
An Algebraic Approach for High-level Text Analytics
Xiuwen Zheng

xiz675@eng.ucsd.edu
University of California San Diego

La Jolla, Californa, USA

Amarnath Gupta
a1gupta@ucsd.edu

University of California San Diego
La Jolla, Californa, USA

ABSTRACT
Text analytical tasks like word embedding, phrase mining and topic
modeling, are placing increasing demands as well as challenges to
existing database management systems. In this paper, we provide
a novel algebraic approach based on associative arrays. Our data
model and algebra can bring together relational operators and text
operators, which enables interesting optimization opportunities for
hybrid data sources that have both relational and textual data. We
demonstrate its expressive power in text analytics using several
real-world tasks.

CCS CONCEPTS
• Information systems → Information retrieval query pro-
cessing.

KEYWORDS
associative array, text analytics, natural language processing

ACM Reference Format:
Xiuwen Zheng and Amarnath Gupta. 2020. An Algebraic Approach for
High-level Text Analytics. In 32nd International Conference on Scientific
and Statistical Database Management (SSDBM 2020), July 7–9, 2020, Vienna,
Austria. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3400903.
3400926

1 INTRODUCTION
A significant part of today’s analytical tasks involve text operations.
A data scientist who has to manipulate and analyze text data today
typically uses a set of text analysis software libraries (e.g., NLTK,
Stanford CoreNLP, GenSim) for tasks like word embedding, phrase
extraction, named entity recognition and topic modeling. In addi-
tion, most DBMS systems today have built-in support for full-text
search. PostgreSQL, for instance, admits a text vector (called tsvec-
tor) that extracts and creates term and positional indices to enable
efficient queries (called tsquery). Yet, some common and seemingly
simple text analysis tasks cannot be performed simply within the
boundaries of a single information system.
Example 1. Consider a relational table R(newsID, date, newspaper,
title, content) where title and content are text-valued attributes, and
two sets Lo ,Lp that represent a collection of organization names
and person names respectively. Now, consider the following analy-
sis:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SSDBM 2020, July 7–9, 2020, Vienna, Austria
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8814-6/20/07.
https://doi.org/10.1145/3400903.3400926

• N 1 = Select a subset of news articles between dates d1 and d2
• N 2 = Identify all news articles in N 1 that have at least c1 organi-
zation names from Lo and c2 persons from Lp

• T 1 = Create a document-term matrix on N 2.text
• T2 = Remove rows and columns of the matrix if either of their
row or column marginal sums is below θ1 and θ2 respectively

• M = Compute a topic model using T 2
The intention of the analysis is to find the topic distribution of
those news items that cover, for example, any two members of the
senate (list Lp) and any one government organizations (list Lo).
The analysis itself is straightforward and can be performed with a
combination of SQL queries and Python scripts.

Our goal in this short paper is to present the idea that a novel
relation-flanked associative array data model has the potential of
serving as the underlying framework for the management and
analysis of text-centric data. We develop the theoretical elements
of the model and illustrate its utility through examples.

2 THE DATA MODEL
2.1 Text Associative Arrays
A number of current data systems, typically in the domain of poly-
store data systems, use associative arrays [3, 4] or its variants like
associative tables [1] and tensor data model [5]. Many of these data
models are used to support analytical (e.g., machine learning) tasks.
In our setting, we specialize the essential associative model for text
analytics. For our level of abstraction, our model reuses relational
operations for all metadata of the associative arrays. While it has
been shown [1] that associative arrays can express relational oper-
ations, we believe that using relational abstraction along with our
text-centric algebraic operations makes the system easier to pro-
gram and interpret. At a more basic level, since most text processing
operations include sorting (e.g., by TF-IDF scores), our model is
based on partially ordered semirings.

Definition 2.1 (Semiring). A semiring is a set R with two binary
operations addition ⊕ and multiplication ⊙, such that, 1) ⊕ is asso-
ciative and commutative and has an identity element 0 ∈ R; 2) ⊙ is
associative with an identity element 1 ∈ R; 3) ⊙ distributes over ⊕;
and 4) ⊙ by 0 yields 0.

