REPRESENTATION THEORY

An Electronic Journal of the American Mathematical Society
Volume 23, Pages 1-56 (January 17, 2019)
https://doi.org/10.1090/ert/522

QUIVER VARIETIES AND SYMMETRIC PAIRS

YIQIANG LI

ABSTRACT. We study fixed-point loci of Nakajima varieties under symplec-
tomorphisms and their antisymplectic cousins, which are compositions of a
diagram isomorphism, a reflection functor, and a transpose defined by cer-
tain bilinear forms. These subvarieties provide a natural home for geomet-
ric representation theory of symmetric pairs. In particular, the cohomology
of a Steinberg-type variety of the symplectic fixed-point subvarieties is con-
jecturally related to the universal enveloping algebra of the subalgebra in a
symmetric pair. The latter symplectic subvarieties are further used to geomet-
rically construct an action of a twisted Yangian on a torus equivariant coho-
mology of Nakajima varieties. In the type A case, these subvarieties provide
a quiver model for partial Springer resolutions of nilpotent Slodowy slices of
classical groups and associated symmetric spaces, which leads to a rectangular
symmetry and a refinement of Kraft-Procesi row/column removal reductions.
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1. INTRODUCTION

To a Dynkin diagram of ADE type, one can attach a simply laced complex simple
Lie algebra, say g, and a class of Nakajima’s quiver varieties [N94,N98]. The latter
provides a natural home for a geometric representation theory of the former. If
the algebra g is further equipped with an involution, it yields a complex Cartan
decomposition of g:

(1) g=top,

where £ is the fixed-point subalgebra under involution, and p is the eigenspace of
eigenvalue —1. The pair (g, £) is a so-called symmetric pair and p is the associated
symmetric space. The purpose of this paper is to develop a geometric theory for
the symmetric pair (g,€) and its symmetric space p by using Nakajima varieties
together with their fixed-point loci under certain symplectic and antisymplectic
involutions.

Thanks to E. Cartan, the classification of symmetric pairs is equivalent to the
classification of real simple Lie algebras, which is given by Satake diagrams [H,OV].
These are bicolor Dynkin diagrams with black or white vertices, equipped with
diagram involutions. Representation theory of symmetric pairs was developed under
the influence of Harish-Chandra’s theory of (g, Kg)-modules with Ky a real adjoint
group of £ ([D]). A quantum version was obtained later by Letzter in [Le|, where a
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coideal subalgebra Uy (£) of the quantum algebra U,(g) is used as a g-analogue of
the universal enveloping algebra of € .

Recently, the algebra Uy (€) of type AIII/AIV without black vertices found
its applications in the study of orthosymplectic Lie superalgebras by Bao and
Wang [BW13] and even special orthogonal Lie algebras by Ehrig and Stroppel [ES13],
independently. A new canonical basis was constructed for certain tensor modules
of Uy () in [BW13], for idempotented Uy (¢) in [BKLW,LW15], and finally a gen-
eral theory of canonical basis for ¢ of any type was obtained in [BW16]. These
works have inspired many developments in various directions, such as categorifica-
tion [BSWW] and K-matrix [BaK16].

In the work [BKLW], there is a geometric realization of Uy (£) of type AIII/AIV
without black vertices by using n-step isotropic flag varieties, in the spirit of Beilin-
son, Lusztig, and MacPherson’s influential work [BLM]. In light of the role of loc.
cit. in the works [G91] by Ginzburg and [N94,N98| by Nakajima, the geometric
favor in [BKLW], as the tip of the iceberg, strongly suggests the existence of a new
class of quiver varieties for a general ¢ parallel to Nakajima varieties for g. Such
an existence is conjectured independently, and maybe earlier, by Wang through
his iProgram in [BW13, Introduction]. This new class of quiver varieties, called
o-quiver varieties, turns out to be fixed-point subvarieties of Nakajima varieties
under certain symplectic involutions. More precisely, the symplectic involution o is
a composition of a diagram involution, a reflection functor, and a symplectic trans-
pose induced from certain bilinear forms. Note that the prototype of the involution
o has been used in [N03, Section 9] (see also [VV03, 4.6]) for reinterpreting Lusztig’s
opposition [LOOb], which serves as a crucial ingredient in a construction of canonical
bases. As we learned from [N18] and via private communication, it is known to
Nakajima that in an affine analogue of [N15, A(iv)], fixed-point subvarieties of o on
the regular parts of Nakajima varieties provide a quiver model for SO/Sp-instantons
moduli spaces on ALE spaces, similar to the instantons-moduli-space origin [KN90]
of Nakajima varieties; see also Remark 9.2.4(3).

Just like Nakajima varieties, type A o-quiver varieties possess many desirable
properties.

Theorem A (Theorems 6.2.1, 8.3.3, Corollary 8.3.4). Nilpotent Slodowy slices of
t of type AI/AIT and their partial Springer resolutions are examples of type A o-
quiver varieties.

In type AI/AII, the algebra ¢ is an orthogonal/symplectic Lie algebra, and thus
we recover the geometry used in [BKLW]. Theorem A is a classical analogue of
the well-known Nakajima—Maffei theorem that Nakajima varieties of type A are
nilpotent Slodowy slices of sl,, and their partial Springer resolutions [N94, M05].
There are two easy but interesting applications from Theorem A. Note that the
sl,-version, presented in Sections 7.2 and 7.3, has been done by Henderson [H15].
The first one is a symmetry in classical groups.

Theorem B (Theorem 8.4.1, Remark 8.4.2). There is a rectangular symmetry for
partial Springer resolutions of nilpotent Slodowy slices of classical groups, that is,
if the partitions involved can be fit into a rectangle of a certain size (see Figure 2),
then the associated varieties are isomorphic.

The rectangular symmetry is further applied to prove a conjecture in Henderson
and Licata’s work [HL14] on Springer resolutions of two-row nilpotent Slodowy

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 YIQIANG LI

slices of classical groups, and recover relevant results in loc. cit. and [W15]; see
Example 8.4.3.

The second one is an enhancement of Kraft—Procesi’s column/row removal re-
ductions which play critical roles in the study of minimal singularities in classical
nilpotent orbits. Kraft-Procesi [KP82] showed smooth equivalences of singularities

between nilpotent Slodowy slices Sﬁ,ﬁ , and S’f; A, red(N) for certain classical Lie

algebras g and g’, where red(y), (vesp., red(X)) is obtained from partition u' (resp.,
A) by removing certain rows/columns from g (resp., A); see Figure 3.

Theorem C (Propositions 8.5.1, 8.5.2). The nilpotent Slodowy slices in Kraft—
Procesi’s column/row removal reductions in [KP82] are isomorphic.

Nilpotent orbits and their intersections with Slodowy slices in £ have been studied
via categorical quotients in [KP82,K90], [N94, Remark 8.5 (4)], and [N15, Appen-
dix A(i)-A(iv)]. The latter approach, which is quite restricted, is closely related to
the approach we take in this paper. They represent two different orders of taking
GIT quotients and taking fixed points. A closed immersion, which is conjecturally
isomorphic, between varieties which appeared from these two approaches is estab-
lished in Proposition 9.2.1.

In a parallel direction, nilpotent orbits and, more generally, nilpotent Slodowy
slices in the symmetric space p have been studied by Kostant and Rallis [KR71],
Sekiguchi [S84], and Ohta [O86]. They have important applications in the orbit
method of real reductive groups [V86,V89]. A slight alteration of the transpose in
the involution ¢ yields an antisymplectic involution &. Its fixed-point subvariety,
called a G-quiver variety, can be regarded as the quiver variety for the symmetric
space p, since results similar to Theorems A-C remain valid in this setting (see
Section 10). To this end, the geometries surrounding nilpotent elements in the
triple (g,€,p) in (1) have their quiver counterparts:

Nakajima varieties, symplectic subvarieties, Lagrangian subvarieties.

With Theorems A—C in hand, it is expected that there is a geometric represen-
tation theory for € via general o-quiver varieties, parallel to Nakajima’s original
theory for g. A further study shows that o-quiver varieties and their Lagrangian
cousins admit many favorable properties inherited from ambient Nakajima varieties.
In particular, they are nonsingular, if the ambient Nakajima variety is so, and they
carry a Weyl group action. The new Weyl groups contains Weyl groups of type
B¢/Cy¢/Fy. A Weyl group action of type Gy is realized by using an automorphism
of order 6 on Nakajima varieties. Furthermore, a conjecture is formulated in the
following, with supporting evidence given in Proposition 5.3.3 and (66).

Conjecture (Conjecture 5.3.4). Let (g,t) be a symmetric pair listed in Table 1
in Section 5.3. There is a nontrivial algebra homomorphism from the enveloping
algebra of € to the top Borel-Moore homology of the o-fixed-point, for a certain o,
of a Steinberg-type variety in the setting of Nakajima varieties.

From the table, one observes that Conjecture 5.3.4, if it holds, would provide
a new geometric construction of the universal enveloping algebra of simple Lie
algebras of type B and their representations. In addition to developing a geomet-
ric/quiver theory of £ (and p), there is a substantial interest in making a connection
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with the original Nakajima theory for g to have a more interesting theory for (g, £)-
modules. The following theorem reflects such a flavor and is obtained by applying
the machinery of Maulik—-Okounkov’s R-matrix [MO12,N16] to o-quiver varieties.

Theorem D (Theorem 5.6.2). There is a (Y(9),Ys)-action on the localized torus
equivariant cohomology of Nakajima varieties, where Y(g) is the Yangian of g and
Yo is a twisted Yangian constructed in this paper via a geometric K-matriz.

The twisted Yangian Y, should coincide with its algebraic counterpart, which
can be traced back to Cherednik’s work [Ch84]; see [M07, GRWa, GRWb]. It is
our hope that Theorem D will serve as a small step towards a geometric theory of
(g, Kr)-modules, which in turn will shed light on that of unitary representations of
the associated real simple group.

Finally, we caution the reader that in the main body of the paper the auto-
morphisms ¢ and & do not have to be involutive and the underlying graph is not
necessarily of type ADE.

2. NAKAJIMA VARIETIES

In this section, we recall Nakajima’s quiver varieties from the works [N94,N96,
N9g].

2.1. Graph. Let I" be a graph without loops, with I and H being the vertex and
arrow set, respectively. For each arrow h, let o(h) and i(h) be its outgoing and

incoming vertex so that we can depict h as o(h) N i(h). There is an involution on

the arrow set : H — H, h + h such that o(h) = i(h) and i(h) = o(h).
Let C = (c¢;j)i,jer be the Cartan matrix of the graph I' defined by

(2) cij = 2055 — #{h € Hlo(h) = 1,i(h) = j}.

For each i € I, we define a bijection s; : Z — Z! by s;(¢) = ¢, where & = &i—cjiis
§ = (&)jer, & = (§)jer € Z!. Let W be the the subgroup of Aut(Z’) generated
by s; for all i € I. The group W is the Weyl group of I". It admits a presentation
with generators s; for all ¢ € I and the following defining relations:

si=1 Viel.
SiS5 = S;Si, if Cij = 0.
§i5j8; = §55i554, if Cij = —1.

For a fixed w = (w;);cr € Z!, we define a second (affine) W-action on Z! by
sixv = v', where v = (v;)ic1, v = (V)icr € Z! such that v} = Vi_ZjeI CijVi+W;
and V; = v, if j # 4. We will put a subscript w under *, that is, s; *y v, if needed.
If w = 54,84, - - - 55, is a sequence of simple reflections, we set w*v = s;, *- - -*s;, *V.
We have
(3) C(s; #w V) = 5;(Cv — W) + w.

2.2. The variety A¢ (v,w). Let V = @,.; V; and W = ,.; W; be two finite-
dimensional I-graded vector spaces over the complex field C of dimension vectors
v = (vi)ier and w = (W;);e1, respectively. We consider the vector space

M(v, w) = M(V,W) = P Hom(Vo(ny, Vi(ny) & @) Hom(W;, Vi) & Hom(V;, W;).
heH el
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A typical element in M(v, w) will be denoted by x = (x,p, q) = (zh, Pi, ¢i )heH. icI,
where z;, € Hom(Vo ), Viny), pi € Hom(W3, Vi), and ¢; € Hom(V;, W;).

Let
(4) Gy =Gy = [[GL(V), Gw=Gw =[] GLW,

il icl

The group Gy acts from the left on M(v,w) by conjugation. More precisely, for
all g = (gi)ier € Gy and x € M(v,w), we define g.x = x' = (2},p},¢}), where
x), = gi(h)xhg;é), P, = gipi and ¢} = g;g; * for all h € H and i € I. Similarly,
let Gy acts conjugately on M(v,w) from the left, i.e., for any f = (f;);er € Gy
and x € M(v,w), we define f.x = x' = (), p}, ¢}), where 2}, = xy, p} = pif; ' and
g, = f;q; for all h € H and ¢ € I. Tt is clear that the Gy-action and Gy-action
commute.

The space M(v,w) can be endowed with a symplectic structure, given by

(5)  wx,x) = Z tr(e(h)zpay) + Ztr(piql’» —pigi) Vx,x' € M(v,w),
heH il

where € : H — {#1} is a fixed orientation function such that e(h) 4+ (h) = 0 for
all h € H. The orientation of H associated to € is @ = ¢71(1). Let

p= pc s M(v,w) = @ gl(V)
iel
be the moment map associated to the Gy-action on the symplectic vector space

M(v,w). Its projection at the ith component gl(V;) is given by

i - M(v,w) = gl(Vi), wpi(x) = Z e(h)xnxs — Pigs-
heH:i(h)=i
Let (¢ = (C@i Jier € CI. We regard (¢ as an element in P, 0l(Vi) via the
imbedding ( (z))lel — ( ((Ci)Idw)iel. Let

(6) Ac (v, w) = gt (Ge) = {x € M(v, w)|i(x) = ¢V Viel}.

We shall use the notation Aq. (V,W) for Ae. (v, w) if we want to emphasize the
pair (V,W). Note that A (v,w) is an affine algebraic variety. Note also that
pi(g-x) = gipi(x)g; ' = Cg) for all g € Gy and x € A¢.(v,w). So the Gy-action
on M(v,w) restricts to a Gy-action on A¢. (v, w). Similarly, for all f € G,, and
x € M(v,w), we have p;(f.x) = p;(x). Hence we have a Gy-action on A¢. (v, w).

2.3. Quiver varieties M. (v, w) and Mo(v, w). Let & = (&;)ier € Z'. We define
a character x = x¢ : Gy — C* by

X(9) = xe(9) = [ det(g:) % Vg € Gy.
iel
Let C[A¢. (v, w)]SvX" be the space of regular functions f on A¢. (v, w) such that
flg-x) =x"(g)f(x) for all g € Gy and x € A¢.(v,w). Then the sum

RC(V7W = @C ACC VaW)]Gv’X ’ C = (EvCC)7

neN
becomes an N-graded commutative algebra with a subalgebra

Ro(v,w) = C[Ac. (v, w)] S,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Following Nakajima [N94,N98], we define the quiver varieties: for any ¢ = (&, (c) €
7' x CI,

(7) M (v,w) = Proj Re(v,w), My(v,w) = Spec Ro(v,w).

The inclusion Ry(v,w) — R¢(v, w) of the two rings involved induces a projective
morphism of algebraic varieties:

(8) T Me (v, w) = Mo(v, w).

The Gyw-action on A¢. (v, w), which commutes with the Gy-action, induces Gy-
actions on M (v, w) and My(v,w). It is clear that the proper map 7 is Gy-
equivariant.

2.4. Stability condition. Fix an element = (x;,)nen in the first component of
M(v,w) and an I-graded subspace S = (.5;);c of V; we say that S is z-invariant if
2h(So(n)) € Sicn for all h € H. The standard dot product on Z' is given by a-b =
> icr aib; for all a,b € 7Z!. Following Nakajima, a point x = (z, p, q) in M(v, w) is
called &-semistable if the following two stability conditions are satisfied. Assume S
and T are I-graded subspaces of V' of dimension vector s and t, respectively. Then
the stability conditions say that

(S1) If S is z-invariant and S C ker g, then £ - s < 0.

(S2) If T is z-invariant and 7" O im p, then £ -t < & - v.

Let Azss (v,w) be the set of all {-semistable points in A¢. (v, w). We see that
Agjs(v,w) is Gy-invariant. For convenience, let [x] denote the Gy-orbit of x in

M(v,w). From Mumford’s geometric invariant theory, we have the following.

Proposition 2.4.1 ([N96, 3.ii]). The geometric points in M. (v, w) are Ag:s(Vﬂ)/

~, where the GIT equivalence relation ~ is defined as x ~y if and only if [x]N[y]N
Aass(v,w) # (O where the overline denotes the Zariski closure of the underlying
orbit in Ae. (v, w).

Recall that C is the Cartan matrix of the graph I'. We set
Ry ={y e N[ "/Cy < 2} — {0},
Ri(v) ={y € Ry|vi <viViel},
D,={aeCa-y=0}.

So the set R consists of positive roots of C and the set D, is the wall defined by
7. Note that there is 'vCy =23, 77 — Y e Yom) Vi(h)-

Definition 2.4.2. A parameter ¢ = (&, (¢c) € Z! x C! is called generic if it satisfies
(9) ¢ez"\ |J Dy or ¢cec\ |J D,
YER4 (V) YER4 (V)

Proposition 2.4.3 ([N94, Theorem 2.8]). Assume that the parameter ¢ is generic.
Then the group Gy acts freely on AE:S(V,W) and Me(v,w) = Ag;s(v,w)/(}v, the
GIT quotient of Ag;s(v,w) by Gy. Moreover, M. (v, w) is smooth.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Hence the geometric points of the quiver variety 9. (v, w) under (9) are parame-
trized by the Gy-orbits in AE&SS(V, w). We set

(10) Me(w) = [T Me (v, w).

