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We show the positivity of the canonical basis for a modified quantum affine s(,, under
the comultiplication. Moreover, we establish the positivity of the i-canonical basis in

[21] with respect to the coideal subalgebra structure.

1 Introduction

The geometric study of the modified quantum sl,, via perverse sheaves on partial flag
varieties of type A is initiated in the work of Beilinson et al. [3]. It is then generalized
to quantum affine sl,, by Ginzburg-Vasserot [15] and Lusztig [23, 24], independently, by
considering the geometry of affine partial flag varieties of type A. This line of research
is culminated in the work of Schiffmann—Vasserot [27] and McGerty [25] showing that the
canonical basis of modified quantum affine s(,, defined geometrically via transfer maps
can be identified with the one defined algebraically by Lusztig [22] (see also Kashiwara
[17]). Consequently, the positivity conjecture [22, 25.4.2] of the structure constants of the
canonical basis of quantum affine sl,, with respect to multiplication follows.

In a remarkable work of Bao-Wang [2], a quantum-Schur-like duality relating
a type-B/C Hecke algebra and a coideal subalgebra of quantum sl,, defined by Letzter
in [20] is obtained, and moreover an :-canonical basis for the representations of the
coideal subalgebras is constructed. The desires to geometrize Bao—Wang's work and to

describe the convolution algebras of certain perverse sheaves on partial flag varieties
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2 Z.FanandY.Li

of classical type lead to the work [1], where the approach in [3] is revived and adapted to
give a geometric construction of the (modified) coideal subalgebra of quantum gl,, and
a stably canonical basis by using certain perverse sheaves of partial flag varieties of
type B/C. Since a modified coideal subalgebra of quantum gl,, can be regarded as a
direct sum of infinitely many copies of its sl,, version, one obtains infinitely many stably
canonical bases of the modified coideal subalgebra of quantum sl,,. As a result, the i-
canonical basis of the tensor space in the duality in [2] admits a geometric incarnation
as certain intersection cohomology complexes.

Despite of many favorable properties of the stably canonical bases of modified
quantum gl,, and its coideal subalgebras, they do not admit positivity with respect
to multiplication; see [21]. Instead, a new basis, called the i-canonical basis, of the
modified coideal subalgebra of quantum sl, is constructed in loc. cit. following the
spirit of [24] and [25] (see also [27]). This basis can be regarded as an asymptotical
version of the stably canonical basis since they coincide asymptotically ([21]). It is
further shown that the i-canonical basis does admit three positivities with respect to
the multiplication, a bilinear form of geometric origin in loc. cit. and its action on the
1-canonical basis of a tensor space.

In this article, we establish three more positivities of i-canonical bases, in
addition to the previous ones in loc. cit. (see also [11]), mainly with respect to the coideal
subalgebra structure. Precisely, let B be the canonical basis of modified quantum s,
say U, and B' its coideal analog in the modified coideal subalgebra U'. Note that
notations in the introduction are slightly different from the main body of the paper.
There is a natural algebra homomorphism A Ul - (Ul @ U)A, where the target is a
certain variant of the tensor U! ® U, which is an idempotented version of the coideal
structure coming from the coproduct of quantum sl,,. (See (43) and (61) for definitions.)

In particular, if a € Bi, one has

M(a) = Z ng'cb ®c, nZ'C e Zlv,v 1.
beBi,ceB

The positivity with respect to the idempotented coideal structure further says that
Positivity A Theorems 4.3.1 and 5.2.1 The structure constant nla"c isin Z glv, vl

A degenerate version of Al induces an imbedding i : U' — (U)*, which

reflects the subalgebra structure of the ordinary coideal subalgebra in quantum sl,,.
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Positivity Under Coproduct 3

(See (52) and (62).) The positivity with respect to the subalgebra structure says that (see
Theorems 4.4.1 and 5.2.2)

Positivity B Joint with W. Wang. Ifi(a) = > .59y 4D, Va € B, then g, , € Z_olv, v71I.

As a 2nd degeneration of Al, we make a direct connection between the geometric

type A duality of [14] and type B/C duality of [1], which reveals yet another positivity:

Positivity C Theorems 3.5.3 The :-canonical basis in a tensor space is a positive sum

of the canonical basis in the same tensor space.

As is shown, these positivities are boiled down to a geometric interpretation of
the coideal structure coming from the comultiplication of quantum sl,,. To this end, we
also establish a geometric realization of the comultiplication of quantum affine sl,, and

we obtain the following positivity on quantum affine s[,.

Positivity D Theorems 6.4.2 The canonical basis of modified quantum affine s,

admits positivity with respect to the idempotented comultiplication.

The proof of the positivity result on quantum affine sl,, consists of two parts
since the geometrically defined comultiplication on the affine Schur algebra level is
a composition of a hyperbolic localization [4] and a twist of a certain v-power. The
positivity on the former is well known by [4], (see also [24] and [27]), while we show
that in the latter it sends a canonical basis to a canonical basis up to a v-power. Note
that the 2nd step is trivial in the ordinary quantum sl,, case, but nontrivial in the affine
case as far as we can see: because at some point, we have to invoke the multiplication
formula of a semisimple generator of Du-Fu [5], for which we provide a new geometric
proof. These arguments are contained in the 1st and last sections, with the 1st section
devoted to quantum sl,, and the last one to its affine version.

The argument of the proof on quantum affine sl,, also applies with modifications
to the various positivities of the i-canonical basis, which occupies the last three
sections. The 3rd section treats the results on the i-Schur-algebra level, and the 4th
section lifts the results on the i-Schur-algebra level to the projective limit level for n
being odd. The last section collects similar results for n even. The jtransfer maps used
in [21] are constructed geometrically in these sections and the proof of [21, Lemma 4.3]

is in Proposition 3.6.1.
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4 Z.FanandY. Li

Note that we work over the partial flag varieties of type B for the i-canonical
basis and following the treatment of type A in [24] and [25]. One can obtain the same
results via partial flag varieties of type C by using the principle in [1].

In [8], we shall construct and investigate geometrically the i-canonical basis of
modified coideal subalgebras of quantum affine s(,, among others.

We refer to [7] and [9] for the interactions of type D partial flag varieties, coideal
subalgebras, and type D duality. In a forthcoming paper, we will present a type D picture

similar to the positivity results on i-canonical basis in this paper.

2 Positivity for Quantum s,

In this section, we shall present a proof of the positivity of the canonical basis of

quantum sl,, with respect to comultiplication.

2.1 Convolution

Let G be a group, and X a G-set with finitely many G-orbits. The G-action on X thus
induces a diagonal G-action on the product X x X. Let A be a unital commutative ring.
We consider the set A (X x X) of all A-valued G-invariant functions on X' x X supported
on finitely many G-orbits. Assume that any G-orbit O in X x X' has the property that the
set Ay, = {y € Al(x,y) € O} is finite for one and hence any fixed x in X. Then A;(X' x &) is
a free A-module with a basis indexed by the G-orbits in X'x X, and further an associative
A-algebra with multiplication as follows. For any f;,f, € Az(X x &), the function f; = f,
is defined by

fl *fZ(X11X3) = Z fl(Xl,Xz)fz(Xz,X3), VXI,X3 e X. (1)

Xx9eX

Let 1 be the characteristic function of the diagonal {(x, x)|x € X}. Since G acts on X with
finitely many orbits, then, by definition, 1 is the unit of the algebra (A;(X x X), x). For

convenience, we will simply use the notation A,(X x X) for the algebra (A;(X x &), *).

2.2 Quantum Schur algebras

Let [, be a finite field of g elements and of odd characteristic. Let

v=.q A=7Zv v (2)
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Positivity Under Coproduct 5

We fix a pair (n, d) of irrelevant positive integers. Consider the set X, of n-step partial

flags in a fixed d-dimensional vector space [Fg over [, of the form
v=(0=V,CV,C---CV,, CV,=F}).

Denote by G; = GL([Fg) the general linear group over [, of rank d. Let G, act from the
left on the set X,; and diagonally on X; x X;.
Let |W| denote the dimension of the vector space W over Fq To a pair (V, V'), we

can associate an n x n matrix M = (m;;) with coefficients in Z, by

m,: = vinv; Vijell,nl 3)
A A e

1

Let E, be the set of all matrices obtained this way. Any matrix M in E; can be
characterized by the property that m;; € Z., and >, _;;_, m;; = d. It is shown in [3]
that the set E; parameterizes the G;-orbits in X; x X;. Let n,, be the characteristic
function of the G;-orbit in X; x X,; indexed by M, for any M € E.

By the general setting in Section 2.1, we have a unital associative algebra
Sd = AGd(Xd X Xd) = SpanA{anM (S Ed} (4)

It is well known that the algebra S is the v-Schur algebra of type A,,_; ([3]).
The definitions of these objects depend on the integer n, but it is suppressed
since it never changes, except at Section 5 where we use notations X, ,,, S ,,, etc.

Let v be an indeterminate, and consider the Laurent polynomial ring
A=Zlv,v.

Recall from [3] that one has a generic version S; of S; so that S; = A®, S;, where A
is regarded as an A-module with v acting as v. More precisely, S; is a free A-module
spanned by the symbols ¢, VM € E;, such that A ®, ¢y = 1y, The multiplication
on S; is defined so that if &y, Gy, = Dares, Oty (Vimr Cityap, (V) € A, then nyy myy, =
> Mezy oty 11, Vvl in 8.

By the sheaf-function correspondence [19], to prove a statement on the level of
the algebra S, it suffices to prove it in S;. We shall apply this principle freely in what

follows.
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6 Z.FanandY.Li
2.3 Coproduct on S4

In this section, we define an algebra homomorphism, which we call coproduct, from
Sqto Sy ®Sy, d +d’ = d, and as it suggested, the coproduct becomes the genuine
coproduct of the quantum sl,, when taking d to oo. As indicated, our computation will
be over [Fq, and so we introduce its specialization version at first.

Now consider a triple (d,d’, d”) of positive integers such that d'+ d” = d. We fix
an isomorphism of vector spaces [Fg/ <) [Fg” ~ [Fg. Let 7’ be the projection of Fg to [Fg/. Let
7" be the operation of intersection with [Fg“, that is, 7"/ (W) = W n [Fg” for any subspace
W in [Fg. Given a flag V in X, the notations #/(V) and 7" (V) are thus meaningful. For
any (V', V") € X5 x X4, We set

Zy oy ={VeXyln' (V) =V, 7"(V)=V"}.
We can identify S; ® Sy with the algebra Ag ¢, (Xg x Xg x Xg0 X Xg). We define
A:S;— Sy ® Sy (5)

by AHV, V', V", V") = zf,eZWN f(v, V), for any quadruple (V/, V', V", V") € Xz x Xg X
X4 x Xg» where V is a fixed element in Zy, . It can be shown that the definition is
independent of the choice of V. By [24, 2.2], which is credited back to Grojnowski, we
know that the map A in (5) is a well-defined algebra homomorphism over A.

By using the monomial basis in [3, Theorem 3.10], one can show that 5; admits
a linear map A such that it descends to A after a specialization.

We use the notation W, ¢ W, to denote W, C W, and dim W, /W, = a. Similarly,
we define the notation W, ) W,. We define the following functions in S;. For any

iell,n—1l,aell,n],

/ % 1
B V’) B v—lVi+1/Vi|' if Vi C Vlf, V] = Vj,,Vj #1;
AN =
0, otherwise.

1 1777 1
v—|Vi/Vi—1|' if V; D Vlfl V] = Vj,,Vj #1;

F,(V,V) = (6)

0, otherwise.
HEN(V, V) = vEVe/Varrls, L vy, V' e X,
+1 _ gyl y3Fl
K =H7 HT.

+177

Notices that if the subscript d is replaced by d’ or d”, the functions defined above are in
S or S, respectively, and will be denoted by H], K;, E;, F; or H, K;’, E;’, and F;’. (This
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Positivity Under Coproduct 7

convention will be used in any similar situation appearing later.) We shall also use the
same notation to denote the corresponding element in S;, which is a sum of certain ¢,

up to a twist. The following lemma is due to Lusztig [24, Lemma 1.6].

Lemma 2.3.1. For any i € [1,n — 1], we have the following formulas in 5.

AE;) = E; ® H/

(o +HQE!, AF) =F;0H/ ' +H,®F/, AKX, =K, ®K|.

i+

E; and F; correspond to F; and E; in [23, 2.4], respectively. VM = (m;;) € 8,4, we

set

and co(lM) = (Z mij) ,
i=1

1< j<n

n
ro(M) = Z mij
J=1 1<i<n
which lie in the set
Ad'nz{az(al,,an)ezgola1++an=d} (7)
Then we have a decomposition

S4q= GBbyaeAd’nSd(b, a), S,(b,a) =span,{¢ylroM) =b,co(M) = a}.

Let
Zb’,a’,b”,a” . Sd(b, a) d Sd/ (b/, a/) ® Sd” (b//, a//)

be the linear map obtained from A by restricting A to the subspace Sq(b,a) and
projecting down to the component Sy (b’,a’) ® S,/ (b”,a”). Then we have

Z = Galb’,a’,b”,a”'

where the sum runs over b,a,b’,a’,b”,a” such that a,b € A;,, a', b’ € Ay ,, a" b €
Agrp,andb=Db"+Db"anda =a’'+a". We set

icicn Db —alall %
Ab/,a’,b”,a” == VZISS]Sn vy t Ab/,a/,b”,a”' A == @Ab/,a/,b”,a”' (8)

The following is a refinement of Lemma 2.3.1.

0202 1snBny €0 U0 188NnB AQ £290/€G//40ZUl/UIWIEBOL 0 L/IOP/AOIISIB-BJONE/UIWI/WOS" dNO"OIUSPEIE//:SARY WOy POPeojumod



8 Z.FanandY.Li

Proposition 2.3.2. The linear map A in (8) is an algebra homomorphism. Moreover,
ME) =E;®K/+1QE/, AF) =F,®1+K ' ®F/, AK;) =K, @K/, Vi. 9

Proof. It is straightforward to see that A is an algebra homomorphism. We proceed
to the proof of the equalities in the proposition. Suppose that a quadruple (b’,a’,b”,a”)
satisfies the conditions that b} = a) — 6;; + & ;41 and b} = a; for some i and for all
1 < k < n. Then

z b —aja; = Z (b —apa; = Za”+ Z aj

1<i<j<n 1<k<j<n i<j<n i+1<j<n

Soif (V/, V', V", V") € Xy x Xg x Xgv x Xgv, then
Ab/,a/,b”,a”(v/' ‘7//' V//, f///) — V_“QE/ ® H//_"_1 (V/ V/ V// V//) E; ® KQ/(V/, f//, V//, f///).

