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Abstract
Flight controllers for micro-air UAVs are generally designed using proportional-integral-derivative (PID) methods, where the

tuning of gains is difficult and time-consuming, and performance is not guaranteed. In this paper, we develop a rigorous method
based on the sliding mode analysis and nonlinear backstepping to design a PID controller with guaranteed performance. This
technique provides the structure and gains for the PID controller, such that a robust and fast response of the UAV (unmanned
aerial vehicle) for trajectory tracking is achieved. First, the second-order sliding variable errors are used in a rigorous nonlinear
backstepping design to obtain guaranteed performance for the nonlinear UAV dynamics. Then, using a small angle approximation
and rigorous geometric manipulations, this nonlinear design is converted into a PID controller whose structure is naturally
determined through the backstepping procedure. PID gains that guarantee robust UAV performance are finally computed from
the sliding mode gains and from stabilizing gains for tracking error dynamics. We prove that the desired Euler angles of the
inner attitude controller loop are related to the dynamics of the outer backstepping tracker loop by inverse kinematics, which
provides a seamless connection with existing built-in UAV attitude controllers. We implement the proposed method on actual
UAV, and experimental flight tests prove the validity of these algorithms. It is seen that our PID design procedure yields tighter
UAV performance than an existing popular PID control technique.
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1 Introduction

Quadrotors and other unmanned aerial vehicles
(UAVs) have drawn great attention over the last decade
because of their high mobility, simplicity of dynamics
and capability to perform certain tasks like transporta-
tion [1], reconnaissance and monitoring [2]. The fact
that quadrotors can be described as a simplified form
of the helicopter dynamics [3], leads to similar control
design challenges such as under-actuation, strong cou-
pling and unmodelled disturbances. One of the most
important challenges of designing a quadrotor controller
is providing robust capabilities that provide the ability
to follow prescribed trajectories in a stable and reliable
manner.

Flight controllers for small micro-air UAVs are nor-
mally implemented using PID control, since a PID outer
position tracking loop interfaces seamlessly with existing
built-in attitude control systems in commercial UAVs.
However, the structure and gains of these PID tracking
controllers are designed ad hoc, require lengthy flight
tests for tuning, and have no performance or robustness
guarantees.

On the other hand, a great amount of research has
been conducted to design robust control for quadro-
tors that primarily deals with a linearized model of the
quadrotor around the hover condition, which is stable
when the small angle approximation is valid for the pitch
and roll angles [3–5]. Several works [3, 6–12] deal with
nonlinear modeling of the quadrotor, which is preferred
to overcome the limitations of the linear model. The six
degree-of-freedom (6-DOF) dynamics of a quadrotor re-
sult in the typical translational and rotational kinematics
equations as in [13] and [14]. The fact that the number
of DOF are less than the number of input commands,
which are thrust commands for each of four rotors in our
case, rises the problem of the under-actuation [15–17].

Popular controller design methods for quadrotors in-
clude linear quadratic regulator (LQR), H-infinity state-
space design, model predictive control (MPC), sliding
mode techniques [3,8,9] and backstepping [3,8,11,18].
The LQR method is a common technique for control-
ling aircrafts as it decouples the dynamics and works
well with linearized models of the aircraft [4, 5, 19].
In [7, 12, 20], H-infinity controllers are used to perform
a robust controller design. In particular, [20] demon-
strates that the H-infinity method can be used as a ro-
bust attitude controller to handle parameter uncertain-
ties with respect to their nominal values. [1] proposes

MPC as a good strategy to handle the effects of the
atmospheric turbulence, modeling them as additive dis-
turbances. [21] shows how to use a self-tuning fuzzy
PID controller to decrease the tracking error by using
AR.Drone 2.0; the authors, however, do not consider
the fact that the desired Euler angles of the inner con-
troller loop are related to the dynamics of the outer
tracker loop by inverse kinematics, affecting the tracking
performance. Sliding variable design in [3, 8] has been
used to address this issue by establishing convergence
relations between position and velocity errors.

A differential flatness approach is used to design lin-
ear output feedback control for quadrotor controllers
in [22–24]. The authors deal with estimation of the
input-output system model nonlinearities and the un-
measured phase variables to accomplish the trajectory
following task by treating the quadrotor as a differen-
tially flat system. [10] proposes an adaptive dynamic
controller which improves navigation performance to
control UAVs while accomplishing trajectory tracking
tasks whereas [9] adopts a super twisting sliding mode
control algorithm to study the same task. Uncertainty of
the system parameters is examined in [25]. The authors
find an adaptive technique based on feedback lineariza-
tion to prove asymptotic convergence of the tracking
errors.

Practical controllers for quadrotors are invariably im-
plemented using PID controllers that interface with the
existing built-in UAV attitude controller. PID gains are
generally manually tuned.

