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We show the positivity of the canonical basis for a modified quantum affine sln under

the comultiplication. Moreover, we establish the positivity of the i-canonical basis in

[21] with respect to the coideal subalgebra structure.

1 Introduction

The geometric study of the modified quantum sln via perverse sheaves on partial flag

varieties of type A is initiated in the work of Beilinson et al. [3]. It is then generalized

to quantum affine sln by Ginzburg–Vasserot [15] and Lusztig [23, 24], independently, by

considering the geometry of affine partial flag varieties of type A. This line of research

is culminated in the work of Schiffmann–Vasserot [27] and McGerty [25] showing that the

canonical basis of modified quantum affine sln defined geometrically via transfer maps

can be identified with the one defined algebraically by Lusztig [22] (see also Kashiwara

[17]). Consequently, the positivity conjecture [22, 25.4.2] of the structure constants of the

canonical basis of quantum affine sln with respect to multiplication follows.

In a remarkable work of Bao–Wang [2], a quantum-Schur-like duality relating

a type-B/C Hecke algebra and a coideal subalgebra of quantum sln defined by Letzter

in [20] is obtained, and moreover an ı-canonical basis for the representations of the

coideal subalgebras is constructed. The desires to geometrize Bao–Wang’s work and to

describe the convolution algebras of certain perverse sheaves on partial flag varieties
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2 Z. Fan and Y. Li

of classical type lead to the work [1], where the approach in [3] is revived and adapted to

give a geometric construction of the (modified) coideal subalgebra of quantum gln and

a stably canonical basis by using certain perverse sheaves of partial flag varieties of

type B/C. Since a modified coideal subalgebra of quantum gln can be regarded as a

direct sum of infinitely many copies of its sln version, one obtains infinitely many stably

canonical bases of the modified coideal subalgebra of quantum sln. As a result, the ı-

canonical basis of the tensor space in the duality in [2] admits a geometric incarnation

as certain intersection cohomology complexes.

Despite of many favorable properties of the stably canonical bases of modified

quantum gln and its coideal subalgebras, they do not admit positivity with respect

to multiplication; see [21]. Instead, a new basis, called the i-canonical basis, of the

modified coideal subalgebra of quantum sln is constructed in loc. cit. following the

spirit of [24] and [25] (see also [27]). This basis can be regarded as an asymptotical

version of the stably canonical basis since they coincide asymptotically ([21]). It is

further shown that the i-canonical basis does admit three positivities with respect to

the multiplication, a bilinear form of geometric origin in loc. cit. and its action on the

ı-canonical basis of a tensor space.

In this article, we establish three more positivities of i-canonical bases, in

addition to the previous ones in loc. cit. (see also [11]), mainly with respect to the coideal

subalgebra structure. Precisely, let B be the canonical basis of modified quantum sln,

say U̇, and Bi its coideal analog in the modified coideal subalgebra U̇i. Note that

notations in the introduction are slightly different from the main body of the paper.

There is a natural algebra homomorphism Δi : U̇i → (U̇i ⊗ U̇)∧, where the target is a

certain variant of the tensor U̇i ⊗ U̇, which is an idempotented version of the coideal

structure coming from the coproduct of quantum sln. (See (43) and (61) for definitions.)

In particular, if a ∈ Bi, one has

Δi(a) =
∑

b∈Bi,c∈B

nb,c
a b ⊗ c, nb,c

a ∈ Z[v, v−1].

The positivity with respect to the idempotented coideal structure further says that

Positivity A Theorems 4.3.1 and 5.2.1 The structure constant nb,c
a is in Z≥0[v, v−1].

A degenerate version of Δi induces an imbedding i : U̇i → (U̇)∧, which

reflects the subalgebra structure of the ordinary coideal subalgebra in quantum sln.
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Positivity Under Coproduct 3

(See (52) and (62).) The positivity with respect to the subalgebra structure says that (see

Theorems 4.4.1 and 5.2.2)

Positivity B Joint with W. Wang. If i(a) =∑b∈B gb,ab, ∀a ∈ Bi, then gb,a ∈ Z≥0[v, v−1].

As a 2nd degeneration of Δi, we make a direct connection between the geometric

type A duality of [14] and type B/C duality of [1], which reveals yet another positivity:

Positivity C Theorems 3.5.3 The ı-canonical basis in a tensor space is a positive sum

of the canonical basis in the same tensor space.

As is shown, these positivities are boiled down to a geometric interpretation of

the coideal structure coming from the comultiplication of quantum sln. To this end, we

also establish a geometric realization of the comultiplication of quantum affine sln, and

we obtain the following positivity on quantum affine sln.

Positivity D Theorems 6.4.2 The canonical basis of modified quantum affine sln

admits positivity with respect to the idempotented comultiplication.

The proof of the positivity result on quantum affine sln consists of two parts

since the geometrically defined comultiplication on the affine Schur algebra level is

a composition of a hyperbolic localization [4] and a twist of a certain v-power. The

positivity on the former is well known by [4], (see also [24] and [27]), while we show

that in the latter it sends a canonical basis to a canonical basis up to a v-power. Note

that the 2nd step is trivial in the ordinary quantum sln case, but nontrivial in the affine

case as far as we can see: because at some point, we have to invoke the multiplication

formula of a semisimple generator of Du–Fu [5], for which we provide a new geometric

proof. These arguments are contained in the 1st and last sections, with the 1st section

devoted to quantum sln and the last one to its affine version.

The argument of the proof on quantum affine sln also applies with modifications

to the various positivities of the i-canonical basis, which occupies the last three

sections. The 3rd section treats the results on the i-Schur-algebra level, and the 4th

section lifts the results on the i-Schur-algebra level to the projective limit level for n

being odd. The last section collects similar results for n even. The jtransfer maps used

in [21] are constructed geometrically in these sections and the proof of [21, Lemma 4.3]

is in Proposition 3.6.1.
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4 Z. Fan and Y. Li

Note that we work over the partial flag varieties of type B for the i-canonical

basis and following the treatment of type A in [24] and [25]. One can obtain the same

results via partial flag varieties of type C by using the principle in [1].

In [8], we shall construct and investigate geometrically the i-canonical basis of

modified coideal subalgebras of quantum affine sln among others.

We refer to [7] and [9] for the interactions of type D partial flag varieties, coideal

subalgebras, and type D duality. In a forthcoming paper, we will present a type D picture

similar to the positivity results on i-canonical basis in this paper.

2 Positivity for Quantum sln

In this section, we shall present a proof of the positivity of the canonical basis of

quantum sln with respect to comultiplication.

2.1 Convolution

Let G be a group, and X a G-set with finitely many G-orbits. The G-action on X thus

induces a diagonal G-action on the product X × X. Let A be a unital commutative ring.

