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Abstract: In this study, the authors propose a backstepping-based, distributed formation control method that is stable
independent of time delays in communication among multiple unmanned aerial vehicles (UAVs). Centralised formation control of
UAVs requires each agent to maintain a separation distance from other agents, which burdens the communication network of
the UAVs. To overcome this problem, the authors consider a distributed control scheme wherein each agent updates its attitude
and position based on the state information gathered through its neighbours. Instead of directly controlling the thrust generated
by the propellers, they partition the mathematical model of the UAV into two subsystems, a linear attitude control loop and a
non-linear position control loop. A backstepping-based outer position controller is then designed that interfaces seamlessly with
the inner attitude controller of the cascaded control system. The closed-loop stability is established using a rigorous Lyapunov–
Krasovskii analysis under the influence of distributed network time delays. Using the directed graph topology and a distributed
backstepping structure, it is shown that the stability criterion is delay-independent. The proposed control algorithms are verified
in simulation and then implemented in hardware, and actual flight test experiments prove the validity of these algorithms.

1 Introduction
Inspired by the naturally occurring biological groups such as herds
and flocks where each member acts only under the influence of its
neighbours [1], formation flight of quadrotors and other unmanned
aerial vehicles (UAVs) has drawn great attention in recent years,
due to their capability to perform certain tasks such as
transportation [2], surveillance and reconnaissance, [3] and target
search and detection [4]. With the increase in demand for UAVs to
work together to accomplish these tasks, several real-life
challenges need be addressed that include the implementation, test,
and validation of the control algorithms in flight test experiments.
In particular, we examine the challenge of designing a cooperative
controller for UAVs to provide robust capabilities like,
performance despite communication time-delays in a leader–
follower formation.

Formation control is a type of multi-agent architecture that
relies on relative motion of agents [5]. There exist different
approaches to ensure formation control for multi-agent systems in
the control community. Three recognised categories are behaviour-
based approaches [6], virtual structure-based approaches [7], and
leader–follower approaches [8]. In the behaviour-based
approaches, each agent of the formation acts according to
predefined behaviour. This approach is behaviourally inflexible
since motion is predefined. Alternately, virtual structure-based
approach introduces a virtual vehicle for each vehicle in the
formation and transforms the formation problem into a trajectory
tracking problem. However, since the virtual vehicles are not
exposed to any type of disturbance in the environment, there is a
high chance that the followers break formation in the event of
unexpected environmental disturbances. On the other hand, the
leader–follower approach is easy to implement, and all agents react
to any environmental change, but the network delay must be
examined well to maintain formation.

Several works deal with linear dynamics of multi-agent systems
[9–13]. Particularly, [10] reveals some of the necessary and
sufficient conditions to achieve predefined time-varying formations
with switching interaction topologies based on the algebraic
Riccati equation. Rui et al. [13] propose a distributed adaptive
control technique that uses adaptive gain scheduling to tune the
coupling weights between the individuals of the multi-agent

system. Whereas, [14] uses the same technique to satisfy
prescribed H-∞ like performance and to manage the side effects of
uncertainties in the system dynamics. However, since most
physical systems are intrinsically non-linear, these linear
cooperative control methods cannot be applied directly [15].
Therefore, considerable number of works studied non-linear
dynamics of the multi-agent systems [15–19]. Neural-network
based adaptive control and distributed impulsive control methods
are examined to achieve leader–follower consensus with the class
of non-linear multi-agent systems in [15, 16], respectively. The
authors prove the stability of consensus error dynamics with well-
known Lyapunov stability analysis techniques.

However, the problem of designing leader–follower formation
strategies in which agents experience distributed network delays
with pinning gain control requires more attention. One significant
challenge associated with this relates to the construction of an
appropriate compact non-linear mathematical model of the multi-
UAV system. In [20], authors study the effect of commensurate
time delays on the closed-loop stability using the retarded
functional differential equation (RFDE) form. By modelling the
dynamics of the UAV as a double integrator, [21, 22] treat each
agent of the multi-UAV system as a point-mass system to apply
time-varying consensus-based approaches on the multi-UAV
system. This is a gross oversimplification of the UAV dynamics,
especially for the quadrotor platforms considered in this paper. The
inner/outer control loop partitioning allows us to deal with the
delays occurring in the communication network of the UAVs, and
to show that the stability of the outer control loop of the cascaded
system is independent of delay. It is then shown that the closed-
loop error dynamics of the whole system is also stable, independent
of time delay.

Moreover, authors of [23–27] use non-linear backstepping
control method to deal with recursive design structure. This
approach enables designer to solve the stabilisation problem
partially for each submodule of the system of interest. Particularly,
Krsti'c et al. [23] propose the adaptive backstepping control
scheme to possess stronger stability properties while dealing with
parametric uncertainties. Skjetne et al. [24] extends the adaptive
backstepping control scheme in [23], to achieve both convergence
to the path and predetermined dynamic behaviour along the path
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simultaneously. In [25], integrator backstepping and quaternion
feedback is adopted to stabilise the attitude of a micro-satellite. Li
and Zhao [27] work on improving transient response of the closed-
loop system by presenting a generalised backstepping process,
based on the solvability of virtual controllers.