Definition 2.2 (Partially-Ordered Semiring). [2] A semiring R is
partially ordered if and only if there exists a partial order relation
≤ on R satisfying the following conditions for all a,b ∈ R:

• If a ≤ b, then a ⊕ c ≤ b ⊕ c;
• If a ≤ b and 0 ≤ c , then a ⊙ c ≤ b ⊙ c and c ⊙ a ≤ c ⊙ b.

Definition 2.3 (Text Associative Array). The Text Associative
Array (TAA) A is defined as a mapping:

A : K1 × K2 → R

https://doi.org/10.1145/3400903.3400926
https://doi.org/10.1145/3400903.3400926
https://doi.org/10.1145/3400903.3400926

SSDBM 2020, July 7–9, 2020, Vienna, Austria X. Zheng

where K1 and K2 are two key sets (named row key set and column
key set respectively), and R is a partially-ordered semiring (Defini-
tion 2.2). We call K1 × K2 “the dimension of A”, and denote A.K1,
A.K2 and A.K as the row key set, column key set, and set of key
pairs of A, respectively.

Next, we define the basic operations on text associative arrays,
to be used by our primary text operations (Sec. 2.2).

Definition 2.4 (Addition). Given two TAAs A,B : K1 × K2 → R,
the addition operation C = (A ⊕ B) : K1 × K2 → R is defined as,

C(k1,k2) = (A ⊕ B)(k1,k2) = A(k1,k2) ⊕ B(k1,k2).

Define 0K1,K2 as a TAAwhere 0K1,K2 (k1,k2) = 0 for∀k1 ∈ K1,∀k2 ∈

K2. 0K1,K2 serves as an identity for addition operation on key set
K1 × K2.

Definition 2.5 (Hadamard Product). Given two TAAs A,B : K1 ×
K2 → R, the Hadamard product operation C = (A⊙B) : K1×K2 →
R is defined as,

C(k1,k2) = (A ⊙ B)(k1,k2) = A(k1,k2) ⊙ B(k1,k2).

Define 1K1,K2 as a TAAwhere 1K1,K2 (k1,k2) = 1 for∀k1 ∈ K1,∀k2 ∈

K2. 1K1,K2 serves as an identity for Hadamard product on key set
K1 × K2.

Definition 2.6 (Array Multiplication). Define
⊕

as addition of a
sequence of elements e ∈ R. Given two TAAs A : K1 ×K2 → R and
B : K2 × K3 → R, the array multiplication operation C = (A ⊗ B) :
K1 × K3 → R is defined as,

C(k1,k3) = (A ⊗ B)(k1,k3) =
⊕
k2∈K2

A(k1,k2) ⊙ B(k2,k3).

Definition 2.7 (Array Identity). Given two key sets K1 and K2,
and a partial function f : K1 ↪→ K2, the array identity EK1,K2,f :
K1 × K2 → R is defined as a TAA such that

EK1,K2,f (k1,k2) =

{
1, if k1 ∈ dom f and k2 = f (k1);
0, otherwise.

Specifically, if dom f = K1 ∩ K2 and f (k1) = k1 for ∀k1 ∈ K1,
EK1,K2,f is abbreviated to EK1,K2 .

In general, EK1,K2,f (k1,k2) is not an identity for general array
multiplication. However, EK,K is an identity element for array
multiplication on associative arrays K × K → R.

Definition 2.8 (Kronecker Product). Given two TAAs A : K1 ×
K2 → R and B : K3 ×K4 → R, their Kronecker product C = A ⊛ B :
(K1 × K3) × (K2 × K4) is defined by

C((k1,k3), (k2,k4)) = A(k1,k2) ⊙ B(k3,k4).

Definition 2.9 (Transpose). Given a TAA A : K1 × K2 → R, its
transpose, denoted by AT, is defined by AT : K2 × K1 → R where
AT(k2,k1) = A(k1,k2) for k1 ∈ K1 and k2 ∈ K2.

2.2 Text Operations
We can express a number of fundamental text operations using the
proposed TAA algebra. We first define three basic TAAs specifically
for text analytics, then a series of text operations will be defined
on general TAA or these basic structures.