In this paper, we develop a rigorous nonlinear back-
stepping method based on the second-order sliding vari-
able to design a PID controller for micro-air UAVs with
guaranteed performance. This technique provides the
structure for the PID controller, as well as deriving PID
gains that result in desired damping ratio and natural
frequency, and hence robust and fast response of the
UAV for trajectory tracking. It is shown how to select
the PID gains to obtain desired transient responses. This
PID structure is naturally implemented using the built-in
attitude controllers available in commercial UAVs. We
propose a novel approach that shows how the desired
Euler angles of the inner control loop are related to the
dynamics of the outer position tracking loop. Instead of
solving the nonlinear inverse kinematic problem, which
can cause singularity issues in the controller, we use
full nonlinear backstepping design, followed by a small
angle approximation to find a controller structure in the
form of proportional, integral and derivative terms of
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outer loop tracking errors. This approach addresses the
challenge of choosing proper tracker PID gains in the
outer loop of the backstepping controller, and results in
a PID controller with guaranteed performance. In flight
tests on a real UAV, our PID tracking control loop is
seen to exhibit performance similar to the full nonlinear
backstepping controller, yet with a far simpler structure.

The rest of the paper is organized as follows. In Sec-
tion 2, we develop a dynamic model based on Newto-
nian dynamics of the quadrotor then Section 3 and 4
brings an analysis of the control structures proposed,
which involves the classical nonlinear backstepping and
PID position control loop from backstepping control
methods for the task of trajectory tracking. Section 5 il-
lustrates the attitude controller design procedure for the
quadrotors. Section 6 reveals the stability analysis of the
proposed control algorithms. And, Section 7-8 shows
the flight tests on a real UAV, where we compare the
trajectories followed by AR.Drone 2.0 quadrotor with a
full nonlinear backstepping controller and PID controller
design with a guaranteed performance.

2 Mathematical model

In this section we introduce the standard nonlin-
ear model of the quadrotor dynamics. To localize the
quadrotor position, we use the fixed Earth frame. The
origin of the three-dimensional (3D) axis system of the
Body frame is assumed to be at the center of mass of
the quadrotor (Fig. 1).

The kinematics of Euler rates can be expressed as

wB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p

q

r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −sθ

0 cθ cθsϕ

0 −sϕ cθcϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ η̇, (1)

where wB is the vector of the Euler rates and η is the
Euler Angle vector inϕ (phi),θ (theta) andψ (yaw) order.

Fig. 1 Coordinate systems of the quadrotor.

The rotational dynamics are given by

IBẇB = S(wB)IBwB + τB, (2)

where S(wB) is the skew-symmetric matrix [16], τB is
the torque vector and IB is the inertia matrix defined in
Body frame. Then we express the translational dynamics
of the quadrotor in the Body frame as

mU̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − RFg, (3)

where U = [u v w]T is the velocity vector defined
in the Body frame, μ is the input total thrust produced
by rotors in the Body frame zB-axis, Fg = [0 0 mg]T

is the gravitational force vector and R is the rotation
matrix from the Earth frame to the Body frame. We ob-
tain this rotation matrix using the yaw-pitch-roll (3-2-1)
sequence. It is given by

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cθcψ cθsψ −sθ

−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ

sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (4)

where c and s refers to cosine and sine respectively. No-
tice that R is a special orthogonal matrix with rank 3, or
SO(3), whose determinant is equal to 1 [16].

The translational dynamics of the quadrotor in the
Earth frame is formulated as

mξ̈ = F − Fg, (5)

where ξ denotes the position vector in the Earth frame
and F is the input force vector. Then (3) and (5) gives
the relation F = RT[0 0 μ]T such that

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fx
fy

fz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ(sϕsψ + cϕsθcψ)

μ(−sϕcψ + cϕsθsψ)

μ(cϕcθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (6)

3 Outer position backstepping controller

This section explains the full nonlinear backstepping
control design for the quadrotor. The backstepping con-
trol structure derived here is shown in Fig. 2. Standard
backstepping is then modified in Section 4 to generate
inner loop attitude and altitude commands that are com-
mensurate with existing built-in UAV controllers. Then
in Section 5, we design an inner attitute controller to
complete the overall control structure.
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Fig. 2 Tracker design of backstepping controller using sliding variable.

3.1 Exact nonlinear backstepping tracker

To apply the classical backstepping control method
to the system defined in (5), we begin by adding and
removing Fd, ideal virtual force input, and obtain the
Newtonian model in terms of the desired forces

mξ̈ = Fd − Fg + F̃d, (7)

where F̃d = F − Fd. Fd is now selected to get ξ → ξd,
where ξd = [xd yd zd]T is the given desired po-
sition vector in the Earth frame. Then, τB in (2) is
designed using desired Euler angle information matrix
ηd = [ϕd θd ψd]T and the time rate of change of
desired vertical speed information, ẇd, as explained in
Section 5.

