊥Xj | XS for all (i, j) ∈ E and all S ⊂ V \ {i, j}, (2)

which is known as the adjacency faithfulness assumption (Ramsey et al., 2006). Faithfulness
violations can occur through cancellation of causal effects in the graph. Assumption (2) seems
harmless at first, since it is highly unlikely that causal effects in a DAG cancel each other out
exactly. However, CI relations are inferred from data via hypothesis testing. So in the finite
sample regime (2) must be strengthened. In the Gaussian setting, where CI relations can be
tested using partial correlations ρij|S, (2) leads to the definition of strong faithfulness (Zhang
and Spirtes, 2003):

ρij|S ≥ λ for all (i, j) ∈ E and all S ⊂ V \ {i, j},

where λ �
√

log(p)/n to guarantee uniform consistency of the PC algorithm (Kalisch and
Bühlmann, 2007).

Since the strong faithfulness assumption is critical for the consistency of various promi-
nent causal inference algorithms, it is important to understand how many samples are needed
in general to satisfy it. Algebraic geometry has played a major role in answering this ques-
tion (Uhler et al., 2013; Lin et al., 2014). To see why, consider a Gaussian linear structural
equation model on the fully connected DAG on 3 nodes with edges 1→ 2, 1→ 3, 2→ 3. For
simplicity, we assume that all error variances are equal to 1 and hence (X1, X2, X3) ∼ N (0,Σ),
where Σ−1 = (I −A)(I −A)T and A is strictly upper triangular containing the causal effects
a12, a13 and a23. Since no edge is missing, any CI relation is unfaithful to the DAG. On
3 nodes, there are 6 possible CI relations. For Gaussian distributions, any CI relation corre-
sponds to the vanishing of an almost principle minor, as shown in Figure 4. Hence, faithfulness
violations correspond to a collection of real algebraic hypersurfaces and understanding how
restrictive the strong faithfulness assumption is requires the computation of the volume of
tubes around these hypersurfaces. This was achieved using tools from real algebraic geometry,
namely Crofton’s formula and Lojasiewicz inequality in Uhler et al. (2013) and using real log-
canonical thresholds in Lin et al. (2014). These results were then used to compute the scaling
of number of samples to number of variables that lead to the tubes filling up the whole space.
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This is important since in this case no faithful distribution exists. In the high-dimensional
setting, this scaling was shown to be as bad as pn = o(log n), a real limitation for the applica-
tion of algorithms that rely on the faithfulness assumption, including the PC algorithm. These
results also provide an example of how methods from algebraic geometry can be applied in
the setting of high-dimensional statistics.

3.3. DAG associahedra for causal inference from interventional data

With this understanding of unfaithful distributions as a collection of hypersurfaces, it is clear
that obtaining algorithms with better consistency guarantees requires removing some of these
hypersurfaces, i.e., testing fewer CI relations. Given a permutation (i.e., ordering) of the nodes
π that is consistent with the true DAG G (i.e., if i → j in G, then i < j in the ordering π),
then by the Markov property G can be recovered by testing only one CI relation per edge,
namely the conditioning set consisting of all ancestors of i and j with respect to π, i.e.,

Xi ⊥⊥ Xj | XS, where S = {k ∈ V : k ≤ i or k ≤ j w.r.t. π} \ {i, j}. (3)

The true ordering, however, is in general unknown and must be inferred from data. A natural
approach following Occam’s Razor is to associate to each permutation π a DAG Gπ using (3)
and to then return the sparsest permutation, i.e., the sparsest DAG among all permutations.
This approach is uniformly consistent under strictly weaker conditions than strong faithfulness,
namely provided the sparsest DAG is in the true Markov equivalence class (Raskutti and Uhler,
2018). However, these improved consistency guarantees were achieved at a large computational
price, since determining the sparsest permutation requires searching over all p! permutations.

This raises the question whether replacing the exhaustive permutation search by a greedy
search could be used for causal inference. Greedy search algorithms are commonly applied for
causal inference, most notably Greedy Equivalence Search, a greedy search over the space of
Markov equivalence classes (Chickering, 2002). The convex hull of all permutations of length p
gives rise to a (p− 1)-dimensional polytope, known as the permutohedron, whose vertices are
the permutations. Two permutations are connected by an edge in the permutohedron if and
only if they differ by a neighboring transposition. The 3-dimensional permutohedron of all
permutations of length 4 is shown in Figure 5. It is shown in Solus et al. (2017) that a greedy
search in the permutohedron is consistent, i.e. it outputs the correct Markov equivalence class
when the sample size goes to infinity, under strictly weaker conditions than faithfulness. The
sequences in Table 1 suggest that the number of MECs grows much faster than the number of
permutations. Hence it is remarkable that a greedy search on the space of permutations has
similar consistency guarantees as greedy search on the space of Markov equivalence classes,
despite a large reduction in the search space.