Definition 2.10 (Document-Term Matrix). Given a text corpus, a
document term matrix is defined as a TAA M : D ×T → R where
D and T are the document set and term set of a text corpus.

The term set in the document-term matrix can be the vocabulary
or the bigram of the corpus, or an application-specific user-defined
set of interesting terms. The matrix value M(d, t) can also take
different semantics, in one application it can be the occurrence of
t in document d , while in another application, it can be the term
frequency-inverse document frequency (tf-idf). Typically, elements
of D and T will have additional relational metadata. A document
may have a date and a term may have an annotation like a part-of-
speech (POS) tag.

Definition 2.11 (Term-Index Matrix). Given a document d , the
term index matrix is defined as a TAA, N : Td × I → {0, 1} where
Td = {d} ×T is the set of terms in document d and I = {1, · · · , Id }
is the index set (Id is the size of d). Specifically, for (d, t) ∈ Td and
i ∈ I ,

N((d, t), i) =

{
1, if i-th word of document d is t ;
0, otherwise.

Example 2. For a document d = “Today is a sunny day”, let its
term index matrix be N : ({d} ×T) × I → {0, 1}, then we have T =
{“today”, is”, “a”, “sunny”, “day”}, I = {1, 2, 3, 4, 5}.N(“today”, 1) =
1,N(“is”, 2) = 1,N(“a”, 3) = 1,N(“sunny”, 4) = 1,N(“day”, 5) = 1,
and for other (t , i) pairs where (t , i) ∈ T × I , we have N(t , i) = 0.

Definition 2.12 (TermVector). There are two types of term vectors.
1) Given a set of termsT of a document d , the term vector is defined
as a TAA V : {d} ×T → R. 2) Given a set of termsT for a collection
of documents D, V : {1} ×T → R is a term vector for the corpus D.

The term vector represents some attribute of terms in the scope
of one document or a corpus. For example, for a document d , the
value of the term vector V : {d} ×T can be the occurrence of each
term in this document. For a corpus D, the value of its term vector
V : {1} ×T can be idf value for each term in the whole corpus, and
the value is not specific to a single document.

Based on these structures, we can define our unit text operators
as follows. Some operators are defined for general TAAs, while
some are defined for a specific type of TAAs.

Definition 2.13 (Extraction). Given a TAA A : K1 × K2 → R and
two projection sets K ′

1 ⊆ K1, K ′
2 ⊆ K2, we define the extraction

operation as

ΠK ′
1,K

′
2
(A) = EK ′

1,K1 ⊗ A ⊗ EK2,K ′
2
.

Let B = ΠK ′
1,K

′
2
(A), we have B(k1,k2) = A(k1,k2), for ∀(k1,k2) ∈

K ′
1 × K ′

2.

When only extracting row keys, the operation can be expressed
as ΠK ′

1, : and when extracting column keys, it is expressed as Π:,K ′
2
.

Definition 2.14 (Rename). Given a TAA A : K1 × K2 → R,
suppose K ′

2 is another column key set and there exists a bijection
f : K2 → K ′

2. The column rename operation is defined as

ρK1,K2→K ′
2,f

(A) = A ⊗ EK2,K ′
2,f
.

An Algebraic Approach for High-level Text Analytics SSDBM 2020, July 7–9, 2020, Vienna, Austria

Similarly, given another row key setK ′
1 and a bijection f : K1 → K ′

1,
the row rename operation is defined as

ρK1→K ′
1,K2,f (A) = EK ′

1,K1,f −1 ⊗ A.

The subscript f can be omitted if the bijection is clear, e.g., |dom f | =
1. In addition, the row rename operation and column rename oper-
ation can be combined together as ρK1→K ′

1,K2→K ′
2
(A). Our rename

operator is more general than the rename operation of relational
algebra since it supports both row key set and column key set
renaming.

Definition 2.15 (Apply). Given a TAA A : K1 × K2 → R and
a function f : R → R, define the apply operator by Applyf (A) :
K1 × K2 → R where,

Applyf (A)(k1,k2) = f (A(k1,k2)),∀(k1,k2) ∈ K1 × K2.

