

1
2
3
4
5
6
7
8 **Ecological context influences evolution in host-parasite interactions:**
9 **insights from the *Daphnia*-parasite model system**

10
11 Katherine D. McLean* and Meghan A. Duffy

12
13 Department of Ecology & Evolutionary Biology,
14 University of Michigan, Ann Arbor, MI 48109

15
16
17
18
19
20
21 *Correspondence: kdmclean@umich.edu

23 **Introduction**

24 “I want to suggest that the struggle against disease, and particularly infectious disease,
25 has been a very important evolutionary agent, and that some of its results have been
26 rather unlike those of the struggle against natural forces, hunger, and predators, or with
27 members of the same species.” — JBS Haldane (1949)

28

29 Parasites are ubiquitous, and the outcomes of host-parasite interactions can often be measured in
30 terms of life or death. Thus, it is not surprising that in the 70 years since Haldane postulated the
31 importance of parasites as selective agents, studies of host-parasite interactions have provided
32 striking examples of evolution in action (Allison 1954; Boots et al. 2004; Buckling and Rainey
33 2002; Buckling et al. 1997; Decaestecker et al. 2007; Deom et al. 1986; Dybdahl and Lively
34 1998; Epstein et al. 2016; Fenner and Fantini 1999; Gibson et al. 2018; Schiebelhut et al. 2018;
35 Schild et al. 1983). Moreover, we now realize that the ecological context—the “natural forces,
36 hunger, and predators” and “members of the same species” to which Haldane referred—
37 modulates the evolutionary outcomes of infectious disease in important and sometimes
38 unexpected ways. Here, we review recent studies that demonstrate that predators, competitors,
39 and the abiotic environment strongly influence the evolutionary dynamics of host-parasite
40 interactions.

41 Host-parasite interactions are often considered in isolation, but the larger ecological
42 context matters, too. To give just two examples: excluding large vertebrate herbivores increased
43 the prevalence of viruses in plants by increasing the abundance of highly competent hosts (Borer
44 et al. 2009). Similarly, increasing nutrient inputs to ponds elevated levels of disease in frogs by
45 increasing algal abundance which, in turn, increased the abundance of snails, who are

46 intermediate hosts for the parasite (Johnson et al. 2007). These parasites strongly impact their
47 hosts: the plant virus reduces plant longevity, growth, and seed production and the frog parasite
48 causes severe limb deformities. Therefore, it does not require a large leap to imagine that these
49 alterations to ecological context might alter parasite-mediated selection.

50 Human activities are strongly impacting the ecological context in which host-parasite
51 interactions are embedded. Humans are changing abiotic factors in terrestrial and aquatic
52 habitats, including nutrient levels, precipitation regimes, temperature, and pH (Carpenter et al.
53 1998; Field et al. 2012; Weiss et al. 2018). Human activities are also strongly impacting species
54 assemblages via environmental disturbance, climate change, and the introduction and extirpation
55 of different species, including parasites and predators (Britton 2013; Doherty et al. 2016; Prugh
56 et al. 2009; Sala et al. 2000; Urban 2015). Because ecological context influences the prevalence
57 and severity of disease, human-driven changes in abiotic factors and species assemblages can
58 have dramatic consequences for evolution in host-parasite systems.

59 In this review, we highlight some of the ways in which ecological context, including
60 human-driven changes to ecosystems, can influence evolution in host-parasite interactions. We
61 also touch on some ways in which contemporary evolution may change ecological dynamics (i.e.
62 eco-evolutionary feedbacks; Hendry 2016; Strauss et al. 2017). In doing so, we focus in on one
63 particular study system that has yielded key insights: *Daphnia* and their microparasites. *Daphnia*
64 are ecologically important and experimentally tractable, and have emerged as a model system for
65 understanding the ecology and evolution of host-parasite interactions (Cáceres et al. 2014b;
66 Ebert 2005). We first introduce this system, then review studies demonstrating the importance of
67 predators, competitors, and the abiotic environment in altering evolution in host-parasite
68 interactions.

69

70 **The *Daphnia*-microparasite study system**

71 Ecologists and evolutionary biologists have long studied *Daphnia*, both because of their
72 ecological importance and because of their tractability as a study organism (Ebert 2011; Lampert
73 2006). *Daphnia* are dominant herbivores in many temperate aquatic ecosystems and serve as
74 important links between primary producers (the phytoplankton they consume from the water
75 column) and consumers (the small fish and predatory invertebrates that feed on *Daphnia*). In
76 addition, their small size and rapid generation time make it possible to work with them in the
77 laboratory and in field studies, allowing scientists to test possible mechanisms underlying
78 patterns observed in nature—an important bridge between the laboratory and the natural world
79 that is not easily crossed in many study systems.

80 The reproductive system of *Daphnia* also helps explain why they have emerged as an
81 important study system. Most *Daphnia* are cyclical parthenogens, meaning they can reproduce
82 sexually and asexually. Asexual reproduction makes it possible to propagate isofemale (i.e.,
83 clonal) lines under standardized laboratory conditions, allowing researchers to differentiate
84 genetic and environmental effects on phenotypic traits. At the same time, the sexually produced
85 offspring are enclosed in long-lived dormant eggs that accumulate in sediments, allowing studies
86 that “resurrect” genotypes from earlier populations so that scientists may understand how
87 populations have changed on scales from decades to centuries (Decaestecker et al. 2007; Frisch
88 et al. 2014; Hairston et al. 1999; Rogalski 2017).

89 Another advantage of the *Daphnia* system comes from the ability to study multiple
90 replicate lakes or ponds that have well-defined boundaries; this means it is possible to study

91 multiple populations (essential for evolutionary studies, where population is the unit of
92 replication) and to do so across ecological gradients (e.g., in predation or productivity).

93 In the past few decades, *Daphnia* and their microparasites have emerged as a model
94 system for understanding infectious diseases (Cáceres et al. 2014b; Ebert 2005; Ebert 2011;
95 Lampert 2011; Little and Ebert 2004). A number of parasites including viruses, bacteria, fungi,
96 oomycetes, microsporidians and protozoa regularly infect *Daphnia* (Ebert 2005; Green 1974;
97 Toenshoff et al. 2018). These parasites have diverse infection dynamics (horizontal vs. vertical
98 transmission, obligate killers vs. continuous transmission) and exert a wide range of effects on
99 their hosts (including early death, castration, and even gigantism; Ebert 2005).

100 As is true for all organisms, any particular *Daphnia*-parasite interaction is embedded
101 within a much larger, richer ecological context (Miner et al. 2012). When thinking about this
102 ecological context, we need to consider not only the types of interactions that have traditionally
103 been the focus of ecological studies (such as resource levels and predation regimes), but also that
104 pathogens are likely to be infecting multiple members of the food web, and that any one member
105 of the food web is likely to be infected by multiple pathogens.

106 We begin by reviewing the impact of predation on evolution in host-parasite systems.
107 Next, we consider the potential for species interactions within the same trophic level (especially
108 the presence of multiple host species or multiple parasite species) to alter host-parasite evolution.
109 Finally, we review some ways the abiotic environment can alter evolution of hosts and parasites.
110 In each case, evidence from *Daphnia*-parasite interactions demonstrates that the ecological
111 context impacts the evolution of both the host and the parasite.

112

113 **Predation alters evolution in host-parasite systems**

114 Predators should alter evolution in host-parasite systems in multiple ways, including by altering
115 the amount of disease in a focal host population. Predation is often thought of as reducing
116 infection prevalence in hosts, especially in cases where predators selectively remove infected
117 hosts (Hudson et al. 1992; Ostfeld and Holt 2004; Packer et al. 2003). However, predators can
118 also increase disease in their host populations via a variety of mechanisms (reviewed in Duffy et
119 al. in press), including by changing prey community composition so that high-quality hosts
120 dominate (Borer et al. 2009), inducing behavioral changes in the prey that increase the risk of
121 infection (Orlofske et al. 2014), or by spreading transmission stages while feeding (Cáceres et al.
122 2009).