In fact, the search space can be reduced further by identifying permutations whose DAGs Gπ

and Gπ′ are the same, since the number of edges in such graphs is necessarily the same. Such
permutations are connected by edges in the permutohedron. Contracting these edges gives rise
to a polytope (Mohammadi et al., 2018), known as the DAG associahedron, which can also be
obtained by a different construction, namely by associating to each edge in the permutohedron
a CI relation as described in Morton et al. (2009) and contracting all edges corresponding to
CI relations in the underlying DAG (Mohammadi et al., 2018); see Figure 5. Thus DAG
associahedra are a generalization of the prominent (undirected) graph associahedra (Carr
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3
CI relations: 1 ⊥⊥ 2, 1 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}

2 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | {1, 3}

Caroline Uhler (MIT) From Causal Inference to Gene Regulation MIT, January 2019 1 / 1
Fig 5: 3-dimensional permutohedron consisting of all permutations of length 4 and the DAG
associahedron for a particular 4-node DAG; illustration taken from Mohammadi et al. (2018).

and Devadoss, 2006), that are obtained from the permutohedron by contracting all edges
corresponding to separations or CI statements in an undirected graphical model. Hence the
quest for a causal inference algorithm that is consistent under strictly weaker conditions than
faithfulness and as a consequence achieves higher accuracies than previous algorithms in the
high-dimensional setting led to the development of DAG associahedra and new results in
convex geometry that are of independent interest.

Recent years have witnessed a paradigm shift in the kinds of data that is being collected. In
genomics, but also various other application areas, large-scale interventional datasets are being
produced by deliberately altering some components in the system, such as genes. By further
reducing the search directions, the greedy sparsest permutation search algorithm described
above was extended to the first provably consistent algorithm for causal inference from a
mix of observational and interventional data (Wang et al., 2017; Yang et al., 2018). For an
application of these algorithms to learning gene regulatory networks see e.g. Wang et al. (2017,
2018); Yang et al. (2018).

3.4. Open problems and related literature

While faithfulness is well-understood from a geometric perspective, it is an open problem in
algebraic geometry/combinatorics to understand the assumptions needed for consistency of
the sparsest permutation algorithm. This is of great interest, since it is conjectured that these
are the weakest assumptions that guarantee consistency of any algorithm for learning the true
Markov equivalence class (Raskutti and Uhler, 2018). Other polyhedral approaches for causal
inference have been described (Cussens et al., 2017; Jaakkola et al., 2010) and it would be in-
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teresting to better understand how they relate to each other. So far we only considered causal
inference when all variables are observed. However, for applications in the social sciences, la-
tent variables are ubiquitous. The FCI algorithm and its variants generalize the PC algorithm
to the latent setting (Spirtes et al., 2001). It is an open problem to generalize greedy permuta-
tion search algorithms to the setting with latent variables. In addition, while CI relations are
the only constraints that act on structural equation models in the fully-observed setting, in
the latent setting there are additional constraints such as the Verma constraints (Richardson
et al., 2017). While a full algebraic description of these constraints is not known, for linear
Gaussian structural equation models a large subset has recently been characterized as nested
determinants (Drton et al., 2018). In addition to these equality constraints, there are inequal-
ity constraints. Describing these is very challenging, as demonstrated by the ongoing search
for the semi-algebraic description of the set of matrices of fixed non-negative rank (Allman
et al., 2015; Kubjas et al., 2015), which correspond to simple latent tree models in the discrete
setting. Explicit knowledge of the defining equations and inequalities is crucial to answer ques-
tions of identifiability (e.g. Allman et al. (2009)) or model selection (e.g. Drton et al. (2017);
Evans (2018)). Finally, we return to the beginnings of algebraic statistics on experimental
design (Pistone et al., 2001) to point out a critical problem in the era of interventional data,
namely to decide which interventions to perform in order to gain the most information about
the underlying causal system.