We consider the set AG(X×X) of all A-valued G-invariant functions on X×X supported

on finitely many G-orbits. Assume that any G-orbit O in X×X has the property that the

set Xx
O = {y ∈ X|(x, y) ∈ O} is finite for one and hence any fixed x in X. Then AG(X×X) is

a free A-module with a basis indexed by the G-orbits in X×X, and further an associative

A-algebra with multiplication as follows. For any f1, f2 ∈ AG(X × X), the function f1 ∗ f2

is defined by

f1 ∗ f2(x1, x3) =
∑

x2∈X
f1(x1, x2)f2(x2, x3), ∀ x1, x3 ∈ X. (1)

Let 1 be the characteristic function of the diagonal {(x, x)|x ∈ X}. Since G acts on X with

finitely many orbits, then, by definition, 1 is the unit of the algebra (AG(X × X), ∗). For

convenience, we will simply use the notation AG(X × X) for the algebra (AG(X × X), ∗).

2.2 Quantum Schur algebras

Let Fq be a finite field of q elements and of odd characteristic. Let

v = √
q, A = Z[v, v−1]. (2)
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Positivity Under Coproduct 5

We fix a pair (n, d) of irrelevant positive integers. Consider the set Xd of n-step partial

flags in a fixed d-dimensional vector space Fd
q over Fq of the form

V =
(
0 ≡ V0 ⊆ V1 ⊆ · · · ⊆ Vn−1 ⊆ Vn ≡ Fd

q

)
.

Denote by Gd = GL(Fd
q ) the general linear group over Fq of rank d. Let Gd act from the

left on the set Xd and diagonally on Xd × Xd.

Let |W| denote the dimension of the vector space W over Fq. To a pair (V, V ′), we

can associate an n × n matrix M = (mij) with coefficients in Z≥0 by

mij =
∣∣∣∣∣

Vi ∩ V ′
j

Vi−1 ∩ V ′
j + Vi ∩ V ′

j−1

∣∣∣∣∣ , ∀i, j ∈ [1, n]. (3)

Let �d be the set of all matrices obtained this way. Any matrix M in �d can be

characterized by the property that mij ∈ Z≥0 and
∑

1≤i,j≤n mij = d. It is shown in [3]

that the set �d parameterizes the Gd-orbits in Xd × Xd. Let ηM be the characteristic

function of the Gd-orbit in Xd × Xd indexed by M, for any M ∈ �d.

By the general setting in Section 2.1, we have a unital associative algebra

Sd ≡ AGd
(Xd × Xd) = SpanA{ηM |M ∈ �d}. (4)

It is well known that the algebra Sd is the v-Schur algebra of type An−1 ([3]).

The definitions of these objects depend on the integer n, but it is suppressed

since it never changes, except at Section 5 where we use notations Xd,n, Sd,n, etc.

Let v be an indeterminate, and consider the Laurent polynomial ring

A = Z[v, v−1].

Recall from [3] that one has a generic version Sd of Sd so that Sd = A ⊗A Sd, where A
is regarded as an A-module with v acting as v. More precisely, Sd is a free A-module

spanned by the symbols ζM , ∀M ∈ �d, such that A ⊗A ζM = ηM . The multiplication

on Sd is defined so that if ζM1
ζM2

= ∑
M∈�d

cM
M1,M2

(v)ζM , cM
M1,M2

(v) ∈ A, then ηM1
ηM2

=
∑

M∈�d
cM

M1,M2
(v)|v=vηM in Sd.

By the sheaf-function correspondence [19], to prove a statement on the level of

the algebra Sd, it suffices to prove it in Sd. We shall apply this principle freely in what

follows.
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6 Z. Fan and Y. Li

2.3 Coproduct on Sd

In this section, we define an algebra homomorphism, which we call coproduct, from

Sd to Sd′ ⊗ Sd′′ , d′ + d′′ = d, and as it suggested, the coproduct becomes the genuine

coproduct of the quantum sln when taking d to ∞. As indicated, our computation will

be over Fq, and so we introduce its specialization version at first.

Now consider a triple (d, d′, d′′) of positive integers such that d′ +d′′ = d. We fix

an isomorphism of vector spaces Fd′
q ⊕ Fd′′

q � Fd
q . Let π ′ be the projection of Fd

q to Fd′
q . Let

π ′′ be the operation of intersection with Fd′′
q , that is, π ′′(W) = W ∩ Fd′′

q for any subspace

W in Fd
q . Given a flag V in Xd, the notations π ′(V) and π ′′(V) are thus meaningful. For

any (V ′, V ′′) ∈ Xd′ × Xd′′ , we set

ZV ′,V ′′ = {V ∈ Xd|π ′(V) = V ′, π ′′(V) = V ′′} .

We can identify Sd′ ⊗ Sd′′ with the algebra AGd′×Gd′′ (Xd′ × Xd′ × Xd′′ × Xd′′). We define

�̃ : Sd → Sd′ ⊗ Sd′′ (5)

by �̃(f )(V ′, Ṽ ′, V ′′, Ṽ ′′) = ∑Ṽ∈ZṼ′,Ṽ′′ f (V, Ṽ), for any quadruple (V ′, Ṽ ′, V ′′, Ṽ ′′) ∈ Xd′ × Xd′ ×
Xd′′ × Xd′′ where V is a fixed element in ZV ′,V ′′ . It can be shown that the definition is

independent of the choice of V. By [24, 2.2], which is credited back to Grojnowski, we

know that the map �̃ in (5) is a well-defined algebra homomorphism over A.

By using the monomial basis in [3, Theorem 3.10], one can show that Sd admits

a linear map Δ̃ such that it descends to �̃ after a specialization.

We use the notation W1
a⊂ W2 to denote W1 ⊂ W2 and dim W2/W1 = a. Similarly,

we define the notation W1
a⊃ W2. We define the following functions in Sd. For any

i ∈ [1, n − 1], a ∈ [1, n],

Ei(V, V ′) =
⎧
⎨

⎩
v−|V ′

i+1/V ′
i |, if Vi

1⊂ V ′
i, Vj = Vj′ , ∀j �= i;

0, otherwise.

Fi(V, V ′) =
⎧
⎨

⎩
v−|V ′

i/V ′
i−1|, if Vi

1⊃ V ′
i, Vj = Vj′ , ∀j �= i;

0, otherwise.

H±1
a (V, V ′) = v±|Va/Va−1|δV,V ′ , ∀V, V ′ ∈ Xd.

K±1
i = H±1

i+1H∓1
i .

(6)

Notices that if the subscript d is replaced by d′ or d′′, the functions defined above are in

Sd′ or Sd′′ , respectively, and will be denoted by H′
a, K′

i, E′
i, F′

i or H′′
a, K′′

i , E′′
i , and F′′

i . (This
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Positivity Under Coproduct 7

convention will be used in any similar situation appearing later.) We shall also use the

same notation to denote the corresponding element in Sd, which is a sum of certain ζM

up to a twist. The following lemma is due to Lusztig [24, Lemma 1.6].

Lemma 2.3.1. For any i ∈ [1, n − 1], we have the following formulas in Sd.