123 Predators can also alter evolution in host-parasite systems by introducing trade-offs that
124 alter the selective landscape. As one example, hosts may face trade-offs between anti-predator
125 defenses and mounting an effective immune response (Navarro et al. 2004; Rigby and Jokela
126 2000; Stoks et al. 2006). Predators can also influence parasite evolution via impacts on trade-
127 offs, most notably those related to virulence. Virulence is generally defined as the reduction in
128 host fitness caused by infection, usually due to changes in fecundity or lifespan (Day 2002).
129 Overall, much theory related to the evolution of parasite virulence has focused on the influence
130 of parasites on the host's instantaneous mortality rate (Anderson and May 1982; Day 2002).
131 Under this framework, parasite fitness increases with transmission rate and also with the length
132 of time that a host is infectious; it is generally assumed that higher replication rates of parasites
133 increase transmission but reduce the length of time a host is infectious (e.g., by killing it or
134 triggering an immune response), driving an intermediate optimal virulence (de Roode et al. 2008;
135 Lenski and May 1994). Because of the nature of this trade-off, increases in mortality rates from
136 sources other than infection (including predators) are expected to increase parasite virulence,

137 since the cost the parasite pays for killing the host quickly is reduced (Lenski and May 1994),
138 though other outcomes are also possible depending on the specifics of the interaction (Choo et al.
139 2003; Day 2002; Houwenhuyse et al. 2018).

140 The impacts of predation on host evolution have been the focus of several studies in the
141 *Daphnia dentifera*-*Metschnikowia bicuspidata* system. In this system, predators influence the
142 overall amount of disease from the common fungal parasite *Metschnikowia*: fish preferentially
143 feed on infected *Daphnia*, strongly reducing infection prevalence (Duffy and Hall 2008; Duffy et
144 al. 2005), whereas invertebrate predators are “predator spreaders” that increase infection
145 prevalence (Cáceres et al. 2009). There are also important trade-offs between predation risk,
146 resistance to disease, and fecundity. Larger bodied *Daphnia* are more susceptible to fish
147 predation (Brooks and Dodson 1965) and to *Metschnikowia* (Hall et al. 2010), but less
148 susceptible to predation by the common, voracious, gape-limited invertebrate predator
149 *Chaoborus* (Pastorok 1981). In addition, there is also a trade-off between resistance to
150 *Metschnikowia* and fecundity, with larger animals being more fecund but less resistant (Hall et
151 al. 2010), though some populations contain animals with high fecundity and high resistance
152 (Auld et al. 2013). These trade-offs—combined with variation among lakes in vertebrate and
153 invertebrate predation rates, resource levels, and host genetic variation—likely explain different
154 evolutionary responses of populations to disease outbreaks, with some populations evolving
155 increased resistance to disease, some evolving increased susceptibility, and some experiencing
156 disruptive selection on resistance (Duffy et al. 2008; Duffy et al. 2012; Duffy and Sivars-Becker
157 2007).

158 Work in the *Daphnia dentifera*-*Metschnikowia bicuspidata* system has focused on
159 evolution of the host but not the parasite because the parasite shows surprisingly little variation

160 and limited evolutionary potential (Auld et al. 2014; Duffy and Sivars-Becker 2007; Searle et al.
161 2015). However, predators seem likely to drive evolution in other *Daphnia* parasites, including
162 the common bacterial parasite *Pasteuria*. In an artificial selection experiment using *Daphnia*
163 *dentifera* hosts and *Pasteuria*, parasites that were selected in an environment that simulated high
164 predation evolved to produce more spores in that environment; however, that came at the cost of
165 reduced performance in low predation environments (Figure 1; Auld et al. 2014). These results
166 suggest that *Pasteuria* collected from lakes with high predation might be more virulent than
167 those from low predation lakes.

168 Overall, studies on *Daphnia* and their microparasites demonstrate that predators can
169 strongly alter parasite-mediated selection on host populations, trade-offs faced by hosts and by
170 parasites, and selection on parasite traits.

171

172 **Multihost, multiparasite interactions: influences of competition on evolution in host- 173 parasite systems**

174 Most parasites can infect multiple hosts, and most hosts are infected by multiple parasites
175 (Fenton and Pedersen 2005; Lively et al. 2014). While this is the rule rather than the exception in
176 nature, the majority of research on host-parasite evolution is based around a one-host one-
177 parasite model (Read and Taylor 2001; Rigaud et al. 2010). However, there is an expanding field
178 of research uncovering the complex ways in which interspecific competition can change disease
179 dynamics and evolutionary outcomes.

180

181 *Multiple Hosts*

182 High biodiversity in hosts can dilute (Johnson et al. 2013; Keesing et al. 2010; Keesing, Holt,

183 and Ostfeld 2006; LoGiudice et al. 2003; Ostfeld and Keesing 2012) or amplify (Randolph and
184 Dobson 2012; Searle et al. 2016; Strauss et al. 2015; Wood et al. 2014) the prevalence of disease.
185 The dilution effect arises when species rich communities contain lower quality (that is, less
186 competent) hosts that slow the spread of the parasite and therefore protect competent focal hosts
187 from infection. While many studies have documented the dilution effect in wild systems
188 (Civitello et al. 2015), there is still vigorous debate about how common dilution is (Randolph
189 and Dobson 2012; Salkeld et al. 2013; Wood et al. 2014).

190 One major shortcoming of dilution effect theory is that it generally ignores competition
191 between diluter and focal hosts, despite coexistence theory showing interspecific host
192 competition has a strong impact on host-parasite dynamics (Bowers and Turner 1997; Greenman
193 and Hudson 2000; Gyllenberg et al. 2012; Saenz and Hethcote 2006). Altering the number of
194 host species changes not only the amount of disease in the system, but also the amount of
195 interspecific competition a focal host experiences, with potentially complex effects on focal host
196 density and disease prevalence (Cáceres et al. 2014a). If adding a host species increases total
197 host density, it could potentially drive an increase in disease in a focal host (amplification), even
198 if the additional host is less competent than the focal host (Searle et al. 2016).

199 Thus, when considering how multiple hosts might alter evolution in host-parasite
200 systems, it is important to recognize that selection will occur both via changes in the amount of
201 disease and via changes in host density, mediated by interspecific competition. A recent study
202 tested the joint influence of infectious disease and competition on eco-evolutionary dynamics in
203 the *Daphnia-Metschnikowia* system (Strauss et al. 2017). The additional host species,
204 *Ceriodaphnia*, is more resistant to *Metschnikowia* than the focal host, *Daphnia dentifera*, but
205 also a competitor for resources. The expectation was that the combination of a virulent parasite

206 and strong interspecific competition from *Ceriodaphnia* might drive populations of *Daphnia*
207 *dentifera* to extinction (Strauss et al. 2017). Indeed, in populations where *Daphnia dentifera* had
208 little genetic diversity (and thus low evolutionary potential), the combination of parasitism and
209 interspecific competition resulted in very low densities of the focal host. However, in
210 populations where *Daphnia dentifera* had high diversity (and thus high evolutionary potential),
211 the populations thrived. Surprisingly, this rescue effect arose because hosts evolved increased
212 competitive ability, but not increased resistance. Evolution rescued the focal host from the
213 negative impacts of competition, but also drove larger disease outbreaks (as compared to
214 populations with low evolutionary potential). This demonstrates that introducing a diluter host to
215 curb an epidemic may have unexpected results if we ignore the potential for competition—and
216 rapid evolution—between focal and diluter hosts.

217 At present, we know that interactions between host species can change transmission
218 dynamics and drive evolution in unexpected ways, but the eco-evolutionary effects of parasitism
219 and competition on a focal host remain difficult to predict. However, by integrating a
220 mechanistic understanding of the types of host-host and host-parasite interactions that occur
221 (Luis et al. 2018; Searle et al. 2016; Strauss et al. 2015), we can better understand how multihost
222 systems can impact host fitness, change parasite transmission dynamics, and ultimately drive
223 rapid evolution in hosts and parasites.