4. Phylogenetics

This section treats a particular class of directed graphical models with latent variables, namely
phylogenetic trees. Algebraic tools have been used since the end of the 20th century to address
problems in phylogenetics (Felsenstein, 1978; Hendy and Penny, 1989; Evans and Speed, 1993;
Hendy et al., 1994). In particular, Lake (1987) and Cavender and Felsenstein (1987) opened
the door to the development of phylogenetic reconstruction methods based on the polynomial
equations implied by a particular evolutionary model and tree structure. Below, we survey this
approach and then describe the major impact that algebraic statistics has had on phylogenetic
reconstruction, model selection, and identifiability.

More detailed introductions to algebraic phylogenetics can be found in Allman and Rhodes
(2007), Pachter and Sturmfels (2005), Sullivant (2018), Zwiernik (2015) or Steel (2016, §7,§8).

4.1. Phylogenetic reconstruction

A phylogenetic tree is a tree graph whose leaves correspond to molecular sequences (for exam-
ple, the whole genome of a species or a single gene) of different living species and represents
the speciation process that led to them: the interior nodes represent ancestral sequences, the
edges evolutionary processes, and the leaves are labelled with the names of the living species.
The topology of a phylogenetic tree is the topology of the labeled graph; for example, Fig-
ure 6 shows the three different (unrooted) tree topologies for the species {1, 2, 3, 4}, which are
denoted as 12|34, 13|24, 14|23. While phylogenetic trees can be reconstructed using a variety
of data including DNA or protein molecules, we here assume that the available data are a
sequence of characters A,C,G,T (corresponding to the four nucleotides) of length N for each
living species in the tree.
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Fig 6: The three different unrooted tree topologies on four leaves are denoted as 12|34, 13|24,
and 14|23 respectively.

In order to model the evolution of nucleotide data, it is convenient to assume that the sub-
stitution of nucleotides occurs randomly and following a Markov process on the phylogenetic
tree T , where the internal nodes are latent variables. The state space of the random variables
at the nodes of T is {A,C,G,T} and the parameters of the model are a distribution π at a
fixed interior node (which plays the role of the root) and the entries of the 4 × 4 transition
matrices M e associated to the edges e of T . According to this hidden Markov process on T ,
where two nodes are independent given their least common ancestor, the probability of ob-
serving a character pattern at the leaves of the tree can be expressed as a polynomial in the
model parameters. Assuming that the characters in each sequence have all evolved following
the same evolutionary process and are independent of each other, the data are N independent
samples from a multinomial distribution.

Different restrictions imposed on the transition matrices give different evolutionary models:
from the simplest JC69 where π is uniform and there is only one free parameter per edge
(that is, on each edge, all conditional probabilities P (x|y) are equal if x 6= y), to the general
Markov model (GMM ) with no restrictions on the transition matrices or on π.

As an example, we consider the JC69 model on the tree 12|34 shown in Figure 6 relating the
set of species {1, 2, 3, 4}. Denoting by px1x2x3x4 the joint probability of observing nucleotide xi
at species i, it is not difficult to see (using the fact that the JC69 model is invariant under
permutations of the four states) that

pAAAA = pCCCC = pGGGG = pTTTT,

pAAAC = pAAAG = pAAAT = · · · = pTTTG, (4)

whatever the parameters of the model. These are the first natural algebraic equations that
arise from this type of evolutionary models. Although they are linear equations, they can be
useful in model selection (see Section 4.3). They cannot be used to estimate the tree topology,
because they hold for any joint distribution arising from a JC69 model on any of the trees in
Figure 6; they are therefore called model invariants.

Consider now

pACAC + pACGT = pACGC + pACAT and (5)

pACCA + pACTG = pACCG + pACTA. (6)

Both (5) and (6) hold for any set of JC69 parameters on the tree 12|34, but (5) does not hold
for all distributions on the tree 13|24 and (6) does not hold for 14|23 (Lake, 1987). These
equations that are satisfied for all joint distributions on a particular phylogenetic tree but not
for all distributions on another tree are called topology invariants (Steel, 2016)[8.3].

These equations were used by Lake (1987) to design a statistical test based on the χ2-statistic
to infer the tree topology. These first attempts were not very successful (Huelsenbeck, 1995),
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were only valid for simple models, and only used two of the relevant algebraic equations
(Casanellas and Fernández-Sánchez, 2010). The use of topology invariants for phylogenetic
reconstruction was thus halted, until the seminal work of Allman and Rhodes (2008). We
explain their main contribution in what follows.