Assumption 2.4.4. The parameter ( is assumed to be either generic or zero,
unless otherwise stated.

Remark 2.4.5. Our £ is corresponding to the parameter (g where (g = /—1&
in [NO3].

3. ISOMORPHISMS ON NAKAJIMA VARIETIES

In this section, we introduce three classes of isomorphisms on Nakajima varieties.
The fixed-point loci of their compositions, when they become automorphisms, will
be studied in the next section.

3.1. Reflection functors. To each element ® € W, Nakajima [N94,N03|, Lusztig
[LOO], and Maffei [M02] define the so-called reflection functor

(11) So : Me(v, W) = My)(0+v,w) V( subject to (9),

which is an isomorphism of varieties such that Sy Sy = Sy When o is a simple
reflection, the definition is very much like Bernstein, Gelfand, and Ponomarev’s
reflection functor [BGP], from which it is named.

Retain the pair of vector spaces (V, W) of dimension vector (v,w). Fix i € I
and set

U, =W, @ Vi(h)-
h€eH:o(h)=1

Let V' be a third vector space of dimension v/ = s; * v such that V] = V; if
j # i. In particular, dimV/ + dimV; = dimU;. To a point x € M(v,w), we set
a;i(X) = (Qi» Th)h:o(h)=i and bi(x) = (pi,s(ﬁ)xh)h:i(h)=i. Let F' be the pair of points
(x,x") € M(v,w) x M(v',w) such that the following conditions (R1)—-(R4) hold:

(R1) 0 v/ a: (<) U; belx) V; 0 is exact,
(R2)  ai(x)bi(x) — a;(x)bi(x') = ¢, ¢L = si(Ce),

(R3) T = X, pj :p;,qj = q;, if o(h) #14,i(h) # 4, and j # 1,
R4) () = () =7, ifj i

The Gy X Gy/-action on M(v, w) x M(v’/, w) induces a Gyuy = Gy x GL(V})-action
on F.

Assume that the parameter £ satisfies & < 0 or Cg) # 0. We have the following
diagram:

(12) AES (VW) S5 P (V. VW) 2 AR O (v W),
where F**(V,V/,W) = Fn (Agjs(v, W) x AL (v, W)), 71, and 7y are the

natural projections. It is known that m and w3 are GL(V/) and GL(V;) principal
bundles, respectively. This induces isomorphisms of varieties:

(13) Me (v, W) <5 Goun \F**(V, VW) =2 My, (o) (si % v, W).
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The simple reflection S; on quiver varieties is defined by
(14) Si=mamy ! M (v, W) = My ¢y (5% v, W), if & < 0 or () #0,

Since (s;(£)); > 0 if & < 0, we can define the reflection S; when & > 0, by
switching the roles of x and x’. So if ® = s;,5;,---s;, € W and ( satisfies the
condition (9), the reflection functor Sy, in (11) is defined to be

So = iy Siy =+ Siy : M (v, W) = M) (0 v, w).

When ¢ = 0, the reflection functor Sy, : My (v, w) — My(® * v, w) is defined to
be the identity morphism when ® * v = v, following [L00, 2.1].

If we let Gy, act diagonally on M(v,w) x M(v’,w) in the above construction,
we see that the simple reflections S; and hence the general Weyl group action S,
are Gy-equivariant.

3.2. The isomorphism 7. A finite-dimensional vector space E equipped with
a nondegenerate bilinear form (—, —)g is called a formed space. To any linear
transformation T : E — E’ between two formed spaces, we define its right adjoint
T* : E' — E by the rule

(T(e),e")p = (e,T*(¢'))g Ve € E,e' € E.

It is clear that the map T — T* defines an isomorphism Hom(E, E’) = Hom(FE’, E)
of vector spaces. If further E” is a formed space and 77 : B/ — E” is a linear
transformation, then (7"7T)* = T*T"*.

Similarly, we can define the left adjoint 7" of T by (¢/,T(e)) g = (T'(¢’), €) g for
alle € E and ¢ € E'. We have (T*)' = T and (T")* =T.

Let 6 be either +1 or —1. A formed space F is called a 0-formed space if the

associated form (—, —)p on E satisfies that (e1,e2)p = 0(ez,e1)p for all eq,e0 € E.
When 6 = 1, we have a symmetric form, while when § = —1, we have a symplectic
form. In this case, the form (—, —)g is called a 0-form. If E’ is a §’-formed space

for some ¢’ € {£1}, then we have (T*)* = §6'T.

Assume the vector space E is a formed space and admits an I-grading E =
@,c; Ei. We call E an I-graded formed space if the restriction (—, —)g, of the
form (—,—)g to each subspace E; is a nondegenerate form and (E;, E;)g = 0 if
i # j. Let E be an I-graded formed space and fix a function § = (6;);e; € {£1}.
We call E a §-formed space, or a formed space with sign ¢, if the restriction
(=, —)E, is a d;-form for all ¢ € I. We call § the sign of E.

Recall the pair (V, W) of vector spaces of dimension vector (v, w) and M(v, w)
from Section 2.2. Assume that V and W are two I-graded formed spaces. We
define an automorphism

(15) T:M(v,w) = M(v,w), x=(2n,pi,q)—"x="xzn"Di, ),

where "y, = e(h)x}, "p; = —q; and Tq; = p; for all h € H and i € I. Its inverse
is defined by taking the left adjoints, that is, 7-*(x) = (" ' @n,” pi,7 @), where
. Pl T ! ! !

zp =e(h)z},, T pi=gq,and 7 ¢ = —p;.

By the properties of taking adjoints, we have p;("x) = —p;(x)*. So the auto-
morphism on M (v, w) restricts to an isomorphism still denoted by 7:

(16) T: A (v, W) = A_¢ (v, w).
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Further, for any regular function f in C[A¢ (v, w)]G"’Xg, we have

frigx)=f("g."x) Tgi = (g; )"
=x¢("9) f("x)
= Xﬁg(g)fT(X) Vg€ Gy, x € A¢ (v, w).

So fr € C[A_¢.(v,w)]%XZ¢. This implies that the assignment f — fr defines
an isomorphism of graded associative algebras: R¢(v,w) — R_¢(v,w), where
R (v,w) is from Section 2.3.

The above isomorphism shows that the isomorphism on A, (v, w) restricts to
an isomorphism Aé’css(v,w) — A(:é)'ss(v,w). Due to "(g.x) = Tg.”x, it further
induces the isomorphism: recall that [x] denotes the Gy-orbit of x,

(17) Te : Me(v,w) = M_¢(v,w), [x]+—[x],
such that the following diagram commutes:

M (v, w) LN M_¢(v,w)

2 | |

Mo (v, w) —2— Mo(v,w)
Now we show that the isomorphism 7 depends only on the forms on W.
Proposition 3.2.1. The 7¢ in (17) is independent of the choices of forms on V.

Proof. If we fix a basis for each vector space V; and W;, then to give a form on V;
or W; is the same as to give a certain invertible matrix, say M; or N;. In this way,
the right adjoints are presented as xj = M(;(}L)tfﬂhMi(h) and p; = N{ltpiMi and
q = M{ltqiNi for all h € H and ¢ € I. If we attach to each V; a new form with
associated matrix M;, we can have a new automorphism, say 7, on M(v,w), and
a new point 7x for each x € M(v,w). Set g = (g;)ier € Gy with g; = ]\;[flMi

Vi € I. Then the proposition follows from g.”x = "x. O

For f € Gy, we set "f = (f71)*. Then 7(f.[x]) = "f.7([x]) for all f € Gy, and
[x] € M (v, w).

Proposition 3.2.2. If W is a formed space with sign dy,, then the isomorphism ¢
on M (v, w) satisfies Tg = 1. Moreover, if the 6w is I'-alternating, i.e., 0w, o(h)0w.i(h)
=—1 for allh € H, then TCQ =1.

Proof. From the property of taking adjoints twice with respect to J-forms, it is
straightforward to see the first statement in the proposition. By Proposition 3.2.1,
we can attach to each V; a symmetric form. Then for x = (zp,p;,¢;), we have
72(x) = (—Th, —Ow.iPis —Ow.iGi). Let g = (—dw iidy; )ier; then we have g.7%(x) = x.
This implies that 7'{2 =1 (]

We now show that the isomorphism 7, commutes with the reflection functors.
Recall the setting from Section 3.1. We fix a vertex ¢ € I and a triple (V, V', W)
of I-graded vector spaces of dimension vector (v,v’,w) such that V; = Vj’ for all
j #iand v = s; * v. We assume that all spaces in this triple are I-graded formed
spaces. For simplicity, let By = (—,—)v,Bw = (—, —)w stand for the bilinear
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forms on V' and W, respectively. Similar to the isomorphism 7¢ = 7¢(Bv, Bw) as
above, we have an isomorphism

Tsi(0) = Ts;(¢)(Bvr, Bw) : M, oy (5i % v, w) = M_, ¢y (8 % v, W).

Lemma 3.2.3. We have S;7¢(Bv, Bw) = 7s,(¢)(Bv/, Bw)Si, where S; is the re-
flection functor defined in Section 3.1.

Proof. By Proposition 3.2.1, we can assume that the forms on V; and V] coincide
for all j # i. We observe that a;("x) = b;(x)* and b;("x) = —a;(x)*. So the short
exact sequence in (R1) gives rise to the following short exact sequence:

a;(Tx) b (Tx")

0 Vi U; V! 0.
Similarly, the equation in (R2) yields the equality a;("x")b;("x’) — a;("x)b;("x) =
C('C(l). As a consequence, we have the commutative relation in the lemma. O

3.3. The diagram isomorphism a. Let a be an automorphism of I', that is, there
are permutations of vertex and edge sets, both denoted by a, such that a(o(h)) =

o(a(h)), a(i(h)) = i(a(h)), and a(h) = a(h) for all h € H. We further assume
that a is compatible with the function € in the definition of the moment map p in
Section 2.2: there exists a constant ¢ = ¢, . € {£1} such that

(19) e(a(h)) = c-(h) Vh € H.

The automorphism a on I" induces operations on I-graded vector spaces and vectors.
If V is an I-graded space, we denote a(V') as the I-graded vector space whose ith
component is V,-1(;). Similarly a(v) is a vector whose i-entry is the ™' (i)th entry
of v. Given any point x = (z,p,q) € M(v,w) = M(V, W), we define a point

a(x) = (a(z), a(p), a(q)) € M(a(v),a(w)) = M(a(V),a(W))
by

1=c .
a(p)i = Pa-1(i), Q)i = qa-13i), a(x)n =e(h) = T4-1(ny Vi€ l,h € H.

By definition, p;i(a(x)) = pe-1(3;)(x). Thus it induces a diagram isomorphism of
finite order on Nakajima’s varieties:

(20) a: M (v, w) = My¢)(a(v), a(w)).

The order of this isomorphism is the same as that of the diagram.

The isomorphism a is a variant of diagram automorphisms studied in [HL14].
Just like loc. cit., it can be generalized as follows. Let us fix (f, %) € Gy x Gy;
we can define an isomorphism ago go : Me (v, w) — Myy(a(v),a(w)) to be the
composition of a with the action of (f°, ¢°). Specifically, for any [x] € M, (v, w),
the element afo 4o ([x]) is represented by aso go(x) = (ap go(x), a0 4o(p), aso go(q)),
where for alli € I, h € H,

ago,go(p)i = gg—l(i)pa*l(i)(fg—l(i))ilv
ago,g0(q)i = fgfl(i)qtfl(i)(92*1(1'))_17

1-c _
ago go(x)p, = e(h) = gg(afl(h))%-l(h) (gg((rl(h))) L
Similar to Proposition 3.2.1, the isomorphism afo g is independent of the choice of

g°. Hence it makes sense to denote this isomorphism by aso, and the a in (20) is
aj.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



12 YIQIANG LI

There is a permutation, f — “f, on Gy, given by (*f); = f,-1(;) for all i € I. It
is clear that

(21) agpo (f.1x]) = “f%ae([x]) V[x] € M (v, w),f € Gy.
It is also clear that the isomorphism a is compatible with the reflection functor S;:
(22) ago O S,L = Sa(i) O ago.

Subsequently, Sy, © afo = ago 0 .Sy, when I' is Dynkin and wq is the longest Weyl
group element since a(wo) = woy. The two isomorphisms 7. and aso are compatible
as well. Precisely,

(23) Tac(a(Bv), G(Bw))afo = arfoTC(B\/, Bw)

Finally, we remark that the composition a7 is similar to automorphisms in [EQ9]
and a special case of 7¢ appeared in [KP82]; see additionally Section 9.

4. GEOMETRIC PROPERTIES OF 0-QUIVER VARIETIES

In this section, we study the fixed-point subvarieties, called o-quiver varieties,
of the compositions of the three classes of isomorphisms of Nakajima varieties in-
troduced in the previous section.

4.1. The o-quiver varieties, I: ( generic. In this subsection, we assume that ¢
is generic. We consider the following isomorphism on quiver varieties:
(24) 0 = aSeT¢ : M (v, W) = M_s000) (a(0 * V), a(w)),

where 7¢, S, and a are defined in (17), (11), and (20), respectively. We shall
write 0¢ g,q for o if we want to emphasize that ¢ depends on ¢, ®, and a. By the
commutativity of the three isomorphisms from Lemma 3.2.3, (22), and (23), we
have the following proposition.

Proposition 4.1.1. If the forms involved are §-forms and ® is of finite order, then
the order of o is finite and a divisor of the least common multiple l.c.m.{4,|®|, |a|}.

By summing over all v, we have an isomorphism.
oM (W) = Mgy (a(w)).

If —aw(¢) = ¢ and a(w) = w, then o becomes an automorphism on M. (w). We
set

S¢(w) = M(w)”
to be its fixed-point subvariety. If further a(®*v) = v, let
Se(v,w) =M (v, w)?

be the fixed-point subvariety of (v, w) under the automorphism o. Then we
have

(25) Sc(w)= || &cv.w), if —ao(()=C(aw)=w.

a(w*v)=v

Definition 4.1.2. The varieties (v, w) and &.(w) are called the o-quiver vari-
eties.

Before we proceed, we make a remark.
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Remark 4.1.3. A more general isomorphism op can be defined by using ao, a
generalization of a, in Section 3.3. To control its order in this case, f has to satisfy
a compatibility assumption in [HL14]. Specifically, we can identify W; with Wy,
forall i € I due to w; = wy(;). Foreachi € I, let m; = #{a"(i)|n € Z}. Fix m such
that m;|m Vi € I. The compatibility condition for fO reads f?fg(i) . ~f2m,1(i) =1
Vi € I. Then the order of a0 is m. For the sake of simplicity, we focus on the
simpler version ¢ instead of oto.

The definition of o-quiver varieties depends on the forms on V' and W. But by
Proposition 3.2.1, it only depends on the form on W, which is recorded as follows.

Proposition 4.1.4. The variety S¢(v,w) is independent of the choice of the form
on V.

By combining Proposition 4.1.1 and Proposition 4.1.4, it yields the following.

Proposition 4.1.5. If W is a dyw-formed space and ® is of finite order, then the
order of o is a divisor of l.c.m.{4,|®|, |a|}. If further the sign dy is T'-alternating
and a? = ®% =1, then 0 = 1.

The following example shows that o-quiver varieties include quiver varieties.

Example 4.1.6. Let I' be the product of four copies of I. Let a be the obvious
cyclic permutation of order 4 on I'. Then there is an automorphism o with 0 =1
on My = Me(v,w) x M_¢(v,w) x Me(v,w) x M_¢(v,w). If the space W is a
formed space of sign dy, then we see that &4 = 9 (v, w). In particular, if the d,,
is alternating, then we only need two copies of I' to realize M. (v, w) as a o-quiver
variety.

It is well known, e.g., [I72, Proposition 1.3], [E92, Proposition 3.4], or [CG,
Lemma 5.11.1], that the fixed-point subvariety of an action of a reductive group,
in particular, a finite group, on a smooth variety is smooth. If the automorphism
o has a finite order N, then it is the same as a Z-action on quiver varieties. So it
gives rise to the following proposition.

Proposition 4.1.7. Assume that { is generic. The o-quiver variety S¢(v,w) is
smooth, provided that it is nonempty and the order of o is finite.

The reflection functor S, does not always exist on My(v, w) and, if it exists,
they are not isomorphic in general. So to define o-quiver varieties as a fixed-
point locus on My(v, w) does not work in general. When the graph is Dynkin, the
reflection functor does exist on the global/limit version 9ty(w) of My(v, w), thanks
to Lusztig’s work [L00], so in this case it is possible to define o-quiver variety in
Mo(w) as a fixed-point locus, which is treated in the following section. The o-
quiver variety in 9y (v, w) is then obtained by taking the intersection of 9y (v, w)
with the o-quiver variety in 9% (w). Here, instead, we define the following:

Si(v,w) =71(S¢(v,w)), if{=—-a0((),a(0*Vv)=v,aw=w,
(26) Gi(w) = |_| Si(v,w), if (=—-an((),aw =w.
a(w*v)=v
In particular, the proper morphism 7 in (8) restricts to a proper morphism:

(27) 17 6¢(v,w) = &1(v,w) and 77 : S¢(w) = S (w).
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Let G, = {f € Gw|f = *"f}. Since Sy, is Gw-equivariant and 7¢ and a satisfy
7e(f.[x]) = Tf.7e([x]) and a(f.[x]) = *“f.[x] for all f € Gy, and [x] € M (v, w), we
see that the automorphism o satisfies the following property:

(28) o(f.[x]) = “fo([x]) Vi€ Gw,[x] € M(v,w).