Δ̃(Ei) = E′
i ⊗ H′′

i+1 + H′−1
i+1 ⊗ E′′

i , Δ̃(Fi) = F′
i ⊗ H′′−1

i + H′
i ⊗ F′′

i , Δ̃(Ki) = K′
i ⊗ K′′

i .

Ei and Fi correspond to Fi and Ei in [23, 2.4], respectively. ∀M = (mij) ∈ �d, we

set

ro(M) =
⎛

⎝
n∑

j=1

mij

⎞

⎠

1≤i≤n

and co(M) =
(

n∑

i=1

mij

)

1≤ j≤n

,

which lie in the set

	d,n = {a = (a1, · · · , an) ∈ Zn≥0|a1 + · · · + an = d
}

. (7)

Then we have a decomposition

Sd = ⊕b,a∈	d,n
Sd(b, a), Sd(b, a) = spanA{ζM |ro(M) = b, co(M) = a}.

Let

Δ̃b′,a′,b′′,a′′ : Sd(b, a) → Sd′(b′, a′) ⊗ Sd′′(b′′, a′′)

be the linear map obtained from Δ̃ by restricting Δ̃ to the subspace Sd(b, a) and

projecting down to the component Sd′(b′, a′) ⊗ Sd′′(b′′, a′′). Then we have

Δ̃ = ⊕Δ̃b′,a′,b′′,a′′ ,

where the sum runs over b, a, b′, a′, b′′, a′′ such that a, b ∈ 	d,n, a′, b′ ∈ 	d′,n, a′′, b′′ ∈
	d′′,n, and b = b′ + b′′ and a = a′ + a′′. We set

Δb′,a′,b′′,a′′ = v
∑

1≤i≤j≤n b′
ib

′′
j −a′

ia
′′
j Δ̃b′,a′,b′′,a′′ , Δ = ⊕Δb′,a′,b′′,a′′ . (8)

The following is a refinement of Lemma 2.3.1.
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8 Z. Fan and Y. Li

Proposition 2.3.2. The linear map Δ in (8) is an algebra homomorphism. Moreover,

Δ(Ei) = E′
i ⊗ K′′

i + 1 ⊗ E′′
i , Δ(Fi) = F′

i ⊗ 1 + K′−1
i ⊗ F′′

i , Δ(Ki) = K′
i ⊗ K′′

i , ∀i. (9)

Proof. It is straightforward to see that Δ is an algebra homomorphism. We proceed

to the proof of the equalities in the proposition. Suppose that a quadruple (b′, a′, b′′, a′′)
satisfies the conditions that b′

k = a′
k − δk,i + δk,i+1 and b′′

k = a′′
k for some i and for all

1 ≤ k ≤ n. Then

∑

1≤i≤j≤n

b′
ib

′′
j − a′

ia
′′
j =

∑

1≤k≤j≤n

(b′
k − a′

k)a′′
j = −

∑

i≤j≤n

a′′
j +

∑

i+1≤j≤n

a′′
j = −a′′

i .

So if (V ′, Ṽ ′, V ′′, Ṽ ′′) ∈ Xd′ × Xd′ × Xd′′ × Xd′′ , then

Δb′,a′,b′′,a′′(V ′, Ṽ ′, V ′′, Ṽ ′′) = v−a′′
i E′

i ⊗ H′′
i+1(V ′, Ṽ ′, V ′′, Ṽ ′′) = E′

i ⊗ K′′
i (V

′, Ṽ ′, V ′′, Ṽ ′′).

On the other hand, if (b′, a′, b′′, a′′) is a quadruple subject to b′
k = a′

k and b′′
k =

a′′
k − δi,k + δi+1,k for some i and for all 1 ≤ k ≤ n, then

∑
1≤i≤j≤n b′

ib
′′
j − a′

ia
′′
j = a′

i+1. Thus,

if (V ′, Ṽ ′, V ′′, Ṽ ′′) ∈ Xd′ × Xd′ × Xd′′ × Xd′′ , then

Δb′,a′,b′′,a′′(V ′, Ṽ ′, V ′′, Ṽ ′′) = va′
i+1H′−1

i+1 ⊗ E′′
i (V

′, Ṽ ′, V ′′, Ṽ ′′) = 1 ⊗ E′′
i (V

′, Ṽ ′, V ′′, Ṽ ′′).

Altogether, we have Δ(Ei) = E′
i ⊗ K′′

i + 1 ⊗ E′′
i , which is the 1st equality in the lemma.

If the quadruple (b′, a′, b′′, a′′) satisfies that b′
k = a′

k + δk,i − δk,i+1 and b′′
k = a′′

k for

some i and for all 1 ≤ k ≤ n, then the twist
∑

1≤i≤j≤n b′
ib

′′
j − a′

ia
′′
j is equal to a′′

i . So after

the twist, it makes the 1st term F′
i ⊗ H′′−1

i of Δ̃(Fi) in Lemma 2.3.1 into F′
i ⊗ 1. Meanwhile,

if (b′, a′, b′′, a′′) is a quadruple subject to b′
k = a′

k and b′′
k = a′′

k + δi,k − δi+1,k for some i and

for all 1 ≤ k ≤ n, then
∑

1≤i≤j≤n b′
ib

′′
j − a′

ia
′′
j = −a′

i+1. Hence, after the twist, the 2nd term

H′
i ⊗ F′′

i in Δ̃(Fi) becomes K′−1
i ⊗ F′′

i . This verifies the 2nd equality in the lemma.

Since the twist is zero if b′ = a′ and b′′ = a′′, the 3rd equality holds. �

Remark 2.3.3. If we write (Ei, Fi, Ki) as (Fi, Ei, K−1
i ), we have the conventional

coproduct.
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Positivity Under Coproduct 9

For the rest of this subsection, we give a 2nd interpretation of �̃ to be used in

the proof of Proposition 2.3.6. We can decompose Xd as follows:

Xd = �a∈	d,n
Xd(a), Xd(a) = {V ∈ Xd||Vi/Vi−1| = ai, ∀1 ≤ i ≤ n}.

Fix V ∈ Xd(b) and set Pb = StabGd
(V). Then Pb acts via Gd on Xd(b). Consider

ib,a : Xd(a) → Xd(b) × Xd(a), Ṽ �→ (V, Ṽ).

It induces a bijection between Pb-orbits in the domain and Gd-orbits in the range of ib,a.

Hence, the pullback (restriction)

i∗b,a : AGd
(Xd(b) × Xd(a)) → APb

(Xd(a)) (10)

of the imbedding ib,a is an isomorphism of A-modules.

Recall now that we fix a triple (V, V ′, V ′′) in the definition of �̃ in (5). We assume

that V ∈ Xd(b), V ′ ∈ Xd′(b′), and V ′′ ∈ Xd′′(b′′) so that b′ + b′′ = b. We also define Pb′ and

Pb′′ similar to Pb. Thus, we have similar isomorphisms

i∗b′,a′ : AGd′ (Xd′(b′) × Xd′(a′)) → APb′ (Xd′(a′)),

i∗b′′,a′′ : AGd′′ (Xd′′(b′′) × Xd′′(a′′)) → APb′′ (Xd′′(a′′)).