Define the position error

e = ξd − ξ (8)

and express the sliding variable in terms of weighted
sum of the position and velocity errors

r = ė + λe, (9)

where λ is a diagonal matrix constructed from positive
elements. The error dynamics can be obtained as

mṙ =më +mλė
=mξ̈d −mξ̈ +mλ(r − λe)
=mξ̈d − Fd + Fg − F̃d +mλ(r − λe). (10)

Then we select the desired force vector Fd as

Fd =mξ̈d + Fg +mλr −mλ2e

+ Krr + Ki

�
rdt, (11)

where Kr and Ki are diagonal matrices constructed from
positive elements. Then the closed-loop error dynamics

become

mṙ= −Krr − Ki

�
rdt + F̃d. (12)

F̃d must be kept at zero by the attitude controller pro-
posed in Section 5, making (12) stable for all Kr > 0 and
Ki > 0.

3.2 Gain design for desired transient response

Herein we show how to select gains Kr and Ki to
achieve desired transient response and error magnitude.
It can be shown that e is bounded if the sliding variable
r is bounded [7] such that

‖e‖ � ‖r‖
σmin(λ)

, ‖ė‖ � ‖r‖. (13)

After differentiating (12) and normalizing with respect
to the highest order coefficient, we can write

r̈ +
Kr

m
ṙ +

Ki

m
r = 03×1. (14)

We define Kr and Ki in the form of diagonal matrices
with kr j and ki j diagonal entries, respectively.

Recognizing that the general form of the second-
order characteristic polynomial of (14) is in the form
of s2 + 2ζωns+ωn

2, the desired performance of closed-
loop error dynamics can be achieved by setting

ki j = ωn
2m, kr j = 2mζωn, (15)

where ωn is the natural frequency and ζ is the damping
ratio of the tracker loop’s transfer function.

3.3 Desired Euler angles

We show here how to complete the position tracker
desired force (11) to the desired Euler angles in the ro-
tational dynamics. We couple the position tracker loop
in Fig. 2 to the rotation dynamics (2) by selecting pre-
scribed attitude angles that yield the desired force vector
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(11). This is accomplished by using the inverse kinemat-
ics approach.

Then by the mathematical model of the quadrotor
given in (3) and (5), and the relation (6), it can be de-
duced that Fd = RT[0 0 μd]T = [ fxd fyd fzd]T. Then ud,
ϕd and θd can be expressed in terms of known quanti-
ties fxd, fyd and fzd as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fxd

fyd

fzd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μd(sϕdsψd + cϕdsθdcψd)

μd(−sϕdcψd + cϕdsθdsψd)

μd(cϕdcθd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (16)

which implies
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tanθd =
fxdcosψd + fydsinψd

fzd
,

θd = tan−1
fxdcosψd + fydsinψd

fzd
,

(17)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
tanϕd =

cosθd( fxdsinψd − fydcosψd)

fzd
,

ϕd = tan−1
cosθd( fxd sinψd − fydcosψd)

fzd
,

(18)

μd =
fzd

cosϕd cosθd
. (19)

Notice thatψd can be arbitrarily prescribed, and only the
variables θd, ϕd and μd must be found. Fig. 2 shows the
outer control loop design of the backstepping controller.

The inner loop control design of the backstepping
method requires the time rate of change of the desired
vertical speed information, ẇd, calculated by using (3)
such that

ẇd =
μd

m
− gcosϕdcosθd. (20)

4 PID position control loop from backstep-
ping controller

This section shows that, with a proper formulation,
a suitably designed PID controller can in fact be rig-
orously developed from the backstepping controller in
Fig. 2. We show how the method analyzed in Section 3
can be used to design a PID controller with guaranteed
performance and transient responses. The PID controller
structure developed here is shown in Fig. 3. Selection of
the final PID gains in equations (37) and (38) depends
on Kr and Ki in (14) through (34)–(36). As such these
PID gains can guarantee the prescribed damping ratio
and the natural frequency.

The procedure for solving (16)–(19) to obtain θd, ϕd

and μd can be simplified by adopting a small angle ap-
proximation on (16) with respect to θd and ϕd to obtain
following

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fxd

fyd

fzd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μd(ϕdsψd + θdcψd)

μd(−ϕdcψd + θdsψd)

μd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (21)

which leads to

θd =
fxdcosψd + fydsinψd

fzd
, (22)

ϕd =
fxdsinψd − fydcosψd

fzd
, (23)

μd = fzd, (24)

ẇd =
μd

m
− g. (25)

Fig. 3 Tracker design of backstepping controller using PID control method.
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The trackers for quadrotors are often designed as a
PID controller. Tracking is achieved by setting desired
pitch angle to control position in x-axis, setting desired
roll angle and vertical speed to control position in y-axis
and z-axis respectively. Moreover, we set the desired
yaw angle as zero not to be exposed of considerable
drag force. Controlling height separately means that the
change in pitch and roll angles is assumed to affect only
the motion in the x-y plane.