Let p ∈ R256 be a distribution of character patterns on species {1, 2, 3, 4} as above, and
consider its flattening matrix flatt12|34(p) according to the split 12|34, namely:

states at leaves 3 and 4

flatt12|34(p) =

states

at

leaves

1, 2


pAAAA pAAAC pAAAG . . . pAATT
pACAA pACAC pACAG . . . pACTT
pAGAA pAGAC pAGAG . . . pAGTT
. . . . . . . . . . . . . . .
pTTAA pTTAC pTTAG . . . pTTTT

 .

Allman and Rhodes (2008) proved that if p is a distribution from a Markov process on the
tree 12|34 (in the general Markov model), then flatt12|34(p) has rank ≤ 4; moreover it has
rank 16 if p is a joint distribution on any of the two other trees 13|24, 14|23 (arising from a
Markov process with generic parameters).

This result has allowed the development of new topology invariants under the general
Markov model but, most importantly, the use of techniques such as rank approximation to
propose methods to select the tree that best represents the data. This approach has been
exploited in work that has attracted the attention of biologists (Chifman and Kubatko, 2014;
Fernández-Sánchez and Casanellas, 2016), and has allowed a generalization to the multispecies
coalescent model and the use of these methods to estimate, not only gene trees, but also
species trees (Chifman and Kubatko, 2015). Some of these methods have been implemented
in PAUP* (Swofford, 2003), one of the most widely used software packages in phylogenetics,
which has opened the use of these tools to the biological community at large and has allowed
the application in areas such as biodiversity preservation (Devitt et al., 2019).

When dealing with real data, one only has access to a finite number of samples from the
corresponding multinomial distribution. Since many methods are based on asymptotic tests,
they may not be suitable for small samples. Current research attempts to solve this issue and
statistical tests based on algebraic tools are starting to be developed for the finite-sample
regime (Gaither and Kubatko, 2016; Sumner et al., 2017).

These first approaches to algebraic phylogenetics have been restricted to trees on four
species, but can be used in quartet-based methods to infer large phylogenetic trees using only
quartet data as input (that is, topologies of four species, in addition to an assessment score
of the reliability of each quartet topology) (Strimmer and von Haeseler, 1996; Ranwez and
Gascuel, 2001; Snir and Rao, 2010; Davidson et al., 2018). This approach has been used in
Fernández-Sánchez and Casanellas (2016) to provide new support for the phylogenetic tree of
eight species of yeast that was suggested by biological evidences and only obtained by certain
reconstruction methods restricted to certain models. It would be of great interest to develop
algebraic methods that can directly infer large trees; a first result in this direction is Sumner
(2017).

The evolutionary models used in these algebraic approaches are more general than those
commonly used by biologists. Indeed, the usual approach in phylogenetics is to use a continuous-
time Markov process. In this case, the transition matrix M corresponding to an edge is of type
M = etQ, where Q is an instantaneous mutation rate matrix that operates for the duration
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t ≥ 0. Not all transition matrices are of this type (i.e., not all Markov matrices are embed-
dable in a continuous-time process); indeed, the logarithm of a transition matrix may not be
real, and, if it is real, it may not be a rate matrix. Roca-Lacostena and Fernández-Sánchez
(2018) proved that, for the Kimura 3-parameter model of nucleotide substitution, the set of
embeddable matrices represents only 9.4% of all transition matrices. Moreover, it is commonly
assumed that Q is the same for all edges of the tree (i.e., the Markov process is homogeneous in
time), and that the process is stationary and time-reversible. This leads to one of the most used
models in phylogenetics, the so-called general time-reversible (GTR) model. While restricting
to this model is quite controversial (Sumner et al., 2012) and might be too restrictive as we
just insinuated, using GTR might be convenient because it considers less parameters than
GMM (and hence the estimation of the parameters is more feasible). Algebraic approaches to
phylogenetics avoid parameter inference altogether and make phylogenetic inference feasible
for the most general Markov model, the GMM.