Consider the subset of Xd(a):

X+
a,a′,a′′ =

{
Ṽ ∈ Xd(a)|π ′(Ṽ) ∈ Xd′(a′), π ′′(Ṽ) ∈ Xd′′(a′′)

}
. (11)

Then we have the following diagram:

where ι is the natural inclusion and π(Ṽ) = (π ′(Ṽ), π ′′(Ṽ)). Thus, the composition of the

pullback ι∗ of ι followed by the pushforward π! of π defines a linear map

π!ι
∗ : APb

(Xd(a)) → APb′×Pb′′ (Xd′(a′) × Xd′′(a′′)), (12)
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10 Z. Fan and Y. Li

where π! is defined by π!(f )(Ṽ ′, Ṽ ′′) = ∑x∈X+
a,a′ ,a′′ :π(x)=(Ṽ ′,Ṽ ′′) f (x), for all Ṽ ′, Ṽ ′′. Clearly, we

have an isomorphism of A-modules

APb′×Pb′′ (Xd′(a′) × Xd′′(a′′)) ∼= APb′ (Xd′(a′)) ⊗ APb′′ (Xd′′(a′′)).

The following lemma makes connection between �̃ and π!ι
∗.

Lemma 2.3.4. We have the following commutative diagram.

Proof. For any f ∈ AGd
(Xd(b) × Xd(a)) and (Ṽ ′, Ṽ ′′) ∈ Xd′(a′) × Xd′′(a′′), we have

π!ι
∗i∗b,a(f )(Ṽ ′, Ṽ ′′) =

∑

Ṽ∈ZṼ′ ,Ṽ′′

i∗b,a(f )(Ṽ) =
∑

Ṽ∈ZṼ′ ,Ṽ′′

f (V, Ṽ)

= �̃b′,a′,b′′,a′′(f )(V ′, Ṽ ′, V ′′, Ṽ ′′) = (i∗b′,a′ ⊗ i∗b′′,a′′) ◦ �̃b′,a′,b′′,a′′(f )(Ṽ ′, Ṽ ′′).

The lemma is thus proved. �

Remark 2.3.5. π is a vector bundle of rank
∑

1≤i<j≤n a′
ia

′′
j (compare the twist in (8)).

Recall the canonical basis {{B}|B ∈ �d} of Sd from [3].

Proposition 2.3.6. If Δb′,a′,b′′,a′′({B}) = ∑
B′∈�d′ ,B′′∈�d′′ cB′,B′′

B {B′} ⊗ {B′′}, then cB′,B′′
B ∈

Z≥0[v, v−1].

Proof. To establish the latter positivity, we switch from the finite field Fq to its

algebraic closure Fq. Let Gd be the general linear group over Fq whose Fq-points form Gd.

Similarly, we define an algebraic variety Xd(a) over Fq for Xd(a). We set Gm = GL(1, Fq).

For d′ + d′′ = d, we fix an isomorphism Fq
d ∼= Fq

d′ ⊕ Fq
d′′

. Via the isomorphism, we

fix an imbedding Gm → Gd defined by t �→ (1
Fq

d′ , t1
Fq

d′′ ). Thus, Gm acts on Xd(a) via

the imbedding. It is straightforward to see that the fixed-point set of Gm in Xd(a) is

�a′+a′′=aXd′(a′) × Xd′′(a′′). Moreover, the attracting set of Xd′(a′) × Xd′′(a′′), that is, those

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz047/5370673 by guest on 03 August 2020



Positivity Under Coproduct 11

points x such that limt→0 t.x ∈ Xd′(a′) × Xd′′(a′′), is exactly the algebraic variety whose

Fq-point is X+
a,a′,a′′ in (11). Thus, the linear map π!ι

∗ in (12) is the function version of the

hyperbolic localization functor attached to the data (Xd(a), Gm) in [4]. On the other hand,

the function i∗b,a({A}d) is nothing but the function version of the intersection cohomology

complex attached to the Pb-orbit in Xd(a) indexed by A. Now the result in [4] says that a

hyperbolic localization functor sends a simple perverse sheaf to a semisimple complex.

Therefore, we have the positivity for the generic version of π!ι
∗, hence for the generic

version of �̃ and therefore the proposition. �

Remark 2.3.7. The positivity for the algebra structure of Sd is proved by Green in [13].

2.4 Transfer map
Let

χ : Sn → A (13)

be the algebra homomorphism defined by χ(ζM) = det(M), for all M ∈ �n. (Here d is

taken to be n.) Let ξ : Sd−n → Sd−n be the A-algebra isomorphism defined by

ξ(ζM) = v−∑n
i=1(n+1−i)(bi−ai)ζM , ∀ζM ∈ Sd−n(b, a).

The transfer map

φd,d−n : Sd → Sd−n, ∀d ≥ n (14)

is defined to be the composition . The fol-

lowing lemma is quoted from [24, Lemma 1.10].

Proposition 2.4.1. There is a unique algebra homomorphism

φd,d−n : Sd → Sd−n

such that φd,d−n(Ei) = E′
i, φd,d−n(Fi) = F′

i, φd,d−n(K±1
i ) = K′±1

i , ∀1 ≤ i ≤ n − 1.

2.5 Positivity for U̇

By definition, the quantum sln, denoted by U ≡ U(sln), is an associative algebra over

Q(v) generated by the generators:

Ei, Fi, Ki, K
−1
i , ∀1 ≤ i ≤ n − 1,
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12 Z. Fan and Y. Li

and subject to the following defining relations. For 1 ≤ i, j ≤ n − 1,

KiK
−1
i = K−1

i Ki = 1,

KiKj = KjKi,

KiEj = v2δi,j−δi,j+1−δi,j−1EjKi,

KiFj = v−2δi,j+δi,j+1+δi,j−1FjKi,

EiFj − FjEi = δi,j
Ki − K−1

i

v − v−1 ,

E2
i Ej + EjE

2
i = (v + v−1)EiEjEi, if |i − j| = 1,

F2
i Fj + FjF

2
i = (v + v−1)FiFjFi, if |i − j| = 1,

EiEj = EjEi, if |i − j| �= 1,

FiFj = FjFi, if |i − j| �= 1.

(15)

Moreover, U admits a Hopf algebra structure, whose comultiplication is

defined by

Δ(Ei) = Ei ⊗ Ki + 1 ⊗ Ei, Δ(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi, Δ(Ki) = Ki ⊗ Ki, ∀i. (16)

Remark 2.5.1. If one rewrites Ei, Fi, and Ki as Ei, Fi, and KiK
−1
i+1, respectively, then the

resulting presentation is a subalgebra of the quantum gln used in [1, 4.3].