224

225 *Multiple Parasites*

226 When multiple parasites coexist within a host population, they have the potential to influence
227 each other directly (via competition or facilitation within coinfecting hosts) or indirectly (e.g., via
228 altering host lifespan or population density). As a result, the addition of a new parasite has the

229 potential to alter selection on existing parasites in the system. Coinfections between helminths
230 (including nematodes) and microparasites have been a particular focus of study, in part as a
231 result of influences of helminths on host immune systems (Ezenwa 2016). Work on African
232 buffalo, nematodes, and bovine tuberculosis has demonstrated how coinfecting parasites can
233 influence one another, and also the importance of tests in real world situations. Nematodes
234 suppress the response of the Th1 arm of the immune system in buffalo hosts; Th1 cells protect
235 against microparasites, so the nematode-induced suppression of this part of the immune system
236 should facilitate the invasion of tuberculosis in buffalo (Ezenwa et al. 2010). Those results
237 suggest that removing helminths should decrease microparasite fitness. However, treating
238 African buffalo with anthelmintics actually promoted the spread of bovine tuberculosis:
239 anthelmintic treatment did not influence the likelihood of infection with tuberculosis, but did
240 increase survival after infection, increasing transmission opportunities (Ezenwa and Jolles 2015).
241 Such contrasting impacts of coinfection at the within-host scale vs. the host population scale is
242 not unique to macroparasite-microparasite coinfections. As discussed more below, recent work
243 motivated by the *Daphnia*-microparasite system found that priority effects (where the order of
244 infection determines the impacts parasite species have on each other's fitness) can drive
245 scenarios where parasite competition within a host can actually promote coexistence at the
246 population scale (Clay et al. 2019b).

247

248 Host Mortality

249 One way in which multi-parasite infections may alter the evolution of one or more of the
250 coexisting parasites is by changing the lifespan of the host. As discussed in the predation
251 section, shortening the lifespan of a host generally selects for the evolution of higher virulence,

252 as the optimal virulence of a parasite is thought to reflect a trade-off between transmission rate
253 and host mortality (Bull and Lauring 2014). If a single host individual is coinfected—that is,
254 simultaneously infected by two or more parasite strains or species—that has the potential to alter
255 evolutionary outcomes. In particular, if a coinfecting parasite is virulent (increasing mortality
256 rate on the host), that should select for higher virulence in the other parasite (May and Nowak
257 1995).

258 However, both in theory and in practice, coinfections often yield results that are more
259 complicated than might initially be predicted (as reviewed in Alizon et al. 2013). For example, in
260 a rodent malaria system, immunopathology leads to additional costs associated with parasite
261 virulence, with the potential to drive negative virulence-transmission relationships (Long and
262 Graham 2011). As a result, competition between genotypes coinfecting a single host individual
263 can have major impacts on parasite evolution, increasing or decreasing virulence (Long and
264 Graham 2011; Mideo 2009).

265 Work in the *Daphnia*-parasite system has also demonstrated that interactions between
266 competing parasites can sometimes drive initially counterintuitive results. In an experiment using
267 *Daphnia magna* and the gut microsporidian *Glugoides intestinalis*, treatments with *low* host
268 mortality rates resulted in the evolution of *higher* virulence (Ebert and Mangin 1997). This
269 pattern arose due to competition between coinfecting strains of the parasite; lower host mortality
270 rates increased the amount of time parasites spent competing amongst themselves within hosts,
271 driving the evolution of faster parasite growth and therefore higher virulence (Gandon et al.
272 2001). This underscores the need to understand the mechanisms of within-host interactions in
273 order to predict parasite evolution.

274

275 Order of Infection

276 While much theory on the evolution of virulence focuses on the impacts of changes in host
277 mortality rate, other factors can also influence virulence evolution. Increasingly, scientists are
278 recognizing that the order in which parasites arrive in a host can influence both host and parasite
279 fitness and that those impacts can vary between genotypes (Al-Naimi et al. 2005; de Roode et al.
280 2005; Marchetto and Power 2018; Pollitt et al. 2015).

281 In the *Daphnia-Pasteuria* system, a study found that virulence was influenced not only
282 by infections consisting of multiple strains of a parasite, but also by the order of infection (Ben-
283 Ami et al. 2008). In simultaneous coinfections or sequential infections where a more virulent
284 parasite strain arrived first, virulence (host mortality rate) and parasite fitness (spore production)
285 matched that of the more virulent strain. However, when the less virulent parasite infected first,
286 virulence resembled an average between single infections of the two strains. Additionally, both
287 parasites suffered lower fitness, likely due to interactions akin to scramble competition.
288 Surprisingly, these mixed-strain infections also led to higher host fecundity than did single
289 infections (*Pasteuria* has dramatic effects on fecundity; Ebert 2005), suggesting coinfections
290 may be less harmful to hosts than single infections in the short term. Overall, the authors
291 concluded that high rates of coinfection would select for virulent parasites, which outcompete
292 less-virulent strains (Ben-Ami et al. 2008).

293 Studies of *Daphnia* infected with multiple parasite species (rather than multiple strains of
294 the same species) also have found that the order of infection is important to host and parasite
295 fitness. A study of *Daphnia galeata*, the fungus *Metschnikowia*, and the ichthyosporean
296 *Caullerya mesnili* found that simultaneous coinfections were significantly more virulent (in
297 terms of host lifespan and fecundity) than were single infections or sequential coinfections (Lohr

298 et al. 2010). They found that *Caullerya* had higher fitness when it arrived first in sequential
299 coinfections, whereas *Metschnikowia* had higher fitness if it arrived second. A new study on
300 *Daphnia dentifera*, *Pasteuria*, and *Metschnikowia* also found *Metschnikowia* benefitted from
301 second arrival (Clay et al. 2019b). However, in this case, *Pasteuria* fitness was highest in single
302 infections and low in coinfections, regardless of whether it arrived first or second, likely due to
303 the shortened host lifespan of coinfected hosts. Overall, priority effects can influence parasite
304 prevalence and coexistence, changing pathogen community structure (Clay et al. 2019a; Clay et
305 al. 2019b), which underscores the importance of linking within- and between-host processes to
306 understand host-multiparasite dynamics.

307 In the case of the interactions between *Pasteuria* and *Metschnikowia*, it is interesting to
308 note that the dominant driver of low fitness for *Pasteuria* in coinfections seems to be shortened
309 host lifespans driven by *Metschnikowia* (Clay et al. 2019b). *Pasteuria* is a parasitic castrator,
310 with a relatively slow life history compared to *Metschnikowia* (Auld et al. 2014). However, as
311 discussed above in the predation section, experimental evolution studies have demonstrated that
312 *Pasteuria* can evolve to increase its fitness in high mortality environments (Auld et al. 2014). In
313 the future, it would be interesting to use experimental evolution to explore the potential of
314 *Pasteuria* to evolve to better compete with *Metschnikowia* and other coinfecting parasites.

315

316 **The influence of the abiotic environment on evolution in host-parasite systems**

317 Humans are dramatically altering the abiotic environment in which host-parasite interactions
318 take place. Perhaps most obviously, climate change is altering mean environmental temperature,
319 as well as the duration and variation of temperature extremes (Field et al. 2012), which can
320 strongly influence the outcome of host-parasite interactions (Lafferty 2009). However, climate

321 change also alters precipitation regimes, with consequences for water clarity in aquatic systems
322 (Williamson et al. 2015). Human activities also drastically alter nutrient levels in natural
323 ecosystems (which drives changes in primary producer communities) and add pesticides and
324 other novel chemicals to environments (Carpenter 2008; Stokstad and Grullón 2013). Our
325 understanding of evolution in action developed from the *Daphnia*-parasite system makes it clear
326 that these anthropogenic alterations to the abiotic environment should influence evolutionary
327 dynamics of hosts and parasites (Figure 2).

328

329 *Temperature*

330 Climate change is altering mean temperatures as well as variability in temperature in ecosystems
331 worldwide (Coumou and Rahmstorf 2012; Field et al. 2012). Temperature can influence the
332 likelihood of a host encountering and/or being infected by a pathogen (e.g., Elderd and Reilly
333 2014; Hall et al. 2006), parasite development rates and transmission stage production (e.g.,
334 Poulin 2006), host thermal stress (with impacts on things such as immune function; Dittmar et al.
335 2014), and the fitness impacts of infection on hosts (e.g., Vale et al. 2008). Thus, temperature
336 should strongly influence evolution in host-parasite systems.

337 Research on the *Daphnia*-parasite system has helped us understand how altered
338 temperatures might influence the amount of disease and how hosts evolve in response to disease
339 outbreaks. Recent research on the *Daphnia-Metschnikowia* system suggests that a warmer world
340 will be a sicker world (Shocket et al. 2018). A mesocosm experiment showed that warmer
341 temperatures resulted in larger epidemics, primarily because of temperature dependence in
342 transmission rates. Temperature-dependent transmission arose because the host encounters

343 fungal spores while foraging, and foraging rate (and, therefore, parasite exposure rate) increased
344 with temperature.