There are three major contributions of this work. Firstly, we use
the second-order non-linear dynamics of UAVs and synthesise a
novel rigorous distributed backstepping control technique that has
a form that easily extends to multiple UAV distributed control.
Secondly, we partition the mathematical model of UAVs into two
subsystems, an inner attitude control loop which is built into the
quadrotor, and outer position controllers that consider relative
motion of neighbours in formation flight. This allows us to
rigorously analyse the delays occurring in the communication
network of the UAVs. We prove that the stability of the outer
control loop of the cascaded system is independent of delay, which
implies that the closed-loop error dynamics of the whole system is
also stable independent of delay. Lastly, we employ the directed
graph topology to design formation control of the multi-UAV
system, which reduces the work burden for the UAV
communication network. It is rigorously shown that the stability
criterion is delay-independent when each agent of the formation
experiences distributed delays while communicating with its
neighbours. The actual flight tests that show the validity and
robustness of the developed control algorithms.

The rest of the paper is organised as follows. In Section 2, we
provide the preliminaries of the mathematical model of the
quadrotor and graph theory to understand the basics of the
distributed control approach. Section 3 brings an analysis of the
control structures proposed, which involves the inner attitude
controller and backstepping-based position controller for the task
of trajectory tracking. We first explain the attitude controller design
procedure for the quadrotors. Then we show the stability analysis
of the backstepping control method. Section 4 illustrates how to
extend the backstepping control algorithm to control multiple
agents using the distributed backstepping tracker, which has a
stable delay-independent system structure under the influence of
non-constant distributed delays. Sections 5 and 6 show the flight
tests on a real UAV, where we illustrate the trajectories followed by
AR.Drone 2.0 quadrotor with a full non-linear backstepping tracker
and by multiple AR.Drone 2.0's with a distributed backstepping
trackers.

2 Preliminaries
The goal of this paper is to design a distributed controller for multi-
UAV systems. Flying in a formation requires the agents to maintain
separate distance from each other, which burdens the
communication network and induces communication delays. In this
section, we give preliminaries of a mathematical model of the
quadrotor and graph theory to clarify the idea of the backstepping-
based, distributed formation control method. In the next section,
we present backstepping control for a single UAV. Then in Section
4, we present the formation controller with the network delays.

2.1 Mathematical model

This section introduces the standard non-linear model of the
quadrotor dynamics. To localise the quadrotor position, we use the
Earth fixed frame. The origin of the three-dimensional (3D) axis

system of the Body frame is assumed to be at the centre of mass of
the quadrotor. The kinematics of the Euler angle rates can be
expressed as

wB =
p
q
r

=
1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

η̇ (1)

where c and s refer to cosine and sine, respectively, and wB ∈ ℝ3 is
the angular velocity in the Body frame components. Particularly, p
is the roll rate, q is the pitch rate, and r is the yaw rate defined in
the Body frame. Moreover, η ∈ ℝ3 is the Euler angle vector (roll,
pitch, and yaw), i.e. η = φ θ ψ T. Note that positive directions of
Euler angles determined by right-hand rule, which are shown in
Fig. 1. 

The rotational dynamics are given by

IBẇB = S wB IBwB + τB (2)

where S wB ∈ ℝ3 × 3 is the skew-symmetric matrix [22],
τB = τφ τθ τψ

T is the torque vector and IB ∈ ℝ3 × 3 is the inertia
matrix defined in Body frame.

The translational dynamics of the quadrotor, ignoring any
aerodynamic effects, is expressed in the Body frame is obtained to
be

mU̇ =
0
0
μ

+ RFg (3)

where U = u vw T is the velocity vector defined in the Body
frame, μ is the total thrust produced by rotors in the Body frame zB-
axis. Note that m is mass of the rigid body, Fg = 0 0 − mg T is the
gravitational force vector and R ∈ ℝ3 × 3 is the rotation matrix from
the Earth frame to the Body frame. Moreover u, v, and w stand for
the velocities of the quadrotor in Body-axis coordinate system
given in Fig. 1. We obtain this rotation matrix using the yaw-pitch-
roll (3-2-1) sequence. It is given by

R =
cθcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

(4)

Note that R belongs to the special orthogonal group and is of rank
3, or SO(3), whose determinant is equal to 1.

The translational dynamics of the quadrotor in the Earth frame
is then formulated as

mξ̈ = mV̇ = F + Fg (5)

where ξ = x y z T and V ∈ ℝ3 denotes the position and velocity
vectors in the Earth frame, respectively. F ∈ ℝ3 is the input force
vector defined in the Earth frame. Then (3) and (5) give the
following relation:

F =
f x
f y
f z

= RT
0
0
μ

=
μ(sφsψ + cφsθcψ)

μ( − sφcψ + cφsθsψ)
μ(cφcθ)

(6)

2.2 Graph theory

A graph is constructed with a pair G = (V , E), where the set
V = {v1,…, vN} defines the nodes or vertices, and E defines edges
or arcs. The set E is composed of edge pairs (vi, v j). If (vi, v j) is
equal to (v j, vi) ∀i, j ∈ 0,N , i ≠ j, then graph is said to be
bidirectional. Each edge v j, vi ∈ E, has a weight ai j > 0 if and
only if there exists a connection from node j to i. The graph is

Fig. 1  Coordinate systems of the quadrotor
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called undirected if ai j = aji, ∀i, j.The undirected graph is said to
be weight balanced, which leads to symmetric adjacency matrix A.

The diagonal matrix D is the ith row sum of A or weighted in-
degree. Then, the Laplacian matrix is defined as

ℒ = D − A . (7)

In this paper, the edge weights represent the trust between
quadrotors, which are nodes of the formation graph. We create a
graph topology based on adjacency or connectivity matrix
A = [ai j], realising that aii = 0. The Laplacian matrices of all
undirected graphs are real symmetric matrices. On the other hand,
this is not valid for the digraphs. One of the contributions of this
paper is proving consensus of the UAVs by adopting directed graph
topology.