Definition 2.16 (Filter). Given a TAA A : K1 × K2 → R and an
indicator function f : R → {0, 1}, define the filter operation on A
as

B = Filterf (A) = σf (A) : K1f ,K2f → R,

where K1f ×K2f = {(k1,k2)|(k1,k2) ∈ K1 ×K2 and f (A(k1,k2)) =
1}, and B(k1,k2) = A(k1,k2).

Definition 2.17 (Rank). Given a TAA A : K1 × K2 → R, for
any k ∈ K1, we extract a TAA V = Π{k }, :(A) : {k} × K2. Since
R is a partially-ordered semiring (Definition 2.2), the value set
{V(k,x)|∀x ∈ K2} ⊆ R inherits the partial order from R, which
implies an order V(k,x1) ≤ V(k,x2) ≤ · · · ≤ V(k,x |K2 |). Define
Idx(k,xi) = i , then the rank by column operation is defined as

Rank2(A) : K1 × K2 → {1, · · · , |K2 |},

where Rank2(A)(k,x) = Idx(k,x). Similarly, we have rank by row
operation defined as

Rank1(A) : K1 × K2 → {1, · · · , |K1 |}.

When the column key dimension or row key dimension is 1 (e.g.,
for a term vector), Rank1 or Rank2 is abbreviated to Rank.

Definition 2.18 (Merge). Given two TAAs A : KA1 × KA2 and
B : KB1 × KB2, if (KA1 × KA2) ∩ (KB1 × KB2) = ∅, then merge
operation can be applied on them, and it is defined as,

C = Merge(A,B) : K1 × K2 → R

where K1 = KA1 ∪ KB1 and K2 = KA2 ∪ KB2, and

C(k1,k2) =


A(k1,k2), if (k1,k2) ∈ KA1 × KA2;
B(k1,k2), if (k1,k2) ∈ KB1 × KB2;
0, otherwise.

Definition 2.19 (Expand). Given an element-wise binary operator
OP on associative arrays, e.g., ⊕ and ⊙, a term vector V : {1} ×
T → R and a document-term matrix M : D ×T → R, the expand
operator ExpandOP(V,M) implicitly expands the term vector V
to generate another associative array M′ : D × T → R where
M′(d, t) = V(1, t),∀d ∈ D and ∀t ∈ T , and then applies OP on M′

and M.

Suppose that for a corpus D, there is a term vector V : {1}×T →

R where V(1, t) is the mean occurrence of term t in D (i.e., Countt
|D |

where Countt is the total occurrence of t in D), and there is a
document-term matrix M : D ×T , then

Expand⊕(Applyf (x)=−x (V),M)

will generate the difference of terms occurrences for each document
from their average occurrences.

Definition 2.20 (Flatten). Given an associative array A : K1 ×
K2 → R, the flatten operation is defined by Flatten(A) : {1}×(K1×
K2) → R where

Flatten(A)(1, (k1,k2)) = A(k1,k2) for ∀(k1,k2) ∈ K1 × K2.

Definition 2.21 (Left Shift). Given a term-index matrixN : ({d}×
T) × I → {0, 1}, and an integer n ≥ 1, define the left shift operator
by LShiftn (N) : ({d} ×T) × I → {0, 1} where

LShiftn (N)((d, t), i) =

{
N((d, t), i + n), if i + n ≤ |I |;
0, if i + n > |I |; .

For a term-index matrix N of document d , LShift1(N) generates
another term-index matrix N′ where N′((d, t), i) = 1 when t is the
(i + 1)-th word in d .

Definition 2.22 (Intersection). Suppose there are two term-index
matrices with the same index set I , N1 : ({d} × T) × I → {0, 1}
and N2 : ({d} × T) × I → {0, 1}, let the intersection be N =
Intersection(N1,N2) : ({d} × (T ×T)) × I → {0, 1} where

N((d, (t1, t2)), i) =

{
1, if N1((d, t1), i) = 1 and N2((d, t2), i) = 1;
0, otherwise.