It is well known from [3] that there is a surjective algebra homomorphism

φd : U → Q(v)Sd, Ei �→ Ei, Fi �→ Fi, K±i �→ K±i, ∀1 ≤ i ≤ n − 1, (17)

where Q(v)Sd is the algebra obtained from Sd in Section 2.2 by extending the ground ring

A to Q(v). By using Proposition 2.3.2, (16) and tracing along the generators, we obtain

the following commutative diagram.

(18)

where d′ + d′′ = d and Δ for Q(v)Sd is defined as in (8).
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Positivity Under Coproduct 13

Define an equivalence relation ∼ on Zn by μ ∼ ν if and only if μ − ν = p(1, · · · , 1)

for some p ∈ Z. Let

X = Zn/ ∼

be the set of all equivalence classes. Let μ denote the equivalence class of μ ∈ Zn. Let

Y =
⎧
⎨

⎩ν ∈ Zn|
∑

1≤i≤n

νi = 0

⎫
⎬

⎭ .

Then the standard dot product on Zn induces a pairing · : Y×X → Z. Set I = {1, · · · , n−1}.
We define two injective maps I → Y, I → X, by i �→ −ei + ei+1, i �→ −ei + ei+1, ∀1 ≤
i ≤ n − 1, respectively, where ei is the i-th standard basis element in Zn. We thus obtain

a root datum of type an−1 in [22, 2.2]. It is both X-regular and Y-regular.

Following [22, 23.1.1], U admits a decomposition U = ⊕ν∈Z[I]U(ν) defined by

U(ν′)U(ν′′) ⊆ U(ν′ + ν′′), K±i ∈ U(0), Ei ∈ U(i), Fi ∈ U(−i).

For a triple ν′, ν′′, ν in Z[I] such that ν′ + ν′′ = ν, we can have a linear map

Δν′,ν′′ : U(ν) → U(ν′) ⊗ U(ν′′),

obtained from Δ by restricting to U(ν) and projecting to U(ν′) ⊗ U(ν′′). Moreover, the

restriction of φd in (17) to U(ν) induces a linear map, still denoted by φd,

φd : U(ν) → ⊕b−a=ν Q(v)Sd(b, a),

where Z[I] is treated as a subset in X via the imbedding I → X.

Lemma 2.5.2. The commutative diagram (18) can be refined to the following commu-

tative diagram, where Δb′,a′,b′′,a′′ is defined similar to (8).

(19)
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14 Z. Fan and Y. Li

Now set

U̇ = ⊕μ,λ∈X μUλ,

μUλ = U/

⎛

⎝
∑

1≤i≤n−1

(
Ki − v−μi+μi+1

)
U +

∑

1≤i≤n−1

U
(
Ki − v−λi+λi+1

)
⎞

⎠ .

This is the modified/idempotented form of U defined in [22, 23.1.1], see also [3]. Recall

from [22, 23.1.5], the comultiplication Δ induces a linear map

Δ
μ′,λ′,μ′′,λ′′ : μUλ →

μ′Uλ′ ⊗ μ′′Uλ′′ , (20)

and makes the following diagram commutative.

(21)

where μ − λ = ν, μ′ − λ′ = ν′, μ′′ − λ′′ = ν′′, and πμ,λ is the projection from U to μUλ.

We write 1λ = πλ,λ(1). It is well known that U̇ and Q(v)Sd are U-bimodules. So the

notations Ei1λ and Fi1λ in U̇ are meaningful, and so are EiζM , FiζM in Q(v)Sd where the

notation ζM is from Section 2.2. Recall from [24] (see also [21]) that there is a surjective

algebra homomorphism φ̃d : U̇ → Q(v)Sd defined by

φ̃d(1λ) =
⎧
⎨

⎩
ζMa

, if λ = a, for some a ∈ 	d,n,

0, o.w.

φ̃d(Ei1λ) =
⎧
⎨

⎩
EiζMa

, if λ = a, for some a ∈ 	d,n,

0, o.w.

φ̃d(Fi1λ) =
⎧
⎨

⎩
FiζMa

, if λ = a, for some a ∈ 	d,n,

0, o.w.

where Ma is the diagonal matrix with diagonal a. Further, φ̃d induces a linear map:

φ̃d : bUa → Q(v)Sd(b, a).
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Positivity Under Coproduct 15

By definition, we have the following lemma.

Lemma 2.5.3. If μ = b, λ = a and μ−λ = ν, then the following diagram is commutative.

(22)

where the bottom row is the natural projection.

Note b − a ∈ Z[I] ⊆ X. By piecing together (19), (21), and (22), we have the cube:

(23)

where each of the S in the bottom square has a subscript Q(v) on the left. In (23),

the front square is (19), the top square is (21), the two side squares are (22), and

the commutativity of the bottom square is obvious. Since πμ,λ is surjective and each

square is commutative except the one in the back, we have immediately the following

proposition by diagram chasing.

Proposition 2.5.4. The square in the back of the cube (23) is commutative.

(24)

By using Proposition 2.5.4, we can prove the following positivity with respect to

the comultiplication. Let B be the canonical basis of U̇ defined in [22, 25.2.4].
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16 Z. Fan and Y. Li

Theorem 2.5.5. Let b ∈ B ∩ μUλ. If Δ
μ′,λ′,μ′′,λ′′(b) = ∑

b′,b′′∈B m̂b′,b′′
b b′ ⊗ b′′, then m̂b′,b′′

b ∈
Z≥0[v, v−1].

Proof. Let I = {(b′, b′′)|m̂b′,b′′
b �= 0}. Clearly, #I < ∞. By [25, Proposition 7.8], we can

find d, d′ and d′′ large enough such that

φ̃d(b) = {B}d, φ̃d′(b′) = {B′}d′ , φ̃d′′(b′′) = {B′′}d′′ , ∀(b′, b′′) ∈ I,

where {B}d, {B′}d′ and {B′′}d′′ are certain canonical basis elements in Sd, Sd′ and Sd′′ ,

respectively. Then by (24), we have

(φ̃d′ ⊗ φ̃d′′)Δb′,a′,b′′,a′′(b) =
∑

(b′,b′′)∈I
m̂b′,b′′

b {B′}d′ ⊗ {B′′}d′′ = Δb′,a′,b′′,a′′({B}d). (25)

By comparing Δb′,a′,b′′,a′′ in 2.3.6 with (25), m̂b′,b′′
b = cB′,B′′

B and hence the theorem

follows. �

Remark 2.5.6. Theorem 2.5.5 was first proved by Grojnowski in an unpublished paper.

In Section 6, we shall extend this result to the affine sln case. For all symmetric Cartan

data, the positivity is conjectured in [22, Conjecture 25.4.2].

3 Coideal Structure for the jSchur Algebras

In this section, we define the copruduct on the jSchur algebra level and show that

it gives rise to the transfer map used in [21]. We shall also show that the coproduct

degenerates to an imbedding of a jSchur algebra to an ordinary Schur algebra and

establish a direct connection of the type A geometric duality of Grojnowski–Lusztig

[14] and the type B/C geometric duality in [1].