It induces G%-actions on &.(v,w) and &;(v,w), which are compatible with the
proper map 7. There is a natural C*-action on M(v,w) given by x =
(xhap%%)heH,iEI = t.x = (tzhvtpithi)hEH,ieI for all t € C*. This C*-action
commutes with the isomorphisms a and 7 on M(v,w), which in turn induces a
C*-action on &1(v,w). If the parameter (¢ = 0, then the C*-action on M(v,w)
restricts to a C*-action on A¢.(v,w), and then on M (v, w). This action clearly
commutes with the GZ-actions on &¢(v,w) and &;(v,w). In this case the mor-
phism 77 is G, x C*-equivariant. The above analysis yields the following propo-
sition.

Proposition 4.1.8. The map 7% is G, -equivariant. If (¢ = 0, it is GF, x C*-
equivariant.

4.2. The o-quiver varieties, II: ( = (0,(c). In this section, we assume that I'
is Dynkin and ¢ = (0,(c), which is not necessarily generic. We give a definition
of o-quiver varieties under these assumptions by making use of Lusztig’s reflection
functor and global versions of the transpose 7 and the diagram isomorphism a
defined as follows.

4.2.1. Lusztig’s variety ZS¢. Let F be the space of paths in the Dynkin graph I
The concatenation operation, (p, p") + p - p' = do(p),i(o)PP’, of the paths defines
an associative algebra structure on F. The bar involution on I' defines an anti-
involution on F, which we shall denote by the same notation. Let i(f) and o(f)
be the ending and starting vertex of the path f. Let [i] be the path of length zero
such that i([i]) = o([i]) = i. For (¢ € CI, let
Oice = . e(hhh— Pl Viel
h:i(h)=t
Recall that W is an I-graded vector space of dimension w. Let Z§¢ be the set of
linear maps 7’ from F to End(W) such that
o '(f) € HOIIl(WO(f), Wi(f)) C End(W) for all path f,
o ' (f)m'(f") =n'(f-0ic.-f') for all paths f and f’ such that i(f') =i = o(f).
Z§ is an affine algebraic variety by [LO0] and isomorphic to 9 g ¢ (v, w) for v

very large. As a set, Z$ can be identified with 9%g(w) under a proper treatment.
Following [L00, 2.3], there is a C*-action on the totality | |. cc: Z§¢ given by

t: 28 — ZUC and (t.o')(f) = tF2a/(f) if f = hy---h for all 7’ € Z$. Fol-
lowing [L00, 2.4], there is a Gy-action on Z$¢ by (g.7')(f) = gi(f)ﬂl(f)g;(lf) for all
path f and 7’ € Z§.

4.2.2. The transpose 19. We extend the orientation function € to a function on the
set of paths in T by defining ¢([i]) = 1 and e(f) = [;_; £(h;) if f = hy -+ hs. Now
assume further that W is an I-graded formed space. We define an isomorphism
(29) 101 ZSE — Z5%, 1 e mo(n),

where 7o(7)(f) = —e(f)7'(f)* for any path f in T.
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We must show that 79 on Z§¢ is well-defined, that is, 7o(7') € Zy%. Clearly
T0(7")(f) € Hom(Wos), Wi(yy). For any two paths f, ' in I' such that i(f') =i =
o(f), we have

7o(m) (N 7o (7 ) (f) = e(He(f)w" (/) =" (F)
(30) =e(f)e(f) (W/(i)ﬁl(f,) *
=e(Pe(f) (7' (Fbic.f))

= —e(Ne(f") (' (FOi )" = 7o(n) ([0~ f')-
Therefore the well-definedness of 7y follows.

There is a morphism of varieties A¢. (v, w) — Z§¢ sending a point x = (zy, pi, ¢i)
to ' such that ©'(f) = Gi(n,)Th, - Th,_ Th,Po(h,) for any path f = hy---h,. The
morphism then induces an immersion ¥ : Mg ¢y (V, W) = Zy. It is clear that the
isomorphism 7 on A¢. (v, w) in (16) is compatible with the isomorphism 7y on Z§¢.
This implies that the isomorphisms 79 on Mg ) (v, w) and Z§¢ are compatible
under the immersion ¥, that is, the following diagram commutes:

Mo, (v, W) —>— Mo, —¢o)(V, W)

(31) ﬁl gJ{

70

VA — Z e
This indicates that the notation 75 on Z$¢ and M 0,cc) (v, w) will not cause any

confusion.

Remark 4.2.3. We have (Z29,)0 ={n' € Z0 |7'(f) =—e(f)n'(f)* for any path f in T'}.
This description is similar to the definition of classical Lie algebras in (80).

4.2.4. Diagram isomorphism O, .. Retaining the setting in Section 3.3, the auto-
morphism a on I' naturally induces an automorphism, still denoted by a, on F such
that a : @ — a(i) and a : h — a(h). We define another automorphism on F by
rescaling a~! on F:

(32) O, F = F, [i]—=a Y ([i]),hse(h) = a'(h) Viel,heH.

This is an algebra homomorphism, due to the multiplicative property of e: e(ff’) =
e(f)e(f") if f and f’ are two paths such that i(f’) = o(f). Let a=*((c) be the tuple

whose ith entry is C((Ca(i)). The reason why we define ®, . this way is due to the
following identity:

(33) (I)a78(9i7Cc) = 9(171(1)7&71((@) Vi e I.
Indeed, we have

Poclbic) = Y e(h)(=1)Ta  (W)a ' (h) = ¢la™ ()]
i(h)=i

3 el (h)a M (B () — a7 () D[ (1)) = b0 (co)-
i(h)=i

Recall that a(W) is the I-graded space whose ith component is W,-1(;). We
then have an isomorphism of vector spaces by permutation s, : W — a(W) so
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that s,(w); = we-1(;), where w = (w;);er € W. This isomorphism defines an
isomorphism
7o : End(W) — End(a(W)), ¢ = r4(¢) := s, 0 ¢ os, .
Let
(34) Oue: 25 = 70,5

a

be the isomorphism defined by ©4.(7') = r4-1 07’ 0 @1 Va' € Z§. Due to
(33), O is well-defined. O, . is compatible with the diagram isomorphism a~*
on Mg,¢.y (v, w) in (20).

Lemma 4.2.5. There is a commutative diagram

a71 _ _
Mo,ce)(V, W) —— Mg,a-1(cep (@ (v),a™H(w))

1] |»

Z¢c O, Zufl((c)

w a=t(w)

Proof. Let [x] = [z,p,q] € Mo co)(v,w). It suffices to show that ¥ o a™'(x) =
O4,c 0Y(x). Given any arrow h, the evaluations of the left- and right-hand sides
on h are equal t0 Gqu(i(h))Ta(h)Pa(o(h))- SO the equality must hold, and the lemma

follows. O
4.2.6. Lusztig’s reflection functor on Z5¢. Lusztig [L00] defined a reflection functor
(35) S 2§ — 73 1l Si(n),

where the evaluation of S;(7’) on a given path f is defined to be

o () + 6y idw, if f = [jl,
Do gac (HteJ —e(ht) ((cz)> 7 ((hy---hs)¥), if f=hy - hg s> 1.

Here Jy = {t € [2,r]|i(hi—1) = ¢ = o(h;)} and the superscript V.J is the operation of
removing the arrows h;_1, h; for all ¢ € J. (Note that J can be an empty set.) Since
the isomorphism .S, satisfies the Weyl group relations, we define S, = 5;, - - - S;, for
any ® = s;, -+ 8;, € W.

Si(n")(f) = {

4.2.7. The o-quiver variety &g c.)(w). Let

—1
00 =S80p00g07: A Z(I—_U);z(w)(Cc).

When the isomorphism oy becomes an automorphism, we can take its fixed-point.
Definition 4.2.8. & .)(w) = (25)7", if w = a™}(w), (c = —0a (o).

When there is no danger of confusion, we use &So(w) for &g ¢)(w). By (31),
Lemma 4.2.5, and [L00], the definition is compatible with the varieties S¢(v, w)
with a replaced by a~!, and so we have proper morphisms

(36) 771 6(v,w) = Gg(w), 77 :6c(w)—= So(w).

There is a GZ-action on Sy(w) induced from Z$, and further a G, x C*-action
on Gy(w) if (¢ = 0. It is clear that the morphisms in (36) are G -equivariant
(resp. GZ, x C*-equivariant if (¢ = 0). It is also clear that 7 factors through the
map under the same notation 7% in (27) and &;(v,w) is a closed subvariety of

S(0,¢c)(W).
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Remark 4.2.9. We can define Sy(v, w) = My(v,w) N Sp(w) in corresponding to
S¢(v,w). This definition makes sense even when I' is not Dynkin, but in this
generality we are not sure if (v, w) is an algebraic variety. On the other hand,
we can always define the fixed-point locus My(v, w)?” as long as a(v) = v and
a(w) = w. This fixed-point locus does not have to assume I' being Dynkin either.

Lemma 4.2.10. When (c =0 and @ xv = v, My(v,w)*” = Sg(v,w).
Proof. In this case the reflection functor is the identity morphism by [L0O]. O

4.3. Weyl group action on o-quiver varieties. Let ¢ be generic in this section.
The diagram automorphism a induces an automorphism on the Weyl group W.
Let W®® = {x € W|z® = oz,a(z) = xz}. This implies that the action S, for
x € W% on quiver varieties commutes with the action Sy, and a. Further, thanks
to Lemma 3.2.3, it commutes with the isomorphism ¢. Hence we have the following
proposition.

Proposition 4.3.1. The action S, for x € W® restricts to an action on o-quiver
varieties:

(37) Sy 1 6¢(v,w) = Gy (z*xv,w) Vo e W™
As a consequence, we obtain the following corollary.

Corollary 4.3.2. The group W®“ acts on the cohomology group H*(&¢(v,w),Z)
when w — Cv = 0.

Remark 4.3.3. When T is of Dynkin type, a = 1 and ® = wy, the group W is a
Weyl group of type By if I is of type Agg, Cyp if ' is of type Aop_1, By if I is of type
Dyyq, £ even, or of type Fy if I" is of type Fg. If I" is of type D4, ® = wyp, and a is
the unique automorphism of order 3, then the group W®® is the Weyl group Gs.

4.4. Symplectic structure on S.(v,w). In this section, we assume that the pa-
rameter ( is generic. Recall the symplectic vector space M(v, w) from Section 2.2.
It is straightforward to check that the isomorphisms a and 7 on M(v,w) in (20)
and (15), respectively, are symplectomorphisms. The varieties (v, w) inherit
from M(v, w) a symplectic structure. In turn, the fact that a and 7 being symplec-
tomorphisms implies that the induced isomorphisms a and 7. on M (v, w) are also
symplectomorphisms. By the analysis in [N03, Theorem 6.1], the reflection functor
Se is a hyper-Kéhler isometry and in particular a symplectomorphism. Altogether,
we see that the isomorphism o on M. (v, w) is a symplectomorphism.

Proposition 4.4.1. Assume that W is a dyw-formed space and the order of ® is
finite. Then the o-quiver variety S (v, w) is a symplectic submanifold of M¢ (v, w).

Proof. We only need to show that the restriction of the form w to &¢(v, w) is non-
degenerate. Fix a point [x] € &¢(v, w); the differential doy) of the automorphism o
at [x] is an automorphism on the tangent space Ti ¢ (v, w). By the assumption,
we see from Proposition 4.1.5 that ¢V = 1 for some N, and hence (dop)" = 1.
By a result of Edixhoven [E92], the fixed points of dopy), i.e., the eigenspace of
eigenvalue 1, is exactly the tangent space Tjx&¢(v, w) of &¢(v,w) at [z]. It thus
yields the following eigenspace decomposition:

T[x]gﬁg(v, W) = T[X]GC(V, W) e,
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where C' consists of linear combinations of eigenvectors of eigenvalues other than
1. By the above analysis, the automorphism ¢ is a symplectomorphism, and so
this implies that T}y &¢(v, w) and C are orthogonal with each other. Hence the
restriction of the symplectic form on them are nondegenerate. We are done. ]

Since the zero fiber 771(0) is Lagrangian, we see that the fiber (7%)71(0) =
771(0)7 is isotropic. But the fiber (77)~1(0) is not coisotropic and hence not
Lagrangian in general; see Remark 6.2.2(3). A nice consequence of Proposition 4.4.1
is the semismallness of 7.

Corollary 4.4.2. The map 77 : S¢(v,w) = S1(v,w) is semismall.

Proof. By [N98, Theorem 7.2], the fiber product M¢ (v, W) Xon, (v,w) M¢ (v, W) is a
lagrangian subvariety in M (v, w) x M (v, w). So its o-analogue &¢ (v, W) X &, (v,w)
S¢(v,w) is isotropic in &¢(v,w) x &¢(v,w), and thus has at most half of the
dimension of the latter manifold. So we have

dim &¢ (v, W) X, (v,w) G¢(v, W) = dim &¢ (v, w).
According to [CG, 8.9.2], it implies the corollary. O

Remark 4.4.3.

(1) We refer to Remark 5.3.2 for an alternative proof of Corollary 4.4.2.

(2) By Corollary 4.4.2, to show that &¢(v, w) is equidimensional, a.k.a., of pure
dimension, it is enough to show that the images of all connected components under
7% coincide.

5. QUIVER VARIETIES AND SYMMETRIC PAIRS

In this section, we assume that the graph I" is a Dynkin diagram, |a| = 1 or 2,
the Weyl group element ® = wy is the longest element in the Weyl group of I', and
the sign function dy, is T-alternating in the definition of the automorphism o. In
this case, we have 02 = 1 by Proposition 4.1.5.

5.1. Restriction diagram. Now we assume that {(c =0 and & =1 for all i € 1.
Let T be a torus in Gy. Let M (v,w)T be the T-fixed-point subvariety of
M (v, w). For each homomorphism p : T — Gy, let

Me(p) = {[x] € Mc(v,w)|t.x = p(t)"'.x Vt € T}.

Nakajima [NOO] showed that the . (p) depends on the Gy-conjugacy class of p
and there is a partition of M¢(v,w)T into connected components: M (v, w)T
1199t (p), where the union is over the set of all Gy-conjugacy classes, say (p), of
homomorphisms p : T — G,. We define

(38) Sc(v,w)T =& (v,w) N M (v, w)T.
Thus there is a decomposition
S¢(v,w)" H6< » 6¢lp) = S¢(v, w) NN (p).

In the special case T = (CX C GY,, we can further define

(39) 6<(v,w)+CX ={[x] € &¢(v,w)| P_I;[(l)t.[x} exists},
(40) 6<(v,w)_(CX ={[x] € &¢(v,w)| tlig)lo t.[x] exists}.
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Similarly, there are varieties ¢ (v, w)icx. Since the chosen C* is in GZ,, we have
GC(v,w)ﬂE(CX =6 (v,w)N Emg(v,w)icx.
Thus there is the following hyperbolic localization /restriction diagram:

/

(41)

c(v,w) )(CX

N

Sc(v,w) €
where (* and k* are natural embeddings and projections.

5.2. A characterization of G:(v,w)T. Assume now that we have a decomposi-
tion W = W@ W?2@W? of the formed space W such that the following conditions

hold:
e For all i € I, the restrictions of the form to W} and W2 & W2 are non-
degenerate.
e Forallie I, W! and W2 @& W3 are orthogonal to each other.
e For all © € I, we have (W2)W2@W3 W3, (W3)W2®W3 = W2,

(_)Jvfffeawf’ is taken in W? @ W3, and hence W? and W? are maximal

where

(2 (] K3
isotropic in W2 @& W3 of the same dimension.
o a(Wl) =W a(W?2) = W2 and a(W3) = W3.
Set dimW! = w!, dimW? = w?, and dimW?3 = w3 so that they satisfy the
condition as follows from the above assumption:
w? =w? w? = aw? aw! = w', and w = w' + 2w?.
Consider the following 1-parameter subgroup in GZ,:
(42) A:C* = G9, tridpyr @t-idye @t - idyys.
By a result [VV00, Lemma 4.4] of Varagnolo and Vasserot, we have that 9t (p) is
empty unless p is Gy-conjugate to the group homomorphism
(43) C* 5 Gy, tridyr @t -idy2 @t -idys,
for some decomposition V = V1@ V2@ V3. Moreover, if p is of the latter form with

the dimension vector of V', V2, and V? being v, v2, and v3, respectively, then we
have

(44) Me(p) = Me (v, wh) x M (v, w?) x M (v, w).
Since A(C*) < G, NGE, < GY, and o is G -equivariant, we see that
U(DJTC(V,W)MCX)) C M (awg * v, aw)MCE),

Recall that the automorphism ¢ is a composition atS,,. If p is of the form (43),
we write wg(p) to be the group homomorphism

(45) C* = Gy, tridygs ,vi &t idygs vz - idygs_,vs,
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where wg w1 V1, wo *yw2 V2, and wg *w2 V3 are vector spaces of dimension vectors
Wo *yt VI, Wo kw2 V2, and wg *g2 V5, respectively. Since the construction of the
automorphism ¢ is independent of the choice of forms on V, we can, and shall,
assume that the nondegenerate symmetric form on V has its restriction to V!, V2,
and V3 nondegenerate and that the latter spaces are orthogonal with each other.
Note that a(A(C*)) = A(C*) and 7(A(C*)) = A(C*). We observe that

a(M¢(p)) CMac(acpoa™"), 7(Mc(p)) CM_¢(Topor 1), Suwe (M (p)) S Muyc (wolp))-

Thus we have o(Mc(p)) € M_quwoc(wo(*"p)), where *7p is the composition of p
with the automorphism ar on Gy. This implies that S¢(p) is empty unless

(46) p=wo(“"p), up toa Gy-conjugate.