Equation (21) shows that the z-axis is naturally de-
coupled from x-y plane motion. As a result of this de-
coupling, the UAV needs to hover in z-axis, which is
guaranteed by equating fzd to mg, in (7). This implies
that in the backstepping controller with PID position
control loop (21), we equate μd to mg. Then,

θd =
fxd

mg
, (26)

ϕd =
− fyd

mg
, (27)

μd = mg. (28)

Furthermore, by (25), ẇd becomes zero as the quadro-
tor keeps its altitude at a certain level or the x-y plane is
decoupled from z-axis, also we use (11) and (26)–(28)
to obtain the following

θd = [1 0 0][
ξ̈d

g
+

Krλ+Ki

mg
e+

mλ+Kr

mg
ė+

Kiλ
mg

�
edt],

(29)

ϕd = − [0 1 0][
ξ̈d

g
+

Krλ+Ki

mg
e+

mλ+Kr

mg
ė+

Kiλ
mg

�
edt].

(30)

In (29) and (30), Krλ + Ki

mg
stands for the propor-

tional gain term, Kiλ
mg

stands for the integral gain term,

and mλ + Kr

mg
is the derivative gain term of the PID con-

troller. Note that these gains are given naturally in terms
of the gains used in the backstepping controller, which
are easy to find for good performance as given in (14).
The term ξ̈d in (29) and (30) is a feed-forward term of
the controller, which improves its performance in terms
of decreasing tracking error, particularly in high acceler-
ations. Furthermore, ψd and ẇd can be set to zero.

To get the quadrotor to follow predetermined trajec-
tory at a certain altitude, we designed a finite state ma-
chine (FSM) whose details are given in Section 7. Keep-

ing in mind that natural frequency and zeta values for
pitch and roll angles are very close to each other from
the assumption of symmetric quadrotor, we can write
λ, Kr and Ki in the form of cj I where cj, j = 1, 2, 3,
are positive constants and I is a 3 × 3 identity matrix,
(29) and (30) can be further simplified such that the po-
sition error can be evaluated in Body frame. Define the
position error in Body frame eB as

eB = Re. (31)

Let the position error in x-axis of the Body frame and
y-axis of the Body frame be eBx and eBy respectively,
such that

eBx= [1 0 0]eB, (32)
eBy= [0 1 0]eB, (33)

and we write the assumptions for λ, Kr and Ki matrices

λ = c1I, (34)
Kr = c2I, (35)
Ki = c3I. (36)

Substituting (32)–(36) in (29) and (30) yields the follow-
ing PID controller equations:

θd =
¨xBd

g
+

c2c1 + c3
mg

eB +
mc1 + c2

mg
˙eBx +

c1c3

mg

�
eBxdt,

(37)

ϕd = −
¨yBd

g
− c2c1 + c3

mg
eBy−mc1 + c2

mg
˙eBy− c1c3

mg

�
eBydt,

(38)

which is simplified solution of Fd. Fig. 3 shows the sim-
plified design of the PID position control loop of the
backstepping controller.

Selection of the final PID gains in equations (37) and
(38) depends on Kr and Ki in (14) through (14)–(36). As
such these PID gains can guarantee prescribed damping
ratio and natural frequency.

5 Inner attitude controller

In this section, we explain the second step of the
backstepping method for the quadrotor, which is atti-
tude control. The attitude controller is generally built
in to the UAV and cannot be modified. Consequently,
the interface between the outer-loop PID controller just
designed and the attitude controller must be properly
crafted.
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This attitude controller must take the desired values
of ϕd, θd and ψd (29) and (30) as inputs and produce
the torque vector τB in (2) to stabilize the rotational
dynamics according to the expression

τB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
τϕ

τθ

τψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lt(Ω4
2 −Ω2

2)

lt(Ω3
2 −Ω1

2)

d(Ω1
2 +Ω3

2 −Ω2
2 −Ω4

2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (39)

where l is the lever length, t is the thrust factor, Ωi,
i = 1, 2, 3, 4, is the angular velocity of the rotor and d
is the drag factor. The direction of angular velocities for
each rotor is given in Fig. 4 as while first and fourth rotor
turn anti-clockwise, the other two turn clockwise. This
is because of canceling the yawing moments generated
when the quadrotor is at nominal condition (hover). The
total thrust, μd, is equal to the sum of thrusts generated
by each rotor, that is

μd = t(Ω1
2 +Ω2

2 +Ω3
2 +Ω4

2). (40)

Fig. 4 Quadrotor configuration frame.