On the other hand, if (b’,a’,b”,a") is a quadruple subject to b}, = aj, and b} =

aa =da.
a, ;- Thus,

ay — 8 + ;1 for some i and forall 1 <k < n, then >, ;_;_, b;b] — a;a;

if (V/, ]7/, V//, f}//) € Xd’ X Xd’ X Xd” X Xd//, then
by gy o (V, V, V', V") =V Ty CI®E/(V, V.,V V) =1QE/(V,V V", V).

Altogether, we have A(E;) = E; ® K + 1 ® E/, which is the 1st equality in the lemma.

If the quadruple (b',a’,b",a") satisfies that b} = a) + & ; — & ;1 and b} = aj, for
some i and for all 1 < k < n, then the twist leigsn b’b” a. ]” is equal to ai. So after
the twist, it makes the 1st term F; (X)H;/_1 of A(F;) in Lemma 2.3.1 into F;® 1. Meanwhile,

if (b',a’,b”,a") is a quadruple subject to b}, = a} and b} = aj +5;; — ; for some i and
k k k i,k Y%i+1k

forall1 < k < n, then Zlgigjsn b/b” ; ;’ = z+1 Hence, after the twist, the 2nd term
H; ® F; in A(F;) becomes K;_l ® F/. This verifies the 2nd equality in the lemma.
Since the twist is zero if b’ = a’ and b” = a”, the 3rd equality holds. [ |

Remark 2.3.3. If we write (E,F; K;) as (F;, E;, K 1y, we have the conventional

coproduct.
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Positivity Under Coproduct 9

For the rest of this subsection, we give a 2nd interpretation of A to be used in

the proof of Proposition 2.3.6. We can decompose X; as follows:
Xy =Uger, Xa@), Xg@) = (Ve X4llV;/V; ;| =a; V1 <i<n).
Fix V € X;(b) and set P, = Stabg (V). Then P}, acts via G on X;(b). Consider
Iha: Xg@ > Xyb) x Xy@), Ve (V7).

It induces a bijection between Py, -orbits in the domain and G4-orbits in the range of iy, ,.

Hence, the pullback (restriction)
i} ot Ag, (Xg(b) x X4(@) - Ap (X4(@)) (10)
of the imbedding iy, , is an isomorphism of .A-modules.
Recall now that we fix a triple (V, V/, V) in the definition of A in (5). We assume

that Ve X (b), V' € X3 (1), and V" € X4, (b”) so that b’ + b” = b. We also define P,; and

Py similar to Py,. Thus, we have similar isomorphisms

i) o+ Ac, Xa ) x Xz@)) > Ap Xz @),

i Agy, X (") x Xgi(@") > Ap , (Xg0(@").

Consider the subset of X;(a):

XF 0 = {f/ e X @' (V) € Xy (@), 7" (V) € Xy (a”)} . (11)

a
Then we have the following diagram:
— 5 X,(@) x Xy(@"),

¢ +
Xg@) —— X 3 o

where ¢ is the natural inclusion and 7 (V) = (z/(V), n”(V)). Thus, the composition of the

pullback :* of « followed by the pushforward =z, of = defines a linear map

m* : Ap (Xg(@) = Ap yp,, (Xg (@) x Xg/(@")), (12)
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10 Z.FanandY. Li

where 7, is defined by 7, (F)(V/, V") =3+

have an isomorphism of .A-modules

,f/u)f(X), for all V/, V. Clearly, we

' a :7T(X)=(f/’

Aph’ X Py (Xd/ (a/) X Xd// (a//)) = APh/ (Xd/ (a/)) X Apb” (Xd// (a//)).
The following lemma makes connection between A and m,:*.

Lemma 2.3.4. We have the following commutative diagram.

P

Ya
Ag, Xq(b) x Xg(@) Ap, (Xq(@))
Zb’,a’,b”,a” ]T}L*
AGdr (Xd’ ®) XXd/ @)) iz’,a’ ®il9;’/,a”

® Ap, Xg (@) ® Ap,, (Xgr(a")).
AGd” (Xgr (b”)de// a”) b b

Proof. TForanyf e AGd (X4(b) x X4(a)) and V', V" e X (@) x X ,(a"), we have

e ATV = D (O = D fWV,D)

?EZ‘V/,’T}// ?EZ‘V/,’T}//
= Ry ar AV TV T = Gy ® 83y 1) 0 By oy DT T,

The lemma is thus proved. u

Remark 2.3.5. 7 is a vector bundle of rank 3, _;_;_, aja/ (compare the twist in (8)).
Recall the canonical basis {{B}|B € E,4} of S; from [3].
Proposition 2.3.6. If Ay 0 (B) = Spez, pes, 5" (B} ® (B}, then ¢

Z_olv, vl

Proof. To establish the latter positivity, we switch from the finite field [Fq to its
algebraic closure [F_q. Let G4 be the general linear group over [F_q whose [ ;-points form G;.

Similarly, we define an algebraic variety Xd (a) over [F_q for X;(a). We set Em = GL(l,[F_q).

For d' + d” = d, we fix an isomorphism [F_qd = [F_qd @ [F_qd . Via the isomorphism, we

fix an imbedding G,, — G, defined by t - afd/’tlr?d”)' Thus, G,, acts on X (a) via
q q

the imbedding. It is straightforward to see that the fixed-point set of G,, in X (a) is

U X (@) x X4/(a”). Moreover, the attracting set of X (a’) x X4/ (a”), that is, those

a’+a”’=a
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Positivity Under Coproduct 11

points x such that lim, ,,t.x € X;(a) x Xy (@”), is exactly the algebraic variety whose
. . +
F4-point is Xoa,

hyperbolic localization functor attached to the data (Xd(a), Em) in [4]. On the other hand,

the function i . ({A};) is nothing but the function version of the intersection cohomology

a in (11). Thus, the linear map m,¢* in (12) is the function version of the

complex attached to the Py -orbit in X;(a) indexed by A. Now the result in [4] says that a
hyperbolic localization functor sends a simple perverse sheaf to a semisimple complex.
Therefore, we have the positivity for the generic version of 7¢*, hence for the generic

version of A and therefore the proposition. |

Remark 2.3.7. The positivity for the algebra structure of S; is proved by Green in [13].

2.4 Transfer map
Let

x:5,—> A (13)

be the algebra homomorphism defined by x(¢y,) = det(M), for all M € E,,. (Here d is
taken toben.) Let&:S,;_, — S,_,, be the A-algebra isomorphism defined by

E(ly) = v ZmH1-Dbi—a0 e e 5, (b, a).

The transfer map
¢d,d—n . Sd e Sd—n’ vd >n (14)
A £Qx
is defined to be the composition S; —— S;_, ®S,, —— S;_, ® A =S§,_,,. The fol-

lowing lemma is quoted from [24, Lemma 1.10].

Proposition 2.4.1. There is a unique algebra homomorphism

Pd,d—n * Sd = Sd-n
such that ¢y 4, (E) = E}, ¢g4_nF) =F}, ¢pg4 &K =K Vl<i<n-1.

2.5 Positivity for U

By definition, the quantum sl,,, denoted by U = U(sl,)), is an associative algebra over

Q(v) generated by the generators:

E Fu K K', vi<i<n-1,
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12 Z.FanandY. Li

and subject to the following defining relations. For 1 <i,j<n —1,

KK =K 'K =1,

1 1

IKI[E] = el T %j+17 0% I[Ej[Ki’

K;Fj = v 2t i,

K; — K

Fo—F.F =& .-t 15

[ELF] F]EL — YiJ v — V_l ’ ( )
2 2 -1 o

E; [Ef + [Ej[Ei =(v+v )ﬂ':i[jﬂ‘:i, ifli—jl=1,

FPFj+ FF7 = (v+v HEEF, if[i—jl=1,

Moreover, U admits a Hopf algebra structure, whose comultiplication is
defined by

Remark 2.5.1. If one rewrites [, [;, and K; as E;, F;, and K;K;}, respectively, then the

e 141
resulting presentation is a subalgebra of the quantum gl,, used in [1, 4.3].

It is well known from [3] that there is a surjective algebra homomorphism
¢d U —> Q(V)Sd’ |Ei = Ei’l}_i = Fi’ﬂ(:l:i = :K:I:i’ V1 < i <n- 1, (17)

where g, Sy is the algebra obtained from S; in Section 2.2 by extending the ground ring
A to Q(v). By using Proposition 2.3.2, (16) and tracing along the generators, we obtain

the following commutative diagram.

A

U -4 UeU
¢dl Jr¢d’®¢d”

A
owSd = awSa ® qw)Sar (18)

where d’ + d” = d and A for S, is defined as in (8).
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Positivity Under Coproduct 13

Define an equivalence relation ~ on Z" by u ~ v if and only if u —v = p(1,---,1)

for some p € Z. Let
X=7"~

be the set of all equivalence classes. Let & denote the equivalence class of i € Z". Let

Y=3veZ" Z v, =0

1<i<n

Then the standard dot product on Z" induces a pairing - : YxX — Z.SetI ={1,--- ,n—1}.
We define two injective mapsI — Y, I — X, byi— —e;+e, i —€ +¢,;, V1<
i < n— 1, respectively, where e; is the i-th standard basis element in Z". We thus obtain
a root datum of type a,,_; in [22, 2.2]. It is both X-regular and Y-regular.

Following [22, 23.1.1], U admits a decomposition U = @, .;U(v) defined by

U)HUO") CUW +0"), Ky; € V), E; € U®), F; € U(—i).
For a triple v/, v”, v in Z[I] such that v’ +v” = v, we can have a linear map
Av/,v” . [U(V) e [U(U/) ® [U(V//),

obtained from A by restricting to U(v) and projecting to U(v') ® U(v”). Moreover, the

restriction of ¢4 in (17) to U(v) induces a linear map, still denoted by ¢,

¢ UW) = S5_5_, o Sab, ),
where Z[I] is treated as a subset in X via the imbedding I — X.

Lemma 2.5.2. The commutative diagram (18) can be refined to the following commu-

tative diagram, where Ay 5 1 o is defined similar to (8).

A ) !t
U®w) SELEEN Uw) @ UL

¢dl J,de/ Rpqr

eaAb’,u’,b”,a”
@E_a:v Q(V)Sd(b’ a) —_— @_b’+b”=b,a’+a”=a @(V)Sd/ (b/’ a/) ® Q(V)Sd// (b//, a//).

b—a/=v b —a"=v" (19)
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14 Z.Fan and Y. Li
Now set
U=0z5ex nUnr

Ur=U/ [ D (K—vrtryus D U (K — v

1<i<n-1 1<i<n-1

This is the modified/idempotented form of U defined in [22, 23.1.1], see also [3]. Recall

from [22, 23.1.5], the comultiplication A induces a linear map
AW,W,W,V : H[Ux—> I[Uy(@ W[UV, (20)

and makes the following diagram commutative.

Al)/ l)//
U) ' ) euw”
JTH’XJ' lﬂuﬁlkﬁ@nﬂﬁyﬁ
A~ 77
U_ Wl W _[U_@ _U_
Y% EE—— wEw W (21)

where g — A =v, W/ — X =V, W’ — 1" =", and T is the projection from U to H[UX'

We write 13 = (). It is well known that U and Q(V)Sd are U-bimodules. So the
notations ;15 and F;15 in U are meaningful, and so are [F;¢;, F;¢p, in Q(v)Sq Where the
notation ¢, is from Section 2.2. Recall from [24] (see also [21]) that there is a surjective

algebra homomorphism ¢, : U — Q) Sq defined by

Ca, if » =a, forsomea e Ay,

pq(15) =
0, 0.W.
F(E1) Ei¢y,  ifA=7a, forsomeae Ay,
a(b1p) =
o, 0.W.
5 (il Filu, if =2, forsomea e Ay,
a\vity) =

0, 0.W.

where M, is the diagonal matrix with diagonal a. Further, $d induces a linear map:

gd . B[Uﬁ_) Q(V)Sd(b,a).
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Positivity Under Coproduct 15

By definition, we have the following lemma.

Lemma 2.5.3. Ifjx=Db, 1 =aandxz—X = v, then the following diagram is commutative.

Uv) — Uz
¢dl 5:{
Sp_g—v QSab, @) ——> ow)Sab, ), (22)

where the bottom row is the natural projection.

Note b —a e Z[I] C X. By piecing together (19), (21), and (22), we have the cube:

o EO% i wUx @7 Uz
V) VW) ® U
v
Sd(b,a) ............................................................. > Sd,(b/'a/)®gd”(b”'a//)
®Sy(b,a) ——— @Sy, a) @Sy (b, a"), (23)

where each of the S in the bottom square has a subscript Q(v) on the left. In (23),
the front square is (19), the top square is (21), the two side squares are (22), and
the commutativity of the bottom square is obvious. Since T is surjective and each
square is commutative except the one in the back, we have immediately the following

proposition by diagram chasing.

Proposition 2.5.4. The square in the back of the cube (23) is commutative.

Uz ——— yUa ® p7Uar
adl lad/®$d//
Ab’,a’,b”,a” ,
Q(V)Sd (b, a) E— Q(V)Sd, (b/, a ) X Q(V)Sd” (b//, a//). (24)

By using Proposition 2.5.4, we can prove the following positivity with respect to
the comultiplication. Let B be the canonical basis of U defined in [22, 25.2.4].
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16 Z.Fan andY. Li

Theorem 2.5.5. Letb € BN Ur. If Ay (b)) = 3y prep iy ” b @ b, then 1) ? e

Z_olv, v,

Proof. LetZ = {(b/,b/’)|ﬁlg/'b” # 0}. Clearly, #Z < oo. By [25, Proposition 7.8], we can
find d, d’ and d” large enough such that

$aD) = (Blg, dg () =By, o) =B g, YO}V €T,

where {B};4, {B'}4 and {B"}; are certain canonical basis elements in S;, Sy and S/,

respectively. Then by (24), we have

G @ ba)bympm® = > 7 (Bly @ B")g = by a1y a0 ((Bl)- (25)
(&' b")eT
B . . . N b/,b” _ CB/'BH
y comparing Ay o140 in 2.3.6 with (25), my = ¢y~ and hence the theorem
follows. u

Remark 2.5.6. Theorem 2.5.5 was first proved by Grojnowski in an unpublished paper.
In Section 6, we shall extend this result to the affine sl,, case. For all symmetric Cartan

data, the positivity is conjectured in [22, Conjecture 25.4.2].
3 Coideal Structure for the ;Schur Algebras

In this section, we define the copruduct on the jSchur algebra level and show that
it gives rise to the transfer map used in [21]. We shall also show that the coproduct
degenerates to an imbedding of a jSchur algebra to an ordinary Schur algebra and
establish a direct connection of the type A geometric duality of Grojnowski-Lusztig

[14] and the type B/C geometric duality in [1].
3.1 The jSchur algebra Sé
In this section, we assume that n and D are odd, that is,

n=2r+1 and D=2d+1.