The left shift and intersection operations can be composed to
compute all bigrams of a document. Given a term-index matrixN of
documentd , letN′ = Intersection(N, LShift1(N)), thenN′((d, (t1, t2)), i) =
1 when (t1, t2) is the i-th bigram in document d .

Definition 2.23 (Sum). Given a TAA A : K1×K2 → R, the sum by
row operation Sum1, sum by column operation Sum2 are defined
as the following,

B : K1 × {1} = Sum1(A) where B(k1, 1) =
⊕
k2∈K2

A(k1,k2);

B : {1} × K2 = Sum2(A) where B(1,k2) =
⊕
k1∈K1

A(k1,k2).

3 TEXT ANALYTIC TASKS
3.1 Constructing a Document Term Matrix
As we state in Section 2.2, a document term matrix is a common
representation model for a collection of documents where the terms
can be a list of import terms or the whole vocabulary or bigrams.
The entry of the matrix can be either the occurrence of each term
or the tf-idf value.
Example 3. For a document set D, build a document term matrix
where terms are all unigrams and bigrams in D, and the values
should be the occurrence of each term in the whole corpus.

Suppose there is a tokenization function called Tokenize that
takes a document d as input and generates a term index matrix
N : ({d} ×T) × I . The construction can be decomposed to two parts,

SSDBM 2020, July 7–9, 2020, Vienna, Austria X. Zheng

the first part shown in Fig. 1 is to construct a Term Vector for one
single document d containing all unigrams and bigrams together
with their corresponding occurrences.
N = Tokenize(d) : ({d} ×T) × I 1

V1 = ρ {1}→{d }, {d }×T→T (Sum1(N))T : {d} ×T 2

T = N ⊗ LShift1(N)T : ({d} ×T) × ({d} ×T) 3
V2 = Flatten(T) : {1} × ({d} ×T) × ({d} ×T)) 4
V2 = ρ {1}→{d },({d }×T)×({d }×T)→(T×T)(V2) : {d} × (T ×T) 5
V2 = σf :x→1(x>0)(V2) : {d} × (T ×T) 6
Vd = Merge(V1,V2) : {d} × (T ∪ (T ×T)) 7
Figure 1: Algebraic representation for task in Example 3.

Step 1 generates the term index matrix where each term is the
unigram. The Sum1 operation in Step 2 generates the term vector
where V1(d, t) is the occurrence of unigram t in document d . Steps
3–6 get the term vector V2 for all bigrams. Step 7 concatenates two
term vectors to get the representation for d .

For each document di in document set D = {d1, · · · ,dn }, we get
its term vectorVdi : {di }×(Ti∪(Ti×Ti)) → R using the above steps,
then apply the Merge operation to get the document-term matrix
M : D×T → R whereT = (T1∪· · ·∪Tn)∪((T1×T1)∪· · ·∪(Tn×Tn))
is the union of all unigrams and bigrams in the whole corpus,
Merge(Vd1,Merge(Vd2, · · · ,Merge(Vd(n−1),Vd(n)))).

Besides word-occurrence as the values of term document matrix,
one can also use a term’s tf-idf value. If all terms are considered,
term document matrix M would be of high dimension and sparse,
which would be costly to manipulate. A simple and commonly
adopted method to reduce dimension is to select out informative
words. The following presents the queries to get document-term
matrixM with the tf-idf values for only informative terms where
the informativeness is measured by idf value.
Example 4.Given a collection of documentsD, we have to generate
a document-term matrix M for the top 1000 “informative words”
where M(d, t) is the tf-idf value for term t in document d . Suppose
there is a term-document matrixM1 which stores the occurrence
for all unigrams in each document (the construction is similar to
that of example 2 and thus is skipped),M can be generated by the
following steps. The function id f in Step 3 is to calculate idf value,
which is defined as id f (x) = − log x

|D |
where x is the number of

documents that contains a specific term.

M2 = Applyf :x→1(x>0)(M1) : D ×T 1
V = Sum2(M2) : {1} ×T 2
I = σf :x→1(x ≤1000)(Rank(V)) : {1} ×T ′ 3
V1 = Applyidf (Π:,I.K2 (V)) : {1} ×T ′ 4

M3 = Π:,I.K2 (M1) : D ×T ′ 5
M = Expand⊙(V1,M3) : D ×T ′ 6

Figure 2: Algebraic representation for task in Example 4.