3 Backstepping control
This section explains the full non-linear backstepping control
design for the quadrotor. The backstepping control structure
derived here is shown in Fig. 2. This is a non-standard
backstepping controller, has a novel form that allows direct
extension to multiple interacting UAV control. Specifically, we
derive the UAV error dynamics (33), which has a special form that
is easily extended to multiple UAV formation control in Section 4.

To apply the backstepping control method to the system defined
in (5), we begin by adding and removing Fd, an ideal virtual force
input, and obtain the Newtonian model in terms of the desired
forces

mξ̈ = mV̇ = Fd + Fg + Fd (8)

where Fd = F − Fd. In Section 3.1, we show how to obtain desired
Euler angle vector ηd = φd θd ψd

T to generate Fd, and the time rate
of change of desired vertical speed, ẇd. Then in Section 3.2, τB in
(2) is designed using ηd = φd θd ψd

T and ẇd to get Fd → 0. Lastly
in Section 3.3, Fd is selected to get ξ → ξd, where ξd = xd yd zd

T is
the given desired position vector in the Earth frame. Proof of
stability and tracking error convergence is given in Section 3.3.

3.1 Desired Euler angles

In Section 3.3, we show how to compute desired force vector Fd to
obtain position and velocity tracking. Herein we show how to
compute ηd and ẇd from the desired force data Fd by using the
inverse kinematics approach. Suppose we are given desired force
Fd. Note that from (6)

Fd =
f xd
f yd
f zd

=
μd(sφdsψd + cφdsθdcψd)

μd( − sφdcψd + cφdsθdsψd)
μd(cφdcθd)

(9)

where μd is the desired thrust in the Body frame. Equation (9) can
be solved for the desired Euler angles

tanθd =
f xdcosψd + f ydsinψd

f zd
,

θd = tan−1 f xdcosψd + f ydsinψd

f zd
,

(10)

tanφd =
cosθd ( f xdsinψd − f ydcosψd)

f zd
,

φd = tan−1 cosθd ( f xdsinψd − f ydcosψd)
f zd

,
(11)

μd =
f zd

cosφd cosθd
. (12)

and f zd ≠ 0. Although it should be mentioned that f zd = 0 only if
θd and/or φd = ± π

2  or μd = 0. The condition θd = ± π
2  or

φd = ± π
2  correspond to singular orientations of the quadrotor and

our domain of operation for θ and φ is − π
2

π
2 . Further μd = 0

would correspond to zero total thrust. Furthermore, notice that ψd
can be arbitrarily prescribed, and only the variables θd, φd and μd
must be found. The inner loop control design of the backstepping
method requires the time rate of change of the desired vertical
speed in the Body frame, ẇd, which is calculated by using (3) such
that

ẇd =
μd
m − gcosφd cosθd . (13)

Note that the information of time rate of change of the desired
vertical speed or simply desired vertical acceleration acts as an
input of the attitude controller loop will be given in Section 3.2.
Derivation of this data is essential to control the height of the UAV,
while accomplishing the path tracking objective accurately in 3D
space.

3.2 Inner attitude control loop

In this section, we explain the inner attitude control of the
backstepping method for the quadrotor. The attitude controller is
generally built-in to the UAV and cannot be modified. This implies
that the built-in attitude controller is assumed to track the quantities
ηd and wd˙ .

We begin with deriving the desired Euler rates wBd = pd qd rd
T

by using (1) and ηd such that

pd
qd
rd

=
1 0 −sθd
0 cφd cθdsφd

0 −sφd cθdcφd

φ̇d

θ̇d
ψ̇d

. (14)

Then the following PID controller is designed to generate changes
in angular velocity of the propellers

Fig. 2  Desired input states calculation for the attitude controller
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rCl
ΔΩφ

ΔΩθ

ΔΩψ

=

Pφ φd − φ + Dφ pd − p + Iφ∫ φd − φ

Pθ θd − θ + Dθ qd − q + Iθ∫ θd − θ

Pψ ψd − ψ + Dψ rd − r + Iψ∫ ψd − ψ

. (15)

Furthermore, (15) is used to obtain the desired angular velocity of
each rotor [2] such that

Ω1d

Ω2d

Ω3d

Ω4d

=

1 0 −1 1
1 −1 0 −1
1 0 1 1
1 1 0 −1

Ωh + ΔΩnet

ΔΩφ

ΔΩθ

ΔΩψ

(16)

where Ωid, i = 1, 2, 3, 4, corresponds to the desired angular
velocities of the rotors and k is the thrust factor. Ωh is the rotor
speed required to hover such that

Ωh =
mg
4k (17)

ΔΩnet is the outcome of desired vertical acceleration in the Body
frame, ẇd (13), in the form of

ΔΩnet =
m

8kΩh
ẇd . (18)

Notice that while producing Ωh keeps the quadrotor at nominal
condition (hover), ΔΩnet moves the UAV along zB-axis. In addition,
producing ΔΩφ, ΔΩθ, and ΔΩψ deviates quadrotor from hover by
resulting in roll, pitch and yaw, respectively. Finally, (16) yields the
following torque vector expression, which stabilises the rotational
dynamics (2):

τB =
τφ
τθ
τψ

=
lk(Ω4d

2 − Ω2d
2)

lk(Ω3d
2 − Ω1d

2)
d(Ω1d

2 + Ω3d
2 − Ω2d

2 − Ω4d
2)