Then the attitude controller to generate changes in
angular velocities using PID control is designed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔΩϕ

ΔΩθ

ΔΩψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pϕ(ϕd − ϕ) +Dϕ(pd − p) + Iϕ
�

(ϕd − ϕ)

Pθ(θd − θ) +Dθ(qd − q) + Iθ
�

(θd − θ)

Pψ(ψd − ψ) +Dψ(rd − r) + Iψ
�

(ψd − ψ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(41)

where pd, qd and rd are calculated using kinematics of
the Euler rates (1) and desired values of Euler angles,
such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pd

qd

rd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −sθd

0 cθd cθdsϕd

0 −sϕd cθdcϕd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ̇d

θ̇d

ψ̇d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (42)

and the values of p, q and r are obtained from (1).
Finally, we obtain the desired angular velocity of each

rotor as
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1d

Ω2d

Ω3d

Ω4d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 1

1 1 0 −1

1 0 1 1

1 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ωh + ΔΩnet

ΔΩϕ

ΔΩθ

ΔΩψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(43)

where ΔΩϕ,ΔΩθ and ΔΩψ are computed in (41), Ωh

is the rotor speed required to hover such that

Ωh =

√
mg
4t

(44)

and ΔΩnet is the outcome of desired vertical speed, wd,
in the form of

ΔΩnet =
m

8tΩh
ẇd (45)

substituting (43) in (39) yields the desired torque vector.

6 Stability analysis

This section reveals the stability analysis of the back-
stepping control method in Section 3, based on Lya-
punov analysis. The assumptions are:

Assumption 1 The quadrotor is a rigid body.
Assumption 2 The disturbance and aerodynamic

forces that interferes with the fuselage terms are negli-
gible.

Assumption 3 In Section 3, we assume pitch and
roll angles of the quadrotor do not exceed −π/2 and
π/2 bounds whereas in Section 4, we accept they do
not exceed −π/6 and π/6 bounds.

Assumption 4 Inertial Frame (Earth frame) is fixed
in the 3D space.

The next theorem shows stability of the error dynam-
ics (12). It combines the analysis in [6] with our novel
design in terms of gains Kr and Ki in (12), and the per-
formance of the inner attitude controller in Section 5.

Theorem 1 Given the force (11), desired Euler an-
gles in (17), (18) and thrust (19). Assume the inner at-
titude controller (39), tracks the Euler angles (17), (18)
and vertical speed (20). Then the error dynamics (12)
are asymptotically stable.

Proof The candidate Lyapunov function is

L =
1
2

rTP1r +
1
2

[
� t

0
rTdt]P2[

� t

0
rdt], (46)

yusuf
Vurgu
This should be -1.


yusuf
Vurgu
This should be 1.
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where P1 and P2 are positive definite matrices. By using
the Leibniz Integral Rule, the derivative of L becomes

L̇ = rTP1ṙ + [
� t

0
rTdt]P2r, (47)

and substituting (12) in (47) results in the following

L̇ = − rT P1Kr

m
r − rT P1Ki

m
[
� t

0
rdt]

+ rTP1
F̃d

m
− [

� t

0
rTdt]P2r. (48)

Select P2 and note that it is positive definite and diagonal

P2 =
P1Ki

m
. (49)

Then (48) becomes

L̇ = −rT P1Kr

m
r + rTP1

F̃d

m
. (50)

Notice that tracking the desired Euler angles in (17),
(18) and vertical velocity (20) by the attitude controller
in Section 5, guarantees μd in (19) is the same as μd in
(40). This means the force generated in the Earth frame
is actually in the form of the desired force Fd, given in
(11) by the relation Fd = RT [0 0 μd

]T, hence F → Fd

and F̃d → 0. Then (50) becomes

L̇ = −rT P1Kr

m
r, (51)

which is negative definite. Therefore, the closed-loop er-
ror dynamics given in (12) is asymptotically stable. �

7 Experiment design and flight test details

This section addresses the crucial elements of our ex-
periments, which are the lab equipment, the trajectory
generation and the flight controller design. We also give
details of the problems encountered and solved through
implementation of proposed control algorithms.

7.1 Lab environment

Here we illustrate the lab equipment and their specifi-
cations. Fig. 5 shows the entire system designed at UTA
Research Institute for testing the backstepping control
approaches on UAVs. Basic three elements are the Vi-
con, the Parrot AR.Drone 2.0, and the master computer.
Vicon is a motion capture system that provides the
position of the UAV by sending infrared waves to the

markers that are sensitive to these waves. In the appli-
cation procedure, these markers are placed on the UAV
and Vicon is started. In the experiments, we use eight
Vicon camera system.

Fig. 5 Autonomous systems lab experiment.

The communication between master computer and
Vicon is provided via User Datagram Protocol (UDP).
The frequency of the UDP Packets taken from Vicon
motion capture system is 100 Hz, meaning that in every
10 milliseconds, the master computers gets the position
information of the AR.Drone 2.0.

The AR.Drone 2.0 shown in Fig. 6 is a well-known
Parrot produced quadrotor that has a built-in gyroscope
and the inertial measurement unit (IMU) sensor suite.
In the experiments introduced in Section 8, we use the
cover of AR. Drone 2.0 shown in Fig. 6 regarding safety.
The desired pitch, roll and yaw angles and time rate of
the vertical velocity commands are sent to the AR.Drone
to track the desired position.