3.1 The jSchur algebra Sj

d

In this section, we assume that n and D are odd, that is,

n = 2r + 1 and D = 2d + 1.

We fix a non-degenerate symmetric bilinear form Qj : FD
q × FD

q → Fq. Let W⊥ stand for

the orthogonal complement of the vector subspace W in FD
q with respect to the form

Qj . By convention, W is called isotropic if W ⊆ W⊥. Recall the set Xd from Section 2.2.

Consider the subset Xj

d of Xd defined by

Xj

d = {V ∈ Xd|Vi = V⊥
j , if i + j = n}.
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Positivity Under Coproduct 17

Let Gj

d be the orthogonal group attached to Qj , that is,

Gj

d =
{
g ∈ Gd|Qj (gu, gu′) = Qj (u, u′), ∀u, u′ ∈ FD

q

}
.

The group Gj

d acts from the left on Xj

d. It induces a diagonal action on Xj

d × Xj

d. By the

general construction in Section 2.1, we have a unital associative algebra

Sj

d ≡ AGj

d

(
Xj

d × Xj

d

)
. (26)

This is the algebra first appeared in [1]. See also [12] and [6].

Recall the definition of v = √
q from (2) and A = Z[v, v−1]. Recall from [1] that

one can construct an associative algebra Sj

d over A such that

Sj

d = A ⊗A Sj

d,

where A is regarded as an A-module with v acting as v. Let us make the algebra Sj

d more

precise. Recall �d from Section 2.2. Consider the set

�
j

d =
{
M ∈ �d|mij = mn+1−i,n+1−j, ∀1 ≤ i, j ≤ n

}
. (27)

Then Sj

d is a free A-module with basis ζ
j
M for any M ∈ �

j

d whose multiplication is defined

by the condition that if ζ
j
M1

ζ
j
M2

=∑M∈�
j

d
hM

M1,M2
(v)ζ

j
M , where hM

M1,M2
(v) ∈ A, then η

j
M1

η
j
M2

=
∑

M∈�
j

d
hM

M1,M2
(v)|v=vη

j
M , in Sj

d, where η
j
M is the characteristic function of the Gj

d-orbit in

Xj

d × Xj

d indexed by M via (3). Let

	
j

d,n = {a ∈ 	2d+1,n|ai = an+1−i, ∀1 ≤ i ≤ n
}

.

It is clear that ro(M), co(M) ∈ 	
j

d,n for all M ∈ �
j

d. Let Sj

d(b, a) = spanA{ζM |ro(M) = b,

co(M) = a} for b, a ∈ 	
j

d,n. We have Sj

d(c, b′)Sj

d(b, a) ⊆ δb′,bSj

d(c, a).

As usual, we are interested in the results on the generic level, while their proofs

will be reduced to the finite field setting.

3.2 Coideal structure for Sj

d

We set D = FD
q . We need the following auxiliary lemma.

Lemma 3.2.1. Suppose that D′′ is an isotropic subspace of D and L = (Li|0 ≤ i ≤ n) ∈
Xj

d. Then we can find a pair (T, W) of subspaces in D such that

(a) D = D′′ ⊕ T ⊕ W, (D′′)⊥ = D′′ ⊕ T,

(b) W is isotropic and T ⊥ W,
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18 Z. Fan and Y. Li

(c) There exists bases {z1, · · · , zs} and {w1, · · · , ws} of D′′ and W, respectively,

such that Qj (zi, wj) = δij for any i, j ∈ [1, s],

(d) Li = (Li ∩ D′′) ⊕ (Li ∩ T) ⊕ (Li ∩ W), for any 1 ≤ i ≤ n − 1.

Proof. Assume that n = 3. We can use an induction process to find a subspace T ′ ⊂
(D′′)⊥ such that (D′′)⊥ = D′′ ⊕ T ′ and

Li ∩ (D′′)⊥ = (Li ∩ D′′) ⊕ (Li ∩ T ′), ∀1 ≤ i ≤ n − 1.

Moreover, the restriction of the bilinear form Qj to T ′ is automatically non-degenerate.

Next, we can find a subspace W1 ⊆ L1 such that L1 = (L1 ∩ (D′′)⊥) ⊕ W1. Similarly, we

can find subspaces U2 and T2 such that

L2 ∩ D′′ = (L1 ∩ D′′) ⊕ U2, L2 ∩ T ′ = (L1 ∩ T ′) ⊕ T2.

Via the natural projection L2 → L2/L1, we can regard U2 ⊕ T2 as subspaces in L2/L1.

Now L2/L1 inherits a non-degenerate bilinear form from that of D. Moreover, U2 ⊕ T2 is

the orthogonal complement of U2 with respect to the form on L2/L1. By a well-known

fact, say [16, Theorem 6.11], we can find an isotropic subspace W ′
2 such that L2/L1 =

U2 ⊕ T2 ⊕ W ′
2, T2 ⊥ W ′

2, and dim U2 = dim W ′
2. Furthermore, the restriction of the form

to U2 + W ′
2 is non-degenerate. Now take a subspace W2 in L2 such that it gets sent to W ′

2

via the projection map. Then by comparing the dimensions, we have

L2 = (L2 ∩ (D′′)⊥) ⊕ (W1 ⊕ W2).

It is clear that W1 ⊕ W2 is an isotropic subspace in L2 and (W1 ⊕ W2) ⊥ (L2 ∩ T ′).
Note that T ′ is not necessarily perpendicular to W1 ⊕ W2. We consider the

subspace D′′⊕T ′⊕W1⊕W2. We can find a subspace U1 in V ′′ such that U1∩(L2∩D′′) = {0}
and the restriction of the bilinear form to U1 ⊕ W1 is non-degenerate. The latter implies

that we can find bases {u1, · · · , us} and {w1, · · · , ws} in U1 and W1, respectively, such

that (vi, wj) = δij. Recall that we have bases {ur+i|1 ≤ i ≤ s1} and {wr+i|1 ≤ i ≤ s1} for U2

and W2 such that (ur+i, wr+j) = δij. Fix a basis {t′i} for T ′ such that {t′i}∩(L2 ∩T ′) is a basis

of L2 ∩T ′. Let T be the subspace spanned by the elements ti = t′i −
∑

1≤j≤s+s1
(t′i, wj)uj. We

thus have T ⊥ (W1 ⊕ W2) and T satisfies all properties T ′ has with respect to the flag L.

By [16, Theorem 6.11], we can extend W1 ⊕ W2 to a subspace W satisfying the

required properties, by extending the subspace (D′′)⊥ ⊕ W1 ⊕ W2 to the whole space D.
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Positivity Under Coproduct 19

So the pair (T, W) satisfies the desired properties. The lemma follows for n = 3. For

general n, it can be shown by a similar argument inductively. �

Suppose D′′ is an isotropic subspace of D of dimension d′′. Set D′ = (D′′)⊥/D′′,
and denote by D′ its dimension D − 2d′′ = 2d′ + 1. Thus, D′ admits a non-degenerate

bilinear form induced from that of D. Given any subspace C ⊆ D, it induces a subspace

π�(C) ∈ D′:

π�(C) = C ∩ (D′′)⊥ + D′′

D′′ .

