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Abstract—1In this paper, we propose a novel distributed
consensus-based Kalman filtering (DCKF) with an information-
weighted structure for estimation with random mobile targets
in continuous-time (CT) systems. First, a novel information-
flow structure for the measurement of moving targets is
developed based on comprehensive information that includes
sensing ranges, target mobility and local information-weighted
neighbors. Then, novel necessary and sufficient conditions are
given for the convergence of the proposed DCKEF. Under
these conditions, the estimates of all sensors for multiple
targets converge to the consensus values. Finally, comparative
simulation studies with the existing Kalman filters demonstrate
the superior convergence performance of the new DCKF.

I. INTRODUCTION

Consensus-based filters have been widely studied [1]-
[3]. Olfati [1] proposed the Kalman consensus filter (KCF).
However, the consensus estimate is sub-optimal as the cross-
covariances between individual estimates are difficult to
analyze. Thus, Kamal [2] proposed an information consensus
filter (ICF) algorithm to asymptotically achieve the optimal
centralized performance. The work of [1] and [3] show that
ICF outperforms KCF and generalized Kalman consensus
filter (GKCF). Papers [1] and [3] studied the average con-
sensus for a single target. Information weighted consensus
for a single target was considered in [2].

Recently, multi-target filtering has attracted wide attention.
The work of [4] developed a consensus-based observer for
multi-target filtering by using an average-weighted protocol.
However, the protocol is not fully distributed and might slow
convergence speed. Motivated by these studies, the focus of
this paper is to design a fully distributed consensus-based
Kalman filter with an information-weighted structure for
moving target estimation.
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In real-world settings, the limited sensing range affects the
measurement of sensors for moving targets. If targets move
into the range, the measurement update equation utilizes the
new direct observation from the targets and improves the
estimation accuracy [5]. The measurement structure for the
filtering studied in the work of [1]-[4], [6], [7] failed to
consider the limited sensing range of sensors. The work in
[8] developed one parameter to identify whether the target
can be directly observed or not. However, this direct/indirect
measurement structure is fixed, as the random mobility of
targets was not considered either. As a range of tasks (such
as search and rescue) are conducted by assuming random
and unknown mobility of targets [9]-[12], in this paper we
employ random variables to capture the direct observation
for multiple randomly moving targets.

The stability and convergence analyses of the estimation
filter are necessary to determine the performance of Kalman
filtering. The Kalman filters proposed in [2], [3], [7], [13]
failed to give rigorous stability and convergence proofs of
the algorithms. Zhang [14] provided the necessary condition
that if the mean square estimation errors of all sensors are
bounded, a special bounded partial weight matrix will exist
and guarantee the convergence. This convergence condition
requires the knowledge of global topology.

In this paper, we study consensus-based distributed es-
timation in CT systems. The aim is to develop a novel
DCKEF for estimation with multiple moving targets. First, we
introduce a new distance-based information flow structure
for measurement for unknown randomly moving targets.
Then, the consensus-based DCKF updates from stochastic
direct observation from targets and the weighted information
from neighbors. Finally, with a condition guaranteed for
the stability, the Kalman filter and estimation show fast
convergence speed.

The paper is outlined as follows. Section II develops the
distance-based measurement structure and the DCKF for the
estimation with multiple moving targets. Section III analyzes
the stability of DCKF. Section IV provides comparative
simulations. Section V summarizes and concludes the paper.

II. PROBLEM FORMULATION

In this section, some results of graph theory are pro-
vided first. Then the novel distance-based information flow
structure for measurement is developed. Based on that, the
distributed Kalman consensus filter for multiple moving
targets is developed.
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A. Graph Theory for Sensor Networks

Consider a graph Gr = (V, €, A) for a sensor network of
N sensors V = {vy, v, - vy }. The set of edges £ € VXV
stands for the communication channels, and A = [a;;] €
RN >N is the associated weighted adjacency matrix. Each en-
try a;;, graphically represented by an arrow with head sensor
¢ and tail sensor j, is the weight associated with edge (7, 1)
and denotes the information flow from sensor j to 4. a;; = 1
if (4,7) € £, and otherwise, a;; = 0. The set of neighbors
of sensor i is denoted as N; = {v; : (vj,v;) € E,Vj # i}.