Fig. 6 The Parrot AR.Drone 2.0.

Euler angle information of the UAV is obtained via
IMU that is embedded in the AR.Drone. In practical ap-
plications many quadrotors are designed with a built-in
attitude controller and AR.Drone has its own attitude
controller. This controller takes the desired values of
ϕd, θd and ψd as inputs. The Parrot quadrotor also has
a built-in altitude hold controller, that takes the desired
vertical velocity command as input. The communication
between the master computer and the AR.Drone is done
via UDP. The frequency of UDP packages is determined
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by the wifi_rate, which is the network communication
parameter of the AR.Drone and it is not allowed for de-
veloper to change this parameter.

MATLAB-Simulink is used to create UDP nodes that
are communicating with the AR.Drone 2.0 and Vicon
software. The receiver and the sender UDP nodes are in-
serted to the Simulink model in the form of S-functions.
The controller and the trajectory generation algorithms
with the FSM design are implemented in the Simulink
model. Simulink-Desktop Real Time Add-on is used to
send the real time commands to the AR.Drone, whose
details given at Section 7.3. The UDP nodes created are
tolerable up to 10% packet loss rate, which is necessary
to handle communication channel noise created by the
lab environment.

7.2 Trajectory generation

In this section, we recall how to generate a suitable
trajectory for the quadrotor systems. To begin with, let
ζ(t) : R → R3 be a desired path to follow in analytical
form and ζd = (t, x, y, z) ∈ R4 be a representation of
a desired path ζ(t) in a form of a dense collection of
vectors. Notice that ζ(t) can be constructed even for the
sets of points that do not conform to a specific analytical
function.

We construct the heuristic function that interpolates
ζ(t) into a set of way-points (ξi, ti)→ (R3,R1) based on
the local curvature. Each segment (ti, ti+1) is a third order
polynomial with unspecified parameters, which must be
determined. One approach to find them includes the use
of parametric constraints such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ(ti) = ξti ,

ξ(ti + T) = ξti+1 (ti+1),

ξ̇(ti) = ξ̇ti ,

ξ̇(ti + T) = ξ̇ti+1 (ti+1).

(52)

This 4th order system of equations is solved to deter-
mine the coefficients of the polynomial for each segment

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2 t3

1 2t 3t2

2 6t

6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξti

ξti+1

ξ̇ti

ξ̇ti+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (53)

7.3 Flight controller design

The flight controller is a high-level decision-making
mechanism that activates different modes of the opera-

tion depending on the state of UAV. We recognize three
modes of the operation in our MATLAB-Simulink imple-
mentation, which are IDLE, HOVER and TRACK_PATH
modes as shown in Fig. 7. The quadrotor enters the IDLE
mode, when either we turn-on the AR.Drone 2.0 manu-
ally or it is landed by receiving Land command.

Fig. 7 The flight controller FSM design.

As we turn the quadrotor on, it directly calibrates it-
self, which requires its initial attitude to be parallel with
respect to the ground. While the UAV is in IDLE mode, it
is actively receiving data packets via UDP and is ready to
get TakeOff command. If the TakeOff command is sent
to the quadrotor, the value of vertical velocity command
of the AR.Drone 2.0 is incrementally increased until the
desired height value is achieved. This command is to
generate the sufficient thrust to take the AR.Drone 2.0
off the ground and to get the quadrotor in hover at a
certain altitude.

It is critical that the thrust is balanced over the pro-
pellers to ensure that the take-off is vertical. When
UAV reaches the desired height, zd, the flight controller
switches to the HOVER mode. The physical shape of
the UAV as well as aerodynamical effects make it hard
to generate the balanced thrust vector summed over all
four propellers. That results in curved take-off trajectory
until hover altitude is reached. Notice that AR.Drone 2.0
is not a physically symmetric on its x-y plane. To amend
for the offset in the initial position, we generate position
command (0, 0, 0.75) as soon as possible, thus securing
the hovering precisely above the origin. This motion is
represented clearly in the figures of Section 8.

In the HOVER mode, the UAV is at the nominal con-
dition, and controller’s task is to keep the attitude par-
allel to ground. If the Track command is received in
the HOVER mode, the flight controller switches to the
PATH_TRACK mode. In this mode, the AR.Drone 2.0
tracks the predetermined trajectory. We record both the
desired and the followed position data by the quadrotor
in MATLAB workspace in the real-time flight tests.
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Each iteration of the PATH_TRACK mode first reads
the IMU sensor buffers and then Vicon buffer to con-
struct the close loop error dynamics. Since we have two
different backstepping control design we choose one of
them at this point. If the control algorithm suggested
in Section 3 is used, functions (16)–(19) is called. Else
if the proposed control algorithms in Section 4 used,
functions (36), (37) used. Notice herein the desired yaw
angle and time rate of vertical speed command is set to
zero.