(19)

where l is the lever length, and d is the drag factor. The direction of
angular velocities for each rotor is given in Fig. 1, while first and
third rotor turn anti-clockwise, the other two turn clockwise to
cancel the yawing moments generated when the quadrotor is at
nominal condition. The total thrust, μd, is equal to the sum of
thrusts generated by each rotor, that is

μd = k(Ω1d
2 + Ω2d

2 + Ω3d
2 + Ω4d

2) . (20)

3.3 Outer position control loop

This section explains the outer position control loop of full non-
linear backstepping design for the quadrotor. We derive an
expression for Fd that guarantees the dynamics of (8) are stable. A
main result is the form (33) for the error dynamics, which has a
special structure that is directly extended to multiple quadrotors in
Section 4.

Begin with defining the position and velocity errors in the Earth
frame as

x1 = ep = ξd − ξ,
x2 = ev = Vd − V (21)

where Vd = ξ̇d ∈ ℝ3 is the desired velocity vector in the Earth
frame.

The objective of the paper is to demonstrate the performance of
the cooperative controller for any Commercial off the Shelf
quadrotor platform with an inbuilt attitude controller. In such a

situation, the assumption is reasonable that the inbuilt attitude
controllers (typically PID) will accomplish this task. Thus, the
inner loop attitude controller is not analysed further. Then to prove
the convergence of error dynamics (21), which is the second step of
backstepping method given in Section 3, we make the following
assumption.

 
Assumption 1: The inner attitude controller (19) tracks the Euler

angles (10) and (11) and vertical acceleration (13). Hence, the
equilibrium of inner attitude control loop is stable.

The next main theorem shows how to compute Fd to guarantee
stable position and velocity tracking of (8).

 
Theorem 1: Under Assumption 1, the following control law,

applied to the system governed by (8) ensures that the position and
velocity tracking errors in (21) → 0 as t → ∞

Fd = mV̇d − Fg + mK1 + mK2 ẋ1

+ mI3 × 3 + mK1K2 x1 .
(22)

 
Proof: The error dynamics are derived as

ẋ1 − x2 + x2v − x2v = 0 (23)

where x2v is a virtual control signal. Moreover, by using (8) the
error dynamics become

ẋ2 − V̇d +
Fd
m + Fg

m + Fd
m = 0 . (24)

Then, define the following velocity error mismatch variable:

x~2 = x2v − x2 . (25)

Substituting (25) in (23)

ẋ1 − x2v = − x~2 . (26)

Now we pick x2v = − K1x1 where K1 ∈ ℝ3 × 3 is a diagonal positive
definite matrix. Then (26) becomes

ẋ1 + K1x1 = − x~2 . (27)

To examine the stability of (27), we pick the Lyapunov function
candidate as follows:

V = 1
2 x1

Tx1 + 1
2 x
~
2
Tx~2 . (28)

Then the derivative of Lyapunov function candidate is derived
using (24) and (26) as

V̇ = x1T ẋ1 + x~2
T ẋ2

= x1T −K1x1 − x~2

+x~2
T ẋ2

v − V̇d +
Fd
m + Fg

m + Fd
m .

(29)

To have strictly negative definite Lyapunov function derivative, we
set Fd as

Fd = mV̇d − Fg − mẋ2
v + mx1 − mK2x~2

= mV̇d − Fg + mK1 + mK2 ẋ1

+ mI3 × 3 + mK1K2 x1

(30)

where K2 ∈ ℝ3 × 3 is a diagonal positive definite matrix. Then, (29)
becomes
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V̇ = − x1TK1x1 − x~2
TK2x~2 + x~2

TFd
m ,

≤ − λmin(K1,K2)∥ x~ ∥2 + x~2
TFd(0)

m ,

≤ − λmin(K1,K2)∥ x~ ∥2 + ∥ x~2 ∥
∥ Fd(0) ∥

m

(31)

where x~ = x1T x2T
T
 and λmin(K1,K2) stands for min eigenvalue of

K1 and K2. Note that in the worst case scenario, λmin(K1,K2) must be
bigger than ∥ Fd(0) ∥/m, which is a sufficient condition for
asymptotic stability of origin. Moreover, from Assumption 1, the
inner attitude control loop ensures that the quadrotor tracks the
desired attitude angles φd, θd, and the desired thrust μd, i.e φ → φd,
θ → θd, and μ → μd. From the description of F and Fd in (6) and
(9), respectively, we conclude that F → Fd and hence, Fd → 0.
Then (31) becomes

V̇ = − x1TK1x1 − x~2
TK2x~2, (32)

which is strictly negative definite since K1 and K2 are positive
definite matrices. Note that x~2 → 0 implies x2 → x2v. Moreover,
x2v → 0 as x2v = − K1x1. Hence, x2 → 0 and the origin (0, 0), which
is the equilibrium of (21), is globally asymptotically stable. □

Using the control laws derived previously, from (30) the
tracking error dynamics can be written in the state-space form as

ẋ = 03 × 3 I3 × 3

−(K1K2 + I3 × 3) − K1 + K2

J

x (33)

where x = x1T x2T
T. Note that J is Hurwitz. This form is

instrumental in designing formation controllers for multiple UAV
in the next section.

4 Distributed backstepping position control loop
of multiple UAV with network delays
This section provides the connection of outer position control loop
of backstepping method defined in Section 3.3 to the distributed
multi-agent case. The error dynamics (33) are in a novel form
which is easily extended in this section to multiple UAV formation.