N
Define the in-degree of sensor ¢ as d; = . a;; and the in-
=1
degree diagonal matrix D = diag {d;} € RV*", The graph
Laplacian matrix is L = D — A.

B. Distributed Consensus-based Kalman Filtering for Mul-
tiple Moving Targets

Consider the k-th target of the linear CT system, which is
modeled as

if = ARk 4 FRF 1)

where £ = 1, 2, ---, M. 2¥ € R" denotes the state
of target k. z¥(0) ~ (zf, PY), where z& and P} are
the initial value and covariance, respectively. w® is a zero-
mean Gaussian process noise with covariance matrix W*.
Compared with the non-stationary Wiener process noise [15],
this work uses the stationary zero-mean Gaussian noise.
The observation of sensor ¢ for target k is modeled as

st =Gk + pf 2)

where sf e R™i, ¢ =1,2,---, N denotes the observation
matrices of sensor ¢ for target k. G; € R™*™ are distributed
observation matrices. ¥ € R™i is a zero-mean Gaussian
observation noise with covariance matrix R¥. The process
noise and observation noise are uncorrelated.

The measurement of sensor ¢ for the moving target k is
given by

A7 (g, 6)(Gaa® + i)
-1, 3
afj(Pf) (J:f —&-wfj) @)

N
Il
M=

where zf € R™i*" is the augmented matrix of two in-

formation parts. The two parts consist of direct observation
information from targets (first row) and indirect information
from neighbors (second row). And if € R" is the estimation
of sensor j for target k.

M (x,t) is denoted as direct distance-based observation
coefficient (DDOC). \¥(z,t) = 1 and z¥ € R™:*" if target
k moves into the sensing range of sensor i. DDOC A} =

0 and zf € R”, otherwise. w¥. is communication channel

z.
noise, where Z; = E {wf;(wf;)T}, for any i and j € N;.

Remark 1. Note that \¥(¢) is time-varying. In addition, the
Fisher information matrix (P]k)_1 of sensor j [16] increases
with increasing accuracy of sensor j’s estimates. Thus, the
information-flow structure (3) is information-weighted.

Remark 2. Compared with the work of [8] which assumed
fixed target states in the measurement structure, i.e. \¥ is
constant, in this paper, the targets move randomly, and the
information flow structure is time-varying, distance-based,
and probabilistic. Here, the connection between multiple
targets is not the focus. Thus, A\¥ is independent between
targets.

Next, the novel DCKF for estimation with moving targets
is presented.

Theorem 1. Consider the dynamics of multiple targets (1),
and the information flow structure for moving targets (3)
without communication noises, then one obtains an approx-
imately optimal DCKF for multiple moving targets given by

PF = AFPF 4+ PF(ART — AfpikGiT(Qf)ilGiPik

N
—4) i, PFQYP! + FFWH(F”

T
) “)
j=1
and the estimation equation is given by
i = Al — NPFGT(Q) T (G — &) + ub)
N
+2) afi PFQE(#} — 2f) (5)

j=1

N
where AF = AF 4 S~ abL, QF = B{ub(uh)"), QF =
=1
Nk pi—l pk A | o
(3 a3 (PF) (PF + Pf)] j;laij(Pj) and i,j =
. N.

Note. The DKCEF is called approximately optimal in the
sense clarified by Remark 3 after the proof.
Proof: The distance-based information flow structure for
the measurement (3) can be rewritten as

2 (6 A)
NeGiwk 4+ \F b

N N -1,
5 (P a4 35 o ()8~ )
= j:

HFz? 4 oF (6)

Ak,

Af g

afj(Pf)_l(i"f —zF + W)

it
|
=

Define the term consisting of direct observation from target
states as
2t A = MGt + Npf = Hfa" +of ()

where HF = MG, and ©F = Mub denote the direct
information flow structure and direct measurement noise
of sensor ¢ for target k, respectively. Define the indirect
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observation by using the estimates of information-weighted
neighbors of sensor ¢ as

ky— L 2k
Zau (P5)