We fix a non-degenerate symmetric bilinear form Q’ : [Fg X [Fg — [y Let W+ stand for
the orthogonal complement of the vector subspace W in [FqD with respect to the form
Q’. By convention, W is called isotropic if W € W+. Recall the set X, from Section 2.2.
Consider the subset X/ of X; defined by

Xy ={VeXyV;=V, ifi+j=n}
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Positivity Under Coproduct 17
Let G*(’i be the orthogonal group attached to Q/, that is,

G/ = {g € G410 (qu, gu) = Q' (u, u), Yu, U e [Fg} .

The group G/ acts from the left on X7. It induces a diagonal action on X} x X}. By the

general construction in Section 2.1, we have a unital associative algebra

Sq = Ag: (X5 x X3). (26)

This is the algebra first appeared in [1]. See also [12] and [6].
Recall the definition of v = /g from (2) and A = Z[v, v~1]. Recall from [1] that

one can construct an associative algebra Sé over A such that

J _ J
S}, = A®, S},

where A is regarded as an A-module with v acting as v. Let us make the algebra Sd more

precise. Recall E; from Section 2.2. Consider the set

2= (M e 2qlmy =mpiiipa ¥l s i< n). (27)
Then 8/, is a free A-module with basis ¢;;, for any M € £/, whose multiplication is defined
by the condition that if ;1{,[ ;1{,[2 ZMEHI hM1 M (V)¢ where h% 1, (V) € A, then an an
ZMeJ hM1 , (Wly= v”M' in Sé, where ’7M is the characteristic function of the G] -orbit in
X x X’ indexed by M via (3). Let

j _ _ .
Ay =1{ae Aygiinla;=ay 1 V1 <i<nj.

It is clear that ro(M), co(M) € AZl,n for all M e EJ,. Let S (b,a) = span,{y[ro(M) = b,
co(M) =a) forb,a e A{Ln. We have S/ (c, b")S/;(b,a) C 8y1,5/(c, a).
As usual, we are interested in the results on the generic level, while their proofs

will be reduced to the finite field setting.
3.2 Coideal structure for Sé
We set D = F). We need the following auxiliary lemma.

Lemma 3.2.1. Suppose that D” is an isotropic subspace of Dand L = (L;|0 < i < n) €

Xé. Then we can find a pair (T, W) of subspaces in D such that

@ D=D"®dTeW, D) =D"@T,
(b) W isisotropicand T 1L W,
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18 Z.FanandY. Li

(c) There exists bases {z;,---,z} and {wy,--- ,w} of D’ and W, respectively,
such that Q’(z;, Wj) = 8,-]- for any i,j € [1, s],
d) Li=@ND)&ELNT)& L, NW), foranyl <i<n-—1.

Proof. Assume that n = 3. We can use an induction process to find a subspace T" C
(D)t such that (D”)L =D” @ T" and

LNMDY =@,NnD)e L;,NT), vVi<i<n-1.

Moreover, the restriction of the bilinear form Q’ to T’ is automatically non-degenerate.
Next, we can find a subspace W, C L, such that L, = (L, N (D")*) & W,. Similarly, we

can find subspaces U, and T, such that
L,NnD' =@, ND"Y®U,, L,NT =IL,NT)®T,.

Via the natural projection L, — L,/L;, we can regard U, & T, as subspaces in L,/L;.
Now L,/L; inherits a non-degenerate bilinear form from that of D. Moreover, U, & T, is
the orthogonal complement of U, with respect to the form on L,/L,. By a well-known
fact, say [16, Theorem 6.11], we can find an isotropic subspace W, such that L,/L;, =
Uu,®T,® W,, T, L W,, and dim U, = dim W,. Furthermore, the restriction of the form
to U, + W, is non-degenerate. Now take a subspace W, in L, such that it gets sent to W,

via the projection map. Then by comparing the dimensions, we have
Ly = (L, N (D)D) & (W, @ Wy).

It is clear that W; & W, is an isotropic subspace in L, and (W; & W,) L (L, N T").

Note that T’ is not necessarily perpendicular to W; & W,. We consider the
subspace D"®T' @ W, ®W,. We can find a subspace U; in V" such that U; N(L,ND") = {0}
and the restriction of the bilinear form to U; @ W, is non-degenerate. The latter implies
that we can find bases {u,,---,u,} and {w,,---,w,} in U; and W, respectively, such
that (v;, w;) = §;;. Recall that we have bases {u, ;|1 <i < s;} and {w, ;|1 <i < s,} for U,
and W, such that (u,;, W) = 8. Fix a basis {t;} for T’ such that {t;}N (L,NT’) is a basis
of L, NT". Let T be the subspace spanned by the elements ¢; = t; — 31 <54, (¢}, wju;. We
thus have T L (W; & W,) and T satisfies all properties T” has with respect to the flag L.

By [16, Theorem 6.11], we can extend W; @ W, to a subspace W satisfying the
required properties, by extending the subspace (D) @ W; ® W, to the whole space D.
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Positivity Under Coproduct 19

So the pair (T, W) satisfies the desired properties. The lemma follows for n = 3. For

general n, it can be shown by a similar argument inductively. |

Suppose D" is an isotropic subspace of D of dimension d”. Set D' = (D)D",
and denote by D’ its dimension D — 2d” = 2d’ + 1. Thus, D’ admits a non-degenerate
bilinear form induced from that of D. Given any subspace C C D, it induces a subspace
7%(C) eD:

cn @)t +D"
nH(C) =
Recall the operation 7” from Section 2.3. For any L € X/, we have that 7%(L) € X/, and

n"(L) € Xg. For any pair (L”,L') € X4, x X},, we set
Zj, o ={LeX)lx*@1) =L n"1L)=1"}. (28)

We also set Z to be the set of all pairs (T, W) subject to the conditions (1), (2), and (3) in
Lemma 3.2.1. To a pair (T, W) € Z, we have an isomorphism 7 : T — D’. Define a map

Z - zj,,, by sending (T, W) to L™W, where

L' =Ller '@ e @yt @y ={wew|w,L_)=0}, Vli<i<n.

1

By Lemma 3.2.1, we see that the map Z — Z/, 1 18 surjective. Let
U= {g e Ghlgv) =v,vw e D', g(v)) —v, e D', Vv, € (D”)L} )

Clearly i/ acts on Z and Z/, ,,. Moreover, it can be checked that ¢/ acts transitively on Z

7"
L

and is compatible with the surjective map Z — Z/, ,,. Therefore, we have the following

'L//'
lemma, analogous to [24, Lemma 1.4].

o, j
Lemma 3.2.2. The group U acts transitively on the set Z, ;.
Recall S; from (4). We are ready to define the comulitiplication A/. This is a map
A :SL—> 8L, ®Sy, vd+d =d, (29)

defined by AJ (f)(L’,f,’,L”,f.”) = Ziez-l f(L,f,), VL, L Xé/,L”,IV/’ € X4, where L is a
L/,i”

fixed element in Zi, 1 (See (28) for notations). By Lemma 3.2.2, we see that the definition
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20 Z.Fanand Y. Li

of A/ is independent of the choice of L. Moreover, by an argument exactly the same way
as that of Proposition 1.5 in [24], the map A/ is an algebra homomorphism.

By using the monomial basis in [1, Theorem 3.10], one can show that Sé admits
an algebra homomorphism A’, which descends to A/ when specialized to finite fields.

Foranyie[l,7], a € [1,r+ 1], we define the following functions in S'(’i

L, L s Lo s .
v "/l if Lo L, Ly = L, V) € [1, rl\{i);
e;(L, L) = Pty =y
0, otherwise.

—|IL./L. . 1 . .
£ L) — v L/l if L, > L;,Lj = L]’.,V] e [1,rI\{i};
[ASald =
0, otherwise.

+1 / +|L,/L,— +1 +1 1
H,'(L, L) = vite/tantls, | k' = HEL HT,

for any L, L' € X};. We write e/, f;, and H/; for the elements in S/, analogous to e;, f;, and
H,; in Sfi, respectively. Similarly, we use the notations E;.’, F;’, and K;’ forl<i<n-1,
and H;, for 1 < i < n, for elements in S, defined in Section 2.3. We use the same

notations for the corresponding elements in S{i.

Proposition 3.2.3. For anyi € [1, 7], we have
K(e)=e;®H/ H,~; + H ) @ E/H; "} + H; , @ F; H,.
B () =t @ B/ H),,_+ @ F/H,,_ +H o
A (Ky) =K; @ K/K/"}.

Proof. As before, we only need to check the equalities over S{i. By definition, we have

A (e, I, 1", 1"y = v Ein/Lilyg,

where S = {L. € Z. .
L/,L//

only when the quadruple (I/,L’,L”, L") is in one of the following three cases.

IL; € Ly, |Ly/L;l = 1,L; = L;,V1 < j # i < r}. The set S is nonempty

() LjcLj L/l =1L =L} forall1 <j#i<r Lf =L/, forallj.
(i) Lj=Lf, forallj, L} C Lf, |L}/L}| =1, L} = L] for all j # .
(i) Lf=L} forallj, Ly ;D Lr I} /Ly [|=1,Lf =L} forallj#n—i.

We now compute the number #S in case (i). This amounts to count all possible

lines (u), spanned by the vector u, such that L; 4 (u) is in S. Since we want L; +(u) C L, ,,
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Positivity Under Coproduct 21

we should find u in L;, ;. Since we need 7*(L; + (u)) = IV,;., we need to find those u such
that 7 (u) = v/, where v’ is a fixed element in D’ such that IV,; = L;+ (u'). Fix a pair (T, W)
in D such that it satisfies all conditions in Lemma 3.2.1 with respect to the flag L. In
particular, L;,, = LQ/+1 ® Ly, NT) & (L, N W). Since T gets identified with D’ via the
canonical projection, there is a unique t in T sending to u’. So we need to look for those
u such that at component L;,; N T, u = t, and at component L;,; N W, u = 0. Thus, u is
of the form ¢ + w where w € L}, ;. Since adding w by any vector in L} does not change

the resulting space L; + (u), we see that the freedom of choice for w is L;’H mod L;’, that

is, L} ,/L}. So we see that the value of Al(e) (L, I/,1",I") is equal to
V_|ii+1/ii|q|L§/+1/L§/| =v |L/+1/L/ LU /L// —i— |+ +1/L// (e ® HH lH;/.;_l) (L/,IV/,L”,E/),

where we use |L;,/L;| = |L’i’+1/L”| + |L’+1/L’| + |L” JLY )

For case (ii), S consists of only one element, that is, the L such that L = L
for1 <j#1i<r andL; =L;+L (Since L/ C L” ., L; is isotropic.) So the value of
Al(e;))(L',L',L",L") in case (ii) is equal to

—\Lip1/L; ) AR FA N} /) v/ ) ) ¥ /—1 nyp/—1 7R TR 1/
v i /Lil — gL /L= L 1= /Ly ) (HL+1®EiHn—i)(L’L’L 1.

For case (iii), we need to consider two situations, that is, i = rori # r. For
i = r, the set S gets identified with the set S, = {{ € L,,,/L, : U.,; C I*, U, ¢ I}, via
L+ L,/L,, where U,,, = (L”+1 +L,)/L, and U, ; = (L, + L,)/L,. Set

S,={(Wwc L, ;/L.|W isotropic, +1 c W,dim w/U, r+1 = 1, W+ U, not isotropic}.

We define amap S, — S, by l— [+ (V]r+1. It is clear that this is a surjective map and its

fiber is isomorphic to Ur+1. The set S, can be broken into the difference of the two sets

= {W|\w 1sotrop10 41 C W,dim W/ rp1 = 1)

— (W|W isotropic U, 41 C W, dim W/UrJrl =1,W+U,,, isotropic}.

L1 /Lrl=21E /1=

q-1
the 2nd set, it is the union of (W = U,,,} and the subset {dim W + U, +1/ 11 = 2}

1

For the 1st set, its order is equal to Z , because U, 1 = L/’H/L” For

The latter has a surjection onto the set of isotropic lines in U +1/ ++1 with fiber Fgr via
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" "
L1 /Lrl =200 /711y

=1 . So

W+ W+ U,,/U,,,. Thus, the order of the 2nd set is 1 + g<

5 q|Lr+1/Lr|—2|i;/+1/i;’|—1 -1 qEre1/Lrl=2ILL JLT=1 g
#S = #U, ., -1-—q
qg—1 q—1

= gHa /B
So we see that the value of A/ (ei)(L’,f.’,L/’,f,//), for i = r in case (iii), is equal to
v rit gL ELHE VB GlE /B (H,,, @ F,_H/, )@ LI,
For i # r, the set S gets identified with the set S’ of isotropic lines I in L,,_;/L;
such that

IC L, /L;,UclHUgl,

where U = L . +L;/L;and U = L _, + L;/L;. Notice S’ is the difference of the two sets:
S ={lCLy,/L;,UCl})—{lC L ,/L; UcCl*).

We can use a similar arguments as in (i) to compute the two sets and we get

1200 A Ay A RS LY, | L\ +HIL,, T
q T 1 A 1 LY LI /2
q—1 q—1

#S =

So we see that the value of A/ (ei)(L/,f,’,L”,f,/’), for i # r in case (iii), is equal to
v et /Lil gIi L L /) IE B =1/ L L, /)
= (H;._‘_1 ® F;’/l—iH;/—‘rl)(L/' r, L”,L/’).

We have the 1st identity.