We first treat the distributed system as delay-less. Then we
perform rigorous stability analysis when agents experience both
constant and distributed delays. Define dynamics (5) for each agent
as

mξi¨ = mVi
˙ = Fi + Fg, ∀i = 1,…,N . (34)

4.1 No communication delay

In this section, we first extend the error dynamics (33) to multiple
quadrotors. If there is no communication delay, define the position-
based consensus error

epi = ∑
jϵNi

ai j ξ j − Δ j − ξi + Δi + gi ξ0 − ξi + Δi (35)

∀i = 1,…,N where gi is the pinning gain, Δi (and Δ j) is the n-dim
constant tracking offset vector of the ith (and jth) UAV with respect
to the n-dim position of the leader, ξ0 ∈ ℝ3, of the formation.
Lastly, N is the number of the UAVs in the formation. Note that gi
only takes values different than zero, if the node i is directly
connected to the leader node. For the sake of simplicity, we use
following vector notations:

epc = ep1
Tep2

T…epN
T T, epc ∈ ℝNn

Δ = Δ1
TΔ2

T…ΔN
T T,Δ ∈ ℝNn

ξc = ξ1Tξ2T…ξNT
T, ξc ∈ ℝNn

ξ̇c = Vc = V1
TV2

T…VN
T T,Vc ∈ ℝNn

Fc = F1
TF2

T…FN
T T,Fc ∈ ℝNn .

(36)

By using (5), the global system dynamics for followers can be
written as

mV̇c = Fc + 1N ⊗ Fg . (37)

Then, by using (7) and noting the fact ℒ1N = 0N since the row
sum of ℒ is zero, re-write (35) as

epc = − ( ℒ + G ⊗ In) ξc − Δ + (G⊗ In)(1N ⊗ ξ0)
= − ℒ + G ⊗ In ξc − Δ − 1N ⊗ ξ0

(38)

where 1N is N-dim vector whose all elements are ones and
G ∈ ℝN ×N is a diagonal pinning gain matrix with the diagonal
elements of gi ∀i = 1,…,N. In addition, ⊗ stands for the
Kronecker product. Define ξ0 = 1N ⊗ ξ0. Then (38) becomes

epc = ℒ+ G ⊗ In (ξ0 + Δ − ξc) . (39)

The velocity-based consensus error is

evc = ( ℒ + G ⊗ In) V0 − Vc (40)

where V0 = ξ̇0 ∈ ℝNn, then the error dynamics are derived as

ėpc = evc,
mėvc = ℒ+ G ⊗ In mV̇0 − mV̇c .

(41)

Substituting (37) in (41) results in

mėvc = ℒ+ G ⊗ In mV̇0 − (Fc + 1N ⊗ Fg) . (42)

Now, we set the global desired force vector that contains desired
force information for each agent of the formation (36) by using
mixed-product property of Kronecker product,
A⊗ B C⊗ D = (AC) ⊗ (BD) such that

Fc = mV̇0 − 1N ⊗ Fg + m(IN ⊗ K1 + K2 )evc

+m(IN ⊗ I3 × 3 + K1K2 )epc .
(43)

Note that Fc is the global form of (30). Moreover, ξ0 + Δ and V0

are the global form of ξd and Vd, respectively. Then, we end up
with the following second-order error dynamics such that:

ėpc = evc

ėvc = − ℒ+ G ⊗ K1K2 + I3 × 3 epc

− ℒ+ G ⊗ K1 + K2 evc .
(44)

The state-space form of (44) is

ẋc(t) = Jcxc(t) (45)

where Jc ∈ ℝ2Nn × 2Nn is the global system matrix such that

Jc =
0Nn ×Nn INn ×Nn

− ℒ+ G ⊗ K1K2 + I3 × 3 − ℒ+ G ⊗ K1 + K2
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(46)

and xc(t) = epc
T evc

T T ∈ ℝ2Nn × 1 is the global state vector. The
global dynamics (45) are the combination of the single-agent
dynamics (33) for the entire formation. Before we do the stability
analysis for the closed-loop error dynamics given in (45), we make
following assumption.

 
Assumption 2: The graph topology of the multi-agent system

contains a spanning tree with the root node being the leader node.
This means that there is a directed path (not necessarily unique)
from the leader node to every follower node.

The next theorem extends the single-agent result in Theorem 1
to the multi-agent case by using M-matrix properties of the
digraphs [28].

 
Theorem 2: Given the Assumption 2, ℒ+ G is an irreducible

M-matrix and has all eigenvalues strictly in the open right-half
plane [28]. Then, the equilibrium of closed-loop error dynamics
given in (45) is globally asymptotically stable point meaning that
Jc is Hurwitz.

 
Proof: Use the fact that Kronecker product of a positive

diagonal matrix and an M-matrix has all eigenvalues strictly in the
open right-half plane [29, 30]. Then, re-write (45) in the form of
the second-order differential equation such that

ëpc + ℒ+ G ⊗ K1 + K2 ėpc

+ ℒ+ G ⊗ K1K2 + I3 × 3 epc = 0 .
(47)

Notice that all coefficient matrices of the characteristic polynomial
of (47) have eigenvalues at open right half plane, hence the origin
is globally asymptotically stable equilibrium by Routh-Hurwitz
test. Note that if the graph topology was undirected, algorithms
proposed in this paper would still work because ℒ+ G would be
positive definite symmetric matrix with the assumption of there
exists a path from the leader node to every follower node. □

4.2 Communication delays

In this section, first we consider the system with constant
communication delay, which occurs while the local positioning
system shares the position of each agent to their neighbours. This
delay may be created by processing time of the positioning system,
data header analysis, storage at routers, and so on. Note that this
delay is upper bounded by the practical limitations. Then (45) is
written in the form of RFDE [20] such that

ẋc(t) = Jcxc t + βJcxc(t − γ) (48)

where γ is the network delay, β is the gain of delayed term, and Jc
is the system matrix (46).
 