+Za” Pk if karwfj)

2R, A =

= fok +oF (8)

— N _ N
where HF = > ak. (PF) " and oF = S ak (PF)

zF + wfj)

For the dynamics (1) with (7) and (8) for measurement,
the distributed Kalman filtering structure for estimation is
given as

B A8 = AR+ KEGE - HEaY)
_Ak k-'—Kk( Hk f:)‘i‘Kk(Z _Hk k)
= AR+ NTKE(Gi(a® = 27) + 1)
N
—_— _1 “ “
+Kfza§j(Pf) (&% —aF +wf) )
— N
where K = (KF, Kf), Af = AF + 3" ali1,.
=1

Define the distributed state synchronization error for target

k as ¢ k _ 2k Then one has error dynamics
1 1

Z(t, AF)
— Akgk 4 Fkyk

N
— -1,
*KfE afj(Pf) (x;C i
j=1

:A’?j;’?+Fk k_

+Kk2au

=x

- Alat = RHGia* = al) + i)

1] +§ al]’L

A’?fdﬂGmi — N Ky

x — I +wk) dr k. (10)

where d¥ =

Z a’L]

With w = O and l% = 0, rewrite (10) as

where

N
MF = AF - MNEKFG - KFY " dby(PF)
=1

N
_ —_ =1 ~
NF = N EKFub + KF § af;(PF)" &k — dfal +

The time signals in this paper A¥, w* and ;¥ are uncorre-
lated. Define the following covariances S* = E{wk(wk)T},
N

=k T Sk . o\ —
Ty =E{pi(u)" } = @ and Tf = 37 a5 (P)™"

Jj=1

By building a discrete-time model for (11) and doing
approximation with small sampling period ~ at time step
h + 1, one has

Y
F(h+1) = MgE +/ MO-DNE(ydr  (12)
0
P+~ (I +yMF)z

Substituting (13) into

= EB{#8h+ 1)@

"(h) + YN (13)

F(h 1) IF - A
leads to the covariance of discrete time as
PF(h+1) = (I +~yM)PF(h)(I +~yMF)T
+ B{y(I +yMP)ZF(N)TY
+ B{yNF (@) (I + M)}
+ B{Nf(N)T}.

PF(h+1)

(14)

Note that the PF is positive definite from its definition
above. Following the Euler approximation of

PE(t) = Tim PF(h+1) - Pf(h) (15)
y—0 Y
one has
Pf(t) = ME)PE(t) + PE6)(ME(E)T
+B{EF()(NF ()T} + B{NF (1) (@7 ()"}
+E{NF(O)(Nf (1)} (16)

With discrete-time sampling and back to continuous-time
domain, one has

E{N[(t)(NF ()"} = FFW* /y)(F*)T6(t - 7)
+ MNKHTE ) (KF)Ts(t —7)
+E{nf(n)"} (17)

~, N _
KFS aby(PF)"'&% — dbzk. The first and

where ¥ =

second terms are white noises while the third one is not,
ie. § #0 when t = 7.
With v — 0, substituting (17) into (16) leads to

PF = MIPF + PF(MPT — NERFTF(KF)T
+ E{ZF(N}))T} + BE{NF@E)T}

+ FRWE(FMT. (18)

By assuming KF = (KF)T and letting E{Z*(N})T} +

E {N (%)} = 0, one obtains suboptimal information gain
K as

N

N
— —1 _
KF =23 aiPIY ai(PH) (P +PPI7L (19
j=1 j=1

To determine the Kalman gain K, the value of A¥ should
be discussed.

1) If )\f = 0, as it is shown in (10), there are no estimation
updates. Thus, one has

KF=0.