345 An experimental study of the *Daphnia-Pasteuria* system shows that these alterations in
346 disease levels can alter evolutionary outcomes (Auld and Brand 2017b). The timing and
347 magnitude of disease outbreaks depended on mean temperature and temperature variability, as
348 did parasite-driven evolution of the host populations. An increase of 3°C drove much larger
349 disease outbreaks that were associated with strong parasite-driven selection and associated
350 reductions in host diversity. Interestingly, this study also looked at a second aspect of
351 environmental variation—the impact of spatial structure on host-parasite populations. The study
352 used physical mixing to homogenize populations, while no mixing allowed populations to form
353 and retain spatial structure. As with temperature, the size of the epidemic and the tempo and
354 mode of evolution were influenced by the mixing treatment. Furthermore, a follow up study
355 found that mixing influenced patterns of adaptation and (co)evolution in the host and parasite
356 (Auld and Brand 2017a). This has interesting potential links with climate change as well, as
357 increasing severity of storms might change mixing regimes in aquatic habitats.

358

359 *Water clarity*

360 An underappreciated component of climate change is that increases in heavy precipitation bring
361 more dissolved organic matter into aquatic systems, making surface waters darker and increasing
362 turbidity and cloudiness in the water column (Williamson et al. 2017; Williamson et al. 2015).
363 This means that climate change is leading to reduced light penetration in surface waters. This can
364 reduce prey visibility, which will change the rate of predation and its impact on host-parasite
365 dynamics. Notably, one study found that selective predation on infected *Daphnia* was eliminated

366 in high dissolved organic matter conditions (Johnson et al. 2006), so the ability of fish predators
367 to reduce disease in *Daphnia* hosts might be eliminated in darker waters.

368 Darker surface waters may also reduce the likelihood that waterborne parasites will be
369 killed by sunlight. For example, *Metschnikowia* is highly sensitive to light, and darker lakes
370 generally have smaller disease outbreaks (Overholt et al. 2012). Thus, changes in lake light
371 environments should alter the size of disease outbreaks and the parasite-mediated selection
372 associated with them. Moreover, it might drive selection on the parasite, if parasite genotypes
373 vary in their sensitivity to light. An exciting potential avenue for future research would be to take
374 advantage of spore banks (Decaestecker et al. 2007; Decaestecker et al. 2004) to look for
375 evolutionary change over time in the parasite's ability to tolerate light associated with changes in
376 light penetration.

377

378 *Nutrient levels and primary production*

379 Humans strongly alter nutrient levels, greatly increasing the amount of bioavailable nitrogen and
380 phosphorus in the environment. This increases primary productivity, which can increase the
381 amount of disease a focal host experiences, especially due to increases in host density (Johnson
382 et al. 2007).

383 Work on several different *Daphnia*-parasite systems has explored links between nutrient
384 levels, disease, and host fitness or evolution. In the *Daphnia-Metschnikowia* system, more
385 productive lakes had larger disease outbreaks during which hosts evolved greater resistance to
386 infection, whereas lakes with lower productivity had smaller disease outbreaks during which
387 hosts evolved greater susceptibility to infection (Duffy et al. 2012). In the *Daphnia*-White Fat
388 Cell Disease system, nutrient enrichment increased infection prevalence and intensity

389 (Decaestecker et al. 2015) but also led to less efficient nutrient assimilation in *Daphnia*, resulting
390 in lower disease tolerance (Reyserhove et al. 2017). A study on a natural lake population of
391 *Daphnia longispina* found that the seasonal influx of environmental nutrients increased algal
392 food quality, driving higher prevalence of two gut endoparasites; however, this also drove a
393 decrease in the prevalence of an epibiont and overall parasite species richness (Aalto et al. 2014).
394 These contradictory effects are likely due to species-specific stoichiometric demands of parasites
395 and hosts (Aalto et al. 2014). Finally, a laboratory study using the *Daphnia-Pasteuria* system
396 demonstrated that the nutrient content (C:P ratio) of the food a host consumes influences parasite
397 virulence (Frost et al. 2008).

398 Increased nutrient levels can also strongly influence the community of primary
399 producers; in lakes, high nutrient levels are typically associated with dominance by
400 cyanobacteria. Work on *Daphnia* and their parasites suggests that cyanobacteria alter host
401 susceptibility, though the specific effects vary across parasites (Coopman et al. 2014; Sanchez et
402 al. in press; Tellenbach et al. 2016). An interesting avenue for future research will be
403 understanding how human-driven changes in phytoplankton communities alter parasite-driven
404 evolution of *Daphnia* populations.

405

406 *Pesticides*

407 Pesticides are widely used human-made chemicals, trailing only fertilizers in terms of the extent
408 and amount of use (Stokstad and Grullón 2013). Work on other systems shows that pesticide use
409 can strongly influence host-parasite interactions. Sub-lethal pesticide exposure has been shown
410 to increase susceptibility of the European honeybee *Apis mellifera* to a gut pathogen, the fungus
411 *Nosema spp.* (Pettis et al. 2013; Wu et al. 2012), increase the within-host density of the fungus

412 (Pettis et al. 2012), and even increase the mortality rate of bees already infected with the
413 pathogen (Vidau et al. 2011).

414 Research on *Daphnia* also shows that pesticides can alter the virulence of their parasites.
415 The virulence of *Pasteuria* on *Daphnia magna* increased with increasing concentrations of the
416 pesticide carbaryl, including higher levels of early mortality and earlier castration of infected
417 hosts (Coors et al. 2008), even with just short term exposure (Coors and De Meester 2011).
418 Notably, increased virulence was also seen with a second parasite, the microsporidian
419 *Flabelliforma magnivora* (Coors et al. 2008). Thus, the presence of pesticides in lakes and ponds
420 could alter the virulence of parasites, which should alter the nature of the transmission-mortality
421 trade-off (and, thus, the evolution of virulence), as well as alter selection on *Daphnia*
422 populations. In future research, it would also be interesting to focus on the impact of other
423 anthropogenic pollutants, including road salts (Cañedo-Argüelles et al. 2019), on *Daphnia*-
424 parasite interactions.

425

426 **Conclusions**

427 In the 70 years since Haldane (1949) suggested that parasites might be especially important
428 drivers of evolution, it has become abundantly clear that parasitism is, indeed, a major selective
429 force. Haldane contrasted the impacts of parasites with those of other “natural forces, hunger,
430 and predators, or with members of the same species”. However, we now know that populations
431 are not influenced by parasites *or* by other food web members—rather, they all interact. Thus,
432 when studying evolution in host-parasite interactions, we need to consider that the amount of
433 disease and the nature and tempo of evolution will be modulated by the biotic and abiotic context
434 in which the host-parasite interaction is embedded.

435

436 **Acknowledgments**

437 We thank Patrick Clay, Camden Gowler, Clara Shaw, and four anonymous reviewers for
438 feedback on earlier drafts of this manuscript. We acknowledge support from the National
439 Science Foundation (DEB-1655856 and DEB-1748729).