Theorem 3: For the system in (48), the origin is stable
equilibrium for β ∈ ( − 1, 1] as the system matrix Jc is Hurwitz by
Theorem 2.
 

Proof: As γ → 0, β must be greater than −1 so that the overall
system is stable, which is the lower bound of β.

To find the upper bound, use the fact that
ρ jwI − Jc

−1
Jc < 1∀w > 0 as given in [31] where ρ( . ) denotes

the spectral radius of a matrix and w denotes the frequency.
First assume that ρ jwtI − Jc

−1
Jc = 1, ∀wt > 0, which

implies e jσt is the eigenvalue of the matrix jwtI − Jc
−1
Jc for

σt ∈ [0, 2π]. Then, det I − jwtI − Jc
−1
Jce jγtwt = 0 for γt =

σt
wt

, or
equivalently by using matrix determinant lemma

det jwtI − Jc − Jce jγtwt = 0. (49)

Hence, (48) is not stable independent of delay with this
assumption.

Next, assume that ρ jwtI − Jc
−1
Jc > 1, ∀wt > 0. Since ρ( . ) is

continuous function of wt and

lim
wt → ∞

ρ jwtI − Jc
−1
Jc = 0. (50)

Then ∃wt ∈ (w,∞) such that ρ jwtI − Jc
−1
Jc = 1, which makes

(48) not stable independent of delay as this ends up with (49).
Consequently, we show that ρ jwtI − Jc

−1
Jc < 1, ∀wt > 0. By

using Gelfand Corollaries, this results in

ρ jwtI − Jc
−1
Jc ≤ ρ jwtI − Jc

−1)ρ(Jc)

≤
Jc ∞

Jc ∞
2 + wt

2
.

(51)

Then the upper bound of β must be 1 by (51) to have
ρ β jwtI − Jc

−1
Jc < 1. To this end, we proved that as

β ∈ ( − 1, 1], the system represented in (48) is stable independent
of delay. □

Now, if we consider the system with non-constant distributed
delays, (45) can be written as

ẋc(t) = Jcxc(t) + β∫
−γ

0

Jcxc(t + s) ds (52)

where s ∈ [ − γ, 0], β is the gain of delayed term and γ is the
maximum delay.

 
Theorem 4: The origin is an asymptotically stable equilibrium

of (52) when there exist distributed delays in the communication
network with gain β ∈ [0, 1], which is a sufficient condition for
asymptotic stability.

 
Proof: As shown in Theorem 3, the origin is stable equilibrium

for β ∈ ( − 1, 1] since Jc is proven to be Hurwitz in Theorem 2.
With this in mind, pick Lyapunov–Krasovskii functional as

V xtc = xcT t Pxc t

+β∫
t − γ

t ∫
s

0

xcT ℓ Sxc ℓ dℓ ds
(53)

where P ∈ ℝ2Nn × 2Nn and S ∈ ℝ2Nn × 2Nn are positive definite,
symmetric matrices. To have strictly positive definite Lyapunov–
Krasovskii functional (53), the sufficient condition is β > 0. Before
taking the derivative of Lyapunov–Krasovskii functional and
developing stability analysis, we use change of variable
f T = xc t + T  for arbitrary T, to simplify the stability analysis.
Then, (52) and (53) become

ḟ (0) = Jc f (0) + β∫
−γ

0

Jc f (s) ds (54)

V f = fT 0 P f 0

+β∫
−γ

0 ∫
s

0

fT ℓ S f ℓ dℓ ds . (55)

Furthermore, by using the Leibniz Integral Rule and (54), the
derivative of Lyapunov–Krasovskii functional (55) becomes
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V̇ f = fT 0 PJc + JcTP + γβS f 0

+2 fT 0 ∫
−γ

0

PJc f s ds

−β∫
−γ

0

fT s S f s ds .

(56)

To facilitate further development, (56) is written as

V̇ f = fT 0 PJc + JcTP f 0

+∫
−γ

0

vT
βS PJc

JcTP −βS
v ds

(57)

where v = f 0 T f s T T. Notice that V f ≥ ε∥ f (0) ∥2 is

satisfied for sufficiently small ε > 0. And, PJc + JcTP ≤ − εI

since Jc is proved to be Hurwitz by Theorem 2. In addition,
assuming ∃P = PT > 0 and using the linear matrix inequality [13],
the negative definiteness of a matrix

βS PJc

JcTP −βS

implies V̇ f ≤ ε∥ f (0) ∥2. Therefore, all conditions of the
asymptotically stability by analysing the derivative of Lyapunov–
Krasovskii functional given in [23], have met meaning that the
origin is asymptotically stable equilibrium. □

5 Experiment design and flight test details
This section addresses the crucial elements of our experiments,
which are lab environment, flight controller design and
simulations. An actual flight test is conducted in Section 6.

5.1 Lab environment

Equipment used are the Vicon, Parrot AR.Drone 2.0, and the
master computer. Vicon is a motion capture system that provides
the position of the UAVs.