To land the quadrotor on the ground, we use either
EmergencyLand or SafeLand commands. The difference
is the timing of stopping propeller movements. If we
send the SafeLand command to the AR.Drone, it re-
duces the propeller speed till its height is at the range of
0-0.1 m and shuts down the propellers. Else if we send
the EmergencyLand to the quadrotor, it directly stops
the propellers and lands on the ground. The appropri-
ate structure for implementing the flight controller is
the finite state machine (FSM) since the mode switching
event is driven as shown in Fig. 7.

8 Flight test implementation results

This section reveals the flight test implementation re-
sults obtained with different trajectories and scenarios.
In Section 8.1, it is seen the backstepping-based PID
controller in Fig. 3 gives the trajectory tracking perfor-
mance as good as the exact backstepping controller in
Fig. 2 during movement of the quadrotor.

Moreover, in Section 8.3 we compare our PID de-
sign in Fig. 3 with a standard existing PID controller in
the literature. We show that the performance of the
backstepping-designed PID controller is better in terms
of decreasing both of the path following error and posi-
tional overshoot that occurs especially when the sudden
position command is received. Therefore, the perfor-
mance of proposed PID controller in Fig. 3 is verified.

8.1 Densely sampled trajectories

In this section, we compare the performance of the
full nonlinear backstepping controller in Fig. 2 and the
PID controller in Fig. 3 derived from it by using differ-
ent desired trajectories. We measure the performance
of these algorithms using the desired trajectories that
have the sampling rate of 500 Hz. This means the goal
point of the trajectory is generated every 2 milliseconds
and desired trajectories are constructed smoothly. We
present the desired path of the quadrotor and path fol-

lowed by the quadrotor in following figures.
To model the system dynamics and observe system

parameters offline, we use the system identification tool-
box of MATLAB, which uses the recursive least squares
estimation method as a base algorithm. Then, we get
the ωn as 1.26-1.22 rad/s and ζ as 0.60-0.59 to control
the quadrotor’s pitch and roll angles respectively. These
values are substituted in (15) and (34)–(36) to calculate
the PID gains. Notice that these values highly depend
on the firmware version of the AR.Drone, external dis-
turbances and the sampling rate used while identifying
the quadrotor system.

For the backstepping controller proposed in Fig. 2,
Fig. 8 and Fig. 9 show the desired path and the path
tracked by the UAV respectively when both circular and
8-figure are desired trajectories.

Fig. 8 The path tracked by the UAV with backstepping con-
troller and backstepping controller with PID tracker using 8-fig-
ure trajectory.

Fig. 9 The path tracked by the UAV with backstepping con-
troller and backstepping controller with PID tracker using cir-
cular trajectory.

The performance of proposed PID controller in Fig. 3



Y. Kartal et al. / Control Theory Tech, Vol. 18, No. 1, pp. 4–18, February 2020

is seen to be almost the same as the full nonlinear back-
stepping controller for the outer loop. Notice that the
tracking error is maintained inside acceptable bounds.
On the other hand, for the backstepping controller with
PID position control loop given in Fig. 3, these figures
reveal the tracking performance of the UAV. Again, the
results show that the proposed PID controller performs
well in the practical implementation.

To test the limits of the control algorithms, we deter-
mine the time of completing the 8-figure and circular tra-
jectory as 4π or 12.6 s. Table 1 represents the percentage
of error, which is calculated by Err% =

||ξd − ξ||
|ξd| × 100

with respect to different trajectories.
In these experiments, the quadrotor enters the

PATH_TRACK mode after hovering at the position
(0, 0, 0.75). And when UAV enters this mode, the flight
time is exactly 10 s meaning that the UAV starts to track
the desired path 10 s after the communication between
Master computer, Vicon and AR.Drone 2.0 is estab-
lished. And since the period is set as 4π s, the Err%
is calculated from 10 s to 4π + 10 s. Moreover, the data
for tracked path are shifted to overlap on the desired
path during calculation of the percentage of error.

Figs. 10 and 11 indicate the comparison of the pro-
posed algorithms in Figs. 2 and 3 in terms of positional
errors. Here, we illustrate the desired trajectories and
experimental values of x-y-z axis positions. Results jus-
tify the validity of small angle approximation for the pitch
and roll angles in the inverse kinematics case.

Table 1 The four test cases used to generate the experimental results for this section.

Percent of error 8-figure Circle

Classical backstepping controller 2.3356 1.8655
Backstepping controller with PID tracker 2.33357 1.8654

Fig. 10 Comparison of proposed algorithms in Fig. 2 and Fig. 3 with 8-figure desired trajectory. (a) and (d): x-axis position (m).
(b) and (e): y-axis position (m). (c) and (f): z-axis position (m).
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Fig. 11 Comparison of proposed algorithms in Fig. 2 and Fig. 3 with circular desired trajectory. (a) and (d): x-axis position (m).
(b) and (e): y-axis position (m). (c) and (f): z-axis position (m).