Recall the operation π ′′ from Section 2.3. For any L ∈ Xj

d, we have that π�(L) ∈ Xj

d′ and

π ′′(L) ∈ Xd′′ . For any pair (L′′, L′) ∈ Xd′′ × Xj

d′ , we set

Zj

L′,L′′ = {L ∈ Xj

d|π�(L) = L′, π ′′(L) = L′′} . (28)

We also set Z̃ to be the set of all pairs (T, W) subject to the conditions (1), (2), and (3) in

Lemma 3.2.1. To a pair (T, W) ∈ Z̃, we have an isomorphism π : T → D′. Define a map

Z̃ → Zj

L′,L′′ by sending (T, W) to LT,W , where

LT,W
i = L′′

i ⊕ π−1(L′
i) ⊕ (L′′

n−i)
#, (L′′

n−i)
# = {w ∈ W|(w, L′′

n−i) = 0
}

, ∀1 ≤ i ≤ n.

By Lemma 3.2.1, we see that the map Z̃ → Zj

L′,L′′ is surjective. Let

U =
{
g ∈ Gj

d|g(v) = v, ∀v ∈ D′′, g(v1) − v1 ∈ D′′, ∀v1 ∈ (D′′)⊥
}

.

Clearly U acts on Z̃ and Zj

L′,L′′ . Moreover, it can be checked that U acts transitively on Z̃

and is compatible with the surjective map Z̃ → Zj

L′,L′′ . Therefore, we have the following

lemma, analogous to [24, Lemma 1.4].

Lemma 3.2.2. The group U acts transitively on the set Zj

L′,L′′ .

Recall Sd from (4). We are ready to define the comulitiplication �j . This is a map

�̃j : Sj

d → Sj

d′ ⊗ Sd′′ , ∀d′ + d′′ = d, (29)

defined by �̃j (f )(L′, Ľ′, L′′, Ľ′′) = ∑
Ľ∈Zj

Ľ′ ,Ľ′′
f (L, Ľ), ∀L′, Ľ′ ∈ Xj

d′ , L′′, Ľ′′ ∈ Xd′′ , where L is a

fixed element in Zj

L′,L′′ (See (28) for notations). By Lemma 3.2.2, we see that the definition
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20 Z. Fan and Y. Li

of �̃j is independent of the choice of L. Moreover, by an argument exactly the same way

as that of Proposition 1.5 in [24], the map �̃j is an algebra homomorphism.

By using the monomial basis in [1, Theorem 3.10], one can show that Sj

d admits

an algebra homomorphism Δ̃
j
, which descends to �̃j when specialized to finite fields.

For any i ∈ [1, r], a ∈ [1, r + 1], we define the following functions in Sj

d

ei(L, L′) =
⎧
⎨

⎩
v−|L′

i+1/L′
i|, if Li

1⊂ L′
i, Lj = L′

j, ∀j ∈ [1, r]\{i};
0, otherwise.

fi(L, L′) =
⎧
⎨

⎩
v−|L′

i/L′
i−1|, if Li

1⊃ L′
i, Lj = L′

j, ∀j ∈ [1, r]\{i};
0, otherwise.

H±1
a (L, L′) = v±|La/La−1|δL,L′ , k±1

i = H±1
i+1H∓1

i ,

for any L, L′ ∈ Xj

d. We write e′
i, f′i, and H′

±i for the elements in Sj

d′ analogous to ei, fi, and

H±i in Sj

d, respectively. Similarly, we use the notations E′′
i , F′′

i , and K′′
i for 1 ≤ i ≤ n − 1,

and H′′
±i, for 1 ≤ i ≤ n, for elements in Sd′′ defined in Section 2.3. We use the same

notations for the corresponding elements in Sj

d.

Proposition 3.2.3. For any i ∈ [1, r], we have

Δ̃
j
(ei) = e′

i ⊗ H′′
i+1H′′−1

n−i + H′−1
i+1 ⊗ E′′

i H′′−1
n−i + H′

i+1 ⊗ F′′
n−iH

′′
i+1.

Δ̃
j
(fi) = f ′

i ⊗ H′′−1
i H′′

n+1−i + H′
i ⊗ F′′

i H′′
n+1−i + H′−1

i ⊗ E′′
n−iH

′′−1
i .

Δ̃
j
(Ki) = K′

i ⊗ K′′
i K′′−1

n−i .

Proof. As before, we only need to check the equalities over Sj

d. By definition, we have

�̃j (ei)(L
′, Ľ′, L′′, Ľ′′) = v−|Ľi+1/Ľi|#S,

where S = {Ľ ∈ Zj

Ľ′,Ľ′′ |Li ⊂ Ľi, |Ľi/Li| = 1, Lj = Ľj, ∀1 ≤ j �= i ≤ r}. The set S is nonempty

only when the quadruple (L′, Ľ′, L′′, Ľ′′) is in one of the following three cases.

(i) L′
i ⊂ Ľ′

i, |Ľ′
i/L′

i| = 1, L′
j = Ľ′

j, for all 1 ≤ j �= i ≤ r, L′′
j = Ľ′′

j , for all j.

(ii) L′
j = Ľ′

j, for all j, L′′
i ⊂ Ľ′′

i , |Ľ′′
i /L′′

i | = 1, L′′
j = Ľ′′

j for all j �= i.

(iii) L′
j = Ľ′

j, for all j, L′′
n−i ⊃ Ľ′′

n−i, |L′′
n−i/Ľ′′

n−i| = 1, L′′
j = Ľ′′

j for all j �= n − i.

We now compute the number #S in case (i). This amounts to count all possible

lines 〈u〉, spanned by the vector u, such that Li +〈u〉 is in S. Since we want Li +〈u〉 ⊆ Li+1,
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Positivity Under Coproduct 21

we should find u in Li+1. Since we need π�(Li + 〈u〉) = Ľ′
i, we need to find those u such

that π(u) = u′, where u′ is a fixed element in D′ such that Ľ′
i = L′

i + 〈u′〉. Fix a pair (T, W)

in D such that it satisfies all conditions in Lemma 3.2.1 with respect to the flag L. In

particular, Li+1 = L′′
i+1 ⊕ (Li+1 ∩ T) ⊕ (Li+1 ∩ W). Since T gets identified with D′ via the

canonical projection, there is a unique t in T sending to u′. So we need to look for those

u such that at component Li+1 ∩ T, u = t, and at component Li+1 ∩ W, u = 0. Thus, u is

of the form t + w where w ∈ L′′
i+1. Since adding w by any vector in L′′

i does not change

the resulting space Li + 〈u〉, we see that the freedom of choice for w is L′′
i+1 mod L′′