Next, we determine AJ (f;). By definition, we have
A ()L L, L 1) = v lkilliilgR, (30)

where R = {L € Zg'i”|Li oL, L/L=1,L; = f,j,V1 <j < r,j#r}. Now the set R is empty

unless the quadruple (L', L',1",1"”) is in one of the following cases.

(iv) LjDLj, |ILy/Ljl =1,L; =1, V1 <j<rj#i L = Lj forall j.

1
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(v) Lj=Ljforallj, Ly DL}, |L{/L}| =1,L] =L}, V1 <j#i<n.

(vi) Ly=L;forallj, Ly ,cLy ; |Ly_;/Ly ,|=1L/ =L/ VlI<j#n—-i<n.

In these cases, L differs from L only at i and n — i. Thus, we can identify L
with L;.

In case (iv), to count the number of elements in R, we break it into two steps. We
first determine all possible choices of f,i N (D" for f,i € R. Since IV,Q’ = L, we have only
one choice, that is, f,i = L;’ + T, where T is any subspace (of dimension |f,;.|) inL; N (D"t
maps onto IV,Q via the canonical projection. We next want to determine the number of
choices of W C L; such W + f,i € R. We first observe that if L. € R, then the projection,
say Iv,g”, of L; to D/(D")* is the same as that of L,. Since |L; N (D")/L; N (D")*+| = 1 and
L;_; C L;, we see that all possible choices for W e L; such that W + L; € R is bijective to

the space

o
LY Ly = Wy p* ) = By /L

i-1 = n—ir

where L!” | is the projection of L; ; to D/(D")*. Thus, in case (iv), the left-hand side of
(30) is equal to v"Li/f'i—l'q'i/r/t—l“rl/i;;—i| =f® H;"IH’,’LH_i(L/,i/,L’/,fr/’)-
In case (v), to build a subspace L; in L; such that it is in R, there are L;/L;_,
choices to build the component L; = L; N (D”)'. This is done by using a similar argument
as in the 1st step of case (iv) since L} D Iv,;.’ and |L§’/f,§’| = 1. By a similar argument as the
step two in case (iv), we see that the number of choices for a subspace W in L; such that
w + i’i € R is again f.’r/l_iﬂ/lv/r/l_i for a fixed subspace from the 1st step. Thus, the value
of (30) in case (v) is equal to

v/ Bl gl /B gl /) — W @ 0S U P08 700 00 70

In case (vi), there is only one element in R. First of all, f,i N+ =L;N(D")* for
L; € R. Second of all, by fixing a decomposition of D = D" & T ® W as in Lemma 3.2.1, we
see that if f,i € R, then the projection of f,i to D/(D")* is (IV/r’L_i)#. Thus, by an argument
similar to the 2nd step of case (iv), we see that there is only one f,i in R. This implies
that the value of (30) in case (vi) is equal to v—/Fi/ki-1l = H '®E/ H/'L, L, L"L"). We
see that the 2nd identity follows from the above computations.

Finally thelast identity follows from the definitions and A/ (H,) =H@H/H , .}

Corollary 3.2.4. We have (1 ® MY =@ @ DR,

The corollary follows by checking if the relation holds for generators, which is

immeidate.
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3.3 Renormalization

Given a pair (b, a) in Agn for n = 2r + 1 (see (7)), we set

1
u(b, a) = E Z blb] - aiaj + z ai - bi
i+j>n+1 i>r+1
(31)
1
= > bibj — a;a; + > bi-af+a;—b | el
i>]i+j>n+1 i>r+1
The coproduct A’ in (29) can be decomposed as
) a7
A == @Ah/,a/,b//,a”’
where Z]]), o' b o 1S the component from S/ (b, a) to S} (b’,a’) ® S(b”,a”) such that
by =B+ b+ by a;=aitaltal, , Vi<i<n
We renormalize A’ in (29) as follows:
AJ = Gah,a,b/,a/,b”:a”Alj)/,a’lb”,a”’ (32)

AN/ ! 1 ~
J 21<izjzn bib) —@ia} Lu®” 2" 3/
b,a’b",a’ b'.a’b",a""

homomorphism, due to the fact that u(c,a) = u(c,b) + u(b,a). By a straightforward

where A =v Note that A/ is again an algebra

computation based on Proposition 3.2.3, we have

Proposition 3.3.1. Foranyie[l,r],
Ne)=e;®K/+1QE/+K,®F, XK.
-1
NE) =f oK, +k @K, F+1QE, ;.

N (Ky) =K, @ K{K/ "}

Proof. Fix ani e [1,r]. Assume that we have a quadruple (b’,a’,b”,a”) such that b, =
@, — 8+ 6 it1 + Sk nei — Sknp1—; and b} = af for all k € [1, nl. We have u(b”,a”) = 0 and
2 1<k<j<n Dya; —aa;l = —aj +aj_;. So, after the twist, the 1st term on the right of N (e;)

3 g3 / 1 1—1 —al+a’ . _ 1
in Proposition 3.2.3 becomes e;QH;, | H, /|y o2V ¢ i = €;®K] |}y o 7 o» Where the

notation flyy o v o» is the restriction of f to X7,(b') x XJ,(@') x Xz/(b") x Xz.(@").
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Assume that we have a quadruple (b’,a’,b”,a") such that b}, = a}, and b} = a} —

8k,i + Oyi41 for all k e [1,n]. Then we have 37y ;_;., byb] — aya; = aj,, and u(b”,a") =

Thus, after the twist, the 2nd term on the right of % (e;) in Proposition 3.2.3 is

"

anl

equal to Hl-‘rl [ EHH// llh/ a/, b// a//V l+1+an i=1 X E |b/ a/, b// a’-
Assume that we have a quadruple (b’,a’,b”,a”) such that b} = aj and b} =

k + n—i = Sgny1-; for all k € [1,nl. Then we have 3, ;. Db} — aja; = —a; and

ud”,a") = —a! +5;,,, = —a, where the latter equality is due to i € [1,7]. Hence,
after the twist, the 3rd term on the right of N (e;) in Proposition 3.2.3 is equal to

/ 1 17 —a.—a! 1,/ 1/ "
H, @F H v %y gy e =K QF, Ky apar

The 1st equality in the proposition follows from the above analysis.
Assume that we have a quadruple (b’,a’,b”,a”) such that b} = a} + 8;; — 8¢ ;41 —

Skn—i + Skny1—; and by = ay for all k € [1,n]. Then we have 3, ;_;., Db} — aja) =

a! —a_, and u(b”,a”) = 0. So, after the twist the 1st term on the right of A’(f;) in

1
Proposition 3.2.3 becomes f; @ H/"'H, | _ lVal_ n- iy ap o =5 QK. Ly ay ar
Assume that we have a quadruple (b’,a’,b”,a") such that b} = aj and b} = a} +
8k,i — Oy,i41 for all k & [1,nl. Then we have 37y -, Db} — akai. = —a; , and u(b”,a"”) =
—a,_; +3;,. So, after the twist, the 2nd term on the right of A’ (£, in Proposition 3.2.3
becomes H; ® F/H, | v “§+1_a”—i+5i"|b/,a/yb~ K@ VUF/K! Ly ayar = K

n+1-
" /!
Kn lFl |b/,a’,b”,a” .

y =
,a

Assume that we have a quadruple (b’,a’,b”,a") such that b} = aj, and b} = a} —

Sk ni + Ogny1-; for all k € [1,n]. Then we have 3, ;- byb} — aja/ = & = a; and

n+1-—i
u(b”,a”) = a]. So, after the twist, the 3rd term on the right of A’ (£;) in Proposition 3.2.3
becomes H;~ i QE., H/ WUy oy = 1®E! Ly ar

The above analysis implies the 2nd equality in the proposition. Since the twist

will not affect the original term when b’ = a’ and b” = a”, we have the 3rd equality. W

Recall the canonical basis {{M}|M € E/} of S/, from [1, 3.6]. We have the following

positivity result of the canonical basis of Sé with respect to the coproduct A’.

Proposition 3.3.2. If A/({M}) =D jpca =y h%/'MN {M'}®{M"}, then we have h%/'M” €
a &g

Zglv,v1l.

Proof. The proof is similar to that of Proposition 2.3.6. We consider the orthogonal
group aé and the isotropic flag variety Xé(a) over [F_q, whose [ -points are exactly Gé
and X{i(a), respectively. The linear form Q’ can be extended naturally to a form Q/ on

—D L L . ... =D
F, . Suppose that D’ is isotropic with respect to Q/. We can fix a decomposition b =
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26 Z.Fan and Y. Li

D’ @ T @ W such that Lemma 3.2.1 (a)-(c) hold. With respect to the bases in Lemma 3.2.1

(c) and a fixed basis of T, we can further assume that the associated matrix of Q’ is

0 01
of the form |0 1 0|, since Q’ is defined over an algebraic closed field. Recall that
1 0O
0 0 t1
G,, = GL(1,F,). We define an imbedding G,, — Gj by ¢ ~ 0 1 0 | where
11 0 0

the 1s denote the identity matrix of the desired rank. Then the G,,-fixed-point set of
X{i(a) consists of all flags L such that L, = (L; N D") @ (L; N T) & (L; N W) for all i,
hence is u(a/'a,/)ﬁié/ (@) x X4/(a”). Furthermore, the attracting set of X/, (a') x Xy (a"),
for all (a’,a”) +— a, is the algebraic variety Xé;’

XJ|(w*(L), 7" (L)) € X}, (@) x Xz.(@”)}. Thus, we have

.a Whose [ -point set is Xé;,’a,, ={L e

— L — 7+ T/ — —
Xh@) «—— Xj oo — Xyp@)xXg (@),

where the 1st arrow is an inclusion and the 2nd is induced by the definitions. Arguing

J
ba b’ a”
hyperbolic localization functor 7/ t;. Now applying Braden’s [4] result, we are done. W

in a similar way as Lemma 2.3.4, we see that A is the function version of the

Remark 3.3.3. Note that the rank of the vector bundle =/ is
! 1 " " 1
> a;aj + 5 . ajai- > a
1<i<j<n i+j>n+1 i>r+1
This provides an explanation of the twist in (32).

Moreover, we have the following coassociative property.

Proposition 3.3.4. (1 ® A)A = (A ® 1)A/. More precisely, we have the following
commutative diagram for the quadruple d,d’,d”,d” such thatd =d' +d” +d"”

A/
Sé _— S]d/ ® Sd”—}-d”’

v J1oa

A ®1
S{i’+d” ® Sd/// —_—> Sj, X Sd// (24 Sd///.
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Positivity Under Coproduct 27
3.4 The imbedding ;g : S}, - Sq

In this section, we set d = 0 and d” = d, then the coproduct A’ in (29) becomes A’ :
S/, = S} ® S4. Observe that S} consists of only one basis element, so we have 5 ~ A.

Thus, the coproduct A’ becomes the following algebra homomorphism, denoted by j;,
Jd . Sé —> Sd' (33)
The following corollary is by Proposition 3.3.1,e; =0, f; = 0, and K = viir in Sé.
Proposition 3.4.1. There is a unique algebra imbedding

]d:Sé_)Sd

1

Proof. By Proposition 3.3.1, we have

Jae) =€, ®K/ +1®E/ +K;®F,_K/ = 0+E/ +vF,_K/ =E/ +K/F,

n—i—i n—i’

which is the 1st identity if we skip the superscripts. The remaining two are obtained in

exactly the same manner, and hence skipped. |

Remark 3.4.2. The homomorphism ;; matches with the imbedding ; in [1, Proposition
4.5]. The only difference is an involution w on U defined by (E;, [;, K;) — (F;, £, [Ki_l).

By Propositions 3.3.2 and 3.4.1, we have the following corollary.

Corollary 3.4.3. Let {B} be a canonical basis element in Sfi. If j4(B) = ZgB'A{A},
where the sum is over the set of canonical basis elements {A} in S;, then gp, €

Z_olv, vl
We will need to the following lemma later.
Lemma 3.4.4. The map j, in (33) is injective.

Proof. Recall from [1, Theorem 3.10] that S/, has a monomial basis m; indexed by

A € EJ, (which is denoted m, therein). It is enough to show that the set {;5(m})|A € B/}
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is linearly independent in S;. We set

deg(1,) =0, deg(e;1,) =i, deg(f;l,)=n—1i, Vie A{i,n, 1<i<r.
Similarly, we define

deg(1,) =0, deg(E;1;) =1, deg(F;1;,) = —i, VieAyz, l<i<n.

We write v < v if v; < v; for all i and v; < v; for some iy. Suppose that deg(m)) =v e

Z.lI]. By Proposition 3.4.1, we have
Ja(m)) € ®y_5_,Sq(b,a) ® ®z_5_,S4(d, c).
For A = (a;) € 87, we set
844)={B= (bij) € Ed|bij =0,Vi<}j, bij = aij,vi > j,co(B) co(A)},
where baifb; +b,,,_;+9;,,1 =a;forall 1 <i < n.By Proposition 3.4.1, we see that

Jag(my) = z my + lower terms,
BeEq4(A)

where my denotes the monomial attached to B in [3, Proposition 3.9] and “lower term” is

the remaining summand in ©g_;_,S4(d, ¢). Now suppose that we have

D Cajamy) =0, c,e A

=/
AeEy

Let M be the set of maximal v € Z[I] in the set {deg(m})|A € EJ} with respect to the

natural partial order in Z[I], that is, v' < v if and only if vg < v; for all i. We have

0= > cpjgmy) = > ca1q(m)) + lower term.
Aeg), A:deg(my)eM

So we have ZA:deg(qu)eM CAjd(mi) = 0. By [3,Proposition 3.9] and the fact that E;(4) N
E4q(4) = g if A # A’, the set {3 p.z 4) Mg}, where A runs over all matrices in g/ such
that deg(my) € M, is linearly independent in S;. Thus, ¢, = 0 for all A € E/, such that
deg(m}) € M. Inductively, ¢, = 0 for all A € E/,. Therefore, the set {;;(m})|A € B/} is

linearly independent. Lemma is proved. |
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The following is nothing but a special case of Proposition 3.3.4.
Corollary 3.4.5. Suppose that d’+d” = d. We have the following commutative diagram.

J
S, —— S\, ®Sy

Jdl J,jd/@)l

Sd L) Sd’ ®Sd//.

Remark 3.4.6. S/ can be regarded as a “coideal” subalgebra of S; in view of
Lemma 3.4.4 and Corollary 3.4.5.