8.2 Behavior with sparsely sampled trajectory

Herein we show how backstepping controller derived
PID position control loop eliminates positional over-
shoot while AR.Drone 2.0 making waypoint navigation.
We get the UAV to the goal points, which are 1.4 m and
2.8 m away from each other. The first step is getting the
quadrotor to the desired point in 3D space. Then, we
examine the positional overshoot of the quadrotor.

Fig. 12 shows the start, goal, finish points and the
trajectory of the quadrotor.

Fig. 12 Behavior of the UAV with sudden position command.

Quadrotor hovers at the first goal point (0, 0, 0.75),
then we set the desired position as (−1,−1, 0.75), which
is the second target position. The last goal point is com-
manded as (1, 1, 0.75). As can be seen from the Fig. 12,
the positional overshoot is small, which proves that the
backstepping derived PID position control loop handles
the overshoot well.

8.3 Comparison with existing PID controller

In this section, we compare the backstepping con-
troller with PID position control loop performance with
the work presented in [21], which proposes self-tuning
fuzzy PID controller. The robustness of the proposed
PID controller in Fig. 3 is verified. In this scenario, it
is desired for the quadrotor to follow a square trajec-
tory constructed with goal points, which are 0.5 m apart
from each other. This is expected to result in aggres-
sive movement of the quadrotor since the trajectory is
infrequently sampled. According to results of [21], max-
imum error of the fuzzy logic PID controller is 0.18 m.
This upper bound of the error is highly convincing for a
flight control system designer.

The infrequent sampled trajectory is simply the low
rates of commands updating given in [10]. We conduct
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this experiment case to measure the navigational perfor-
mance of our control methods under the effect of low
rates of command updating. We notice with this effect,
the quadrotor should have quick reactions, high stabil-
ity and maneuverability capabilities to follow the desired
trajectory.

Fig. 13 shows the path tracked by UAV with the goal
points placed 0.5 m away, which creates the square tra-
jectory. In our case, the max error is 0.10 m, which oc-
curred while quadrotor is passing through the corner of
square trajectory.

Fig. 13 Behavior of the UAV with sparsely sampled trajectory.

This test case basically proves that the PID controller
derived from nonlinear backstepping design has a guar-
anteed performance even with infrequent sampled de-
sired trajectory.

Finally, we record a video of the experiments de-
scribed in this paper, interested reader can use the link
https://www.youtube.com/watch?v=i4qpmmnqFso to
have visual understanding of the paper. Notice that we
also shot the formation control of three quadrotors using
backstepping approach. These UAVs interact to make
a very strong wind effect. Nevertheless, the formation
control is effective and accurate. This proves the robust-
ness of proposed control method.

9 Conclusions

In this paper, a method of backstepping control
based on the second-order sliding variable is discussed.
The proposed algorithms are validated by using Vicon
tracker, AR.Drone 2.0 and a master computer. Through
rigorous experimentation, we showed that backstep-
ping control with a PID outer position control loop pro-

vides a guaranteed performance in terms tracking er-
ror. We compare the trajectories followed by AR.Drone
2.0 quadrotor with a full nonlinear backstepping con-
troller and our guaranteed PID controller design. Our
PID tracking control loop is seen to exhibit performance
similar to the full nonlinear backstepping controller, yet
with a far simpler structure that is compatible with the
built-in UAV attitude inner loop controller. Furthermore,
the PID tracking control loop is proved to eliminate the
positional overshoot problem when sudden desired po-
sition command received. Further research can be con-
ducted to investigate how the aerodynamic state depen-
dent disturbances affect the proposed controller algo-
rithm in this paper.
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Appendix
Nomenclature
ξ: position vector in Earth frame
U: velocity vector in Body frame
ξd: desired position vector in Earth frame
xd: desired position in x-axis in Earth frame
yd: desired position in y-axis in Earth frame
zd: desired position in z-axis in Earth frame
x: current position in x-axis in Earth frame
y: current position in y-axis in Earth frame
z: current position in z-axis in Earth frame
xB: desired position in x-axis in Body frame
yB: desired position in y-axis in Body frame
zB: desired position in z-axis in Body frame
R: rotation matrix from Earth to Body frame
F: force vector in the Earth frame
Fd: desired force vector in Earth frame
Fg: gravitational force vector in Earth frame
g: gravitational acceleration
μ: thrust produced in Body frame z-axis
μd: desired total thrust in Body frame z-axis
wB: angular velocity matrix in Body frame
u: forward velocity in Body frame
v: sideward velocity in Body frame
w: vertical velocity in Body frame
p: roll rate
q: pitch rate
r: yaw rate
e: error term
ϕ: roll angle
θ: pitch angle
ψ: yaw angle
ϕd: desired roll angle
θd: desired pitch angle
ψd: desired yaw angle
IB: inertia matrix
m: mass of the quadrotor
l: lever length
t: thrust factor
τB: torque vector
Ω: angular velocity of rotor
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