By comparing (45) for wo(*"p) and (43), we see that S¢(p) is empty unless

2

(47) vl = a(wp *w1 v') and  vZ = a(wp ks v3).

Assume now that the condition (47) holds. If [x?] € M, (v?, w?), then a slight
generalization of the operation o yields an element in 9 (v3, w?), denoted abu-
sively by o([x?]). (The involution 7 in the definition is changed to be an iso-
morphism M (v, w?) — M_(v?, w?) with respect to the above decomposition.)
Similarly, we can define o([x%]). By definition, if ([x'],[x?], [x®]) € M (p) under
the identification (44), then

o([x'], 5%, [°]) = (o(Ix']), o ([°]), o ([x7])).
Thus, in light of the fact that o = 1, ([x!], [x?],[x3]) € &¢(p) if and only if
[x!] = o([x!]) and [x?] = o([x?]). Therefore, under the assumption (47), it yields
(48) Sc(p) = Sclv!, wh) x M (v, w?).

Summing up the above analysis, there is the following proposition.
Proposition 5.2.1. Assume that T = A(C*) in (42). Then there is an isomor-
phism
(49) Sc(v, N = T &c(v!,wh) x Me(v2, w?),

(vt,v?)

1

where w = wl + 2w?, aw = w, aw! = w!, and the union is over (v,v?) such

that
(50) vl = a(wy kw1 vY), v+ v+ a(wp w2 v) = V.

We shall write “v! + v? |= v” if the condition (50) is satisfied. In general, we
can consider a 1-parameter subgroup in G, defined by

(51) A:C* = GY,t e idys @ @ idys @t Midyi-),

i=2
where the pair (W¢ W%™) play a similar role as (W2, W3) in (42) and 0 < \; <
Ay < ++- < Ap. By applying the same argument, it gives rise to the following
decomposition:

Sc(v, w)MNE) = II Se(vi,wh) x [T o (v, w),
V(DT v v i=2
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where the product is taken in the natural order. By summing up all v, the above
decomposition gives rise to the following. See [NO1] for a comparison.

Proposition 5.2.2. Assume that X is given by (51), and there is an isomorphism:

(52) SC(W))‘(CX) ~ G (wh) x Hfmg(wi), w=w"+ 2Zwi, a(w') = w'.
i=2 1=2

Now consider an arbitrary torus T € GZ and the space Hom(C*,T) of 1-
parameter subgroups in T. We form the real form Hom(C*,T) ®z R. There
are generic l-parameter subgroups in T, i.e., those A such that Gg(v,w))‘(cx) =
6<(V,W)T. The remaining ones are called special, giving rise to larger fixed-
point subvarieties. The special 1-parameter subgroups form unions of hyperplanes,
i.e., walls, in Hom(C*,T) ®z R, separating generic 1-parameter subgroups into
chambers, i.e., connected components of the complements of the unions of walls.
From our analysis above, we see that if T is a maximal torus in G, then the

chamber structure can be identified with the usual Weyl chambers of type B/C.

5.3. Coideal structure. We shall write ICx as the intersection cohomology com-
plex attached to an algebraic variety X (see [BBD82]). In particular, if X =| | | X
is a disjoint union of irreducible smooth varieties, then ICx = @ _; Cx, [dim X;],
where Cyx, is the constant sheaf on X; with coefficients in C.

Recall from (36) that there is a proper map

7 Se(w) = Go(w).
So one can consider the following complex:

(53) PGO(W) = (”TJ)!ICGc(W)'

Similarly, we define the complexes Pop,(w) and Pg,(w)r. The complexes Pg(w),
Pong(w), and Pg,(w)r are semisimple perverse sheaves, since the map 77 is semis-
mall by Corollary 4.4.2. Now we study the hyperbolic localization/restriction func-
tor of Braden [B03] and Drinfeld—Gaitsgory [DG14] on the level of o-quiver varieties.

Theorem 5.3.1. There exists a canonical isomorphism
(54) cane : Pg,(w)r = I€*+(L+)!P60(w),
where KT and ™ are in (41) with the 1-parameter subgroup of T in the chamber C.

Proof. For each z € C, let {c(z) € C! be the element whose ith component is z.
Let ((2) = (&,¢c(2)), where £ € C! is the element whose ith component is 1. We
consider

S*(v,w) = |_| S¢(z)(v,w) and Gf(v,w) = |_| Seayn(w),
zeC zeC
where &¢(;),1(v, w) is the & (v, w) with ((z) emphasized. Similarly, one can con-
sider M* (v, w) and M*(v,w). These are algebraic varieties defined in a similar
way as M (v, w) and M, (v, w), and so are G*(v, w) and &* (v, w) as fixed-point
subvarieties of automorphisms on the former algebraic varieties. Similarly, there is
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a proper morphism over C:

(55) S* (v, w) 1 &*(v,w)
C

where the morphisms to C are defined by sending a point in &¢(.)(v,w) and
S¢(2),1(v,w) to z. The II? is a 1-parameter deformation of 7. In particular,
the fiber of II7 over 0 € C is exactly m7. Moreover, the fiber over C — {0} is an
isomorphism

(56) S*(v, W\ (v, w) = &} (v, w)\&1 (v, w).
Now we apply the argument in [N16, 5.4]. By (56), there is a canonical isomorphism
(57) Wf[) [_ 1]IC6'1"(v7w) |6?(v7w)\61 (v)w) = Tr'a-ICG(V,W) ’

where Wy, is the nearby cycle functor with respect to fy. Similarly, there is an
isomorphism

(58) WfOT [_1]106'1"(v,w)T |6?(V,W)T\61(V,W)T = W77TICG(V7W)T7

where fi is an analogue of fj in (55) and 77T is the restriction of 77 to its T-fixed
point part. By (56) and the relative symplectic form on 9*(v,w) induced from
(5), it yields a canonical isomorphism

.
(59)  Cetvmrletvammevanr — B 106 v et (vw)m\ e (vaw) T

where & and 7 are the counterparts of k™ and ¢, respectively, on 60"(V, w). There-
fore, there is a canonical isomorphism

(

ot

8)

T Ce vyt = T Wt [~ 1ICs (v .w)™ 6 (vow) M\ &(viw) T

< Ypr [~ U ICs 4 (v )7 6 (v, w) T\ (viw) ™
= Vir [ Css vyt st (vaw) T\ &1 (vaw T

= Y[R Ce (4wt (v w6 (viw)T
(K1) Wy, [F1ICe4 (v .w) & (viw)\ &1 (viw)

7)
= (k) () 7 ICe (v,

where (x) is due to the fact that a nearby cycle functor commutes with proper maps,
(f) is due to the fact that 77 is an isomorphism when it restricts to &% (v, w)T\
S(v,w)T, and (b) is due to the fact that a nearby cycle functor commutes with

hyperbolic restrictions. The theorem follows by summing the above (60) over all v.
O

Remark 5.3.2.
(1) We refer the reader to [N13, 3(iv)] for the subtleties in choosing an isomor-
phism in (54).
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(2) Since a nearby cycle functor, shifted by [—1], sends perverse sheaves to
perverse sheaves, the isomorphism (57) implies that the complex m,ICg v w) is
a semisimple perverse sheaf. This in turn implies that the map 77 is semismall
onto its image (see Corollary 4.4.2).

By Proposition 5.2.2, we see that there is a canonical isomorphism

PGO(W)T = @ W;TICGC(wl) X TFIICmc(W2)'
vZEv
Thus the complex Pg (w)r is a direct summand of the complex Pg(w1) X Py, (w2)-

So the restriction functor x (¢+T)" induces an algebra homomorphism

(61) - : End(PGO(w)) - End(PGO(wl)) & End(Pimo(WQ))v

wl,w?
where w! + 2w? = w and aw’ = w’ for i = 1,2. (Here the endomorphisms are

taken inside abelian categories of perverse sheaves.)
Now we consider the following Steinberg-like varieties:

(62)
@C(W) = |_| @C(Vlavzaw)a @((Vl,VQ,W) = GC(VlaW) X&o(w) GC(V25W)'

Similarly, the notation 3.(w) is defined with respect to Nakajima varieties M (v, w).
Let Hyop(X) denote the top Borel-Moore homology of X; see [CG]. From [CG,
8.9.7], there is an algebra isomorphism

End(Pey(w)) = Heop(Y¢(w)) and  End(Pop,(w)) = Heop(3¢(w)).
In terms of top Borel-Moore homology, the algebra homomorphism in (61) becomes
the following algebra homomorphism, denoted by the same notation:
(63)
Agvl,wz t Heop(YDe(w)) _>Htop@)c(wl))®Htop(34(w2))7 if w'+2w” =w,aw'=w".
In the same vein, we have an algebra homomorphism:
(64) Agtwe : Hiop(3¢(W)) = Hiop(3c(Wh)) @ Hyop(3c(w?)), if w' +w? =w.
By the canonical choice of isomorphism in Theorem 5.3.1, we obtain the following
proposition.
Proposition 5.3.3. The algebra homomorphism Afvl w? satisfies the coassociativ-
ity, that is,
(65) (Agv17w2 ® 1) © Agvl-ﬁ-WQ—i-wis,w3 = (1 ® AWQ,Wg) © Agv17w2+w3’
for all wh +2(w? + w3) =w and aw' = w* fori=1,23.

To w, we define ry, by (rw); = %5 — ﬁ, that is, (ryw); is the rank of the ith

isometry group with respect to the ith dy ;-form. Let sy, = w — 2ry. If S¢(sw) =
{pt}, then the coproduct (63) becomes the following algebra homomorphism:

(66) 7+ Hiop(Dc (W) = Hiop(3¢(rw)), if S¢(sw) = {pt}.
Recall that I is a Dynkin diagram and wyq is the longest element in the associated
Weyl group. There is an involution 6 on I such that wo(a;) = —ag, where a;

is the ith simple root of I'. Let gr be the simple Lie algebra associated to I' with
Chevalley generators {e;, fi, hi|i € I}. Then the assignment e; — fog(:), fi = €an(i)s
and h; — —hgg(;) for alli € I defines an involution, denoted by o, on gr. It is known
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TABLE 1
(T, |al) gi=¢t Satake type
(A, 1):0=2p sl @ gl Alll
(Ap,1):L=2p—1]sl,@gl, Alll
(Ag,?) 50041 Al
(Dg, 1) : £ odd 50¢0_1 @ sopqy | DI
(Dg, 1) : £ even 500 D S0p DI
(Dy,2) : £ odd 509 D S0y DI
(Dg, 2) : ¢ even 5091 @ so0p4q | DI
(EG; 1) 5[2 @5[6 EII
(Eﬁa 2) 5Py EI
(E7, 1) slg EV
(Es, 1) 5016 EVIII

that the fixed-point Lie subalgebra g7 is generated by e; + fug¢;) and h; — hags)
for all ¢ € I. The algebra gf is usually denoted by € in the introduction. The pair
(gr, g%) then forms a so-called symmetric pair. The Lie algebra g@ is classified by
the Satake diagrams without black vertices (i.e., X = @ in [K14]). Specifically,
they are listed in Table 1.

Let U(g%) be the universal enveloping algebra of g&. With the coassociativity
and (66) in hand, we make the following conjecture.

Conjecture 5.3.4. There is a nontrivial algebra homomorphism

U(gr) — Heop(Yc(w))

When the Dynkin diagram I' is of type A and a = 1, this conjecture can be
shown by the results in [BKLW] and an argument similar to [BG99].

5.4. The stable map Stabe. Recall that G¢(w) has a C*-action by scaling. Since
the maps 77 and 7% are T = T x C*-equivariant, the isomorphism cane in (54)
also holds in the derived category of T-equivariant C-constructible sheaves. This
T-equivariant version of the canonical isomorphism (54) is the same as the one
given by Maulik—-Okounkov’s stable envelope [MO12], as explained in [N16] (the
statement after Corollary 5.4.2 therein). With the help of cane in (54), one obtains
the stable map on the torus-equivariant cohomologies:

(67) Stabe : Hi (& (w)T) — HE (& (w)),

where [%] is the shifted degree defined by H1[r* ] (?7) = HiF4m?(2). This sheaf-theoretic
definition of Stabe is formal and contained in [N16]. For the convenience of the
reader, we reproduce it here. For simplicity, we write X = S.(w) and Xg = So(w)
in this process. There are canonical isomorphisms/identifications:

(68)

HY(xT) = Ext}(Cyr, ICx7) ¥ Exti (7 7)*Coer, ICxt) 2 Excti (Car, (17)ICx1).
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On the other hand, there are canonical isomorphisms

Exty # (Cyr, i (1) 77 1Cx) = Ext(C, 4o, M) ?1Ck)

(
(69) = Bxt}(Cyppex, (77) (1) ICx)
(i
(i

= EXtT( x+CX

= EXtT(Cxa ( )

0)1Cx)
) IC%)&

where the 1-parameter subgroup C* is chosen from the chamber €, #7 and [ are
given in the following cartesian diagram:

X o T

Al

s ok
Xo —— X}

Note that there is an adjunction adj : (7);(i)! — id, which induces a morphism
(70) adj : Ext(Cx, (D)D) ICx) — Ext’(Cx,ICx) = HY ().
The stable map is thus defined to be the following composition:

HE(xT) © Exty(Cx, (1) (0)1Cx) ©8 Exty # (Cyr, w1 (1) 771Cx)

69 * a *
) Bxts(Ca, (1) (1)'TCx) 2% 1 (%),

So, modulo the canonical identifications in (68) and (69), we have Stabe = adj o
cane.

(71)

5.5. Universal X-matrix. Let C[Lie(T)] be the coordinate ring of the Lie al-
gebra Lie(T), as an affine space. Let Fr be its rational field. The cohomologies
HY (S0 (w)T) and HE (S (w)) are C[Lie(T)]-modules (since Hx({pt}) = C[Lie(T)])
and the map Stab is compatible with the C[Lie(T)]-module structures. It is known
that after a change of coefficients from C[Lie(T)] to Fr, the stable map is invertible.
Following Maulik—-Okounkov [MO12], the K-matrix is defined by

(72) fKe/’e = Stabg,l o Stabe € End(C[Lic(T)] (H?{-(GC(W)T)) ®<C[Lic('JI‘)] Fr.

Clearly, one has

(73) KereKere =Kere and Kee=1.

If the chamber € is determined by the inequalities a,, > --- > a3 > 0 and
S(w)T 2 I, M(w), we write K_¢ ¢ by Kw(a), where w = (wy,--- ,wy,) and
a=(ay, - ,anm). For w=(w') and a = (a1), we write Ky1(a;) for Kw(a). Let

us list an example of the K-matrix.

Example 5.5.1. Let I' = A; and w = 2 with 0 = —1 so that &;(w) = T*BP2 =

T*P! is the cotangent bundle of the complete flag variety of Sp, = SLi. So
by [MO12, 4.1.2], we have
y {

} € End(C?(h, a)).

nl:r
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X

a1 +as =0 e’ a1 —as =0

FIGURE 1. Reflection equation

Since Ke e = 1, the identity in (73) yields the following proposition.
Proposition 5.5.2. The K-matriz is unitary, i.e., Ky(—a) = Ky (a)™L.

Suppose that T is a two-dimensional torus in Gg,. A typical 1-parameter sub-
group in T is given similar to (51) for various (a1, as) € Z*:

(74)
Aar.ay i CC = GGt idyo @ (t"idyr @ ¢t~ “idys,- ) @ (t*?idyz @t~ *?idyz.- ).

The real form of Lie(T) is thus a plane R? whose walls are the lines a; = 0, as = 0,
ay —agy = 0, and a3 + a3 = 0. In particular, there are 8 chambers in Lie(T),
which is exactly the Weyl chambers of type By/Cs (see Figure 1). Let Res e denote
Maulik—Okounkov’s R-matrix on the torus equivariant cohomology of Nakajima
variety. Under this setting, the X-matrix satisfies the reflection equation, instead
of the Yang—Baxter equation for the R-matrix.

Proposition 5.5.3. The X-matrixz satisfies the following reflection equation:

(75)
Kwz(a2)R(a1 + az)Kyi(a1)R(a1 — az) = R(ay — a2) Ky (a1)R(a1 + a2)Ky2(asz),

where the Kyi(a;)’s are understood as Ky1(a1) @ 1 and 1 @ Ky2(az), respectively.