3.5 Type A duality versus type B duality

In this section, we use the algebra homomorphism Jdvr the specialization of j; tov =v,
to establish a direct connection between the geometric type A duality in [14] and the
geometric type B duality in [1].
For any nonnegative integers a, b, we write 120° for the sequence (1,---,1,0,
---,0) containing a copies of 1's and b copies of 0’s. Similarly, we can define 190°1¢, etc.
Recall X, X;(b) forb € A, from Sections 2.2 and 2.3. We set

Ty =Ag, Xy x Xg(1%), and H, =Ag (X;(1%) x X;1%).

By [14], we know that H,, is a Hecke algebra of type A; and T, is a tensor space
V&4 where V,, is a free A-module of rank n. Now the standard convolution defines

commuting actions of S; and H,, on T, , from the left and the right, respectively:
v
Sd X Td,n — Td,n <— len X HAd' (34)

Moreover, the two actions centralize each other.
We shall recall a similar picture in [1] if the X ; is replaced by its j-analog. Recall
X’, X (b) forb e A/, from Sections 3.1 and 3.3. We set

Tél,n _ 'AG’d(Xéi % chi(lz‘i“)) and HBd = AGQ (chl(12d+1) X Xé(12d+1)). (35)
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Then T{i ,, is also isomorphic to the tensor space V&, and there is the following diagram

of commuting actions.
J J J J
SgxTy, > Ty, « Ty, xHg,. (36)
A slight variant of the imbedding j,  yields the following linear map:
Cap * Agy Xg®) x XG(12HHD) = @y iy 24 Ag, (Xg(0") x Xg(@"),vb € A,

where b” |= b stands for b; = b} + b ,_;+6;,,, foralli. Fora”,b" |= 124+1, we set

Tgl,/n = Ag, Xy x X4(@")) and bNHAd = AGd(Xd(b/’) y Xd(ld)).

Let ¢y be the composition of ¢  with the projection to the components of
a’ = 1d0d+11

Sapy  Ag (X)(b) x X512 o @y Ag, (Xg (") x X;(1%),

where we identify X;(1904*+!) with X;(1¢). Summing over all b € Al ., we get a linear

map

— ./
dv = Obeng,bdby: Tan = Tan-

Take n = 2d + 1, b = 124+1 we obtain a linear map

1 . b//
Say i Hpy, = Oprgzan © Hy

which is not necessarily an algebra homomorphism. Note that we identify T(Iidr?dprl and
1oty , With T, and Hy , respectively. We thank W. Wang for pointing out a mistake

in a previous version of the following proposition.

Proposition 3.5.1. We have the following commutative diagram relating the geometric

type A duality with the geometric type B duality.

J J J J
Sd X Td,n Td,n Td,n X HBd

Ja,v % Cd,vl Cd,vl J}-d,v X Cé,v

" b//
Sd X Td,n len " @a//)=12d+1 Tg'n X @b//'zlzd_H HAd T Td,n X HAd'
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where v, is the natural imbedding and v, is the ¢ in (34).

We can describe the linear map ¢, , explicitly. Let I1; ,, be the set of nxd matrices
A such that a;; € {0,1} and > ,_;, a;; = 1 forall 1 <j < d. Then we have

Ty, =spany { “[AllA e Ty, }, (37)

Where a[A] = VdACA and dA = ZiZk,j<l aijakl.
Let Héln be the subset of [14,, , such that a;; = @, ;_;2q1,jforalll <i<n

and 1 <j < 2d + 1. (In particular, we have Ari1,de1 = 1.) We have

T/, = span 4{[A]|A € TT} }, (38)

1
where [A] = v*4¢) and ¢, = 3 (Zizj,kd QA = 2isn+1,d+1>] aij)'
Let J,,, be the m x m matrix whose (i,j)-th component is 5i,n+1—j foralll <i,j<

m. To a matrix A € I, ,,, we define a matrix
AT = (Ale, 1 1T,ATY),

where €, is the column vector whose entries are zero except at r + 1, which is 1. Then

the assignment A > A” defines a bijection My, — IT; .
Proposition 3.5.2. ¢, ,(IA7]) = ?[A], forall A e Iy ,.

Proof. Suppose that ro(A7) =b. We seta” = 1404+, b’ = 0"110", and a’ = 091'0¢. Then
by the definition of {qy WE have

£qy(1A7]) = v A 1a’, (39)

/ //
b',a’b",a”

where

RIS YA B ST YD T R 3§

I<igj<n 1<i<j<2d+1 i+j>n+1 i>r+1 i+j>2d+1 i>d+1

Note that the following formula t; is compatible with the twist in (32), since we need to

rescale from n components to 2d + 1 components for a’ and a”. Now using the fact that
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a” =1909+! b’ = 071107, and a’ = 091109, the twist t;» can be simplified to

ty :% > bipi— > b

i+j>n+1 i>r+1

By the definition of A7, we can also simplify the numeric €, as follows:

— J J _ J J _ J

isk,j<l i>r+1,d+1>]
(40)
1
_ JJ _ .
=3 IS D I D @i >
i>kj<l<d+1 i>kj<d+1<l i>k,d+1<j<l i>r+1,d+1>j
The 1st sum simplifies to 3 ;. y i ;g1 @4jak- The 3rd sum simplifies to
JJ _ —
Z ;0 = Z Ap+1-i,2d+2—j%n+1—k,2d+2-1 = Z aijQpt+ Z ajj-
isk,d+1<j<l iskj<d+1<l iskj<l<d+1 izrl,d+1>j

The 2nd sum is reduced to

Z a{jail = Z aijakl + Z aij = 2trO(A).

iskj<d+1<l i+k>n+1jl<d+1 i>r+1,d+1>j

So we get tr — £ys = —d 4 + by — tyo(a)- Thus, the identity (39) can be rewritten as

{d'v([A.]]) — V—dA+tb//—tr0(A) Z]])’la/lh”'a//(é‘ij)’
where 7, denote the characteristic function attached to the G};-orbit indexed by A”.
Recall that a” = 1909+, This implies that for any L” € X,(a”), we have Zél i
consists of only one point, that is, the flag L such that f,i = f,g’ foralli < r and f,i =
(074 )L forall i > r+ 1. Furthermore, if (L”,L") € O,, then (L,L) € O, forany L € Z/,

n+l-—i L

7 J T T : AJ J —

and L € Zi',i” because L; N L; = Ly N L, Vj < d. Hence, we have Ay arar) =
8" ro(a)éa- The proposition is proved. u

By Proposition 3.5.2, we have

Theorem 3.5.3. Forall A € M, we have {4 ,({A”}) = *{A} + X 57 47 roB)£ro(a) Cp,a* 1B}

where cp 4 € Z_glv, v,
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Recall the parabolic Kazhdan-Lusztig polynomials Pys 45 and Py 4 of type B; and
A, respectively. If ro(B) = ro(4), the remainder in the above theorem vanishes, so we

have
Corollary 3.5.4. Py 45 = Pp , if ro(B) = ro(4).

More generally, we have the following commutative diagram of algebras.

{d,v
Hp, = Ags (X (12440) 5 X7 (12940)) = @, i jaan A g, (Xg (D7) x Xg(a”))

| !

d,2d+1 W Sa2d+1-
d,v

3.6 Transfer maps on S/,
The transfer map
J .l J
Pa,d-n"Sa ™ Sa-n

AJ 1®x
is defined to be the composition S, —— S/,  ®S, —= S, ®A=S] ., where x
is in (13). It is clear that ¢(’i d—n 18 an algebra homomorphism. Moreover, we have
Proposition 3.6.1. ¢} ;_,.(e) =€}, ¢}, , &) =F, and ¢} ;_ &) =K, vie[1,7].
Proof. By definitions, we have x(E}) =0, x(F/)=0, and x(H/)=v.So we have
$dq-n(€) = eix (Y Hy~H) + Hi ) (BH, 7)) + Hi x (Fy_H],)) = e,

$,anE) = Eix BT H, ) + Hix (F{Hy )+ B X (B BT =,

Ol q_n (k) = Kix KK ) =K.

The lemma is proved. |
Together with [1, Theorem 3.10], we have

Corollary 3.6.2. The homomorphism qbé d_n, 18 surjective.
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4 Positivity for the Modified Coideal Subalgebra U’
4.1 The coideal subalgebra U/

By definition, U/ = U/(sl,,) is an associative algebra over Q(v) generated by ¢;, f;, ky;
for 1 < i < r and subject to the following defining relations. For any 1 < i,j < r and

Qjj = 28;5 = 841 — Syj-1s

k' = k'K =1,
kie; = V“if””af"ejlki,
kiﬁj — V—aij—(si,risj,rﬂ‘jki,
bl = o .
ey —les = iy — 1 if (@) # T,
e2f +fe? = (w+vHele —e(vk. +v k1))
r'r r-r rr-r r r r 4
e, +eb2 = (v+v el — vk, + vk DE,),
€€ = €&, ifli—jl>1,
B = B ifli—jl>1,
efe; eel = (Vv Dege, ifli—jl=1,
0204+ 662 = (v+ v DG, i Ji— j| = 1.

Recall the algebra U from Section 2.5 from [1, Proposition 4.5], see also [2], we
have an injective algebra homomorphism
j: Ul > U,
defined by
1) =E+KF, ;g€ =FK, ;+E, ; jk) =virkK 1, vi<i<r
Here n = 2r 4+ 1. By composing ; with A in (16), we have an algebra homomorphism
N U/} - U/ @ U defined by

AJ (@L) = (Ei ® lKl —+ 1 ® [El + Ikl ® [Fn—i[Ki’
NE) =h@K, ;+k ' ®K, ;F;+1®E,_;,

NO) =k KK, Vi<i<r

1 n—i’
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4.2 The algebra U/

On Z", we define an equivalence relation “~" by u ~ A if and only if u — A =m(2,---,2)
for some m € Z. Let i1 denote the equivalence class of u with respect to ~. Consider the

following subset in the set 7"/~ of equivalence classes.
K ={ige 2"~ |u; = pyi_;, V1 <1<, is odd}. (41)
We define
U = Darens ﬁ[Ui,

(Ui =U// Z (k; — vHFREL YT 4 Z U (k; — yhithin)

1<i<r 1<i<r
The algebra U/ is the modified form of U’ (see [1, 4.6] for the gl,, version). Let
7 U - ZUs
be the natural projection.

Recall the set X/ from (41) and s; the i-standard basis element of Z". We define

an abelian group structure on X/ by # + A = 7, with 7 = u + A — S,41- We set
I={1,--,r}

The assignment i — —s; + ;.1 + S,_; — Sp41_; + Sp41,Vi € I/, defines an embedding
of abelian groups Z[I/] — X/. We shall identify elements in Z[I/] with their images
in X/. Then the algebra U’/ in Section 4.1 admits a Z[I/]-graded decomposition U/ =
@ ez UV’ (0) defined by

e; € U/ (), B e U/(=D), K' € U/(0), U (U (&) SV (w+0a), Viel.

Let ﬁiui(w) = nﬁlx(ﬂﬂ (w)). By a standard argument, we have

Lemma 4.2.1. ;UL(w) =0 unless &t —A=weZll’/]C %.
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4.3 Positivity with respect to A/

We introduce the following notations to simplify the presentation. For any u, 1/, u” € 7",

we write

w1y, (42)

if and only if u} + Y +M;’/L+l—i =py foralll <i<n.Ifu =s,.,,, we simply write u” b p.
Assume that (u/, 1) = u, then by definition we have
N ([ki — V—Mi+Mi+1) z([ki — V—M;»+M;+l) ® [Ki[K;;ii + V—M;+M§+1 ® ([Ki _ V-M!-‘:—Mé’_,_l)kr—lii

+ V_ll’é_“;'/+#§+1+#§/+l ® ([K;li — V”’/r/L—i_'u;;-Hfi) .
This induces a unique linear map

J . J 0/ on / /" AR/
A/?)T’WV ﬁ[UX_> M’[U)?(X)M”[Uk”’ Y, "y, (A, EA

such that the following diagram commutes.

w A U/ QU

l l

; CERET o
ZZU’A\, % /J//U;:/ ® M/,UA”. (43)
Recall B is the canonical basis for U. Let B/ be the canonical basis for U/ defined

in [21].

Theorem 4.3.1. lLeta e B/.If Af:

B
Ak

(@) =D peps ceB n5°b®c, then nb° e Z_olv,v711.

The rest of this section is devoted to the proof of Theorem 4.3.1.

For w,w’ € Z[I'] and v € Z[I], we write
(@) E o, (44)

if and only if a); +v;,—v,_;=w;, forall 1 <i<r If o =0, we simply write v = w. By the

definition of A/, we have

Lemma 4.3.2. Forany w € ZII'], &' (U (@) C @,y )0V’ (@) ® UW).

0202 1snBny €0 U0 188NnB AQ £290/€G//40ZUl/UIWIEBOL 0 L/IOP/AOIISIB-BJONE/UIWI/WOS" dNO"OIUSPEIE//:SARY WOy POPeojumod



Positivity Under Coproduct 37

The following lemma is a refinement of (43), and follows from Lemmas 4.3.2
and 4.2.1.

Lemma 4.3.3. Assume that @i, 2, /., ¥ € X/, o,0' € ZII'], ", %" € X, and v e Z[I] such
that T — A=, 0 — N =, 1/’ =N =v, (W, u") =, W, ") =2, (@,v) E . The following

diagram commutes.

J

Aw,v /
U/ (w) U/ (o) ® U(v)
nﬁjl ln’l:,';, ®7TW,)7
A
j ﬁ,}\.,/l”,)\.// N J - -
ﬁU’X E— M/UX\, ® /’L”U)‘”'

. . . ]
The assignment of sending generators of U’ to the respective generators of o, Sy

defines an algebra homomorphism, denoted by
¢V > quSy- (45)
Moreover, this algebra homomorphism is compatible with the gradings. In particular,
64V (@) C ®pacr) ba—o aSa®id), Vo € ZI]. (46)
On the other hand, we have

AJ (Q(V) Sé (b/ a)) g @ Q(V) Sé/ (b/, a/) ® Q(V) Sd// (b//, a//), (47)

(b, b")Hb
(a’,a”)a

where d = d’' + d”. By Lemma 4.3.2, (46), and (47), we have the following lemma.