440

441 **Literature cited**

442 Aalto SL, Ketola T, Pulkkinen K (2014) No uniform associations between parasite prevalence
443 and environmental nutrients *Ecology* 95:2558-2568 doi:10.1890/13-2007.1

444 Al-Naimi FA, Garrett KA, Bockus WW (2005) Competition, facilitation, and niche
445 differentiation in two foliar pathogens *Oecologia* 143:449-457 doi:10.1007/s00442-004-
446 1814-x

447 Alizon S, de Roode JC, Michalakis Y (2013) Multiple infections and the evolution of virulence
448 *Ecology Letters* 16:556-567 doi:10.1111/ele.12076

449 Allison AC (1954) Protection afforded by sickle-cell trait against subtertian malareal infection *Br*
450 *Med J* 1:290-294

451 Auld SK, Hall SR, Ochs JH, Sebastian M, Duffy MA (2014) Predators and patterns of within-
452 host growth can mediate both among-host competition and evolution of transmission
453 potential of parasites *American Naturalist* 18:S77-S90

454 Auld SKJR, Brand J (2017a) Environmental variation causes different (co) evolutionary routes to
455 the same adaptive destination across parasite populations *Evolution Letters* 1:245-254
456 doi:10.1002/evl3.27

457 Auld SKJR, Brand J (2017b) Simulated climate change, epidemic size, and host evolution across
458 host-parasite populations *Global Change Biology* 23:5045-5053 doi:10.1111/gcb.13769

459 Auld SKJR, Penczykowski RM, Ochs JH, Grippi DC, Hall SR, Duffy MA (2013) Variation in
460 costs of parasite resistance among natural host populations *Journal of Evolutionary*
461 *Biology* 26:2479-2486

462 Ben-Ami F, Mouton L, Ebert D (2008) The effects of multiple infections on the expression and
463 evolution of virulence in a *Daphnia*-endoparasite system *Evolution* 62:1700-1711
464 doi:doi:10.1111/j.1558-5646.2008.00391.x

465 Boots M, Hudson PJ, Sasaki A (2004) Large shifts in pathogen virulence relate to host
466 population structure *Science* 303:842-844

467 Borer ET, Mitchell CE, Power AG, Seabloom EW (2009) Consumers indirectly increase
468 infection risk in grassland food webs *Proceedings of the National Academy of Sciences*
469 106:503-506 doi:10.1073/pnas.0808778106

470 Bowers RG, Turner J (1997) Community Structure and the Interplay between Interspecific
471 Infection and Competition *Journal of Theoretical Biology* 187:95-109
472 doi:<https://doi.org/10.1006/jtbi.1997.0418>

473 Britton JR (2013) Introduced parasites in food webs: new species, shifting structures? *Trends in*
474 *Ecology & Evolution* 28:93-99 doi:<http://dx.doi.org/10.1016/j.tree.2012.08.020>

475 Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton Science 150:28-
476 35

477 Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric host
478 diversification Nature 420:496-499

479 Buckling AGJ, Taylor LH, Jane MRC, Read AF (1997) Adaptive changes in *Plasmodium*
480 transmission strategies following chloroquine chemotherapy Proceedings: Biological
481 Sciences 264:553-559

482 Bull JJ, Lauring AS (2014) Theory and Empiricism in Virulence Evolution PLOS Pathogens
483 10:e1004387 doi:10.1371/journal.ppat.1004387

484 Cáceres CE, Davis G, Duple S, Hall SR, Koss A, Lee P, Rapti Z (2014a) Complex Daphnia
485 interactions with parasites and competitors Mathematical Biosciences 258:148-161
486 doi:<http://dx.doi.org/10.1016/j.mbs.2014.10.002>

487 Cáceres CE, Knight CJ, Hall SR (2009) Predator spreaders: predation can enhance parasite
488 success in a planktonic host-parasite system Ecology 90:2850-2858

489 Cáceres CE, Tessier AJ, Duffy MA, Hall SR (2014b) Disease in freshwater zooplankton: what
490 have we learned and where are we going? Journal of Plankton Research 36:326-333
491 doi:10.1093/plankt/fbt136

492 Cañedo-Argüelles M, Kefford B, Schäfer R (2019) Salt in freshwaters: causes, effects and
493 prospects - introduction to the theme issue Philosophical Transactions of the Royal
494 Society B: Biological Sciences 374:20180002 doi:10.1098/rstb.2018.0002

495 Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication Proceedings of
496 the National Academy of Sciences 105:11039-11040 doi:10.1073/pnas.0806112105

497 Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint
498 pollution of surface waters with phosphorus and nitrogen Ecological Applications 8:559-
499 568

500 Choo K, Williams PD, Day T (2003) Host mortality, predation and the evolution of parasite
501 virulence Ecology Letters 6:310-315

502 Civitello DJ et al. (2015) Biodiversity inhibits parasites: Broad evidence for the dilution effect
503 Proceedings of the National Academy of Sciences 112:8667-8671
504 doi:10.1073/pnas.1506279112

505 Clay PA, Cortez MH, Duffy MA, Rudolf VHW (2019a) Priority effects within coinfecting hosts
506 can drive unexpected population-scale patterns of parasite prevalence Oikos in press

507 Clay PA, Dhir KL, Rudolf VHW, Duffy MA (2019b) Within host priority effects systematically
508 alter pathogen coexistence American Naturalist in press

509 Coopman M, Muylaert K, Lange B, Reyserhove L, Decaestecker E (2014) Context dependency
510 of infectious disease: the cyanobacterium *Microcystis aeruginosa* decreases white
511 bacterial disease in *Daphnia magna* Freshwater Biology 59:714-723
512 doi:10.1111/fwb.12298

513 Coors A, De Meester L (2011) Fitness and virulence of a bacterial endoparasite in an
514 environmentally stressed crustacean host Parasitology 138:122-131
515 doi:10.1017/s0031182010000995

516 Coors A, Decaestecker E, Jansen M, Meester LD (2008) Pesticide exposure strongly enhances
517 parasite virulence in an invertebrate host model Oikos 117:1840-1846

518 Coumou D, Rahmstorf S (2012) A decade of weather extremes Nature Climate Change 2:491
519 doi:10.1038/nclimate1452

520 Day T (2002) On the evolution of virulence and the relationship between various measures of
521 mortality Proceedings of the Royal Society of London, B 269:1317-1323

522 de Roode JC et al. (2005) Virulence and competitive ability in genetically diverse malaria
523 infections Proceedings of the National Academy of Sciences of the United States of
524 America 102:7624-7628 doi:10.1073/pnas.0500078102

525 de Roode JC, Yates AJ, Altizer S (2008) Virulence-transmission trade-offs and population
526 divergence in virulence in a naturally occurring butterfly parasite Proceedings of the
527 National Academy of Sciences 105:7489-7494 doi:10.1073/pnas.0710909105

528 Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester
529 L (2007) Host-parasite 'Red Queen' dynamics archived in pond sediment Nature
530 450:870-873

531 Decaestecker E, Lefever C, De Meester L (2004) Haunted by the past: Evidence for dormant
532 stage banks of microparasites and epibionts of *Daphnia* Limnology and Oceanography
533 49:1355-1364

534 Decaestecker E, Verreydt D, De Meester L, Declerck SAJ (2015) Parasite and nutrient
535 enrichment effects on *Daphnia* interspecific competition Ecology 96:1421-1430
536 doi:10.1890/14-1167.1

537 Deom CM, Caton AJ, Schulze IT (1986) Host cell-mediated selection of a mutant influenza A
538 virus that has lost a complex oligosaccharide from the tip of the hemagglutinin
539 Proceedings of the National Academy of Sciences 83:3771-3775
540 doi:10.1073/pnas.83.11.3771

541 Dittmar J, Janssen H, Kuske A, Kurtz J, Scharsack JP (2014) Heat and immunity: an
542 experimental heat wave alters immune functions in three-spined sticklebacks
543 (*Gasterosteus aculeatus*) Journal of Animal Ecology 83:744-757 doi:doi:10.1111/1365-
544 2656.12175

545 Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and
546 global biodiversity loss Proceedings of the National Academy of Sciences 113:11261-
547 11265 doi:10.1073/pnas.1602480113

548 Duffy MA, Brassil CE, Hall SR, Tessier AJ, Cáceres CE, Conner JK (2008) Parasite mediated
549 disruptive selection in a natural *Daphnia* population BMC Evolutionary Biology 8:80

550 Duffy MA, Cáceres CE, Hall SR (in press) Healthy herds or predator spreaders? Insights from
551 the plankton into how predators suppress and spread disease. In: Wilson K, Tompkins
552 DM, Fenton A (eds) Wildlife Disease Ecology: Linking Theory to Data and Application.
553 Cambridge University Press, Cambridge, UK,

554 Duffy MA, Hall SR (2008) Selective predation and rapid evolution can jointly dampen effects of
555 virulent parasites on *Daphnia* populations American Naturalist 171:499-510

556 Duffy MA, Hall SR, Tessier AJ, Huebner M (2005) Selective predators and their parasitized
557 prey: Are epidemics in zooplankton under top-down control? Limnology and
558 Oceanography 50:412-420

559 Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeier CA, Hall SR (2012)
560 Ecological context influences epidemic size and parasite-mediated selection Science
561 335:1636-1638

562 Duffy MA, Sivars-Becker L (2007) Rapid evolution and ecological host-parasite dynamics
563 Ecology Letters 10:44-53

564 Dybdahl MF, Lively CM (1998) Host-parasite coevolution: Evidence for rare advantage and
565 time-lagged selection in a natural population Evolution 52:1057-1066