7

(20)
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) IfF N =1, the estimation is updated. To obtain KF, one
uses Tr(PF)/OKF =0

2KFTF —2PFGT =0
KF = PrGT @)™

2n
(22)

With the combination of two situations (21) and (22), one
obtains optimal directive information gains as

KF = NePFGT (08 23)

Substituting direct information gain (23) and indirect gain
(20) into (18) and (9), one derives DCKF (4) and (5). O

Remark 3. The DCKEF is approximately optimal in the sense
that DCKEF is based on the Euler approximation process (13)
and (15). Also, in (4), the second direct information term is
optimal, whereas the third indirect term is suboptimal.

III. STABILITY AND CONVERGENCE ANALYSIS

In this section, the convergence of the distributed
consensus-based Kalman filtering for estimation is analyzed.

To accomplish this, the statistics of DDOC A\¥(¢) in (3) are
needed. Here, the time domain is decomposed into a finite
sampling set of s disjoint random intervals [t,,, t;+1) for
0 < m < s—1. In each small interval, independent stochastic
process of A¥(¢) is A¥ =1 or 0. Then

where p¥(g;,t) , the output of PDF, depends on the position
of sensor ¢ and time ¢. t € [ty,, tme1). In addition,
COV()\f(t),)\?(t)) =0, Cov(A\f(t1), A\¥(t3)) = 0 and ¢; and
to are in different sampling intervals.

AE(t) is time-varying and modulated by the random
mobility of targets. To capture random mobility, stochastic
models such as Random Mobility Models (RMMs), includ-
ing Random Walk (RW), Random Direction (RD), Random
Waypoint (RWP), and Smooth Turn (ST) are widely used.

Due to the varying A\F(¢), there exists a different Laplacian
matrix L*, foreach k =1, 2, ---, M.

Assumption 1. The topology is strongly connected in the
sensor networks.

By Assumption 1, the Laplacian matrix L* has rank N —1,
i.e. the eigenvalue of L* which equals zero is not repeated
[17], [18].

Lemma 1. [18] Let the Laplacian matrix L be a sin-
gular M-matrix. Then, there exists a positive vector ¢* =
b o g&]" with ¢F > 0, for Vi = 1,2,...,N
such that ¢g*L* > 0.

Lemma 2. [8] Let the Laplacian matrix L* for tar-
get k be a singular M-matrix. Define the vector ¢* =
[ql a5 qN]T with ¢¥ > 0 in Lemma 1. Then

quaZJEZq]a >0forvVi=1,2,...,N.

Based on these results, the convergence of the DCKF for
estimation with moving targets is proved next.

Theorem 2. (Proof of convergence of DCKF for esti-
mation with moving targets). Given the information-flow

structure (3), the DCKF in Theorem 1 for estimation with
multiple moving targets, and process, measurement and
communication noise under Assumption 1, the distributed
state estimation error T¥(t) = z%(t) — 2¥(t) keeps uni-
Jormly ultimately bounded in the mean square as t —
oo Y i and k, if only if the pair (AF, H*) with H* =
— = = T
[((PFHD)T (p5HE)T - (PRHR)T]
Proof: Given the target dynamics (1) and extending
from DCKF (4) and (5) by considering process noise Wk,

observation noise ,uf and communication noise wfj one has

is observable.

ko gk

= (4F - AkP’fHTm’“)‘lH)o:ﬂ’? + AFPRET(©F) b
+2df PFQE (&Y — & + wf) + FFuw® (24)
AkPk + Pk( ) )\kPkHT(Qk)

N
—4 Z af, PFQFPF + Frwk(Fr)T

', PF

X EZ[Z ag; (P + P})]| 7 P
=1

(25)

The Lyapunov function candidate can be defined as

N
V(X*(1) =E {qu@?)T(Pf)‘lff} 26)

where ¢F is defined in Lemma 2. Under Assumptlon L, if
the pair (A*, H*) is observable, diag((P¥) ") > 0 and thus
V(Xk)>0foranka—[ koogk JT#O.