Proof. If the R’s in the equation are replaced by the X’s, then this holds because
both sides are the same as KX_¢ ¢, where € is the chamber in Figure 1. It remains
to show that R(a1 £ a2) = K(a1 £ a2). Under the setting (74), the condition
a1 — ag = 0 defines a subtorus T’ in T so that &¢(w)T = & (wP) x M (w! + w?)
by Proposition 5.2.1. By general properties of X/R-matrices, the X-matrix K¢/ ¢
of crossing the wall a; — ags = 0 in Figure 1 is the same as the K-matrix for the
torus T/T’ on &¢(w)T". Note that T/T’ acts trivially on the component &:(w?),
so the latter K-matrix is Maulik—Okounkov’s original R-matrix R(a; —az) on quiver
varieties. This shows that (a1 — a2) = R(a1 — a2). The other equality can be
obtained by the same argument. The proposition is thus proved. (Il
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In general, the X-matrix Kw(a) can be obtained from the Kyi(a;)’s via the so-
called fusion procedure. In particular, when w contains two components, it reads
as follows.

Proposition 5.5.4. One has
Kwt w2 (a1, a2) = R(az — a1)Ky2(a2)R(ar + a2) Ky (ar)

(76) = Kor (a1)R(a1 + a2)K2 (a2) R (a2 — ).

Proof. We have K1 w2 = K_¢er,¢/(a1,az2), where the chamber € is given in Fig-
ure 1. The proposition follows by multiplying R(az — a1) on both sides of Equation
(75) and using the unitary property of the X-matrix. O

Remark 5.5.5. As we learnt from Weigiang Wang, the algebraic K-matrix for quan-
tum symmetric pairs of type AIII/IV first appeared in [BW13]. The relationship
between the X-matrix in this section and the algebraic ones in [BaK16] is not clear.

5.6. Twisted Yangian via the FRT formalism. Let Y be Maulik—Okounkov’s
Yangian, which is formulated in the framework of Faddeev—Reshetikhin—Takhtajan
[FRT]. In particular, the algebra Y is a subalgebra in the product [T, » H7(S¢(w)T)
®Fr generated by the matrix coefficients in the R-matrix Ro 1 (ag—a1) - - - Ro.m (a0 —
@) with respect to ag (see [MO12, 6.2.6]). Let Y, be the subalgebra of Y generated
by the matrix coefficients with respect to ag of the operators

(77)  Ro,m(ao — am) -~ Ro1(ao — a1) - Ko(ao) - Ro,1(ag — ar) - - Rom(ao — am)-

Note that operators of the above form satisfy the reflection equation, which can
be shown by induction in the following. In light of this property, we shall call Y, a
twisted Yangian.

Proposition 5.6.1. Let R;;(a; — a;) be an R-matriz at the (i, j)-component on
the tensor Fy(ag) ® Fi(a1) ® -+ @ Fp(am). Let Ko(ag) be a K-matriz at the 0-
component. Then the operator, say 8(ag), in (77) satisfies the reflection equation

Ro,1(ao — b0)So(aog)Ro1(ao + bo)S1(by) = 81(bo)Ro,1(ao + bo)So(ag)Ro,1 (a0 — bo),
in the tensor Fy(ag) @ Fo(by) ® Fi(a1) @ -+ ® F(am,).

Proof. We shall prove the proposition by induction. When m = 1, we shift the
subindex by 1 and set (ag, bg,a1) = (u, v, w). Then we have

Riz(u — )81 (u)Ri2(u + v)82(v)

= Riz(u—0) (Riz(u—w) K1 (u)Riz(u—w)) Riz(u+v) (Ros(v—w)Ka(v)Res (v—w))
= Rio(u — v)Ry3(u — w) Ky (w)Raz(v — w)Ry2(u + v)R13(u — W) Ko (V) Rz (v — w)
= Ria(u — v)Ry13(u — w)Raz(v — wW)Kq (w)R12(u + V) Ko (V) Rz (u — w)Raz (v — w)
= Roz(v — w)Ry3(u — w)Ri2(u — v)K1 (w)R12(u + v) Ko (v)R13(u — w)Raz (v — w)
= Roz(v — w)Ry3(u — w)Ka(V)Ry2(u 4+ v) K1 (w)Ri2(u — V)Ry3(u — w)Raz (v — w)
= Roz(v — w)Ryz(u — w)Ka (V)Ry2(u + v) K1 (w)Rez (v — W) Ry3(u — W)R12(u — v)
= Roz(v — w)K2(v)R13(u — wW)Ry2(u 4+ v) Rz (v — W) K1 (W) Ry3(w — wW)R12(u — v)
= Roz(v — w)Ka(v)Raz(v — w)R12(u + vV)Ri3(u — W) K1 (W) R13(u — wW)Ri2(u — v)
= 82(v)Ri2(u + v)81 (u)R12(u — v),
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where the second equality is due to the modified Yang—Baxter equation
Riz(u — w)Rya(u + v)Raz(v — w) = Roz(v — wW)Ry2(u + v)Ry3(u — w),

via the unitary property of R, the third equality is due to the commutativity of
XKi(a) with R, if ¢ # 7, k, and the fifth one is due to the reflection equation of the
K-matrices.

In general, we write 8™ (u) for the 8 on Fy(ag) ® - -+ ® Fp(am). Then we have

8™ () = Ro.m (a0 — am)8™ ™V (w)Ro.m (ag — am).
In particular, there is the following with (ag, bp) = (u,v):

Ro1 (u — U)ng)(u)ﬂm(u + ’U)Sém) (v)

= Ro1(u — V)R, m41(u — am)ngfl)(u)fRoﬁmH(u — am)Ro1(u+ V)R my1(v — am)
85"V () Rami1 (v = )

= Ro1(u — V) Ro,m+1 (U — @) Ry g1 (v — am)ngfl)(u)Rm(u + v)Sémfl)(v)
Ro,m+1(U = am) Rim41(v — am)

= Ryt (U — ) Roms1 (1 — am)Ro1 (u — v)8 ™ (u) Roy (u + )85 (v)
Rom+1 (U — @) R1mt1(v — am)

= Ryt (U — @) Roms1 (1 — an)8S™ ™ () Roy (u + v)8™ ™ (w)Roy (u — v)
Rom+1(U — am)R1m41(v — @)

= Ri g g1(0 = ) Ro i1 (= ) 85" (W) Ron (w+ 0)85" ™ () Ry 1 (v = am)
Ro,m+1 (U — am)Ro1 (v — v)

= Rim1(0 = am)8S" ™V (W) R0 m 1 (= @) Ror (4 + v) Ry 1 (v — a) 8" (w)
Ro,m+1 (U — am)Ro1 (u — v)

= Rim1(0 = am)8S" Y (W) Ry g1 (v = @) Ror (w4 0)Rom 1 (1 — a) 8" (w)
Ro.m+1(w — am)Ro1 (u — v)

= 8™ (1) Ron (u + )81 (w)Rox (u — v).
The proposition is thus proved. O

From the definition, both algebras Y and Y, act on H% (M (w)) @ Fr and their
tensor products. Summing up the above analysis, it yields the following theorem.

Theorem 5.6.2. There is a (Y,Y,)-action on Hi (M (w)) ® Fr and their tensor
products.

6. EXAMPLE I: COTANGENT BUNDLES OF ISOTROPIC FLAG VARIETIES

In this section, we show that a natural involution on the cotangent bundle of the
n-step partial flag variety of type A,, is a special case of the automorphism o. As
a consequence, we show that cotangent bundles of partial flag varieties of classical
type are examples of the quiver varieties &¢(v, w).
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6.1. Notation. In this section, we assume that the graph I' is a Dynkin diagram
of type Aj:

(78) A,(n>1): 1 P n

Assume further that the dimension vectors v and w of the pair of vector spaces V
and W satisfy that w; =0 for i > 2 and w; > vy > vy > --- > v,,. Let Fy  be
the variety of n-step partial flags, F = (W = Fy 2 F;, 2 --- D F,, D Fpq1 = 0),
such that dim F; = v; for all 1 <7 < n. The cotangent bundle T*J y, of Iy w can
be defined as follows:

(79)  T*Fyw = {(z,F) € End(W) x Fywlz(F) C Fipy Y0 <i<n).

From Section 3.2, we assume that W = W is a formed space with the bilinear-
form (—,—)w. Let G(W) be the subgroup of GL(W) leaving the form invariant.
In particular, if the form is a d-form, then G(W) = Oy, is the orthogonal group if
d =1 and G(W) = Sp,,, is the symplectic group if § = —1. Let g(W) be the Lie
algebra of G(W). Then we have

G(W) ={g € GL(W)l|gg" = 1},

(80) g(W) = {z € End(W)|z = -2}

For each subspace F; C W, we can define its orthogonal complement F;- =
{w e W|(z, F;)w = 0}. We set F- = (F5, D F+ D --- 2 Fi* D F*). Note that
WoxV = (W1 =V, W1 —Vu_1,...,W1—V1). SOIf F € Fy , then Fte Fuwosv,w, thus
taking | defines an involution oy : Iy w — Fypwv,w- I the case when wy * v = v,
that is, v; + vi41-; = wy for all 1 <4 <n, the fixed point subvariety F7', under
o1 is a partial flag variety of the classical group G(W). Its cotangent bundle is
given by

T35 = {(z, F) € g(W) x 7 [2(F;) € Fiyn V0 <i<n}.
More generally, the assignment (z, F) — (—2*, F1) defines an isomorphism
(81) 01 T"Fvw = T"Fygav.w-

We must prove the well-definedness of o;. We only need to show —z*(F;t) C
Ft,forall1<i<n+1. For any u € F;_; and ' € F;*, one has

(82) (u, 2" (u))w = —(z(u), u)w =0,

since z(u) € F;. This implies that —z*(u) € Fi- |, as required.
From the above analysis, one has

(83) T = (T"Fy w)7, fwoxv=v.

Note that f — 7f = (f*)~! defines an automorphism 7 : Gy — Gyw. The
isomorphism o4 is T-equivariant, i.e., o(f.(z, F)) = ™.o1(z, F) for all f € Gy, and
(z,F) € T*Fy w. In turn, this induces a G(W)-action on the fixed point variety
T*F3,..
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6.2. Identification with o-quiver varieties. In this section, we assume that
a =1 and ® = wy is the longest element in the Weyl group W. Let 6 : I — I
be the involution defined by 6(i) = n+ 1 —i for all 1 < ¢ < n. Assume that the
parameter ¢ = (&, (¢) satisfies that (¢ =0, 0(§) =&, and & > 0 for all i € I. We
choose the function ¢ : H — {£1} to be e(h) = o(h) — i(h) with the label in (78).
Recall from [N94, Theorem 7.3], that is an isomorphism ¢ : M. (v, w) = T*F,
of varieties given by

(84)  [x]=[zh,pi, @] = (q1p1, W1 2 im ¢1 2 im qr1y1 2+ -2 im q1y1- - Ypn—1 2 0),
where y; is the z, such that o(h) =i+ 1 and i(h) = i.

Theorem 6.2.1. Under Nakajima’s isomorphism, the isomorphism o = 0¢ w, for
o = wy (24) on quiver varieties gets identified with the isomorphism o1 (81) on the
cotangent bundle of flag varieties. In particular, if wg * v = v, the quiver variety
&¢(v,w) is the cotangent bundle T*FJ, .

Proof. Similar to [N94, Theorem 7.3], there is an isomorphism ¢ : M_¢(v,w) —
T*Fyosv,w of varieties given by

(85) (x] = (qip1, W1 D kerxp, 1 ---a1p1 2 --- D kerxypy D kerpy 2 0),

where z; stands for the x; with o(h) = ¢ and i(h) = ¢ + 1. The proof consists
of two steps. The first step of the proof is to show that the following diagram is
commutative:

M (v, w) LT M_c(v,w)

gl v
T*g:v,w L> T*g:‘wo*v,w

where the isomorphism 7¢ is from (17). Note that g1 "p1 = —(g1p1)*. So it suffices
to show that the associated flags to [x] and ["x] can be obtained from each other
via the operator L. More precisely, setting zg = yg = 1, we need to show that

(86) (im qyr - yi1)t =ker Twy_q - Ty Tpr, V1<i<nm

Let fi = qiy1---yi—1. Then by definition, "z;_1--- "1 "p; = (=1)*fF. So for
all u € im f;, u' € ker (=1)'fF = ker f, there is v; € V; such that fi(v;) = u
and (u, v )w, = (fi(vi), v )w, = (vi, fF(W'))y, = 0. Hence we obtain that ker f* C
(imf;)*. Since the linear maps q1, y1, - . ., ¥i_1 are injective, we have that dim imf;+
dimker f* = dim V; 4+ dim W7 — dim V; = wy, which implies the equality (86). This
proves that the above diagram is commutative.

The second step is to show that the involution S,, : M_ (v,w) —
M (wo * v,w) commutes with the maps in (84) and (85), that is, Y = ¢Sy,.
Here we use wg(—€) = 0(¢) = &. Let us fix a reduced expression of the longest
element wy = $p(Sp—15n) -~ (81 Sn), so that, Sy, = Sp(Sp—15n) - (S1---Sn).
Observe that each time we apply S;, the parameter on the affected quiver varieties
always has a negative value at ¢. This allows us to use the definition (14). Now fix
a point [x] € M_.(v,w), with x given by

P 1 T2 Tn—2 Tp—1

I/V1 ‘/'1 V'2 ...... Vn 1 Vn

q Y1 Y2 Yn—2 Yn—1
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By applying S; - -+ S, to x, the point [x] gets sent to a point represented by

qp P z1
e _—
Wy kerx,_1---x1p kerxy 1wy
0 q Y1
Tpn—3 Tn—2
...... ker x,,—1%p—o ker x,,—1
Yn—3 Yn—2

where the arrow without a name is the natural inclusion. By applying S; - - - .S, for

i =2,...,n consecutively, we see that the point S, ([x]) is represented by
_ap _ar qp
Wy <ﬁker Tp_1-""T1P <ﬁker Tp_o- - T1P
------ — ker z1p — ker p
=~ =~
By (84) and (85), it implies immediately that ¢Sy, ([x]) = ¥([x]), completing the
proof. O

Remark 6.2.2. The identification in Theorem 6.2.1 indicates that the geometry of
general o-quiver varieties is quite complicated as we shall see from the following
remarks:

(1) In general, the quiver variety &.(v, w) is not connected. An example is as
follows. When 0 = 1 and w; is even, G(W) = Oy, is an even orthogonal
group, hence the cotangent bundle T*J7%, has two connected /irreducible
components if n is odd.

(2) The morphism 77 is not a resolution of singularities in general. Indeed, we
have a commutative diagram

Se(v,w) —>i T*F3%,

w”J{ ll’[
Si(v.iw) —2 g(W)
where II is the first projection. So we only need to know that II is not a
resolution of singularities. But this is well known; see [Fu03]. For example,
the morphism IT : T*F3F, — @?53’12), with v = (5,1) and w = (6,0), is
not a resolution of singularities since the fiber at any point of Jordan type
2212 contains two points. Note that II is generically finite to its image.
Note that II factors through the affinization map of T*FJ, which is a
resolution of singularities. It is not clear if the same holds for the affinization
map of &¢(v,w).

(3) The fiber (7)~1(0) is not equidimensional/lagrangian in general. Indeed,
by Corollary 8.3.4, it corresponds to the fiber of a partial resolution of
nilpotent Slodowy slices at eg, which is not necessarily equidimensional/
lagrangian.

(4) In general, the variety &1 (v, w) is nonnormal. In [KP82], the orbit closure
O32 12 in spg is connected nonnormal, which is a special case of &1 (v, w).
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7. NAKAJIMA—MAFFEI ISOMORPHISM AND SYMMETRY

In this section, we assume again that the Dynkin diagram is of type A,. We
recall Nakajima—Maffei’s isomorphism of the quiver varieties and partial Springer
resolutions of nilpotent Slodowy slices of type A. We deduce, as preliminary results
for later study, a rectangular symmetry and the column-removal and row-removal
reductions in [KP81, Proposition 5.4]. (During the preparation of this paper, we
noticed that these applications have appeared in [H15, Section 9].)

7.1. Nakajima—Maffei theorem. Recall from Section 6.2 that we define e(h) =
o(h) — i(h) for all arrows h. For any pair (v,w), we define a new pair (v =
(Vi)i<i<n, W = (Wi)1<i<n), where

(87) vV, =Vv;+ Z (j—i)Wj, Wizéi,l Z jw; V1<i<n.

j>it 1<j<n
To a pair (V, W) of I-graded vector spaces of dimension vector (v, w), we associate
a new pair (V W) of dimensional vector (v, w) whose ith component is given by

i h feegd h
(88) Vi=vie @ W W= @ w,
1<h<j—i 1<h<j

where W( ) is an identical copy of W for all h. For convenience, we set Vo = 0 and

VO = W1 With respect to the decomposition of VZ, a linear map 7; : ‘Z — YN/iH is
a collection of the following four types of linear maps:

(89)
X; Vi Vipr, T Vi W 10w vy, 0w w®,

27

forall j >i+4+1,1 < h < j—i. Similarly, to give a linear map y; : ‘Z—H — Vs
the same as to give a collection of the following four types of linear maps for all
j>i+1,1<h<j—i

(90)

Yi:Vier = Viy SV e Vi » W ST w) v, s ) o w,

Following Maffei, we define the following numerical data:
grad(T7 /) ) = min(h — B + L h — I/ + 1+ j' — j),

(91) ey
grad(SZ{j’f;) =min(h — k', h —h' + 35 —j).