The communication between master computer and Vicon is
done via User Datagram Protocol (UDP). The frequency of the
UDP Packets taken from the Vicon motion capture system is 100 
Hz. The AR.Drone 2.0 has a built-in gyroscope and Inertial
Measurement Unit (IMU) sensor suite. In practical applications,
many quadrotors are designed with a built-in attitude controller and
AR.Drone has its own attitude controller. This controller takes the
desired values of φd, θd and ψd as inputs. The communication

between the master computer and the AR.Drone is done via UDP.
The frequency of UDP packages is set to 500 Hz. MATLAB-
Simulink is used to create UDP nodes that are communicating with
AR.Drone and Vicon. The receiver and the sender UDP nodes are
inserted to the Simulink model in the form of S-functions. The
controller and the trajectory generation algorithms are implemented
in the model. Simulink-Desktop Real Time Add-on is used to send
the real time commands to the quadrotor. The UDP nodes tolerate
up to 10% packet loss rate, which is necessary to handle
communication channel noise created by the lab environment.

5.2 Flight controller design

The flight controller is a high-level decision-making mechanism
that activates different modes of operation depending on the state
of the UAV. We recognise three modes of operation in our
MATLAB implementation, which are IDLE, HOVER, and
TRACK_PATH as shown in Fig. 3. The quadrotor enters the IDLE
mode, when either we turn-on the AR.Drone manually or it is
landed by receiving the Land command. While in the IDLE, the
UAV is actively receiving the data packets via UDP port
communication and is ready to get the TakeOff command.

When the UAV reaches the desired height, zd, the flight
controller switches to the HOVER mode. In this mode, the UAV is
at the nominal condition, its attitude is parallel to ground and
motionless in the air. If the Track command is received in the
HOVER mode, the flight controller switches to the PATH_TRACK
mode. This mode is triggered after 10 s passed from the
transmission of TakeOff command. In this mode, AR.Drone begins
to track the predetermined trajectory. The flight control algorithm
first reads the IMU sensor buffers and then Vicon buffer to
construct the close loop error dynamics. To calculate desired Euler
angles, (10)–(12) are used. Notice herein the desired yaw angle
command is set to an arbitrary constant.

To land the quadrotor on the ground, we use either
EmergencyLand or SafeLand commands. The difference of these
two commands is the timing of stopping propeller movements. If
we send the SafeLand command to the quadrotor, it reduces the
propellers' speed till the height is in the range of 0–0.1 m and shuts
down the propellers. Else if we send the EmergencyLand to the
quadrotor, it directly stops the propellers and lands on the ground.
The appropriate structure for implementing the flight controller is
the finite state machine (FSM) since the mode switching event is
driven as shown in Fig. 3.

5.3 Simulations

The aim of this section is to verify control algorithms proposed in
this paper by conducting different test scenarios. Before we
implement the distributed backstepping control algorithm in the
actual hardware, mathematical model in Section 2.1, backstepping
control method in Section 3, and distributed backstepping trackers
in Section 4 are implemented in the Simulink. We first verified
inner attitude control loop design in Section 3.2, the PID gains are
given in Table 1. 

To derive PID gains given in Table 1, thrust, drag factors, mass
and arm length of the AR.Drone 2.0 must be measured. Mass and
arm length of the quadrotor are measured as m = 0.467 kg and
l = 0.1785m, respectively. To determine the thrust factor k, we first
measure the angular velocity of a propeller with tachometer when
the quadrotor is in hover. Then, we used (17) to derive k, which is
found as 8 ∗ 10−6N ∗ s2/rad2. After that, using the thrust ratio
analysis for small UAVs, the thrust factor d is derived as
2 ∗ 10−7N ∗ m ∗ s2/rad2. Moreover, the diagonal elements of K1, K2
are tuned as 2, 2, 3 and 1.5, 1.5, 3, respectively.

To construct the desired circular trajectory for the formation
leader, xd is set to cos(ωt(t − ttrack)) and yd is set to sin(ωt(t − ttrack))
where t is simulation time, ttrack is the time at which the UAV
begins to track circular trajectory, and ωt stands for the frequency
of the sinusoidal function. In our simulations, we pick ttrack as 15 s
and ωt as 0.5 rad/s. Note that before formation leader begins to
track circular trajectory, the xd value is linearly increased by 1m

Fig. 3  Flight controller FSM design
 

Table 1 Inner attitude control loop PID parameters
Gains Φ(Roll) θ(Pitch) ψ(Yaw)
P 6.42 6.42 4.82
D 5.54 5.54 7.89
I 1.85 1.85 0.11
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for t ∈ [10, 15]. Therefore, the leader UAV begins to track circular
trajectory at 15 s. In Section 6.1, we double value of ωt for yd
setting to construct the eight figure trajectory.

5.3.1 No delay, undirected graph: The aim of this section is to
show validity of the proposed algorithms, when the undirected
graph topology is adopted to design leader–follower formation
control while multi-UAV system does not experience any delays.
We share the control histories for the formation leader in Figs. 4
and 5. Particularly, in Fig. 4, we show attitude control inputs (10)–
(13) of the leader UAV. In Fig. 5, we show torque (19), and thrust
(20) controls defined in the body frame of the formation leader. For
this test scenario, we pick adjacency, pinning gain matrices and
offset vector as follows:

A =
0 1 0
1 0 1
0 1 0

,G =
1 0 0
0 0 0
0 0 0

,

ΔT = 1.5 0 0 3 0 0 4.5 0 0 .