By deriving the Lyapunov function and substitute (24) and
(25) into (26), one obtains

V(Xk(t AFY)
+ Zqz 'L'

—*qu 7 E’C’Lqu ) PR (PN

Pk 1z k+ZQ1 i 2 71‘%5

Pk —1lz k}

722qkd’“ )" QfE qud’“ )T (P
i=1

—qudk Zqudk NTQrE)

+Zq, i ¢’“+Z;qz (o5) &}

—qu ek 27)
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N N
where 3F = GT(QF)~1G,, ©F = 4]; ay; P} []; ay;(PF +

1
N
Pf)]*lEfj[Zlafj(Pf + ng)]flPik’ QF =
=
Nk pi-L pk -1
[Zlaij(Pj) (P; + Pj)] Z

J= J=1
¢f = FFW* 4+ pFRE(Q)) G,

According to Lemma 2, the last term on the right side of
the (27) becomes

N N
Y
i=1 =1

ay;(PF)~ ' and

IN
\
&
S
LI
=
8
=
S~—"
~
~—
-9
B
|
-
1S3}
=

I

|

Q
IS

S
S
—~

8
.
N
}ﬂ
~
e
N—
L
1
<l

(28)

Because 0 < 2QFPF < I and 0 < QQfPf < I, one has
- Z 207y (7

- Z ¢ d; ()" (P;
< Z 24k (7

TQk .k qukdk (Pik)flﬁc

Z qudk

QL - 3 kit
i=1

TQk sk

_qudk Z2qkdk TQk k
N
< — Z 2qkazj(§:£»C —|—a:f)TQk(x + ] )
i=1,j=1
=0. 29)

Finally, one has
Z af@)’ (P
- sz qz z HT(Qk) szf

Y

1=1,5=1

= Amin (@)X + [l |11 X

ERWR(ER) (P

(zk + ; MTQk &k + )

< —Amin (OF) | X |7 + ||¢k||||XkH- (30)
where ©F = diag{qFOF} and ¢* = ¢ ek. }
It can be seen that if V(XF) g 0, |X*| >

|6%(| / Amin (©F). Therefore, (26) is an appropriate Lyapunov
function and the dynamics of state estimation errors are
uniformly ultimately bounded if the target % is collectively
observable by all sensors, i.e. the pair (A*, H*) with H* =
[((pYHE)T  (p5HHT - (pﬂ“VHJ’i,)T]T is observable. [J

Remark 4. The state estimation errors will converge to zero
as time goes to infinity without considering the noises in the
system.

IV. SIMULATION STUDIES
In this section, numerical examples are studied to show
the effectiveness of our novel distributed consensus-based
Kalman filtering. The comparative study shows that DCKF
outperforms the Kalman consensus filter (KCF) [1].

A. Performance Analysis
The system dynamics of three targets are

0 —0.5 0 0 -1 0 1 0
y _los 0o 0o o] . |0 -1 0 1
A= 0 0 0 0.5 AT = 0 0 -1 0
0 0 —-05 O 0 0 0 1
3 [0 -1
A% = [1 0}.
k

The parameters of these targets are chosen as w” ~
(0 W) where W = [2 2 1 17, pb ~ (0,051y),
(O 0.514), F* = I, S* = diag(2,2,1,1), QF =
02514, _” = 0.5 and G; = I for k = 1,2 and 4,j =
1, 2 ,6. For target 3, w3 ~ (0,0.513), u3 ~ (0,0.515),
(0 0.514), F3 = I, S = diag(2,1), Q = 0.251,
3]- = 0.515 and G3 = I; where 1,, € R" denotes a column
Vector containing all ones and I,, denotes a n X n identity
matrix.

—S1 with Prob 0 ||

——S2 with Prob 0.1
N S3 with Prob 0.5
—S4 with Prob 0.5
—— S5 with Prob 0.9

N { $6 with Prob 1

—S1 with Prob 0.2

—S2 with Prob 0.1
S3 with Prob 0.5

—S4 with Prob 0.5

' 5 with Prob 0.9

"l S6 with Prob 1

(R aRAS T i

¢ ‘/m-ww A i bbb a8y

T T

(@ (b)

Fig. 1. The performance of average covariance value Pz of DCKF under
two observation probability schemes: (a) by Prob scheme 1; (b) by Prob
scheme 2. Despite sensor 1 having an observation probability of 0, the
uncertainty of the sensor 1s estimate remains bounded. By increasing the
observation probabilities, the uncertainty decreases.