Lemma 4.3.4. Assume that b,a e A{i n w,w’ € Z[I'], v € Z[I] such that («’,v) = w. The

following diagram commutes.

/

U/ (w) U/ (o) ® U(v)

A (s

AJ
@b,aeAé . Q(V)S{j(b' a) _— @Q’/'bl/)'_b'(ﬂ'/faﬁ}_a Q(V)Sél’ (b’, a/) ® Q(V)Sd” (b//, a//)'
Dm0 b'—a'=o' b"—a"=v
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Recall from [21] that we have an algebra homomorphism

B0 g )
defined by
_ ¢, ifa=3a aeA) ,
FORER N an
, 0.W.
(49)
- i ifA=a, a St = i 1f/):=’zi,aeAén,
¢é(®ili) = B ' ¢é([rilk) = 2
0, 0.W. 0, 0.W.

By restricting to ﬁ% it induces a linear map
¢y UL > quSid,a), if =D, =a
In particular, we have the following lemma.

Lemma 4.3.5. Suppose b®,a% e Aéln satisfy b° — a% = w e Z[I']. The following diagram

is commutative, where the arrow in the bottom is the natural projection.

750,40

U/ (w) — U5

a

%| |7
Dp_3-0 0 Sg0: @) —— ¢Sz a’). (50)

By putting together Lemmas 4.3.4, 4.3.3, and (50), we have the following cube.

J ~T7. I S
ﬂy l/lU/): / /UU)T/ ®/4”UA”
U (@) ? U/ (@) ® U(v)
v
S{i(b' Q) | - Sé,(b/, a) ® Sy (b",a")

&S} (b, a) ———— @S, (b, a) @Sy (", a"), (51)
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where the sum on the bottom left is overall b,a e Aé,n such that b —a = w, while the
sum on the bottom right is over b’,a’ e A],,n and b”,a” € Ay, such that (b',b”) b,
@,a") +a, b —a =w andb’ —a” = v.

From (51) and the surjectivity of 7, 3, we have the following proposition.

Proposition 4.3.6. The square in the back of (51) is commutative.

J ~TTL — MT—
ﬁU’): M/U)T’ ® M”U)\”

| |

Sh(b,a) ——— S, ', a") @Sy (b",a").

By using Proposition 4.3.6, we deduce Theorem 4.3.1 via a similar way for
Theorem 2.5.5.

4.4 Positivity with respect to ;

Notice that for u, u” € Z™ such that u” + u, we have

J((k; — v TR YY) C Z (K, — V—M;/HL;/H)[U_

1<i<n

Similarly, for any A,1” € Z" such that A” — X we have

(U (I — vrithivg) © Z UK, — v A,

1<i<n

The above observations induce a linear map

. J o _ " "
]ﬁ,’xlmlﬁ . ﬁ[U/)': __>MN UJ)L/// VM l_,bL,)\ |_)" (52)

such that the following diagram commutes.

v —ls U
”ml l”f?
J~5
7 woh,un T
A% Wl (53)

Theorem 4.4.1. Letb e B/.If 1,5 7 57(D) = 3 ;g 9p,a@ then g , € Z4lv, vl
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The proof of Theorem 4.4.1 is a degenerate version of the proof of Theorem 4.3.1.
For the sake of completeness, we provide it here. The following lemma is due to the fact
that

1) € UG + U(=(mn — 1)), () € U(=D) +U(n — i), j(G) € U(0).
Lemma 4.4.2. For any w € Z[I], j(U/(w)) C D, UW).
From Lemmas 4.4.2 and 4.2.1, we have the following refinement of (53).
Lemma 4.4.3. Assume that I, € X/, € Z[I’], &, %’ € %, and v e Z[I] such that
B=h=o,u = =v,u" —u, ' i Eo.

The following diagram commutes.

Jo,v
U/ (w) U)
m| |
J=5 01 501
] Bk h
i s

where §, , is the one induced from ; by restricting to U/ (w) and projecting down to U(v).

Note that we have

Jd(Q(V)Sfi(b,a))Q @ Q(V)Sd(b”,a”). (54)
b’+b,a’ta

By Lemma 4.4.2, (46), and (54), we have the following lemma.

Lemma 4.4.4. Assume thatb,a € A/, , w € Z[I’], v € Z[I] such that v; — v, ; = o; for

any i € IV. The following diagram commutes.

Jw,v

U/ (w) U)

""jil l‘f’d

J Jd
EBb'aEA{i,n Q(V)Sd(b’a') — Opaleng @(V)Sd(b//:a//),

b—a=w
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where the condition (+) is b’ —a” = v, b” —b, and a” a.

By putting together Lemmas 4.4.4, 4.4.3, and (50), we have the following cube.

m/ 2U7 U5
U/ (w) U(v)
v
Sfi(b,a) e S5 (B, @)
D= wS] (b, a) E——— @p_y:de(b//,a”). (55)

From (55) and the surjectivity of n-+, we have the following proposition.

TP

Proposition 4.4.5. The square in the back of (55) is commutative.

L

Sh(b,a) ————— Sy(b",a").

Recall that for any b € B/, we suppose that

V« N M” )L//(b) Zgb,aa:

aeB

where g, , € Zlv, v~1] is zero except for finitely many terms. Let S = {algp 4 # 0}. Since

the set S is finite, we can find a large enough d using [21] and [25] such that

¢4(b) = (Bly, ogq(a)={A}y, Vaes,

where {B}; and {A}; are certain canonical basis elements in Sfi and S;, respectively.

Applying ¢i/i and Lemma 4.4.5, we have

1aUBY) = 1g@5(B) = bains w7 (D) = D Gpaba(@ = D gy {A}g.

aeB aeB
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By comparing the above with Corollary 3.4.3, we have g, , = gp 4. So we have g, , €
Z_olv, vl by Corollary 3.4.3. Theorem 4.4.1 follows.

4.5 The imbedding j

For any pair (11, %) in %/, we define

o . J I
]ﬁ,k = H‘]ﬁy)wll”y)»” . ﬁUJ'X — H MN[U)”H'

where the product runs over all 1/, 1” in X such that " +u and A" 1. We set

TE @ Jﬁl’}::U/—% @ HV[UV

areks aeX
Proposition 4.5.1. The map J is injective.

Proof. It suffices to show that for any nonzero element x in ﬁ[U%, there is F and A/
such that Jﬁﬁ,ﬁﬁ(x) is nonzero. Suppose that ;’I—x = w. Let us pick an element u € U/ (w)
such that 7;7(u) = x. Since ; is injective, we have j(u) # 0 € ®,czU(v). Thus, there
is v such that the v-component j(u), of j(u) is nonzero. It is well known (see [24]) that
we can then find a large enough d such that ¢;(;(u),) # 0. In particular, there is a pair
b”,a” in Ay, such that the (b”,a”)-component of ¢;(; (u),) is nonzero. Take W =b" and
A =a”. By chasing along the cube (55), we see immediately that Jagar(X) # 0. ]

Remark 4.5.2. j can be regarded as an idempotented version of ;.

5 :-Version

In this section, we show the positivity of the i-canonical basis of the modified coideal
subalgebra of quantum s/, for ¢ even. Since the arguments are more or less the same as

the n odd situation, the presentation will be brief.

5.1 :-Schur algebras and related results

Recalln =2r+1and D = 2d + 1. We set

{=n-—1.
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Recall B} from (27). Let EY) = (A € B}jl@, 1 = 8j,41/ Girp1 = 8ipy1)- Letj = DAl
where the sum runs over all diagonal matrices in Ej;. Let S, =jSé oJ- It is a subalgebra

in Sil’n and admits a basis [A]; forall A € Ey- In particular, Sld,e contains the following.

8.q=jed fga=ifi kg=ikj, Viell,r—1l, h,4=jh,j, vaellrli,
: k, -k 1. (56)
:_](frer+ Vr_—V—rl)-]

Similarly, we consider the subset E;, of E; defined by the condition a,, ; =0
and a;,,; = 0 for all i,j. Let J = > [Al; where the sum runs over all diagonal matrices
A € By, Then S;, = JS;J is a subalgebra of 5; with a basis [A]; indexed by E;,. Sg,

contains the following.

JE;J, ifiell, r—1], JF,J, ifiell, r—1],
E,g=1{JE, ,EJ, ifi=r, F,q={JF,F,, J, ifi=r,

|JE;,,J,  ifielr+1,¢-1] JF;,,J,  ifielr+1,¢-11

[Jx.J, ifiell,r—1],
. . JH,J, ifa el1,r],
Kig=1IK, K, ,J, ifi=r, Hyq=

JH,,,J, ifaelr+1,¢.
JK; 1J, ifielr+1,¢—-11

. - - —1 ~ .
Notice that we have JH,,;J =1 and K, ; = H, ;jH,, ;. Denote by A’ the generic
version of A/, that is, the unique map such that 4 ®, N =AJ.

Lemma 5.1.1. Letd +d” =d. 7’ (S, ,) €Sy, ®Sy . Moreover, foralli e [1,r—1]

K@ g) =8 q® I:Ii+1,d”ﬁe_—li,d~ + }vli_-l—ll,d’ ® Ei,d”ﬁl_—li,d” +hi0 ®F g i g
&)=t @0 gl a0 +Ra®F o H 0+ fli_,cll/ ®F,_; g Mg
B (k) =k q ® IV{i,d”IV{Z_—li,d”'

N (g =tg ®K, g + sz{r_,clz/ ®H,yy aFr g+ v 2k g @ H 8, 4. (57)

Proof. For convenience, we shall drop the subscript d and replace d’, d” by superscript

" and ” respectively in the proof. The 1st three equalities are from definitions and
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A (§) = j ® J”. We now show the last one. By using jf,j = 0 and je,j = 0, we have

Z'/ Gfrerj) = jfrerj ® JHr_lHr+2J +jhrhr_—i}1j ® JFrHr+2ErH1::1J
. . i —1 . _
+jhh,,j®JFH, ,F, H, J+jh'h, j®JE,  H'F H., J

+jb'h ] j®JE, \HO'EHLJ.

We observe thatjhr_lhrHj = l::r and jh,h, j = VZI:I;I. We further observe that

. L1

JFH. ,EH ! J=H uJFH F._.H. ,J
rer+2+-r - Hr+1 1 ! retr+2+ r+14r+1

r+1 V—v—
IR -1
= Hr+1Fr' JEr+1Hr Fr+1Hr+1J

1ﬁ —-H _ 1
— ™l gE HU'EHLJ=H, E,.

So we have
~7 v v \ ~v/—1 ~ v _o/ v 11—1 .~
N =t oK, +v’k, ®H,  F +v’k oH, E, +R,

where the remainder R is equal to

v R | v—1 Y
+ l{r ® HTHT'+1 - l{r ® H H?"+1
v—v-l '

We combine the terms with Rr together and we get zero. So is the case when we
. ey 1 . e
combine the terms with k, . Hence, R is zero. Therefore, we have the last equality in the

lemma. u
We define the transfer map

Pad—e * Sae = Sa—r, (58)

. S 1 . :
to be the composition 5; , — 5;_, , ® 5 S S4_¢,¢r Where x, : S, , — Alis the signed

representation. By Lemma 5.1.1, we have
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~ ~ r T +1 +1
Lemma 5.1.2.  ¢;, (€4 = €4 ¢ g4 ,&a) = fia0 bgq-,K;g) = k5, and
¢y g_(ty) =tg_, forallie[l,r—1I

Now we handle the case of A/.

Proposition 5.1.3. Forie[l,r—1],

AJ (éi,d) = éi,d/ ® Ki,d” + 1 ® Ei,d” + ki,d/ ® Ff—i,d”Ki,d//'

v v . v —1 v v v

Al (fl,d) = i,d’ ® K@—i,d” + ki,d/ ® Kﬁ—i,d”Fi,d” + 1 ® Ee_i’d//. (59)
- ~ . .1

AJ (kl,d) = ki,d/ ® Ki,d//KZ—i,d”'

AJ (Ed) = Ed/ X Iv{r,d// + 1 [0 VIv{r,d”Fr‘,d” + 1 [ Er,d”'

Proof. Again only the last equality is nontrivial, and we drop the subscript d and d’, d”
are replaced by’ and ”, respectively. Suppose that we have a quadruple (b’,a’,b”,a”) such
that b) = a; and b} = aj, for all k, then the twists >y j<p b;cb]’.’ — a;ca]’.’ and u(b”,a”) are
zero. Hence, we have the 1st term t ® K, after the twist.

Suppose that we have a quadruple (b’,a’,b”,a”) such that b}, = aj and b} =
ay +8y »— 8y 1o, then we have >°;

<j<n b;cb;.’ _“;c“}/ = —(a,,,+1) and u(b”,a"”) = —a;. So

. v/—1 ~ /) I —(n e _
after the twist, we have v2k, = ®H, 1 F,|y o p ov" @2tV 7% = 1 Q VK, F, |}y 51 o, hence
we have the 2nd term.

/ / 1 " . : / / 1 "
If a quadruple (b’,a’,b"”,a”) satisfies bk = aj and b} = a} — 8 , + 8 .o Then
icksjen Dyb) —aja = a; , + 1 and u(b”,a”) = a/ — 1. Thus, adding the twists, there is
~ /=1~

—oy/
v °k,.®H, E,

By the above analysis, we have the last equality. The proposition is proved. B

’ "_ v .
lp a p V2T T = 1 ® E, |y 4 1y 2. Whence we obtain the 3rd term.

Now we take care of the degenerate version when d’ = 0 and d” = d. In this case,

A’ degenerates to an algebra homomorphism

g Sae = Sae

since 5, _, =~ A. Observe that &; , = 0, fi,o =0, and 1V<ilO =v%r, forallie[l,r],and ty =1

in G, ,_; from which the statements in Proposition 5.1.3 now read as follows.
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Corollary 5.1.4. Foralliel[l,r—1],

. \ Ly v . . - L o1
1€ q) =E; g + K gF, ;9. 1q€9) =E g+ K qFiq 10k q) =K; 4K, 4.