566 Ebert D (2005) Ecology, epidemiology and evolution of parasitism in *Daphnia*. National Library
567 of Medicine (US), National Center for Biotechnology Information, Bethesda, MD

568 Ebert D (2011) A genome for the environment Science 331:539-540
569 doi:10.1126/science.1202092

570 Ebert D, Mangin KL (1997) The influence of host demography on the evolution of virulence of a
571 microsporidian gut parasite Evolution 51:1828-1837

572 Elderd BD, Reilly JR (2014) Warmer temperatures increase disease transmission and outbreak
573 intensity in a host-pathogen system Journal of Animal Ecology 83:838-849
574 doi:doi:10.1111/1365-2656.12180

575 Epstein B et al. (2016) Rapid evolutionary response to a transmissible cancer in Tasmanian
576 devils Nature Communications 7 doi:10.1038/ncomms12684

577 Ezenwa VO (2016) Helminth-microparasite co-infection in wildlife: lessons from ruminants,
578 rodents and rabbits Parasite Immunol 38:527-534 doi:doi:10.1111/pim.12348

579 Ezenwa Vanessa O, Etienne Rampal S, Gordon L, Beja-Pereira A, Jolles Anna E (2010) Hidden
580 consequences of living in a wormy world: Nematode-induced immune suppression
581 facilitates tuberculosis invasion in African buffalo The American Naturalist 176:613-624

582 Ezenwa VO, Jolles AE (2015) Opposite effects of anthelmintic treatment on microbial infection
583 at individual versus population scales Science 347:175-177 doi:10.1126/science.1261714

584 Fenner F, Fantini B (1999) Biological control of vertebrate pests: The history of Myxomatosis,
585 an experiment in evolution. CABI Publishing, Wallingford, Oxon, UK

586 Fenton A, Pedersen AB (2005) Community epidemiology framework for classifying disease
587 threats Emerging Infectious Diseases 11:1815-1821

588 Field CB et al. (2012) Managing the risks of extreme events and disasters to advance climate
589 change adaptation: special report of the Intergovernmental Panel on Climate Change
590 (IPCC). Cambridge University Press, Cambridge, UK

591 Frisch D, Morton PK, Chowdhury PR, Culver BW, Colbourne JK, Weider LJ, Jeyasingh PD
592 (2014) A millennial-scale chronicle of evolutionary responses to cultural eutrophication
593 in Daphnia Ecology Letters 17:360-368 doi:10.1111/ele.12237

594 Frost PC, Ebert D, Smith VH (2008) Responses of a bacterial pathogen to phosphorus limitation
595 of its aquatic invertebrate host Ecology 89:313-318

596 Gandon S, Jansen VAA, Van Baalen M (2001) Host life history and the evolution of parasite
597 virulence Evolution 55:1056-1062 doi:doi:10.1111/j.0014-3820.2001.tb00622.x

598 Gibson AK, Delph LF, Vergara D, Lively CM (2018) Periodic, Parasite-Mediated Selection For
599 and Against Sex The American Naturalist in press doi:10.1086/699829

600 Green J (1974) Parasites and epibionts of Cladocera Transactions of the Zoological Society of
601 London 32:417-515

602 Greenman JV, Hudson PJ (2000) Parasite-Mediated and Direct Competition in a Two-Host
603 Shared Macroparasite System Theoretical Population Biology 57:13-34
604 doi:<http://dx.doi.org/10.1006/tpbi.1999.1435>

605 Gyllenberg M, Liu X, Yan P (2012) An eco-epidemiological model in two competing species
606 Differential Equations & Applications 4:495-519 doi:dx.doi.org/10.7153/dea-04-29

607 Hairston NG, Jr. et al. (1999) Rapid evolution revealed by dormant eggs Nature 401:446

608 Haldane JBS (1949) Disease and evolution La Ricerca Scientifica Supplemento 19:1-11

609 Hall SR, Becker CR, Duffy MA, Cáceres CE (2010) Genetic variation in resource acquisition
610 and use among hosts creates key epidemiological tradeoffs American Naturalist 176:557-
611 565

612 Hall SR, Tessier AJ, Duffy MA, Huebner M, Cáceres CE (2006) Warmer does not have to mean
613 sicker: Temperature and predators can jointly drive timing of epidemics *Ecology*
614 87:1684-1695

615 Hendry AP (2016) Eco-evolutionary dynamics. Princeton University Press, Princeton, NJ

616 Houwenhuyse S, Macke E, Reyserhove L, Bulteel L, Decaestecker E (2018) Back to the future
617 in a petri dish: Origin and impact of resurrected microbes in natural populations
618 *Evolutionary Applications* 11:29-41 doi:doi:10.1111/eva.12538

619 Hudson PJ, Dobson AP, Newborn D (1992) Do parasites make prey vulnerable to predation?
620 Red grouse and parasites *Journal of Animal Ecology* 61:681-692

621 Johnson PTJ et al. (2007) Aquatic eutrophication promotes pathogenic infection in amphibians
622 *Proceedings of the National Academy of Sciences* 104:15781-15786
623 doi:10.1073/pnas.0707763104

624 Johnson PTJ, Stanton DE, Preu ER, Forshay KJ, Carpenter SR (2006) Dining on disease: How
625 interactions between parasite infection and environmental conditions affect host
626 predation risk *Ecology* 87:1973-1980

627 Lafferty KD (2009) The ecology of climate change and infectious diseases *Ecology* 90:888-900
628 doi:doi:10.1890/08-0079.1

629 Lampert W (2006) *Daphnia*: Model herbivore, predator and prey *Polish Journal of Ecology*
630 54:607-620

631 Lampert W (2011) Parasitism. In: *Daphnia*: development of a model organism in ecology and
632 evolution. Excellence in Ecology Series. International Ecology Institute, Olendorf/Luhe,
633 Germany, pp 113-189

634 Lenski RE, May RM (1994) The evolution of virulence in parasites and pathogens -
635 reconciliation between 2 competing hypotheses *Journal of Theoretical Biology* 169:253-
636 265

637 Little TJ, Ebert D (2004) Evolutionary dynamics of *Daphnia* and their microparasites. In:
638 Dronamraju K (ed) *Infectious Disease: Host-pathogen evolution*. Cambridge University
639 Press, Cambridge, pp 222-240

640 Lively CM, Roode JCd, Duffy MA, Graham AL, Koskella B (2014) Interesting open questions
641 in disease ecology and evolution *The American Naturalist* 184:S1-S8
642 doi:10.1086/677032

643 Lohr JN, Yin MB, Wolinska J (2010) Prior residency does not always pay off - co-infections in
644 *Daphnia* *Parasitology* 137:1493-1500 doi:10.1017/s0031182010000296

645 Long GH, Graham AL (2011) Consequences of immunopathology for pathogen virulence
646 evolution and public health: malaria as a case study *Evolutionary applications* 4:278-291
647 doi:10.1111/j.1752-4571.2010.00178.x

648 Luis AD, Kuenzi AJ, Mills JN (2018) Species diversity concurrently dilutes and amplifies
649 transmission in a zoonotic host-pathogen system through competing mechanisms
650 *Proceedings of the National Academy of Sciences* doi:10.1073/pnas.1807106115

651 Marchetto KM, Power AG (2018) Coinfection Timing Drives Host Population Dynamics
652 through Changes in Virulence *The American Naturalist* 191:173-183 doi:10.1086/695316

653 May RM, Nowak MA (1995) Coinfection and the evolution of parasite virulence *Proceedings of*
654 *the Royal Society of London Series B: Biological Sciences* 261:209-215
655 doi:10.1098/rspb.1995.0138

656 Mideo N (2009) Parasite adaptations to within-host competition *Trends in Parasitology* 25:261-
657 268 doi:<https://doi.org/10.1016/j.pt.2009.03.001>

658 Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG (2012) Linking genes to
659 communities and ecosystems: *Daphnia* as an ecogenomic model Proc R Soc B 279:1873-
660 1882 doi:10.1098/rspb.2011.2404

661 Navarro C, de Lope F, Marzal A, Møller AP (2004) Predation risk, host immune response, and
662 parasitism Behav Ecol 15:629-635 doi:10.1093/beheco/arh054