(58)

Fig. 6 shows the leader and follower positions with the
adjacency and pining gain matrices given in (58), when there is no
communication delay in the multi-UAV communication network. 

5.3.2 No delay, directed graph: For this test scenario, along with
the offset vector given in (58), we pick adjacency and pinning gain
matrices that do no contradict Assumption 2, as follows:

A =
0 0 0
1 0 0
0 1 0

,G =
1 0 0
0 0 0
0 0 0

. (59)

Note that Fig. 7 is the same as Fig. 6 since the graph topology
with the adjacency and pinning gain matrices given in (59)
contains a spanning tree. 

5.3.3 With delay, directed graph: For the last test scenario of
simulations, along with the offset vector given in (58), we pick
adjacency and pinning gain matrices given in (59). And, to test the
stable independent of delay structure of the algorithms presented in
Section 4, we added 2 s delay as a communication delay. By
looking at Fig. 8, one can conclude that stable independent of delay
property of the proposed algorithms is verified. 

6 Actual flight test results
This section reveals the flight test results obtained with single and
multiple UAVs under the influence of time delays. We share the
graphs of the desired and followed trajectories when both the
proposed methods in Section 3.3 and 4 are used.

6.1 Controller behaviour with a single quadrotor

In this section, we present the performance of the backstepping
control algorithm proposed in Section 3 by using both circular and
figure-eight trajectories.

For the backstepping controller designed in Section 3.3, Figs. 9
and 10 show the desired path of the UAV and the path traced by the
UAV when both circular and eight-figure are desired trajectories. 
Notice that the tracking error is maintained inside the acceptable
bounds, showing the performance of designed backstepping
controller in terms of path following. Note that diagonal elements
of K1 and K2, are assigned, respectively, as 2, 2, 3 and 1.5, 1.5, 3.

To observe the network communication delay, we plot time
versus desired and tracked positions in 3D space as shown in Fig.
11. Notice that communication delay is about 2 s and tends to be
commensurate through path following experiment. Moreover,
when the quadrotor is following a non-linear trajectory such as
eight-figure and circular path, there exists time-delay between the
desired position and followed position as shown in Fig. 11. This
time delay is the summation of reaction time of UAV and the
network delay caused by the local positioning system. That is why,
the error seems to be bounded. However, after finishing the
complete eight or circular figure trajectory, the error goes to zero
since the desired position is constant at that time and quadrotor's

Fig. 4  Attitude control inputs of leader UAV
 

Fig. 5  Torque and thrust controls of the leader UAV
 

Fig. 6  Path tracked by the UAVs when there exists no delay and
undirected graph topology is used
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position is the same as the desired position. This can be seen
clearly from Figs. 9 and 10.

6.2 Controller behaviour with multiple quadrotors

This section shows the formation control performance of the
distributed backstepping control method given in Section 4. In the

experiments of this section, the task of followers is to track the
formation leader with a certain position offset. We show the leader
and followers positions in the Figs. 12 and 13 while the leader of
the multi-agent system is following both eight-figure and circular
trajectories, respectively. Adjacency and pinning gain matrices
along with offset vector used in this actual hardware
implementation are

A = 0 0
1 0 ,G = 1 0

0 0 ,

ΔT = 0 −3 0 0 −6 0 .
(60)

Figs. 14 and 15 show the desired path of the UAVs and the path
tracked by the UAVs when the leader is following both circular and
eight-figure type trajectories. Note that the delay experienced by
each agent of the formation is slightly different than each other.
However, if the position offset of the quadrotors gets bigger, agents
of the formation would experience more distributed delays.

We record a video of the experiments described in this section,
the interested reader can use the link ‘https://www.youtube.com/
watch?v=rmY1LK42oPk’ to have a visual understanding of the
paper. Notice in the movie, formation control using the distributed
backstepping method is influenced by the very strong wind effect
that is produced by quadrotors themselves. This demonstrates the
robustness of the proposed control method.

7 Conclusion
In this paper, a method of distributed backstepping method to have
formation flight of multiple quadrotors with distributed time delays
is discussed. The proposed algorithms are validated by using Vicon
Tracker, AR.Drone 2.0 and a master computer. Through rigorous
experimentation and stability analysis, we showed that distributed
backstepping control method, provides a guaranteed performance
for follower agents to track the leader agent with a predetermined
position offset. We give the trajectories followed by the single
quadrotor under the influence of commensurate delay and by the
multiple quadrotors under the influence of distributed delays.
Further research can be conducted to investigate how aerodynamic
forces that interferes with the fuselage affect the algorithms
suggested in this paper.
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Fig. 7  Path tracked by the UAVs when there exists no delay and directed
graph topology is used

 

Fig. 8  Path tracked by the UAVs when there exists 2 s delay and directed
graph topology is used

 

Fig. 9  Path tracked by the UAV with the backstepping controller using
eight-figure trajectory
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Fig. 10  Path tracked by the UAV with the backstepping controller using a
circular trajectory

 

Fig. 11  Controller behaviour with time delay
 

Fig. 12  Path tracked by the UAVs with the distributed backstepping
controller when the leader follows an eight-figure trajectory
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Fig. 13  Path tracked by the UAVs with the distributed backstepping
controller when the leader follows a circular trajectory

 

Fig. 14  Observation of time delay graph when the leader follows an eight-
figure trajectory

 

Fig. 15  Observation of time delay graph when the leader follows a
circular trajectory
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