Let W] = EBlSthﬂ. Wj(h) so that V;, = V, @ W/ for all 0 < i < n. Let ¢; :

W! — W/ be a linear map whose component W;h) & Wj(h_l) is equal to idy, for
2 < h < j—iand 0 otherwise. Let f; : W/ — W/ be a linear map whose component
(h) i W(hH) is equal to h(j —i — h)idw, for 1 <h < j —i—1 and 0 otherwise.
The triple (ez, fi, les, fi]) in sl(W)) is a Maffei sly-triple.
Now assume that (¢ = 0 and we write A(V, W) instead of A (V,W). We pre-
serve the convention used in previous sections: x;/y; stands for the map associated
to the arrow ¢ — i+ 1/i + 1 — 4. Following Maffei, an element X = (Z;, ¥;, Di, ¢;) €
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A(V, W), represented in the form of (89)—(90), is transversal if it satisfies the fol-
lowing conditions:

(t1) Tz‘,/j,h =0,

(t2) T/ =0, iR £1,

(t3) T =0, if grad(T7 ') < 0,

(t4) T =0, if grad (7)) = 0, (7', 1) # (.h + 1),
(t5) T =idw,, i grad(T/)5) = 0, (5, h) = (. h + 1),
(5) SIM —idw,, if grad(Sz,;rf;’ )= 0,05, 1) = (j, h),
(s4) S =0, if grad(S734) = 0,77, h') # (G, h),
(s3) S]/J’;L/ =0, if grad(SfJ’ h) <0,

(s2) SYin=0, if h#j—i,

(s1) S =0,

(1) [mw:¥iZilw; — e, fi] = 0.

Proposition 7.1.1 ([M05, Lemma 19]). There is an injective morphism ® : A(V, W)
— A(V W) of varieties defined by the following rules. For all x = (xz, YisDisGi) €

AV, W), the element ®(x) is the unique transversal element in A(V, W) that sat-
isfies

(92) X; = w;, Y =y,

i+1,1 _ 1% _
(93) Ti,v = Pi+1, Si,i+1,1 = (i+1-
Moreover, TZJ‘}} and Sivj , are zero unless j > 1, and in this case they are

"
(94) Ty = OnaYit1 - Yj—1Dj, SYin = Onj—i€jTi -1 Tiy1.

Assume the parameter ¢ satisfies that &; > 0 for all ¢ € I. The homomorphism
® restricts to an injective homomorphism A% *%(v, w) — A$*%(V, W) which is com-
patible with the Gy- and Gy-actions on the respective varieties. Hence it induces
closed immersions with (¢ = 0:

(95) @M (v, w) = M(V, W), o Mo(v, w) = Mo(V, W)
such that we have the following diagram:

M (v, W) —— M (V, W)
(96) ﬂl lﬂ

Mo (v, w) —=— Mo(V, W)

Moreover, pg(0) = ey, where eq is in the sly triple (e, fo, [0, fo]) from the para-
graph below (91). Now set

n= (VO — Vi, Vi —V2,..., V1 _Vn7vn)~

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



34 YIQIANG LI

We have p; = w; +--- +w,, — v; + v;_1. Reorder the entries in p in decreasing
order: py > p2 > p3 > -+ > ppy1 and set

ul — (P17 P29P27P3 . . pnPnTPnt1 (n + 1)Pn+1_

Let O, be the nilpotent GL(Wl)—orbit in g[(Wl) whose Jordan blocks have size
. It is known that the closure 6#’ of the orbit O, is the image of the first

projection II from the cotangent bundle T35 & to g[(Wl) so that via (84) we have
a commutative diagram:

M (V, W) —— T"Fow

(97) ”l ln

m (%) —2s 0,

1R

where 90t (v, w) is the image of w. Recall again Maffei’s sly-triple (eq, fo, [0, fo])
from the paragraph below (91). Following [SI80a, S180b], the Slodowy transversal
slice of the orbit of ey at eg is defined to be

Se, = {z € gl(W)|z is nilpotent, [z — e, fo] = 0}.

Note that ey € Oy, where A = 1V12W2...nW¥n_ For simplicity, we also say the
trivial triple (0,0,0) is an sly-triple, and in this case the Slodowy slice is the whole
nilpotent cone. For convenience, we set

(98) S}J/,)\ = 6;/ N Seo and §M/7,\ = Hfl(SM/,)\%

where II is from (97). The following theorem is conjectured by Nakajima [N94,
Conjecture 8.6] and proved by Maffei [M05, Theorem 8§].

Theorem 7.1.2 ([MO05, Theorem 8], [N94, Conjecture 8.6]). The compositions
dp and gopo of morphisms from (95) and (97) yield isomorphisms M (v, w) ~
§H/7)\ and My (v,w) =~ S, », respectively. In particular, we have the following
commutative diagram:

gﬁc(v, W) L) gﬂ/’)\

(99) wl ln

m, (V, W) $0¥0 S#/y)\

In what follows, we discuss two applications of the above remarkable theorem,
which could have been stated in [M05] and has been discussed in [H15, Section 9.
We present the two applications in the following as a preparation to the analogous
results in classical groups and their associated symmetric spaces.

7.2. Rectangular symmetry. In this section, we deduce a rectangular symmetry
from Theorem 7.1.2. If we relabel the vertex set I by i — 6(i), where 6(i) =
n + 1 — i, we can repeat the process in Section 7.1 again. In particular, we obtain
an immersion

mc (V7 W) — T*?Q@,
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W A
w |
' A

A —
n+1 n+1

FIGURE 2. Rectangular symmetry

where the pair (V,w) is given by
(100)

Wi = 0;,1 Z (n+1—=7)wj, Vi=Vap1-i+ Z (J—i)Wpt1—; VI<i<n.
1<j<n il

Similar to the sly-triple (e, fo, [eo, fo]), we have an sly-triple (€0, fo, [€0, fo]) Where
the nilpotent element €y has the Jordan type 1o 2Wo) ...4Wo6) ... nWo() | Similar
to the partition g, we also have a partition I = (Hi)1<i<n+1 = (Vic1 — Vi)i<i<nt1
determined by v and let 7’ be its transpose. Observe that

Vi—itl = Vooita = Wi+ + W1+ Vi — Vi1
This implies that
(101) Wi+ fp—ive =w1+wot--+w, ViI<i<n+l

In particular, if the transpose y/ is p/ = 1#12#2 ... (n + 1)¥n+1, then the transpose
i of ois
(102)

A= 12t (n - 1) = (90 i<, Ho= Y Wi— D

1<i<n 1<i<n+1

Hence we have a similar result as in Theorem 7.1.2 in describing the new immersion
via the intersection Sﬁ/,i = @ﬁ/ N &g, and its partial Springer resolution Sﬁ/,i =
Ha%v(SgO), where Il  is the natural projection similar to II. Altogether, we have
the following result.

Proposition 7.2.1. Let (v,w) and (V,W) be the pairs defined by (87) and (100)
such that associated compositions p and i satisfy (101) (see also (102)). Then the
following diagram is commutative with isomorphic horizontal maps, which sends eg
of Jordan type (i%i)1<i<n to €y of Jordan type (iVo® )1<;<yn in the base:

(103) Hv,wl lﬂo,w

In light of (102), the partitions p’ and 7’ fit into a rectangle of size (n + 1) x
Y 1<i<n Wi. Similarly, the Jordan types A = (1%#);<;<,, and 2 = (IWoD )1 <i<p
of ey and €, fit into a rectangle of the same size, depicted in the following. This
explains the name of the section.
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FIGURE 3. Column-removal reduction

Remark 7.2.2. Proposition 7.2.1 yields an identity on the Kostka numbers:
K = K5 With A= (")icicn, A= ("0 )1<icn,
first proved by Briand—Orellana—Rosas in [BOR15].

7.3. Column/row-removal reductions. Now we discuss the second application
of Theorem 7.1.2. It is clear that the quiver varieties (v, w) are isomorphic to
the quiver varieties M (v, W)’ of Dynkin diagram A,,; with the dimension vectors
v, W given by

\VI():O,\“Q-:vi,l;vvv():(),vvvizwi,l V2§z§n+1

By Theorem 7.1.2, we have M. (v, w)" = 5,1',5\’ where /i has an extraentry >, ., ., W;
than g and A = ((¢ + 1)%*)1<i<n. It yields the following proposition.

Proposition 7.3.1. The following diagram is commutative with isomorphic hori-
zontal maps, which sends ey of Jordan type (iV¢)1<i<n to & of Jordan type ((i +
1)%)1<i<n in the base:

(104) l

If we write the partitions involved as Young diagrams, then the partition A can
be obtained from A by removing the left-most column of A via Figure 3. The
partition ' can be obtained from i’ by removing part of the left-most column j’.
Thus, Proposition 7.3.1 is a geometric version of Kraft—Procesi’s column removal
reduction in [KP81, Proposition 5.4].

Now we turn to provide a geometric version of Kraft—Procesi’s row-removal re-
duction in [KP81, Proposition 4.4]. This is obtained in exactly the same spirit as
that of column-removal reduction. Precisely, we can identify the variety M (v, w)
with another quiver variety 9 (¥, W)’ of type A,y1, where the vectors Vv and w
are given as follows:

Vi=Vi, Va1 =0, W; =w;, Wy 1 =a V1<i<n.
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FIGURE 4. Row-removal reduction

If the associated pair of partitions to w,w is (¢’ = (iu(i)lgign+17 A= (1% )1<i<n,
then the similar one for v, w will be given as

(105) il =191t (4 D)Fente X = 1% gV (4 1),

(Note that v; = v; + > j>i(i —9wi+ (n+1—1i)a.) Therefore, by Theorem 7.1.2
and the identification M (v, w) = M (V, W)’, we obtain the following proposition.

Proposition 7.3.2. The following diagram is commutative with isomorphic hori-
zontal maps, which sends eg of Jordan type (i%")1<i<n to € of type ((1V* ---n¥(n
+ 1)) in the base:

S A — Sﬂ/,x

(106) l l

Su’v\ ’ Sﬁ’,;\'

Note that the partitions z/ and A can be obtained from ji’ and A by removing the
respective first ath rows in Figure 4. So Proposition 7.3.2 is a geometric version of
Kraft—Procesi’s row-removal reduction. Of course, by combining Propositions 7.3.1
and 7.3.2 we obtain a geometric version of the general reduction in [KP81, Propo-
sition 3.1], which plays a critical role in the study of minimal singularities in GL,,.

8. EXAMPLE II: PARTIAL RESOLUTIONS OF NILPOTENT SLODOWY SLICES

This section is devoted to the compatibility of Maffei’s morphism and the isomor-
phism o. From this, we see that the o-quiver varieties encompass partial Springer
resolutions of nilpotent Slodowy slices of classical groups. As a consequence, we
deduce the rectangular symmetry for classical groups. The symmetry provides a
natural home for the recent results of [HL14, W15] on the interactions of two-row
Slodowy slices of symplectic and orthogonal groups. We also briefly discuss a geo-
metric version of Kraft—Procesi’s column-removal and row-removal reductions for
classical groups in [KP82, Proposition 13.5].

We again assume that ® = wy and a = 1.
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8.1. Maffei’s morphism and the bilinear forms on V and W. Assume that
V and W are formed spaces with signs by and Oy, respectively. Recall that we
set Vo = 0 and VO = W1 We define a nondegenerate bilinear form on XN/i, for all
0<i<n,by

(107)

<(Uivw](‘h))jzi+h (v§7u;h))jzi+h>‘7 = (vi, v}y,

_1\i—ith [, (R) (_j,m,h))
Y e ()
j>i+h
where v;, v} € V; and w(h), §h) € W(h) such that 1 <h < j —i. The form (—|—)¢
on V, may not be a d-form. However, if the signs &, and dy alternate, it turns out
to be the case.

Lemma 8.1.1. If the sign dw is I'-alternating as in Proposition 3.2.2, then W1 18

a (— )”‘15“,1 -form (for each i). If further Sy is - alternating and 5‘,15“, i=—1
for all i, then the form on Vi is a (5‘,,, -form for all 1 <i < n.

Proof. We only need to observe that for a fixed jo such that jo — i is even (resp.,
odd), then the restriction of (—|—)y to B;<p,<;) Wj(:) is a —d,j,-form (resp.,
Ow,jo-form). Specifically, we have
h
( 50))1§h§j0—ii(w§o))lﬁh§j0—i>‘7i
jo—i h h
= (=1)° H_l&WJo<(w§'0))IShSJO*i|(u§‘o))1ﬁhﬁj0*i>\7ﬂ

for all elements (wj(-:))lghgjo—i’ (u;g))lghgjo_i in @1Shgj07i WJ(Oh) U

Let T7 : ‘7J — V; denote the right adjoint of the linear map T : Vi — 17]', with
respect to the forms on V; and Vj. In particular, the right adjoint of a point in

A(V, W) represented as the collection of linear maps in (89) and (90) satisfies the
following:

Xf =X, vi=vr,
(108)
(T = (T (8¥i1,0)" = (S )"
(T30 = (R Ty (ST0F = (~1y ST

Indeed, the identities in the first two rows are due to the fact that the signs of
the forms on V; and W 1 at vertex ¢ remain unchanged. For simplicity, we write

t= TJ ’h/ and then
(=17 D), v)w, = (Hw)lv)g, | = (Wt )y = (=17 7 (w15 (0))w,,,

i+

for all u € Wj(,hl) and v € Wj(h). So we have t! = (—1)J=7"Th=h"=1* \hich is the
first identity in the last row of (108). Identities in the second column of (108) are
proved in a similar way.

By the definition (15), we have an automorphism 7 : A(V, W) — A(V, W) with
respect to the forms on V and W. We have the following compatibility result of
Maffei’s morphism and the automorphisms 7 in (15) and its analog 7 on A(V W)
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Proposition 8.1.2. The following diagram commutes:

AV, W) —2— AV, W)

d §
AV, W) —2— AV, W)

Proof. Fix a point x = (x4, i, pi, ¢;) € AV, W). By definition, the point ®7(x) is
a point in A(V, W) determined by the transversal conditions (s1)-(s5), (t1)—(t5),
(r1) and the following;:

(109) X; = -y}, Y; =z},

K3
(110) TZJ\F/“ = —q;i1; Si‘,/iJrl,l =Pit1-
So it suffices to show that the point 7®(x) satisfies the transversal conditions and
the above.
We put a superscript 7 on the upper left for the decomposition (89)—(90) of
7®(x) with respect to the fixed decompositions of V and W. By (108), the point
TP(x) satisfies

(111) Xi= Y=y Y= X] =af,

Frpil,1 « 7 i+1,1 x

(112) TzJ\r/ = _(Si‘,/iJrl,l)h = ~qit1» Si‘,/iJrl,l = (TZJ\F/ )h = Dit1-
Hence it remains to show that the point 7®(x) satisfies the transversal conditions.
The conditions (ti) and (si) for 1 <4 <5 for 7®(x) follow from the conditions (si)
and (ti) for ®(x), respectively. More precisely, for (t1), we have

7 jj—it1—h

Ti‘,/j,h = _(Sg,lj/ * )h =0.
For (t2), we notice that h’ # 1 if and only if (' —i+ 1 — k') # j' —4. So by the
(s2) of ®(x),
Frpj’ b/

T;’V - _(Si‘,/j/,j’fiJrlfh/)h - 0

This shows that 7®(x) satisfies the condition (t2). For (t3), we observe that

gy J,i—(i+1)+1=h
grad(T7 7, ) = grad (S5 5 i fy—nr )

and (j/,h) # (j,h+ 1) if and only if (j,j —¢—h) # (§,5'—i+1—h'). Thanks to
these observations and the (s3)—(s4) of ®(x), it leads to
;T?-l’h, - _(S_?‘7j—(i+1)+1—h)h -0

ij,h T 4,j",3" —i+1=h’
if either grad( ?Tf;},i) < 0 or grad( ?TZ];Z’) = 0 and (5,h') # (4,h+1). If
grad("T/ 1) = 0 and (j,j — i — h) = (j',j' — i+ 1~ h'), then
jj—(i+1)+1—h j i — i+ 1)+ 1—h . . :
(Sg,gj",j('—i-zl—h’ )h = _(Si;’,j(’—i—zl—h’ )= —(1de) = —lde,

where the second equality is from the (s5) of ®(x). So we have

T =idw,, i grad( TTY ) = 0,5, 1) = (G, b+ 1).
By now, it has been shown that the point 7®(x) satisfies the conditions (t1)—(t5).
By an entirely similar argument, we can check that the point 7®(x) satisfies the
con?iti)ons (s1)-(s5), once we observe from (108) that (Tjjﬂj—_i:r_lgh)h = (TZJJJJ—_Zj-_l;h)*
for (s5).
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Recall that the automorphism 7 on sl(W/), compatible with 7 on A(V,w), is
given by z — —zf. By a similar analysis as above, one can check that Te; = e;
and " f; = f;. This implies that the point 7®(x) satisfies the last condition (r1),
completing the proof. O

By Proposition 8.1.2, (18) and (95), we have the following.

Proposition 8.1.3. Assume that ( = (£,0) with £ satisfying that & > 0 for all
i € I. Then the automorphism ¢ in (17) and the embeddings ¢ and @q in (95) are
compatible. Specifically, we have the following commutative diagram.

M (v, w) - M (V, W)
M (v, W) MW 7
(113) B
v %o "
x DM (V, W) o > My (V, W)
To -7 To
Mo (v, w) i Mo (v, W)

8.2. Maffei’s morphism and reflection functors. In this section, we show the
compatibility of Maffei’s morphism and the reflection functors on quiver varieties
in Section 3.1.