663 Orlofske SA, Jadin RC, Hoverman JT, Johnson PTJ (2014) Predation and disease: understanding
664 the effects of predators at several trophic levels on pathogen transmission Freshwater
665 Biology 59:1064-1075 doi:doi:10.1111/fwb.12329

666 Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-
667 down regulation of zoonotic disease reservoirs Frontiers in Ecology and the Environment
668 2:13-20

669 Overholt E, Hall SR, Williamson CE, Meikle CK, Duffy MA, Cáceres CE (2012) Solar radiation
670 decreases parasitism in *Daphnia* Ecology Letters 15:47-54

671 Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herds healthy and
672 alert: implications of predator control for infectious disease Ecology Letters 6:797-802

673 Pastorok RA (1981) Prey vulnerability and size selection by *Chaoborus* larvae Ecology 62:1311-
674 1324

675 Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D (2013) Crop
676 Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the
677 Gut Pathogen *Nosema ceranae* PLOS ONE 8:e70182 doi:10.1371/journal.pone.0070182

678 Pettis JS, vanEngelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results
679 in increased levels of the gut pathogen *Nosema* Naturwissenschaften 99:153-158
680 doi:10.1007/s00114-011-0881-1

681 Pollitt LC, Bram JT, Blanford S, Jones MJ, Read AF (2015) Existing Infection Facilitates
682 Establishment and Density of Malaria Parasites in Their Mosquito Vector PLOS
683 Pathogens 11:e1005003 doi:10.1371/journal.ppat.1005003

684 Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in
685 trematode parasites Parasitology 132:143-151 doi:10.1017/S0031182005008693

686 Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The
687 Rise of the Mesopredator BioScience 59:779-791 doi:10.1525/bio.2009.59.9.9

688 Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the
689 biodiversity-buffers-disease paradigm Parasitology 139:847-863
690 doi:10.1017/s0031182012000200

691 Read AF, Taylor LH (2001) The ecology of genetically diverse infections Science 292:1099-
692 1102

693 Reyserhove L, Samaey G, Muylaert K, Coppé V, Van Colen W, Decaestecker E (2017) A
694 historical perspective of nutrient change impact on an infectious disease in *Daphnia*
695 Ecology 98:2784-2798 doi:doi:10.1002/ecy.1994

696 Rigaud T, Perrot-Minnot M-J, Brown MJF (2010) Parasite and host assemblages: embracing the
697 reality will improve our knowledge of parasite transmission and virulence Proc R Soc B
698 277:3693-3702 doi:10.1098/rspb.2010.1163

699 Rigby MC, Jokela J (2000) Predator avoidance and immune defence: costs and trade-offs in
700 snails Proceedings Biological sciences 267:171-176 doi:10.1098/rspb.2000.0983

701 Rogalski MA (2017) Maladaptation to Acute Metal Exposure in Resurrected *Daphnia ambigua*
702 Clones after Decades of Increasing Contamination American Naturalist 189:443-452
703 doi:10.1086/691077

704 Saenz RA, Hethcote HW (2006) Competing species models with an infectious disease Math
705 Biosci Eng 3:219-235

706 Sala OE et al. (2000) Global biodiversity scenarios for the year 2100 Science 287:1770-1774
707 doi:10.1126/science.287.5459.1770

708 Salkeld DJ, Padgett KA, Jones JH (2013) A meta-analysis suggesting that the relationship
709 between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic Ecology
710 Letters 16:679-686 doi:10.1111/ele.12101

711 Sánchez KF, Huntley N, Duffy MA, Hunter MD (in press) Toxins or medicines? Algal diets
712 mediate parasitism in a freshwater host-parasite system

713 Schiebelhut LM, Puritz JB, Dawson MN (2018) Decimation by sea star wasting disease and
714 rapid genetic change in a keystone species, *Pisaster ochraceus* Proceedings of the
715 National Academy of Sciences doi:10.1073/pnas.1800285115

716 Schild GC, Oxford JS, de Jong JC, Webster RG (1983) Evidence for host-cell selection of
717 influenza virus antigenic variants Nature 303:706 doi:10.1038/303706a0

718 Searle CL et al. (2016) Population density, not host competence, drives patterns of disease in an
719 invaded community American Naturalist 188:554-566

720 Searle CL, Ochs JH, Cáceres CE, Chiang SL, Gerardo NM, Hall SR, Duffy MA (2015)
721 Plasticity, not genetic variation, drives infection success of a fungal parasite Parasitology
722 142:839-848 doi:10.1017/S0031182015000013

723 Shocket MS et al. (2018) Warmer is sicker in a zooplankton-fungus system: a trait-driven
724 approach points to higher transmission via host foraging American Naturalist 191:435-
725 451

726 Stoks R, Block MD, Slos S, Doorslaer WV, Rolff J (2006) TIME CONSTRAINTS MEDIATE
727 PREDATOR-INDUCED PLASTICITY IN IMMUNE FUNCTION, CONDITION, AND
728 LIFE HISTORY Ecology 87:809-815 doi:doi:10.1890/0012-
729 9658(2006)87[809:TCMPPI]2.0.CO;2

730 Stokstad E, Grullón G (2013) Infographic: Pesticide Planet Science 341:730-731
731 doi:10.1126/science.341.6147.730

732 Strauss AT, Civitello DJ, Cáceres CE, Hall SR (2015) Success, failure and ambiguity of the
733 dilution effect among competitors Ecology Letters 18:916-926 doi:10.1111/ele.12468

734 Strauss AT, Hite JL, Shocket MS, Cáceres CE, Duffy MA, Hall SR (2017) Rapid evolution
735 rescues hosts from competition and disease but—despite a dilution effect—increases the
736 density of infected hosts Proc R Soc B 284 doi:10.1098/rspb.2017.1970

737 Tellenbach C, Tardent N, Pomati F, Keller B, Hairston NG, Wolinska J, Spaak P (2016)
738 Cyanobacteria facilitate parasite epidemics in Daphnia Ecology 97:3422-3432
739 doi:10.1002/ecy.1576

740 Toenshoff ER, Fields PD, Bourgeois YX, Ebert D (2018) The End of a 60-Year Riddle:
741 Identification and Genomic Characterization of an Iridovirus, the Causative Agent of
742 White Fat Cell Disease in Zooplankton G3: Genes|Genomes|Genetics
743 doi:10.1534/g3.117.300429

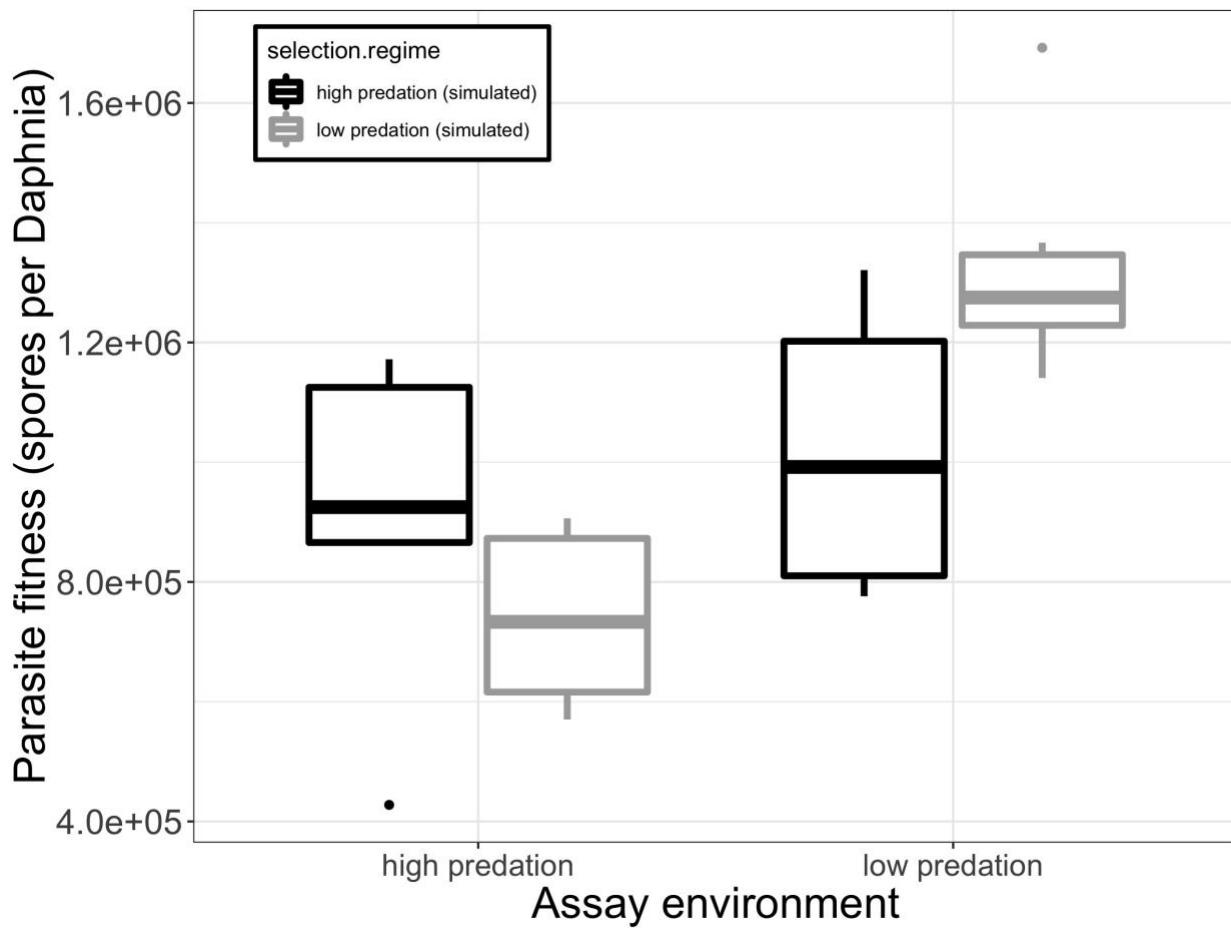
744 Urban MC (2015) Accelerating extinction risk from climate change Science 348:571-573
745 doi:10.1126/science.aaa4984