3.2 Using TAAs
For Example 1 introduced in Section 1, we express this analysis
using relational algebra and text associative array operations. Sup-
pose that the maximum number of words for a term in Lo ∪ Lp

is 3, now this analysis can be expressed as the following. Step 1
is expressed in relational algebra. TopicModel in the last step is a
function which takes a document-term matrix and produce docu-
ment topic matrix and topic term matrix, which are the standard
outputs of topic modeling, represented by another two TAAs DTM
and TTM. Let T = ρf :x→1(x ≥ |D |−k)(Rank2(DTM)), then T.K will
return all (d, t) pairs where t is one of the top-k topics for d .

D = πcontent (σd1≤data≤d2 (R)) 1
M : {} × {} → R, FV : {} × {} → R 2
for d ∈ D : 3

N1 = Tokenize(d) 3.1

V = ρ {1}→{d }, {d }×T→T (Sum1(N1))
T 3.2

N2 = Intersection(N1, LShift1(N1)) 3.3
N3 = Intersection(N2, LShift2(N1)) 3.4
N = Merge(N1,Merge(N2,N3)) 3.5

Vf = ρ {1}→{d }, {d }×T ′→T ′(Sum1(N)T) 3.6
FV = Merge(FV,Vf) 3.7
M = Merge(M,V) 3.8

FVo = Π:,Lo (FV) 4
FVp = Π:,Lp (FV) 5
Io = σf :x→1(x>c1)(Sum1(FVo)) 6
Ip = σf :x→1(x>c2)(Sum1(FVp)) 7
M = ΠIo .K1∩Ip .K1, :(M) 8
It = σf :x→1(x<θ2)(Sum2(M)) 9
Id = σf :x→1(x<θ1)(Sum1(M)) 10
M = ΠId .K1, It .K2 (M) 11
DTM,TTM = TopicModel(M) 12

Figure 3: Algebraic representation for the task in Example 1.

4 FUTURE WORK
This work has exploited the algebra for text analytics which would
serve a solid theoretical foundation for our future work. In the near
future, we will provide a formal language for both relational and
textual data analysis and provide operators rewritting rules for
optimization. These text operators introduced here will be imple-
mented and experiments will be conducted to test the validity of
this approach.
Acknowledgment. This work was partially funded by the Na-
tional Science Foundation grant 1909875.
REFERENCES
[1] Pablo Barceló, Nelson Higuera, Jorge Pérez, and Bernardo Subercaseaux. 2019.

On the Expressiveness of LARA: A Unified Language for Linear and Relational
Algebra. arXiv preprint arXiv:1909.11693 (2019).

[2] Jonathan S Golan. 2013. Semirings and affine equations over them: theory and
applications. Vol. 556. Springer Science & Business Media.

[3] Hayden Jananthan, Ziqi Zhou, Vijay Gadepally, Dylan Hutchison, Suna Kim, and
Jeremy Kepner. 2017. Polystore mathematics of relational algebra. In Int. Conf. on
Big Data. IEEE, 3180–3189.

[4] Jeremy Kepner, Vijay Gadepally, Hayden Jananthan, Lauren Milechin, and Sid-
dharth Samsi. 2020. AI Data Wrangling with Associative Arrays. arXiv preprint
arXiv:2001.06731 (2020).

[5] Éric Leclercq, Annabelle Gillet, Thierry Grison, and Marinette Savonnet. 2019.
Polystore and Tensor Data Model for Logical Data Independence and Impedance
Mismatch in Big Data Analytics. In Trans. on Large-Scale Data-and Knowledge-
Centered Systems XLII. Springer, 51–90.

	Abstract
	1 Introduction
	2 The Data Model
	2.1 Text Associative Arrays
	2.2 Text Operations

	3 Text Analytic Tasks
	3.1 Constructing a Document Term Matrix
	3.2 Using TAAs

	4 Future Work
	References