Recall that to a pair (v,w) and a fixed vertex i € I, we associate a new pair
(v, w) = (8;*wV, W) in Section 3.1. To the same pair, we attach a third pair (v, w)
in Section 7.1. Now apply the operation in (3.1) to (v, w); we have ((v),w) =
(s; *% v, W), while applying the procedure in Section 7.1 yields (v/,w). We now
compare (v)" and v'. If j # 4, then (v); = (v); = (v');. With the convention
Vo = W1, the two vectors (V)" and v’ coincide at j = i by the following computation:

(Vi =Via+Vip—Vi=vi+ Y (j—i)w; =V
j>itl

As a result, we have (V)" =v'.

Similar to Section 3.1, we fix a triple (V, V', W) of dimension vector (v,v’, w)
and V; = Vj’ for all j # i. We define ‘7, W, and V' as in Section 7.1. In particular,
Vj/ =V, = Vj@®k2j+l,1§h§k—j W}Eh) if j # i and Vi/ = Vil@EBkziJ,-l,lgkgk—i Wk(:h)'

Recall diagram (12) from Section 3.1. We write AS**(V, W) for AE'CSS(V7 W)
when (¢ = 0. With the above preparation, we are ready to state the compatibility

of Maffei’s morphism ® in Proposition 7.1.1 with the reflection functor diagram
(12).

Proposition 8.2.1. Fiz i € I. Assume that { = (£,0) and there is w € W such
that w(§); > 0 for all j € I (equivalently, here is w € W such that w(§); < 0
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Vj € I). The following diagram commutes:
Af—ss(‘/7 W) F‘ss(‘/7 V/, W) Asi(ﬁ)—ss(‘//7 W)

‘| vl |+
ASSS (VW) —— F*5(V, V', W) —— AS©O=3(V/ W)

where the rows are (12) attached to the triples (V,V', W) and (‘7, V', W), the ver-
tical morphisms ® and ®' on the left and right are the restriction of the mor-

phism from Proposition 7.1.1, and the middle one is defined to be ®p(x,x’) =
(®(x), '(x')).

Proof. We first assume that & < 0 for all j < 0. Then the morphism ® is well-
defined by [M05, Lemma 19]. In this case, it suffices to show that the pair (X,X’) =
(®(x), D'(x’)) satisfies the conditions (R1)—(R4). In light of [M02, Lemmas 28, 30],
this shows that the maps ®' and ®p are well-defined, which is not obvious since
the X and X’ are defined inductively.

We define a new element y € M(IN/’ , ﬁ//), as a package of linear maps with respect
to the decompositions of 17, 1% , and W, such that a linear map in y is defined to
be its counterpart in X’ if it involves V/, or its counterpart in X otherwise.

If we can show that the pair (X,y) satisfies the conditions (R1)-(R4), then we
have y € Asi(o'ss(f/’,W) by [M02, Lemma 28, Lemma 30]. By the definition
of ¥ and [M05, Lemma 18], we immediately see that y = X', which implies the
well-definedness of ®p.

It remains to show that the pair (X,y) satisfies (R1)—(R4). Clearly from the
definitions, the pair satisfies (R3) and (R4). We now prove that the sequence in
(R1) for the pair (X,¥y) is a complex, i.e., b;(X)a;(¥) = 0. We consider the restriction
to the subspace W/ = @511 1<n<j i Wj(h) of V' = V] ® W/, and we get

bi(X)ai(¥)lw; = bi(X)a;(X)|lw; = —pi(X)|w; = 0.

We then consider the restriction of b;(X)a;(y) to V' in two cases. The first one is
to consider 7y, b;(X)a;(¥)|v;, where 7y, is the project to the component V;. Any
component in 7y, b;(X)ai(y)|v; passing through W/, is zero. The possible nonzero

component of the linear map v, b;(x)a;(y)|v; passing through W/_; is when it fac-
tors through its subspace Wi(l)7 which is p;¢; if we use the notation x = (x4, i, pi, ¢i)
and x’ = (z},y.,p},q;). Hence we have

%4 = bi(X)ai(Xl) =0.

Ty, bi(X)ai(y)
The second case is to consider the component myyb;(X)a;(y)|v;. In this case, the
possible nonzero component factored through the map myb;(X)|w;_, is when it

factors through the linear map ﬂj;jl_)j%_ii : Wj(j ), Wj(j ~ . and it equals
Sx'l,j’jf”l(i’) of X’. On the other hand, the possible nonzero component fac-

tored through the map Ww;bi(§)|w1(+1 is when it factors through the linear map
_sV

ij.—i
to zero, and therefore we obtain

mw;bi(X)ai(y)lv; = 0.

Altogether, it confirms that the sequence in (R1) for (X,y) is a complex.

(X) of X and it equals —SY, ;_;(X)a; = =S¥, ;_;.1(X'). The two sums
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It remains to show that the map a;(y) is injective for the pair (X,¥) to satisfy
(R1). Clearly a;(y)|y; = a;(X')|v is injective. The fact that S]’ 1. = idw; implies
that a;(y)|w is injective. So a;(y) is injective, and thus (Rl) holds for (X,y).

Now we show that the pair (X,y) satisfies the last condition (R2). We observe
from the definition of y that a;(X)|w,mw/b;(X) — ai(y)|w;mwbi(y) = 0. So it is
reduced to show that a;(X)|v,mv;b:(X) — ai(y)|v;mv/bi(y) = 0. By using the (t1)
and (s1) of X and y, we have

[a; (%) v, v, b3 (X) — ai(¥) lvy v i (9)]lw,, = 0,
mwy,, [ai(X) vy bi(X) — ai(y) vy vy 0i(3)] = 0.
Moreover, in light of (t2) and (s2), it yields
mws_ [ai(X) v v, 0i(X) — ai(¥) vy v bi(¥)]lwy_,

= @Si‘,/j,jfiw‘/iJrl [az(x)bz(x) - ai(x )bz(xl)] Vig1 @Tz{\}l =0.

j>i §'>i

The following vanishing results can be obtained in a similar manner:
v, [ai () v, v, b (%) —ai(¥) lv; mv 0i(9)] o, = ai(x)bi(x) — ai(x")bi(x") = 0,
Ty, [ai (X)[v, mv, bi(X) —ai (¥) [vy v bi(y )]|W; )

= [ai(x)bi (x) — ai(x)b; (x)]

0i(X)—ai(y)|v; v bi(¥)]
= EB Si‘fj’jfiﬁvi_*_l [a;(x)b;(x) — a;(x')b;(x')] = 0.

j>i

./
J51
Vit @TLV =0,

§'>i

T [ai(X) U
i—1

These analyses imply that the pair (X,y) satisfies (R2). This finishes the proof
under the assumption that {; < 0 for all j € I.

As a result, we see that the map ® is well-defined if £ is chosen so that the
entries in s;(€) are positive. Now the general case is obtained by an induction on
the length of w. The proposition is thus proved. O

Let S : Me (v, w) = M, ) (s:%V, W) be the reflection functor in (14) defined for
the pair (v, w). As a consequence of Proposition 8.2.1, we have the compatibility
of the reflection functor S; (14) and Maffei’s morphism ¢ (95).

Proposition 8.2.2. Fiz i € I. Assume that ¢ = (£,0) and there is an element
w € W such that w(§); > 0 for all j € I, or w(§); <0 for all j € I. Then the
reflection functor S; in (14) and the imbedding ¢ in (95) are compatible with each
other. More precisely, we have the following commutative diagram:

Me (v, w) S SN M (v, w)
(114) sli lg
msi (C)(Si *V, W) L) msl(c) (51 * V, VT’)

8.3. o-quiver varieties and partial resolutions of nilpotent Slodowy slices.
For the pair (v,w), let o : M (v, W) — M_,,(¢)(wo*V, W) denote the isomorphism
defined by (24). By combining Propositions 8.1.3 and 8.2.2, we obtain the compat-
ibility of the isomorphism o (24) and the immersion ¢ (95).
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Proposition 8.3.1. Assume that the parameter ( = 0 or ¢ = (§,0) satisfies that
& > 0 for all i € I. Then the isomorphism o = o¢ ., for ® = wy in (24) and
the imbedding ¢ in (95) are compatible, so that we have the following commutative
diagram:

Me (v, w) S SN M (V, W)

(115) al la

My (¢) (w0 * v, W) —— My ¢ (wo * V, W)

By an abuse of notation, let & be the isomorphism on T*F5 & defined by (81)

with respect to the form on W in (107), which is compatible with the isomorphism
on M, (v, w) under the same notation by Theorem 6.2.1. So we have the following
corollary.

Corollary 8.3.2. Under the setting of Proposition 8.3.1, the isomorphism o is
compatible with the isomorphism o on T*F5 & via ¢p.

Recall the varieties guz, x and S,/ » from (97). We have the following analogue
for classical groups of the Nakajima—Maffei theorem.

Theorem 8.3.3. Assume that ( = (£,0) with & > 0 for all i € T and 6(&) = &.
Assume further that wo*v = v. The compositions ¢p and dopy of morphisms from
(95) and (97) yield isomorphisms (0 = o¢ w, for ® =wg)

(116) Se(v,w) = 55,7)\ and 6q(v,w) = 55,7)\.
In particular, we have the following commutative diagram:

@ ~
S¢(v,w) %, Z,))\

(117) ﬂal ln

61(V7W) ¢D4PD SU/ A

Proof. The isomorphisms are consequences of Corollary 8.3.2 and Theorem 7.1.2.
O

We now derive some specific results from Theorem 8.3.3 assuming that W is
a formed space with alternating sign dw. Recall from Lemma 8.1.1 that if dw
alternates, then W is a d-form with § = (5w 1. Precisely, we write S° )”A for S A if
the form associated to ¢ is a symmetric form. Similarly there are notation S Mo

S%, and S%.

Corollary 8.3.4. If §y, alternates, i.e., 0w 0w i+1 = —1 for all1 <i <n—1, then
the isomorphisms in (116) read as follows:

(118) Sclv,w) = 8%, &1(v,w) = 8°%,, if Swi = (—1)",
(119) Sc(v,w) = %, &i(v,w) = ST, if b = (1"
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8.4. Rectangular symmetry for classical groups. By combining the rectan-
gular symmetry for general linear groups in Section 7.2 and Theorem 8.3.3, we
can obtain a rectangular symmetry for classical groups. We repeat the process in
Section 7.2. We have an immersion

Se(v,w) — T2

v,w>
where the pair (v, w) is in (100) and o is the automorphism induced from a form of
the vector space of dimension w; defined similar to (107). There is a similar result as

Theorem 8.3.3 in describing the new immersion via the intersection Sg, 1= 5;, ﬂSgO
and its partial Springer resolution gg/,i = H;év (Sz,)%. Thus, we have the following

counterpart of Proposition 7.2.1.

Theorem 8.4.1. Let (V,w) and (V,W) be the pairs defined by (87) and (100)
such that associated compositions p and i satisfy (101) (see also (102)). Then the
following diagram is commutative with isomorphic horizontal maps, which sends egy
of Jordan type (i%)1<i<n to € of Jordan type (i™°®)1<;<, in the base:
So\—— &
(120) Hv,wl
SZ-/vA i> SZ\
Remark 8.4.2. Perhaps the most important case of Theorem 8.4.1 and Corol-
lary 8.3.4 is the rectangular symmetry between geometries of Sp,,, and Og, for
various w and w’ and respective Lie algebras sp,,, and 0g,. Specifically, assume
that n is even and &y alternates with dw,; = (—1)°®. Then Theorem 8.4.1 (120)
yields the following commutative diagram:
N = Sow
Sy — Sﬁ/,X
(121) Hv,ﬁ,l lno,w
P = 0%
Sy — Sﬁ',i
Further, the associated Springer fibers ??v@v;e[) and IT%‘:A"VAV;QO of Il & and g & are
isomorphic:

(122) Flre = Fw

V,W;eq V,W;eo

In the case when n is even and d,, alternates with &y ; = (—1)”1, one has a
similar diagram with the pair (spg, 0w ) replaced by (0w, $pg ). In a similar manner
for n being odd, one gets similar diagrams with the pair (spg,04) replaced by
either (spg,spg) or (0%, 0w)-

Now we single out a special pair of (v, w) for (121) and (122) in the following
example and relate it to the works of Henderson-Licata [HL14] and Wilbert [W15]
(see also [ES12]).

Example 8.4.3. Fix an integer k such that 0 < k < n — k. Define w' by Wj =
0ik + 0in—k. Recall that n is even and set r = n/2 for convenience. Let vl be a
vector defined as follows:

i (1(2)--- | k—=1|k|--|r|r+1|- |n—k|n—k+1| - |n—-1
vililel o lek=1]k|l - |Eklk+1] - |k+1 k 2 1

3
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With respect to the pair (v, w'), the data in (121) read

—

Vi=(m—-1,...,r+1rrr—1,...,1), v~v}:5¢1n
fézl(n—l—Q)

Note that vi has an extra r, while  + 1 is missing from ¥1. In particular, we have

s_q.s

Vi=m+1,...,r+3,r+2,rr—1,...,1),

p=n', €0 € Ot (n—yr NP,
i=1"n+1)" €0 € Ok 1)t (nt1-k)t N Onta.

The bottom row of (121) reads as the following, which is Corollary 5.2 in [HL14]:

SP., On+
(123) Snl El(n—k) — 811(n2+1)1 (k+1) 1 (n+1-k)1"

Note that both sides in (123) are empty unless k is even or k =n — k.

Observe the S’éﬁ%ﬂ is the complete flag variety of Sp,. Hence the left-hand
side of (122) is the Springer fiber, say Beh™, of ep. In light of the fact that the
complete flag variety of Os consists of two points, the 3"%’;’4:% is isomorphic to a
connected component, say B*°~+2, of the complete flag Variéty of Op42. So we get
T*PBoont2 T*STET“ET So the right-hand side of the (122) for (v, w') is exactly
the Springer fiber BM"” of €y. Thus, the equality (122) is transformed into the
following 1som0rphlsrn which is Theorem B in [W15]:

~ PS0n
(124) BEPn o B2,

Finally, the top row of (121) implies the following isomorphism of the Springer
resolutions of the nilpotent Slodowy slices in (123), which proves a conjecture
in [HL14, 1.3]:

o5h, SOnt
(125) Snl Kl(n—k)l — 811(n2+1)1 (k1) (n4+1-k)t"

The isomorphism (125) together with [HL14, Theorem 1.2] implies a conjecture by

McGerty and Lusztig on the relationship between type D Nakajima varieties and
Slodowy varieties in [HL14, 1.3].

8.5. Column/row removal reductions for classical groups. Now we investi-
gate the classical counterpart of the geometric column/row removal reductions in
Section 7.3. Recall from Section 7.3 that we have the isomorphism 9. (v,w) =
M (v, w)". If V and W are formed spaces with signs by and &y ), respectively, then
the associated vector space V of dimension v (resp., W) naturally inherit one from
by (resp. dw). So we have an automorphism ¢’ on M, (v, w)’. In particular, we
have the following geometric incarnation of [KP82, Proposition 13.5].

Proposition 8.5.1. There is S", A= Sﬂ’, X where & is from (8.3) and &' is defined

similarly.

Since the definition of ¢’ involves the longest Weyl group element of the Dynkm
diagram of type A, 41, it is not immediately clear how to compare S ,» and Su 5 In
general the two varieties are not isomorphic. However, in the case When (', )\) and

(' ,)\) satisfy the conditions in Theorem 8.4.1, they are isomorphic. Example 8.4.3
is such a case. Similarly, we have the following counterpart of Proposition 7.3.2.

Proposition 8.5.2. Suppose that the pair (u',)\) is defined by (105). There is an

isomorphism 85,7/\ ~ SZ, 5, where o is from (8.3) and & is defined similarly.
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By Propositions 8.5.1 and 8.5.2, one has a geometric version of Theorem 12.3
in [KP82].

9. FIXED-POINTS AND CATEGORICAL QUOTIENTS

In this section, we consider quiver varieties Mo (v, w®)™ of a general Dynkin
graph for those pairs of formed spaces (V°, W°) of dimension vectors (v®,w?),
and signs dyo and g0 are chosen to be alternating, i.e., Svo,i5w0,i = —1 for all
i €I and Svo7i(h)5vo7o(h) = —1 for all h € H. In Remark 9.2.4, we will consider
Mo(v0, wY)?". We show that there is a closed immersion from Kraft-Procesi—
Nakajima’s construction [KP82,N94] via categorical quotients to o-quiver varietes

Mo (v, w)o".

9.1. Polynomial invariants on M(v% w?)". Recall the automorphism 7 on
M(v% w) from (15) and Gyo from (4). Let G, = {g € Gyo|gig; = 1}, and
let M™ = M(v%, w?)7 be the variety of 7-fixed points in M(v?, w?). We are inter-
ested in finding a set of generators for the algebra RSvo of G7o-invariant regular
functions on M7. Following Lusztig, we consider the following elements in RGw.
A sequence hq,...,hs of arrows in H is called a path if i(h;) = o(h;41) for all
1 <i<s—1. It is called a cycle if it further satisfies i(hs) = o(h1). For a cycle
hi,...,hs in H, we define a GJo-invariant function trp, .. n, on M7 by

(126) trpy o n, (X) = trace(zp, xp, - Th,) Vx € M.