So far we have mainly focused on the recovery of the tree. As the number of trees grows
super-exponentially in the number of leaves, accurately recovering the tree topology is a basic
first step towards parameter recovery using methods such as maximum likelihood. Neverthe-
less, algebraic statistics can also lead to important results in obtaining estimates for continu-
ous parameters of small phylogenetic trees. For example, using computational algebra one can
compute the number of critical points of the log-likelihood function (Catanese et al., 2006)
and then tools from numerical algebraic geometry can be used to obtain the global optimum
(Kosta and Kubjas, 2019). Moreover, tools from computational algebra have provided major
insights into the existence of a unique global optimum and provided analytical expressions to
obtain it (Chor et al., 2006; Dinh and Matsen IV, 2017). In addition to equality constraints
given by the model, the continuous parameters must also satisfy biological constraints and
stochastic conditions, which are encoded as inequality constraints. While understanding these
semi-algebraic constraints is difficult, Zwiernik and Smith (2011), Matsen (2009), Allman et al.
(2014), Steel and Faller (2009) discuss which semi-algebraic constraints suffice to describe the
model together with the algebraic constraints.

These algebraic tools are also being used in phylogenetic networks; for instance, Chifman
and Kubatko (2019) introduce a new technique based on algebraic statistics to detect events
in hybridization networks. These new tools for topology reconstruction are opening a new di-
rection for phylogenetic reconstruction, with many interesting challenges from both statistical
and algebraic points of view.

4.2. Identifiability

Although the use of algebraic statistics for proving identifiability of parameters of statistical
models in phylogenetics is primarily of theoretical nature, it has been critical for proving the
consistency of many phylogenetic reconstruction methods, including those based on likelihood.
In the following, we provide a short overview.

Chang (1996) used algebraic tools to prove that the GMM is generically identifiable, that
is, generic parameters are identifiable from the joint distributions of triplets of species (up to
label swapping). The same holds for simpler models. Unfortunately, identifiability becomes
much more involved for more complex models. Of particular interest are extensions that allow
different sites to evolve at different rates, either by considering a Γ distribution of rates across
sites (but assuming that all sites evolve according to the same tree topology), or by considering
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a mixture model (i.e., the joint distribution p is a mixture of a certain number of distributions
pi that have arisen from trees Ti under a certain model M, with unknown trees, continuous
parameters, and mixing parameters).

One well-known model that allows for different rates is the GTR+Γ, where all sites evolve
based on the same tree topology and with the same instantaneous mutation rate matrix,
but the rate at which each site evolves follows a Γ distribution (of certain fixed parameters).
Although maximum likelihood estimation for this model has been widely-used by the biological
community, identifiability of its parameters was established using algebraic statistics only in
2008 in Allman et al. (2008).

As far as mixture models are concerned, the first problem is to prove identifiability of the
tree parameters. Without any constraints on the number of distributions, overfitting occurs
and the continuous parameters are not identifiable. However, with appropriate constraints, the
trees can be identified. Consider, for instance, mixtures on a single tree of four leaves evolving
under the JC69 model. Equations (5) and (6) are satisfied for all distributions on the tree 12|34
and, as they are linear, they are also satisfied for any mixture of distributions on this tree.
Therefore, as mixtures of distributions on any of the other two trees in Figure 6 do not satisfy
one of these equations, these topology invariants are able to identify the tree for this type of
mixtures. In a similar way, the rank conditions mentioned in 4.1 allow a generalization that
proves identifiability of trees in the case of mixtures on a single tree (Rhodes and Sullivant,
2012). When mixtures on two different trees are considered, few positive results have been
obtained (Allman et al., 2011). For example, it is an open problem to determine whether, if
one considers mixtures of GMM distributions on two trees T1 and T2, the pair {T1, T2} can be
recovered from the mixed distribution.

Recently, algebraic tools have been used to prove the consistency of phylogenetic recon-
struction methods for more complex models, including methods that reconstruct the species
tree from gene trees according to the multispecies coalescent model. This is a very active area
of research with important biological implications. See, for instance, Allman et al. (2018),
Allman et al. (2019), which all make use of deep algebraic tools.

Finally, in recent years there have been also incursions of algebraic statistics into ques-
tions about identifiability of phylogenetic and hybridization networks (Gross and Long, 2018;
Chifman and Kubatko, 2019; Baños, 2019), but many open problems remain.

4.3. Model selection

Another way in which algebraic statistics has been applied to phylogenetics is in selecting the
evolutionary model that best fits the data. As mentioned above, a range of evolutionary models
have been described ranging from JC69 to GMM (see for example the Felsenstein hierarchy in
(Pachter and Sturmfels, 2005)). Among them, the ones that have been deeply studied from an
algebraic viewpoint are JC69, K80, K81, SSM and GMM. Following Kedzierska et al. (2012),
we explain here how the model invariants for these models can be used in model selection
within the framework of phylogenetic mixtures.