The diagonal element Ps of the covariance matrix of six
sensors for three targets is selected to illustrate the estimation
errors. We study two observation probability (Prob) schemes
in which Prob Scheme 1: p¥ = 0, p§ = 0.1, p§ = 0.5,

= 0.5, plg = 0.9, p’g = 1 for all k; Prob Scheme 2:
P =02 pk =01, pk =05 pf =05 pf=09pk=1
for all k. The average covariance values are shown in the
Fig. 1(a) and 1(b). From Fig. 1(a). Note that even if p’f =0
for sensor 1 (S1), the filter still converges while the errors
of the estimation are large. This is because the estimates of
S1 only use the information from neighbors. In addition, by
increasing the Prob for sensor 1, the error decreases as shown
from Fig. 1(a) and 1(b).

Fig. 2(a) gives the average tracking state errors for three
targets under the Prob scheme 1. Here, the average tracking
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Sensor 4
- - Sensor 5
- - Sensor 6

Sensor 4
- - Sensor 5
- - Sensor 6

— Sensor 1
Sensor 2
3 [=-=-Sensor 3

State Errors
Average Errors

(a) (b)

Fig. 2. The convergence performance of average estimation errors of each
sensor for three targets by different filters under Prob scheme 1: (a) by
DCKEF; (b) by KCE. DCKEF is better suited to situations where one of the
sensors has an observation probability of O, as illustrated by the fact that
sensor 1s estimation error does not converge when using the KCF, whereas
it does for the DCKF.

error is defined as the average value for all states. Although
there exists zero observation probability, the errors quickly
converge to zero.

B. Comparison Study

4 4
— Sensor 1 Sensor 4 — Sensor 1 Sensor 4
Sensor2| |- - Sensor5 Sensor2| |- - Sensor5
3 ---Sensor3] |- - Sensor6 3 ---Sensor3] |- - Sensor6
2 |
0 S
g2 o 2
w 3 i
) |
2 g .1
T 1 St
» e
< |
0 ot 0"[
-1 -1
0 5 10 15 20 25 0 5 10 15 20 25
t t
(@ (b)

Fig. 3. The convergence performance of average estimation errors of each
sensor by different filters under the same Prob 0.2: (a) by DCKF; (b) by
KCF. DCKF has better performance of converge speed about estimation
errors than KCF.

In this subsection, our novel DCKF for estimation with
multiple moving targets is compared with KCF in [1].
Here, two different comparison schemes are studied between
two distributed Kalman filters on the convergence rate by
considering: 1) the Prob scheme 1 where the zero probability
exists; and 2) the Prob scheme 2 where all probabilities are
nonzero.

The parameter settings for the distributed KCF are de-
signed as H; = Hy = I and H3 = L. v¥ = ¢/(1+||PF||r)
with € = 0.04 for ¢ = 1, 2, 3. The other settings are the same
as those described in Section IV A.

First, under the Prob scheme 1 for sensors in Section IV
A, the convergence of KCF for the estimation is illustrated in
Fig. 2(b). It is hard to say that all estimation errors converge
to zero within sampling time.

Second, assume pf =0.2 forany ¢ = 1,2,---6 and k =
1,2, 3. Figures 3(a) and 3(b) present the average estimation
errors for each state of each target using the two algorithms.
As it is shown, the proposed DCKEF has a faster convergence
rate and a smaller estimation error.

Therefore, the proposed DCKF for estimation with ran-
dom moving targets has superior convergence performance
compared with KCF in [1].

V. CONCLUSION

In this paper, the distributed consensus-based Kalman fil-
tering (DCKF) for estimation with random moving targets is
studied in continuous-time dynamics. A novel distance-based
information flow structure was developed by considering
limited sensing range and stochastic moving targets. Based
on the probabilistic measurement model, the new DCKF for
estimation also uses information-weighted neighbors. The
simulation and comparative studies show the effectiveness
and superiority of the DCKF. In the future, the connection
between targets can be studied.
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