For any path hq,...,hs € H and a linear form x on Hom(Wc?(hl)7 Wi(gh ), we define
a GJ-invariant function xp,

(127) Xhrrooshe (X) = X(Gi(h) TR Tho_y = ThyPo(hy)) VX € M.

The following theorem is an analogue for classical groups of [L98, Theorem 1.3].

Theorem 9.1.1. Assume that the signs 6yo and dwo alternate. The algebra RS
is generated by the functions of the forms (126) and (127). In particular, the
algebra of GTq-invariant reqular functions on A(v®,w®)™ in (16) is generated by
the restriction of the functions (126) and (127) to A(v®, w?)™.

The remaining part of this section is devoted to the proof of Theorem 9.1.1. The
proof is modeled on that of [L98, Theorem 1.3] with slight modifications. Instead
of the results on tensor invariants for general linear groups, we need a similar result
on tensor invariants for classical groups as follows. Let E be a é-formed space with
the form (—,—)g, and let G(E) be the group of isometries with respect to the
form (=, —)p. If nis even and x = {(i1,71), ..., (9n/2,Jn/2)} is a set of ordered
pairs such that {i1,j1,...,4n/2,7n/2} = {1,...,n}, we define the following G(E)-
invariant linear forms on T' = E®" by

n/2
(128) foler®- - @en) = [[(einres) Yer® - @e, € B
k=1

Proposition 9.1.2 ([W39)]). The space of G(E)-invariant linear forms on the ten-
sor space T is zero when n is odd, and it is spanned by the forms f, (128) for
various x when n is even.
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Now we begin to prove Theorem 9.1.1. For simplicity we write V' and W for
V0 and WO, respectively, in the proof. Recall the function ¢ : H — {£1} from
Section 2.2. Let Q = 5_1(1) and we set

Mg = Mg (v, w' @Hom o(h)> V4 @@Hom (Vi, Wo).
heQ el

Since the parameters Svo and dyo0 alternate, there is an isomorphism
M™ = Mg

given by projection. After fixing a basis B; for W; and identifying V; and V;* via
the forms, we have

(129) Mg = ® Von) ® Vi) © @ Vib,

heQ iel,beB;

where V; 4, is a copy of V; indexed by b.

Following Lustig, it is enough to show that the space of GJ,-invariant regular
functions on M7 of homogenous degree n is spanned by various products of func-
tions of the form (126) and (127). Thanks to [L98, Lemma 1.4], it is reduced to show
that this is also the case for the space of GT,-invariant linear forms on (M7)®™. To
this end, it is further reduced to study the GJ,-invariant linear forms on the tensor
space T'= F1®- - -® E,,, where Fj; is either Vo(h) @ Vi) or Vip. Write T = @, E*
where E' is the tensor product of all V; in 7. In light of [L98, Lemma 1.5], the
GJo-invariant linear forms on 7" are the tensor products of G(V;)-invariant linear
forms on E*. If T can be decomposed as the tensor product of components of the
following forms,

Vo(hy) @ V(h ) ® V‘?}?) - V,?}«? H® Vi(h.), where hy ---h, is a cycle in H,
Vo),b @ Vo) © Vi) ® fo ) @ Vi) @ Vigno) b
where b € Bon,), b € Bin.), h1 -+ - hy is a path in H,

then by applying Proposition 9.1.2 the space of G],-invariant linear forms on 7'
is spanned by the tensor products of the f, in (128) for various . The latters in
turn are products of various functions in (126) and (127). Now following the proof
of [L98, Theorem 1.3] we see that the space of GJ,-invariant linear forms on T
is spanned by products of linear forms in (126) and (127). Theorem 9.1.1 is thus
proved.

9.2. The closed immersion :. Recall A(v?,w") = Ac. (v0,w?) from (6) with
(c = 0. We can consider the categorical quotient A(v®, w®)7//GT,. Unlike
Mo(v?, w?)7, the variety A(v®, w")7//GT, depends on the forms associated to v°.
For example, when I' = A; and the forms on v%, w® do not alternate, A(v®, w®)" / /
Gl, = {pt}; otherwise it is isomorphic to the determinantal variety in g(w?)
of endomorphisms of rank < dimv®. For the latter fact, we refer the reader
to [KP82, Theorem 1.2].
By the universality of the categorical quotient, there is a morphism

AV, wO)T//GTo = A(VO, W)/ /Gyo = Mo (v0, W),
which factors through 9 (v®, w’)™ so that we have a morphism of varieties:

(130) L AVO, W)/ /GTe — Mo(vP, wO)T.
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Proposition 9.2.1. The morphism ¢ in (130) is a closed immersion for an arbi-
trary graph.

Proof. 1t is enough to show that the induced map

C[A(VO, w?)]Sv — CIA(V®, w?)"]Cv0
of the inclusion A(v®, w®)™ — A(v?, w?) is surjective. But this is the case by [L98,
Theorem 1.3] and Theorem 9.1.1. The proposition is thus proved. |

For the remaining part of this section, we assume that T" is of type A,,. When
w? = 0 for all i > 2, the variety A(v®,w%)7//GT, is studied by Kraft-Procesi
in [KP82]. The generalization to arbitrary w is mentioned by Nakajima implicitly
in [N94, Remark 8.5.4] and explicitly in [N15, Appendix A(ii)]. See also [K90]. Now
we shall sharpen the previous result in type A,. By Proposition 8.1.2, we have a
closed immersion:

AV, w0)T —>A(~0 wo)7.

There is a natural imbedding Gyo — Ggo with respect to the decomposition (88),
which restricts to an imbedding G, — G%O. This induces a morphism of varieties

(131) A, wO)/ /G0 £ AR, W0)7/ /G
Putting (130) and (131) together yields the following commutative diagram:
A, wO)/ /G, —P sy AR, W)/ /GE,
(132) l lz
Mo(v0, W)™ —Fm Mp(v0, wO)T,
where ¢ and 7 are the morphisms defined in (130).

Proposition 9.2.2. When the graph is of Dynkin type A, and the signs dyo, dyo
alternate, the morphism ¢f, in (131) is a closed immersion and T in (132) is an
isomorphism.

Proof. We have a commutative diagram
AR, w0)7//GE, d My (V0, w0)7

T~

gl(w?)?

where the morphism on the right is from (120) and the one on the left is defined
in a similar way. Both morphisms are closed immersions with the same image
by Theorem 8.3.3 and (a slightly general version of) [KP82, Theorem 5.3], which
implies that 7 is isomorphic.

Since g and ¢ are closed immersions, so is ¢f, by using the commutative diagram
(132). The proposition is thus proved. O

Remark 9.2.3. In light of [K90,N15] and Theorem 8.3.3, it is expected that ¢ in
(130) is an isomorphism for a Dynkin graph of type A,,. We conjecture that this
holds for any graph.
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Most results in this section can be extended to a more general situation where
the isomorphism a in Section 3.3 is involved in a straightforward manner. We end
this section with a remark on the connection with [N15, (Ai), (Aiii), (Aiv)], which
is grown out from a discussion with Professor H. Nakajima.

Remark 9.2.4.
(1) Consider the Dynkin diagram of type Ag, 1. Then there is a closed-immersion
similar to (130):

U AVO w0/ JGEE — M (vO, w0)eT.

The domain of ¢/ is an S!-equivariant instanton moduli space on R* in [N15, (Aiii)].
Specifically, if the form on w? is an orthogonal form for all i, then the domain of
¢! is exactly the SO(r)-instantons in loc. cit., Figure 7. (Note that w{ corresponds
to wg in Figure 7 in loc. cit.) The orthogonal/symplectic forms in loc. cit. are
defined over V; ® V_; and W; @ W_;, similar to [E09]. In our setting, we assign to
V., a symplectic form and each W; and V; for ¢ # n an orthogonal form (—|—), set
W, = Won_i, Vi = Vap,—;. From these data, we can obtain orthogonal /symplectic
forms used in loc. cit. on W; @ W_; or V; @ Va,,—; by the rule [(u1,us), (wi, ws)] =
(uq|wa) £ (uz|wy), where the choice of + leads to an orthogonal form and the choice
of — leads to a symplectic form as desired. Under this setting, the domain of " is
exactly the instanton moduli space given in Figure 7 of loc. cit. Note that in this
setting, the orders of a and 7 are 4, while their composition at has order 2.

(2) If our graph allows loops, the arguments in this section still work through,
with a minor modification in the proof of Theorem 9.1.1. In particular, when the
graph is a Jordan quiver, i.e., a vertex with two arrows, then we have a closed-
immersion

e A(VO’WO)faT//Gizlg — mo(VO,WO)aT,
where a is induced by the obvious involution on the Jordan quiver. The domain of
¢/ is an SO/Sp instanton moduli space on R* in [N15, (Ai)]. (See [Ch16] for further
details.)

(3) Let H be a finite subgroup in SU(2). By taking the H-equivariant parts
in ¢’ one obtains a similar closed immersion whose domain is exactly the SO/Sp
instanton moduli space on R*/H, which is discussed in [N15, (Aiv)].

Composing a7 or 7 with the reflection functor S,,,, it also gives rise to the SO/Sp
instanton moduli space on ALE spaces if 9y (v?, wY) is replaced by me (v0,w?)
for ¢ generic. In particular, if the McKay diagram of H is of type Dgl), E(71), or Eg/,
one uses 7Sy, and arSy,, is used for the remaining cases A, D&)H, and Eél).

This is known to Nakajima (see [N18]) and is implicitly given in [N03, Sect. 9.
10. QUIVER VARIETIES AND SYMMETRIC SPACES

In this section, we study fixed-point subvarieties of Nakajima varieties under
an antisymplectic automorphism. In the type A case, we identify them with the
symmetric space of a given symmetric pair of type AI/AIIL

10.1. The antisymplectic automorphism 7. Similar to 7¢, we define a simpler
automorphism

7 M(V7W) — M(V7W)7X = ($h7pi7Qi) — (%xhufph%qi%
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where "z, = zy, "pi=q, Tqi=p; Vhe€ H, i€ I The 7 only differs from 7, by a
minus sign at 2, for h € e~!(—1) and p;. Despite this minor perturbation, the new
automorphism behaves quite differently from 7¢, as we shall see in the following,
and yet proofs are always in parallel with the old ones with minor modifications,
which often involve the removal of minus signs. It is easy to see that u(7x) = u(x)*.
So it induces an isomorphism on M (v, w):

¢ m(&Cc)(V?W) - m(—€74c)(v7w)'
It is also clear that 7, is independent of the choices of forms on V' by the same
argument for the similar property of 7. In contrast with its symplectic analogue
7¢, the 7¢ is antisymplectic, that is,
w(™x,7x) = —w(x, %),
which can be verified by definition. Now we determine the order of 7.

Proposition 10.1.1. If the forms on W are uniform, i.e., 0w,; = 0w for all
i,7 € I, then the 7¢ is involutive: 7}2 = 1. In general, if W is a formed space with
sign Oy, then fg =1.

Proof. The proof follows the same line as that of Proposition 3.2.2 with the obser-
vation that 72([x]) = [(@n, dw.iDi, Ow.i¢i)] = [X], where the last equality is given by
the action of the element (0w ;idy;)icr € Gy. The above observation indicates that
7. =1L The proposition is thus proved. |

It is clear that the isomorphism 7¢ commutes with the isomorphisms a and S,.
Lemma 10.1.2. One has S;7¢ = 75,cS: and aT¢ = Tyca.
10.2. The 6-quiver varieties. Similar to o, we consider the following isomor-
phism:
(133) 0 = aSpTe : M ey (V, W) = M(_aoe,ance) (@ * v, aw) Yo € W.

The 6-quiver variety is defined to be

Be (v,w) = M (v, W)éa

whenever aw(c = (¢, —a®é = & and a® * v = v. By summing over all v, we have

Pe(w) = M(w)7.
It is clear that P (v, w), and hence P (w), is independent of the choice of the form
on V, due to the same property on 7¢. Since the a and S, are symplectomorphisms
and 7¢ is antisymplectic, the ¢ is antisymplectic. Summing up, we have the following
proposition.

Proposition 10.2.1. B (v, w) is a fized-point subvariety of M (v, w) under an
antisymplectic automorphism. Its definition is independent of the choice of the form
on V. If ¢ is generic, then B¢ (v,w) is smooth if it is nonempty and & is of finite
order. If W is a formed space with sign 6w and ® is of finite order, then the order
of 6 is a divisor of l.c.m.{4,|0|,|al}. If further 8y is uniform and a®> = ®* = 1,
then 62 = 1.

Just like o-quiver varieties, the &-quiver varieties include original quiver vari-
eties. By a general property of antisymplectic involution, we have the following
proposition.
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Proposition 10.2.2. If |6| = 2, i.e., 6 is anti-involutive, then Pe(v,w) is a
Lagrangian subvariety of M (v,w). In particular, the dimension of Pe(v,w), if
nonempty, is half of the dimension of M¢(v, w).

Via restriction, there is a proper map
(134) 77 P (v, w) = Pi(v, w),

where B (v, w) is defined in the same way as & (v, w) in (4.2.8).
Arguing in a similar way as the o case, it yields the following proposition.

Proposition 10.2.3. The map 7% is GS,-equivariant and if (c = 0, it is G, x C*-
equivariant.

Recall the fixed-point subgroup W®¢. For any x € W, the original reflection
functor induces an action on the G-quiver varieties

S;’ FPe(v, W) = Poc(z v, w).

Further, the group W®“ acts on the cohomology group H*(B¢ (v, w),Z) when w —
Cv =0.

10.3. -quiver varieties of type A. Recall the setting from Section 6.1. We
define

(135) p=p(W)={xr € EndW)|x = z*}.

This is called a symmetric space with respect to the symmetric pair (gl(W), g(W)).
Let N (p) be the variety of nilpotent elements in p.

Consider the automorphism é; on T*F, y, defined by (z,F) — (z*, F*), and
the fixed point subvariety (T*Fy w)°". Let

I (T*Fyw)” = N(p)
be the first projection.
Retain the setting from Section 6.2. In particular, w; = 0 for all ¢ > 2.

Proposition 10.3.1. Let a =1, and let ® = wy. Then the ¢ gets identified with
the automorphism 1. If further wo x v = v, then there is a commutative diagram

o

(BC(VvW) - (,T*&FV,W)&1
Pi(v,w) ——  N(p)

Proof. The proof is the same as that of Theorem 6.2.1 with minus signs removed.
O

Remark 10.3.2. The above identification implies that 7 is not semismall in general.
For example, when the form on W is symplectic and (v, w) = (1,2), the map II is
the projection from the projective line P! to a point.

Now we discuss the & counterpart of the results in Section 8. Recall that it is
assumed that forms on V and W are d-forms. We define a nondegenerate bilinear
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form {—|—} on V; by
(136)

{(vz—,wﬁh’)jmh (viaug‘h))jzwh}‘? =)y, + Y (w§h),uéj_z+1_h))w_,

! J>ith ’

where v,v’ € V; and w§-h),u§-h) IS Wj(h) such that 1 < h < j —1.
Lemma 10.3.3. If the forms on W are uniform d-forms, then so is the form on
Wy. If further V. and W are uniform d-forms, then so is the form on V;, similar
to T in Proposition 8.1.2.

With the form {—|-}, one can define the automorphism 7;_j_} on A(V, W)
Proposition 10.3.4. The following diagram is commutative:

AV, W) —2 AV, W)

%l l* —1-1
AV, W) —— A(V,TV)
Proof. The proof is the same as that of Proposition 8.1.2 with minus signs removed
at appropriate places. (Il

Following the line of arguments in Section 8, we reach the identification of &-
quiver varieties with nilpotent Slodowy slices in symmetric space p, a counterpart
of Corollary 8.3.2. Let 6{_|_} denote the automorphism on 755 5 defined with
respect to the form {—|—}.

Theorem 10.3.5. Assume that ( = (£,0) with & > 0 for alli € I and ¢ = (.
Assume also that wg x v =v. Then there is a commutative diagram

Pe(v,w) —— S5

-] |
Pi(v,w) —— S5

Remark 10.3.6.

(1) One still has a counterpart of Theorem 8.3.3, with Jy, alternates replaced by
dw being uniform.

(2) One still has a rectangular symmetry similar to Theorem 8.4.1. Note that
the & therein is not the same as the ¢ in this section.

(3) One still has the column/row removal reduction in the symmetric space
setting, similar to Propositions 8.5.1, 8.5.2. This is a refinement of results in [O86]
(see also [091]).

(4) Via the Kostant—Sekiguchi—Vergne correpondence [S87], [Ve95] and the works
of Barbasch-Sepanski [BS98, Theorem 2.3] and Chen-Nadler [CN18], we see that
results in the preceding remarks can be transported, at least diffeomorphically, onto
the nilpotent Slowdowy slices of the associated real groups.

Finally, we return to study the relationship between fixed-point subvarieties and
categorical quotients. We assume that forms on V and W are uniform. We can
consider the fixed-point subvariety M(v,w)” under 7. We can define the GJ-
invariant functions try, . x.(—) and xp, .. n.(—) in exactly the same manner as
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(111) and (112). Then using a similar argument as the proof of Theorem 9.1.1, we
have the follwoing proposition.

Proposition 10.3.7. The algebra of GI -invariant regular functions on M(v,w)”
is generated by the functions try, .. n.(—) and xp,,....n. (=) for various paths hq, ...,
hs.

From the above proposition, we have the following.

Proposition 10.3.8. There is a closed immersion i : A(v,w)"//GT — Pi(v,w)
with a = 1.
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