5 5 o 5 (60)
1d(tg) = Ep g + VK, gF, g + K, 4.
Proposition 5.1.5. i, is injective.
Proof. This is because j; is injective by Proposition 3.4.1. |

Let A" : S;, = Sy, ® Sgv, be the homomorphism induced from A’. By
Proposition 3.3.2,

Proposition 5.1.6. Let M € E}. If A (M) = X 1cx RM M (MY @ (M}, then we

! 1
have h% M e Zolv, v,

’d’ M e Ed”,@

Write 14({B}) = > 4cz,, 9p,aiA}. By Proposition 5.1.6, we have
Corollary 5.1.7. gg, € Z v, vl

Recall T/, . and IT/, , from (38). Note that T/, is defined over A, but can be lifted
to its generic version T/, . Let 1, , be the subset of 1}, defined by a,, 4., = 1. Let T},
be the space of F{i,n spanned by [A]; where A € IT; ,. In the same fashion, let T;,, be the
generic version of T; , in (37), and let T1; , be the subset of I, ,, defined by a,; 4,1 = 1.
Similarly, we have Tg/:e. Let Hy, and Hg, be the generic version of the Hecke algebra H,
and Hp, used in Proposition 3.5.1. The following is the i-analog of Proposition 3.5.1,

obtained by restricting the digram therein to the desired subspaces.

Proposition 5.1.8. We have the following commutative diagram.

1 A 1 1
Sae X Tq,e T Ty, > Hp,
ld,Zdel Cdl J}dxéé
a// b//
Sd,lf X Td,[ Td,@ .([/l QB(ZH)ZIZdJrle,Z X @b//'zlzd+1 HAd (T Td,@ X HAd'
1 b — 2
d+1

Moreover, ¢4(IA7];) = [Al; for all A € T} ,.
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5.2 Positivity in the projective limit

Consider the projective system (Sii,z"ﬁii,d—z)delzo of associative algebras. Define an
element e; in the projective system whose d-th component is e; ; Vd € 7. This is well-
defined by Lemma 5.1.2. Similarly, define f;, t and [l<f‘1.

Let U, be the subalgebra of the projective system generated by e;, [;, Ikiil for all
i € [1,r — 1] and . By [21], this is a coideal subalgebra of the quantum sl,, for n even. A
presentation of this algebra by generators and relations can also be found in [21].

Set 8., = Ugez., Eld,[ We say two matrices are equivalent if they differ by an
even multiply of the identity matrix I,. We denote E ,/ ~ for the set of equivalence
classes.

By [21], we know that bga_({Alg) ={A—2L}4, if the diagonal entries of A are
large enough. To an element A e 8,/ =, we define an element b in the projective
system whose d-th component is {A + pI,}; for some p if d is big enough.

Let U = [Uf@ be the space spanned by b; for A e 8,/ ~- By [21], U' is an
associative algebra, the idempotented version of U, and b; forms the canonical basis B'
of U’ defined in [21]. Let X, be the subset of 4 e Ef.,¢/ ~ parametrized by the diagonal
matrices. This algebra admits a decomposition U' = ®nrex pU; where ;UL = bﬁﬁU’b;.

Replace the projective system (S ,, ¢y 4 ) by (Sq #q,q-¢), we can define the
elements [in, [VFi and [kfd in this projective system and they generate over Q(v) the
quantum sl;: U,.

Set E¢ = Ugez.,Eq,- We say two matrices are equivalent if they differ by a
multiply of the identity matrix I,. We denote E, ,/ ~ for the set of equivalence classes.
To an element A B¢/ ~» we define an element by in the projective system whose d-th
component is {A + pI,},; for some p if d is big enough. Then the space [Ul spanned by
by for all Ae E ¢/ ~ is an associative algebra, the idempotented version of U, by [25]
and bz forms the canonical basis B,. Let X, be the subset of E ,/ ~ consisting of all
Uz, where ﬁ[UX = bp[[)bx.

The linear map A' on the :Schur algebra level induces a linear map

diagonal matrices. U, = &5y,

. —~ | / 4 / 4
Bs oozt aUs = pUp @ U Y1) i, G537 (61)

where  is defined similar to (42) with row vectors replaced by diagonal matrices.

3 l
Write A PR

Theorem 4.3.1, whose proof is the same as the Theorem 4.3.1 using Proposition 5.1.6.

(a) = ZbE[B,'CE[B ng'cb ® c, for all a € B', then we have the i-analog of
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Theorem 5.2.1.  We have that n2° e Z_olv, vl

The linear map 1, induces a linear map

Uk —

. N 1 14
g al — wUm Y e e (62)

We have the i-analog of Theorem 4.4.1 by using Corollary 5.1.7.
Theorem 5.2.2. Letb € B'. If 175 757(D) = X 0cp Gp 0@ then g, , € Z olv, v'1.

6 Positivity for Quantum Affine s(,,

In this section, we shall lift the positivity result on quantum sl,, in Section 2.5 to its
affine analog. As a byproduct, we provide a new proof of the multiplication formula
in [5].

6.1 Results from [24]

Following Section 2, fix a pair (d, n) of nonnegative integers. Set

Agn=1r=0picz € 2%I1; = hiyn, VieZ; D 1=d
1<i<n

Let &4 be the set of all Z x Z matrices A = (a;j)ijez sSuch that a;; € Z., aj; = Qi1 pjip,
and 1 j<pjez @;j = d. To each matrix A € E;, we can associate r(A) and c¢(4) in Ay, by
r(A); =2 jcz a; and c(A); = > ;7 a; foralli,j e Z.

We need to switch the ground field from Fg to the local field Fq((e)). Let [Fq[[el]
be the subring of Fq((e)) of all formal power series over F4. Suppose that V is a d-
dimensional vector space over [Fq((e)). A free [Fq[[e]]-module L in V is called a lattice if
Fq((€) ®F ey £ = V. Alattice chain L = (I;);z of period 7 is a sequence of lattices L; in
V such that L; € L;,; and L; = ¢L;,,, for all i € Z. Let X; be the collection of all lattice
chains in V. Let Ed = GL(V) act from the left on X, in the canonical way. Then we can
form the algebra

Sy =Ag, Xy x X,

which is the so-called affine v-Schur algebra. It is well known that the ad—orbits in }?d X

AT/
LN

X, are parameterized by E; via the assignment (L, L") — A, where a;; = |s—gm—
1—1 j+ [ S

]

foralli,j € Z. So we have

S =span 4{eslA € Eg},
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where e, is the characteristic function of the G4-orbit indexed by A. Furthermore, we
have §d = @blaexd’n/s\d(b,a) where §d(b,a) is spanned by e, such that r(4) = b and
c(A) =a.

If one lifts the functions to the sheaf level, one gets the generic version S, of S
such that A ®, S; = S;. By abuse of notation, we write e, for the unique function x in
Sq such that A®, x = e, (for all g).

The standard basis of @d consists of elements [A] = v~%e, where d, =
2. 1<i<n Q;ay- Recall the Bruhat order < on g, from [24]: A < B if and only if

i>k,j<l

D as< D by Vi<jeZ; D a< D by, Vi>jel

i>rj<s i>rj<s i<rj>s i<r,j>s

Following [24], one can associate a bar involution ~: 5; — S such that [A] =
[Al+ 2> p<a.a24 Ca alA'l where Cy 4 € A.

The canonical basis {A}; for all A € E; of 5; is defined by the properties that
{A)g ={A)g and {A)g = [A1 + X p<p prsn Paa[A'l Where Py 4 € v ZIv711.

Let E* be the Z x Z matrix whose (k,[)-th entry is 1 if (k,]) = (i,j) mod n, and

zero otherwise. For any i € Z, we define the following elements in @d:

E, = > [Al, F;= > [Al,

A—Ei+14 diagonal A-Eii+1 diagonal 63)
63
+1 _ +c(A); +1 _ pytl prFl .
H' = > v¥@Wial, k' =H\H', vieZ
A diagonal
By periodicity, we have E; = E; ,,F; = F;, ) H' = H;' ,and X' =K', forallie Z.

The following lemma is from [24].

Lemma 6.1.1. There is an algebra homomorphism A : S; — S, ® S, ford' +d’ =d
with

AE) =E;®H{,, +H | ®E/, AF) =F;@H/' +H;®F/, AK) =K;®K], Vi e Z.

6.2 The coproduct A

Recall the algebra homomorphism from Lemma 6.1.1. If b =b’ + b” and a = a’ + a”, let

Zb/,a/,b”,a” :S,(b,a) - S;(b',a) ® S/ (h”,a”) be the composition of the restriction of S
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to @d(b, a) and the projection to @d, d,a)® @d” (b”,a"”). We set

_ Vleigjfn béb]/‘/_a/‘a/'/~ AT = @AT/

AT v Ab’,a’,b”,a”'

b,ab'a

(64)

’ /' nr
a b’ a

where the sum runs over all quadruples (b',a’,b”,a”) where b’,a’ € Ay , and b”,a" €
/A\d//,n.

Proposition 6.2.1. The linear map A" in (64) is an algebra homomorphism. Moreover,

ATE) = vind'E[ 9 K} + 1@ v oind EY,
AF) =vind'F @1+ K @ vindF,

AT(K) =K, ®K!, Viell,nl.

Proof. The case when i € [1,n — 1] is proved in the same manner as the finite case in
Proposition 2.3.2. We now prove the case when i = n. Suppose that b” = a”, and (b’,a’) is
chosen such that b; = a;—4; ,+6;, forall 1 <i < n. Then the twist 3, _;_;_, b;b/ —a;a is
equal to d” —a;,. This implies that the term E;® H} , in A(E,) becomes V‘Sirnd//E; ®K?. For
the term H;ll ® E} in A(E;), the twist contributes a, — d' for a quadruple (b’,a’,b”,a")
such that b’ = a’ and b} = a} —§;,, + §;; for all 1 < i < n. The formula for A'(E,) is
proved.

The proof for the formula A'(F,) is entirely similar. The formula for A™(K;) is

obvious. [ |

We set

gA)= > a,— > a., VieZAecE, (65)

r<i<s r>i>s

We define a linear map
£qicSq— Sq. ViceZ, (66)
by &4, -([A]) = vesiD[A]. By [24], & ; . is an algebra isomorphism with inverse £;; _.. Set
A:S;— S5 05, (67)

Ed’,n,d” ®Ed”,n,—d’ o~
N

to be the composition S, N Sy ®Sy Sy ®Sy.
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Proposition 6.2.2. The linear map A in (67) is an algebra homomorphism. Moreover,

ME) =E;®K/ +1QE/, AF) =F;®1+K ' ®F/, AK,) =K,®K], VieZ.

Proof. We have &, , ((E)) = v-%inE;, &, . (F;) = v®nF,;, and &4 , .(K;) = K;. Proposition

follows from these computations and the formulas in Proposition 6.2.1. |

6.3 The compatibility of £; ; . and the canonical basis
We have

Theorem 6.3.1.  £;; .({A}y) = ve5i (A}, where &4, . is in (66).
Theorem 6.3.1 follows from the following critical observation.

Theorem 6.3.2. Write {A}; = > 424 Py 4[A']. If Py 4 # 0, then g;(A) = &;(A’) for all i.
We make two remarks before we prove Theorem 6.3.2.

Remark 6.3.3. The algebra isomorphism [[,_;.,, §;; _; is the linear map ¢ in [24, 1.7].
In view of Theorem 6.3.1, we have £({A};) = v~ Zisizn Si(A){A}d.

Remark 6.3.4. Even if A’ < A, ¢;(A’) may not be the same as ¢;(A). For example, take
A = 2215i5nEi'i and A = Z1gignEi'i + E¥+1 Then we have A’ < A4, ¢(4’) = 0 and

gi(A)y=1foralll <i<n.

The remaining part of this section is devoted to the proof of Theorem 6.3.2.
The main ingredient is a connection between the numerical data ¢;(A) in (65) and the
multiplication formulas in [5], which we shall recall and provide a new proof. Before we

state the formula, we need to recall a lemma from [26, Section 2.2] as follows.

Lemma 6.3.5. Let V be a finite-dimensional vector space over [ ;. Fix a flag (V;);.;.,, in

V such that |V;/V;_;| =; V1 < i < n. The number of subspaces W C V such that [WNV;| =
i —as L I, L—j+1_

2j=1a; V1 <i<nis given by g2nziziz1 %G=a) e, [al] where |:al:| =[li<j<q qu%.

i

i

The following multiplication formula in S is first obtained in [5]. In a forthcom-
ing paper [10], we provide a multiplication formula for affine type C case. To a matrix

T == (tl])l,_]EZ’ we set T == (\i-l])l,]EZ Where zlj == tl_lr]
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Proposition 6.3.6. (1) Suppose that A = (@), B= (b )€ ud satisfy that ¢(B) = r(A) and

B— " aE""*1 is diagonal for some a; € Z_,. We have

_ > rcicnyot(@g—tio1 i Qi+t =t .

T 1<i<njeZ L

where the sum runs over all T = (¢;) such that ¢ = t; and r(T); = o; for all

i+nj+n
1<i<n.

(2)If C € @d satisfies that ¢(C) = r(4) and C — >, ,BiEi“'i is diagonal, then

_ (@it ;i =t + by
ec*eA—ZquS"N v H |: sy T ea rii

T 1<i<njeZ ti—l,]

where the sum runs over all T such that ¢; = ¢ and r(T); = g;forall 1 <i < n.

i+nj+n

Proof. (1) It suffices to show the similar statement in S,. Let A’ = (a;); )ijez be a matrix
in @d such that r(B) = r(4’) and c(4) = c(4’). Let O, be the ad—orblt in Xd X Xd indexed
by A’. Fix (L,L) € O,/, and we denote

={L'eX,;|L,_, CL/ CL,Vl<i<n)
Note that (L, L") € Oy if and only if L” € Z. Clearly, Z has a partition Z = | |, Z; where

Zp =L € Z||L N (L;_, + (L; N L))/LY N (L, + (L; VL)) = af; Vi, jeZ)

l]’

and the union runs over all T such that ¢ = t; and r(T); = o; for all 1 < i < n. For

i+n,j+n
each L” € Z;, we have the following identities.