746 Vale PF, Stjernman M, Little TJ (2008) Temperature-dependent costs of parasitism and
747 maintenance of polymorphism under genotype-by-environment interactions Journal of
748 Evolutionary Biology 9999

749 Vidau C et al. (2011) Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases
750 Mortality of Honeybees Previously Infected by Nosema ceranae PLOS ONE 6:e21550
751 doi:10.1371/journal.pone.0021550

752 Weiss LC, Pötter L, Steiger A, Kruppert S, Frost U, Tollrian R (2018) Rising pCO₂ in
753 freshwater ecosystems has the potential to negatively affect predator-induced defenses in
754 *Daphnia* Current Biology 28:327-332.e323 doi:10.1016/j.cub.2017.12.022

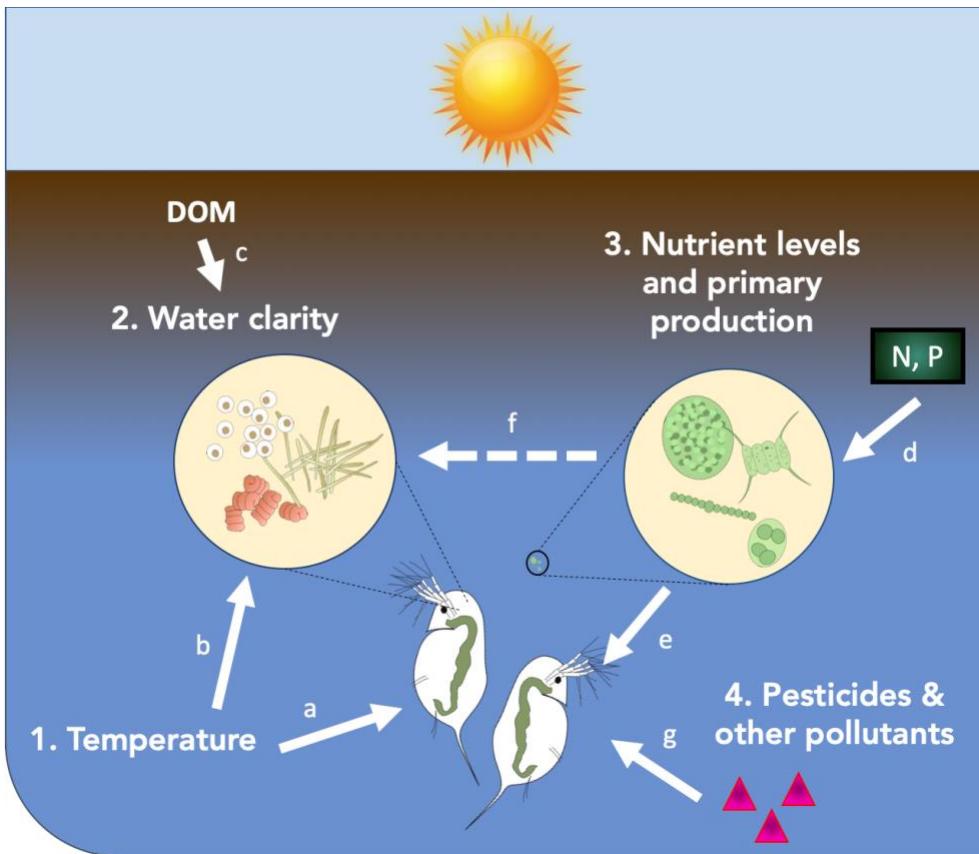
755 Williamson CE et al. (2017) Climate change-induced increases in precipitation are reducing the
756 potential for solar ultraviolet radiation to inactivate pathogens in surface waters Scientific
757 Reports 7:13033 doi:10.1038/s41598-017-13392-2


758 Williamson CE et al. (2015) Ecological consequences of long-term browning in lakes Scientific
759 Reports 5:18666 doi:10.1038/srep18666

760 Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM (2014) Does biodiversity
761 protect humans against infectious disease? Ecology 95:817-832 doi:10.1890/13-1041.1

762 Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (*Apis mellifera*) reared in
763 brood combs containing high levels of pesticide residues exhibit increased susceptibility
764 to Nosema (Microsporidia) infection Journal of Invertebrate Pathology 109:326-329
765 doi:<https://doi.org/10.1016/j.jip.2012.01.005>

766


767

771 **Figure 1.** The bacterial parasite *Pasteuria ramosa* evolved higher fitness in high predation
 772 environments, but this came at the cost of lower fitness in low predation environments. *Pasteuria*
 773 was selected in environments that simulated high predation (shorter host life span; shown with
 774 black bars) or environments that simulated low predation (longer host life span; shown with gray
 775 bars). Parasite fitness was then assayed in two environments, one simulating high predation
 776 (shorter host lifespan) and one simulating low predation (longer host life span). High predation
 777 selection lines produced significantly more spores in high predation assay environments than did
 778 low predation selection lines when assayed in high predation environments (compare the gray

779 and black bars on the left; planned contrast: $z = -3.07$, $p = 0.0021$). When assayed in low
780 predation environments, however, low predation selection lines produced more spores (compare
781 the gray and black bars on the right; planned contrast: $z = 2.70$, $p = 0.0070$). Data are replotted
782 from Auld et al. (2014).

783

784

785

786 **Figure 2.** Humans are dramatically altering the abiotic environment, with consequences for
 787 evolution of hosts and parasites. 1) Human activities are increasing average temperatures as well
 788 as the duration of temperature extremes; (a) this has direct effects on *Daphnia* (by impacting
 789 their feeding rate), and (b) parasites (by impacting their development rates). 2) Human activities
 790 are also altering precipitation regimes, which increases the amount of dissolved organic matter
 791 (DOM) arriving in lakes, making water darker and (c) potentially reducing degradation of
 792 parasites by sunlight. 3) Humans are also altering nutrient levels and therefore (d) primary
 793 production, which (e) changes *Daphnia* feeding rates (and therefore growth and infection rates).
 794 (f) The prevalence of primary producers indirectly affects parasites through changes to host
 795 feeding rates, plus the nutritional and medicinal quality of different phytoplankton mediate host

796 resistance and tolerance. Finally, 4) agricultural practices and other human activities are adding
797 pesticides and other novel chemicals to the environment, which (g) can impact the wellbeing of
798 hosts by reducing their tolerance to pathogens. All of those changes should have impacts on host-
799 parasite interactions, as discussed in the main text.

800