Model invariants on trees of n leaves for an evolutionary model M are algebraic equations
satisfied by all distributions arising from any set of parameters on the model M on any phy-
logenetic tree on n leaves. The equations (4) are an instance of model invariants forM=JC69
on trees of four leaves. As they are linear equations, they are also satisfied for any mixture of
a collection of distributions on these trees. In general, the space of mixtures of distributions
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on trees on n leaves evolving underM (i.e. the set of mixtures of any number of distributions
on trees on n leaves evolving under M) is determined by the collection of linear model in-
variants. Moreover, the linear model invariants for M =JC69, K80, K81, SSM are generated
by binomial equations for any n (analogous to (4) and computed in Casanellas et al. (2012)),
which leads to the exact computation of the likelihood maximum for data points coming from
mixtures of distributions on a particular M. Finally, these likelihoods can be combined into
an information criterion for model selection (such as corrected Akaike or Bayesian Information
Criterion). These tools were applied in Kedzierska et al. (2012) to real DNA data from the
PANDIT database: while the usual model selection method chooses the most complex model
GRT+Γ (+invariable sites) and gives a tree incongruent with the accepted phylogeny, the
method presented there selects a mixture of JC69 and leads to the accepted phylogenetic tree.

5. Discussion

Since its beginning in the late 1990s, the field of algebraic statistics has grown rapidly. The
development of new theory and algorithms for data analysis inspired by algebra, combina-
torics and algebraic geometry has brought together previously disconnected communities of
algebraists and statisticians. By now, algebraic methods have touched on all major themes
in statistics, such as parameter identifiability and estimation, hypothesis testing, model selec-
tion, and Bayesian inference. Conversely, problems and models from statistics have inspired
significant new “pure” developments in algebraic combinatorics, high-dimensional commuta-
tive algebra, and computational algebraic geometry. Various textbooks have been written on
algebraic statistics: (Pachter and Sturmfels, 2005; Drton et al., 2009; Sullivant, 2018; Aoki
et al., 2012), and for readers interested in using algebraic tools for statistical analysis, there
is a package “algstat” implemented in R (Khale, 2014).

We here provided an overview on developments made possible through the use of algebraic
methods in three areas related to networks. We particularly focused on applications of alge-
braic statistics. However we did not touch upon many interesting developments of algebraic
statistics. For example, significant contributions related to Markov bases have been applied
to disclosure limitation (Fienberg and Slavkovic, 2004) and genetics (Malaspinas and Uhler,
2011). Another recent direction is the use of commutative algebra for experimental design
in system reliability (Sáenz-de Cabezón and Wynn, 2015). Finally, another domain where
algebraic techniques have been very fruitful is for the analysis of chemical reaction networks
(see for example Müller et al. (2016) and the work cited therein). It has been an exciting two
decades for algebraic statistics. We have seen major impact of algebraic statistics on theo-
retical developments and, as summarized in this survey article, also on applications, and we
expect that this discipline will expand into many further application domains.
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Cussens, J., Haws, D., and Studený, M. (2017). Polyhedral aspects of score equivalence in
Bayesian network structure learning. Mathematical Programming, Series A, 164, 285–324.

Davidson, R., Lawhorn, M., Rusinko, J., and Weber, N. (2018). Efficient quartet representa-
tions of trees and applications to supertree and summary methods. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics , 15(3), 1010–1015.

Devitt, T. J., Wright, A. M., Cannatella, D. C., and Hillis, D. M. (2019). Species delimitation
in endangered groundwater salamanders: Implications for aquifer management and biodi-
versity conservation. Proceedings of the National Academy of Sciences , 116(7), 2624–2633.

Diaconis, P. and Sturmfels, B. (1998). Algebraic algorithms for sampling from conditional
distributions. The Annals of Statistics , 26(1), 363–397.

Dillon, M. (2016). Runtime for performing exact tests on the p1 statistical model for random
graphs . Ph.D. thesis, Illinois Institute of Technology.

Dinh, V. and Matsen IV, F. A. (2017). The shape of the one-dimensional phylogenetic likeli-
hood function. The Annals of Applied Probability , 27(3), 1646–1677.

Drton, M., Sturmfels, B., and Sullivant, S. (2009). Lectures on Algebraic Statistics . Oberwol-
fach Seminars. Birkhäuser.
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Erdös, P. and Rényi, A. (1961). On the evolution of random graphs. Bulletin de L’Institut
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