= |L;’mL}/L;’mL]’._1| — L, NLY/LY ; NL_ ],
= |L; mL/L AL | —IL;_; mL;./L NI, (68)

agj —t;= IL/ N LJ/-/LQ’ ﬂL}_ll L;_; N L//Ll 1L,
where the last identity follows from the definition of Z;. By (68), we have

=|L; mL’/L NL;_,|— |L;’ﬂL}/L§’mL}_1|.
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Thus, a/. —t:: = a

i b ij — ti—1j thatis, A" =A+T — T. Summing up the above analysis, we

have

epxe, (L, L) = Z ep(L,L")e, (L, L)) = Z e (L, L)

ey L'ezZ
(69)
=> D e, L) = Z#ZT i (L L),
T L'eZr

So it is reduced to compute the cardinality of Z;. For each i € [1,n], we set
Z(i) = {k € Z|k € [1,i] mod n} and we define Z“'i] to be the set of all lattice chains
= (Lpkezq such that Ly satisfies [Ly_; + Ly NL/L; ; + L N L | = aj; — t; for all

j €Z.Consider

Zy =Z[1}'n] L Z[zzln_ll e Zg’” SN o,

where 7;(Lpkezi) = (Lipkezi-1) and the equality is due to Ly N (L;_; + (I; N L)) =
L;_; + L/ N L; We observe that the fiber of 7; gets identified with the set of subspaces
W in L;/L;_, such that (W N (L;_; +L; ﬂL’)/Ll I/Wﬁ(Ll 1+L;NL 1)/Ll 1 _a -t
Observe that |[(L;_; + L; N L})/Ll_1| [(L;_; + L; "L 1)/1'1 1= a i and by applylng

a/
Lemma 6.3.5, we have #r,” Lwh = qZk](aU )t [jez |: J] where L is any element in
tl
j
Zg}"_”. So ; is surjective with constant fiber. Hence,

. . (a —t:)t: a’-.
#Zp = [ #n7'@h) = g=risnis @05 T [ U] (70)

1<i<n 1<i<njez Lt

The statement (1) follows from (69) and (70).
Let us prove (2). Let A’ be a matrix such that r(A) = r(C) and c(4") = c(4). Fix

Bi—
(L,L") € O4. We consider the set ¥ = {L’ 'X |L; _ C L , € L,Vl <i<n}. ThenY
A dlHi—1 i

admits a partition ¥ = LYy, where

v, =1 ev]

Loy + Ly NI/ + L N[ =ty vijez).

By applying Lemma 6.3.5 and arguing similar to (1), we have

H q21>] ti— ll(al] ti— 1J)H|: i|
l 17

1<i<n jeZ
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Moreover, for L” € Y such that (L”,L') € O, if and only if A’ = A — T + T. Therefore, we
have (2). The proposition is thus proved. |

Remark 6.3.7. If n = 1, Proposition 6.3.6 shows that e; * e, = e, * e;. (Here we use
(e, = eg)' = epre,:.) This implies that @d is commutative for n = 1, which corresponds to

the geometric Satake of type A.

Lemma 638 Sl.lpp'ose that [B] « [A] = > Q§,[Cl. If B = 3, _;, ;Y + o;E/IT1 or
> i<jen BiFY + o;F/ T, and Qf , # 0, then ¢;(A) + ¢;(B) = &;(C) for alli € Z.

Proof. AssumethatB = > ,_;_, ,BjEj'j + ajEf'f“. Then we have ¢;(B) = «;. If O,EVA # 0,
then by Proposition 6.3.6 (1), the matrix C is of the form A + T — T. Thus, we have

g(0) =gA) +e,(T—T)=5A)+ D tog—bg+ D tog—1g

r<i<s r>i>s

=5A) + D tis— D> b1 s =6(A) + D 1o = () + o; = £;(A) + &;(B).

i<s i>s seZ

Therefore, the lemma holds for B = 215jgn ﬂjEj'f + ajEf'f“.

For the case when B = 3 ,_;_, ,BjEf'f + oszj“'f, then ¢;(B) = —«; and C is of the
form A — T + T if Og'A # 0 by Proposition 6.3.6 (2). So we have ¢;(C) = ¢;(4) — &;(T — T) =
g;(A) —a; = €;(A) + &;(B). Therefore, the lemma holds in this case. We are done. |

Next we introduce a 2nd numerical data. We define

degi Z ﬁJE]'J +01]EJ+1'J = —qy, degi Z ﬂJE]']+Ol]E]J+1 = ;.
1<j<n 1<j<n
Suppose that M = [A;] * --- % [A,] is a monomial in [A;] where A; is

either > ) _;_, ﬂjkEk'k + ozjkEk“'k Or D1 k<n ,BJ-kEk'k + a]-kEk'kH. We define deg;(M) =
Zlgjgm degi(Aj). To the same monomial M, we also define its length ¢(M) to be
EM) = i jem 21<k<n %k (We define [A] to be a monomial of length zero if A is

diagonal.) Then we have

Lemma 6.3.9. Let M be a monomial and write M = > R, [A]. If R, # 0, then deg;(M) =
g;(A) forallie Z.
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Proof. We argue by induction on the length ¢(M) of M. When ¢(M) = 1, the lemma
follows from the definitions. Assume now that ¢(M) > 1 and the lemma holds for
any monomial M’ such that ¢(M') < ¢(M). We write M = [A,;] = [M’], where A is either
Sicjen BE +aE or 30 o BiEN + a;F79 T, and M is a monomial of the remaining
terms in M. Thus, £(M’) < ¢£(M). Suppose that M’ = > R,,[A’], then we have

M=I[A,]+M = RylA]1+141=> R,Q5 ,IBl.
A A'.B

IfA) =3 <y BiE' + o;F/ 1Y, then by Lemma 6.3.8 and induction hypothesis, we have
deg;(M) = —a; + deg;(M') = —a; + 5,A) = &,(B), if Q5 , #0,Ry #0.
Similarly, if 4, = 3", _;_,, B;E/ + o;E/9 1, then
deg;(M) = a; + deg; (M) = a; + £;(4) = &;B), if Q5 , #0,Ry #0.
Lemma follows. u

By a result in [5] (see also [18]), there exists a monomial M, such that

M, =[Al+ D Sy o141, forsomeS,, € Zlv,v']. (71)
A'<A

Since [A] forms a basis for @d, the monomial M, forms a basis for @d. In particular,

[Al=M, + > Ry ,M,, forsomeR,, €Zlv,v '] (72)
A'<A

Moreover, we have

Lemma 6.3.10. Suppose that R, 4, # 0 in (71), then ¢;(4) = g;(A4").

Proof. We prove by induction with respect to < in descending order. If A’ = A, it
is trivial. Suppose that for all A” such that A’ < A” < A, the statement holds. If [A’]
appears in M,, for some A” such that A’ < A”, then ¢;(4) = ¢;(A”) = deg;(My,) = ¢;(4")
by induction hypothesis. If [A’] does not appear in M, for all A” such that A’ < A”, then
the coefficient of [4’] in the right-hand side of (72) is 0, contradicting to the assumption.

We are done. [ |

Furthermore,
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Lemma 6.3.11. Suppose that [A] = [A] + > 4 _4 Cy 1A'l for some C, 4 € ZIv, v If
Cpa # 0, then ¢;(A) = ¢;(A) foralli e 7.

Proof. By (72) and Lemma 6.3.10, we have [A] = M, + 24 <A (AN =e;a) Ba,a My BY
Lemma 6.3.9, we have My, = 34/ p/ ¢, a7)=e;(a) Sar,a7[A”]. The lemma follows by putting

the previous two identities together. |

Finally, we are ready to prove Theorem 6.3.2. We set ¢ = {A|P, 5, # 0,&;(A") #
€;(A)}. We only need to show that ¢ is empty. Pick an element B in ¢ that is maximal with

respect to the partial order <. Clearly, we have B # A. We rewrite {A} as follows:

{Ay=PypBl+ [ D+ D+ D |Paaldl

B<A' A'<B A'£BBZA’

Apply the bar operation to the above equality, we have

A} =TA}=PplBl+ [ D+ D+ D |Paalal

B<A' A'<B A'AB,BZA’

By Lemma 6.3.11, we know that the coefficient of [B] in [A’] for B < A’ is zero. Notice [B]
will not appear in the rest of the terms, except [Bl. Hence, by comparing the coefficients
of [B] in the previous two equalities, we must have P, ; = P, . But Py 5 € v 'Z[v™!]
forces Py =0, a contradiction to the definition of ¢. Hence, ¢ is empty. Theorem 6.3.2

follows.

6.4 Positivity of A

We set X;(a) = (L € X,4|IL;/L;_,| = a;, Vi} and P, = Stabg_ (L) for a fixed chain L € X,,.

We still have the same commutative diagram as in Lemma 2.3.4.

ba N
Ag,Xq(b) x X;4(a)) Ap, (Xgq(a))
Zb/’a/’b//’a// JT[[*
Aoy Ry ®0)xXy@)  Toa®hrar

o ® = A5 Xg(@) ® A, Xgr(@”)).
AGd” (Xgr (b”)de// (a”)) Py b
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So the positivity of Zb’,a’,b”,a” is reduced to the positivity of m,.*.
Fix b’,b” such that b’ +b” = b. Let d’ = |b/| and d” = |b"|. Let V.= T & W and
Ly = Ly & Ly. Thus, we have n'(Ly) = Ly, 7”(Ly) = Ly. Let L; be the i-th lattice in L,.

We consider the following subset in )?d(a).
Va'? = (L e X;(@)|ePLy C Ly C ePLg), Vp e Z,,.

It is well known that Y0P for various p is a Gy, -invariant algebraic variety over [F_q if
we replace the ground field Fq((e) by [F_q((s)), which we shall assume now and for the
rest of this section. Moreover, there exists a p, such that

Xpb = ULy, ') € 04} CY™P, p>p,.

Indeed, we have a;, = 0 and a,, for p >> 0 due to the fact that
> ez @0, Xicz ;9 < oo. The lst condition implies that L, C L,, if L e X, while
io CL, ifLe XL‘, follows from the 2nd. Fix an [ such that p < In. Then we have

elLo c io c e_lLO.

Set py = 1, then we have Xzb C Yo for p > p,.

Now we fix a 1-parameter subgroup of Pp:

_ 1p 0
A:GL(l,[Fq)ePLb,tH .
0 tly

. . [ L), Ly, . .
The fixed point set (Ya°P)6L1Fo) — Uy g0 Ya,op x Y. 0P and the attracting set associated

a//
L/ , L//, .
to Ya,op X Ya,9p is

a/ ,a// - a//

vk = [Le viln' @ e V07, 7" @) e 07}
Hence, we have the following cartesian diagram.

Lo,p 3] Lo,p 1 6,p 8,p
veer U ylen T yloP oyl

! l l

X (@) «—— X

e ~ ~
a,a,a’ 7 Xd’(a/) X Xd” (a”),
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where vertical maps are inclusions and top horizontal maps are induced from bottom

ones.
Hence, the positivity of 7;.* is boiled down to that of ], which follows from

Braden's [4] work, since all objects involved are in the category of algebraic varieties

over [Fq.

Proposition 6.4.1.  If Ay, 1 o ({Alg) = > MaC(B}4 ® (Cly, then M5° € Z_ylv,v711.

Follows is an affinization of Proposition 2.3.6, by Proposition 6.4.1, and
Theorem 6.3.1

Theorem 6.4.2. If Ay o v o ({A)g) = 3. M5B} 4 ® {C)g, then M5C € Z_glv, v11.

Following [24], the transfer map ad,d—n : @d - @d_n is the composition of

—~ A ~ _~ -lg —~ _~
Sd - Sdﬂz ® Sn u) Sdfn QA= Sdfn'

where ¢ is in Remark 6.3.3 and x is the signed representation of §n defined in [24, 1.8].
Note that by [24, 1.12] and an argument similar to [21, 3.3], x sends a canonical

basis element to 1 or 0. By Remark 6.3.3 and Proposition 6.4.1, we have
Corollary 6.4.3. $d,d_n({A}d) = canlA'}g_, Where cy o € Z ylv, v
6.5 Positivity in quantum affine sl;,

Let &, be the set of all a = (a;);7 such that a; € Z and @; = a;,, foralli e Z. LetY={ae
S, 2 1<i<n @; = 0}. Define an equivalence relation ~ on &,, by declaring a ~ b if there is
a zin Z such that a; — b; = zfor all i. Let % be the set S,/ ~ of all equivalence classes in
&,, with respect to ~. Let @ denote the class of a. Both % and Y admit a natural abelian

group structure with the component-wise addition. Moreover, we have a bilinear form

(—,=):YxX—>Z, (ba)= > ba,.

1<i<n

Set T = Z/nZ.Fori e T, we associate an element, still denoted by i, in Y whose
value is 1 for each integer in the equivalence class i and zero otherwise. This defines a
map I — Y. The same map induces a map I — %, which sends i € T to the equivalence
class ofi € Yin (%n. By abuse of notations, we still use i to denote its image in Y. The data

(’%Y\, ’22, (—, —),/I\C ?,/I\C %) is a root datum of affine A neither ’}Z—regular nor ’%\?—regular.

n—1
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By definition, the quantum affine sl,, attached to the above root datum, denoted
by [U(?[n), is an associative algebra over Q(v) generated by the generators: E;, F;, K, for
alli € I, u € Y, and subject to the relations K;K,---K, = 1 and (15), for all i,j € I. Note
that the 1st defining relation of [U(Eln) is due to the degeneracy of the Cartan datum.

Moreover, [U(sA[n) admits a Hopf algebra structure, whose comultiplication is
defined by

Let EU(?[n) be Lusztig's idempotented algebra associated to [U(?[n). It is defined similar
to that of quantum sl,, in Section 2.5. Similar to the finite case, A then induces a linear

map
AW'WVW,F : ﬁ[Ux(g\[n) - I[Uf(g\[n) ® W[U)j(gin)' (74)

where HUx(;[) is defined similar to 7Uz, in finite case and i = WA, =N+ inX.

By the same definition as ¢, in (17), we still have an algebra homomorphism
$d : [U(;[n) — §d‘

But this time ad is not surjective anymore. Then the rest of the result in finite case can

be transported to affine case. In particular, we have

Theorem 6.5.1. Letb e H[UX(;[) be a canonical basis element of U'J(s:\[n). If Aﬁfﬁﬁ(b) =
Zb/,b” ﬁlg/'b//b/ (Y b//, then ﬁ’Lg/'bN (S ZEO[V’ V_I].

By [22, 25.2.2], Theorem 6.5.1 remains valid over other root datum of affine type

A, _;. We end this section with the following remark.

Remark 6.5.2. Soon after the 1st version of this paper appeared in arXiv, Fu uploaded

the paper arXiv:1511.05745 on arXiv proving the positivity result in Theorem 6.5.1.
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