i , that

is, L′′
i+1/L′′

i . So we see that the value of �̃j (ei)(L
′, Ľ′, L′′, Ľ′′) is equal to

v−|Ľi+1/Ľi|q|L′′
i+1/L′′

i | = v−|Ľ′
i+1/Ľ′

i|v−|Ľ′′
n−i/Ľ′′

n−i−1|+|Ľ′′
i+1/Ľ′′

i | =
(
e′

i ⊗ H′′−1
n−i H

′′
i+1

)
(L′, Ľ′, L′′, Ľ′′),

where we use |Ľi+1/Ľi| = |Ľ′′
i+1/Ľ′′

i | + |Ľ′
i+1/Ľ′

i| + |Ľ′′
n−i/Ľ′′

n−i−1|.
For case (ii), S consists of only one element, that is, the Ľ such that Ľj = Lj

for 1 ≤ j �= i ≤ r, and Ľi = Li + Ľ′′
i . (Since Ľ′′

i ⊆ L′′
n−i, Ľi is isotropic.) So the value of

�̃j (ei)(L
′, Ľ′, L′′, Ľ′′) in case (ii) is equal to

v−|Ľi+1/Ľi| = v−|Ľ′
i+1/Ľ′

i|v−|Ľ′′
i+1/Ľ′′

i |v−|Ľ′′
n−i/Ľ′′

n−i−1| =
(
H′−1

i+1 ⊗ E′′
i H′′−1

n−i

)
(L′, Ľ′, L′′, Ľ′′).

For case (iii), we need to consider two situations, that is, i = r or i �= r. For

i = r, the set S gets identified with the set Sr = {l ∈ Lr+1/Lr : Ǔr+1 ⊂ l⊥, Ur+1 �⊂ l⊥}, via

Ľ �→ Ľr/Lr, where Ǔr+1 = (Ľ′′
r+1 + Lr)/Lr and Ur+1 = (L′′

r+1 + Lr)/Lr. Set

S̃r = {W ⊂ Lr+1/Lr|W isotropic, Ǔr+1 ⊂ W, dim W/Ǔr+1 = 1, W + Ur+1 not isotropic}.

We define a map Sr → S̃r by l �→ l + Ǔr+1. It is clear that this is a surjective map and its

fiber is isomorphic to Ǔr+1. The set S̃r can be broken into the difference of the two sets

S̃r = {W|W isotropic Ǔr+1 ⊂ W, dim W/Ǔr+1 = 1}
− {W|W isotropic Ǔr+1 ⊂ W, dim W/Ǔr+1 = 1, W + Ur+1 isotropic}.

For the 1st set, its order is equal to q
|Lr+1/Lr |−2|Ľ′′

r+1/Ľ′′
r |−1−1

q−1 , because Ǔr+1 � Ľ′′
r+1/Ľ′′

r . For

the 2nd set, it is the union of {W = Ur+1} and the subset {dim W + Ur+1/Ǔr+1 = 2}.
The latter has a surjection onto the set of isotropic lines in U⊥

r+1/Ur+1 with fiber Fq, via
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22 Z. Fan and Y. Li

W �→ W + Ur+1/Ur+1. Thus, the order of the 2nd set is 1 + qq
|Lr+1/Lr |−2|L′′

r+1/L′′
r |−1−1

q−1 . So

#S = #Ǔr+1

(
q|Lr+1/Lr|−2|Ľ′′

r+1/Ľ′′
r |−1 − 1

q − 1
− 1 − q

q|Lr+1/Lr|−2|L′′
r+1/L′′

r |−1 − 1

q − 1

)

= q|Ľ′′
r+1/Ľ′′

r |+|Ľ′
r+1/Ľ′

r|.

So we see that the value of �̃j (ei)(L
′, Ľ′, L′′, Ľ′′), for i = r in case (iii), is equal to

v−|Ľr+1/Ľr|q|Ľ′′
r+1/Ľ′′

r |+|Ľ′
r+1/Ľ′

r| = v|Ľ′
r+1/Ľ′

r| = (H′
i+1 ⊗ F′′

n−iH
′′
i+1)(L′, Ľ′, L′′, Ľ′′).

For i �= r, the set S gets identified with the set S′ of isotropic lines l in Ln−i/Li

such that

l ⊆ Li+1/Li, Ǔ ⊂ l⊥, U �⊂ l⊥,

where Ǔ = Ľ′′
n−i + Li/Li and U = L′′

n−i + Li/Li. Notice S′ is the difference of the two sets:

S′ = {l|l ⊆ Li+1/Li, Ǔ ⊂ l⊥} − {l|l ⊆ Li+1/Li, U ⊂ l⊥}.

We can use a similar arguments as in (i) to compute the two sets and we get

#S = q|L′′
i+1/L′′

i |+|L′
i+1/L′

i|+1 − 1

q − 1
+ q|L′′

i+1/L′′
i |+|L′

i+1/L′
i| − 1

q − 1
= q|L′′

i+1/L′′
i |+|L′

i+1/L′
i|.

So we see that the value of �̃j (ei)(L
′, Ľ′, L′′, Ľ′′), for i �= r in case (iii), is equal to

v−|Ľi+1/Ľi|q|L′′
i+1/L′′

i |+|L′
i+1/L′

i| = v|Ľ′
i+1/Ľ′

i|v−|Ľ′′
n−i/Ľ′′

n−i−1|+|Ľ′′
i+1/Ľ′′

i |

= (H′
i+1 ⊗ F′′

n−iH
′′
i+1)(L′, Ľ′, L′′, Ľ′′).

We have the 1st identity.

Next, we determine �̃j (fi). By definition, we have

�̃j (fi)(L
′, Ľ′, L′′, Ľ′′) = v−|Ľi/Ľi−1|#R, (30)

where R = {Ľ ∈ Zj

Ľ′,Ľ′′ |Li ⊃ Ľi, |Li/Ľi| = 1, Lj = Ľj, ∀1 ≤ j ≤ r, j �= r}. Now the set R is empty

unless the quadruple (L′, Ľ′, L′′, Ľ′′) is in one of the following cases.

(iv) L′
i ⊃ Ľ′

i, |L′
i/Ľ′

i| = 1, L′
j = Ľ′

j, ∀1 ≤ j ≤ r, j �= i, L′′
j = Ľ′′

j for all j.
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(v) L′
j = Ľ′

j for all j, L′′
i ⊃ Ľ′′

i , |L′′
i /Ľ′′

i | = 1, L′′
j = Ľ′′

j , ∀1 ≤ j �= i ≤ n.

(vi) L′
j = Ľ′

j for all j, L′′
n−i ⊂ Ľ′′

n−i, |Ľ′′
n−i/L′′

n−i| = 1, L′′
j = Ľ′′

j , ∀1 ≤ j �= n − i ≤ n.

In these cases, Ľ differs from L only at i and n − i. Thus, we can identify Ľ

with Ľi.

In case (iv), to count the number of elements in R, we break it into two steps. We

first determine all possible choices of Ľi ∩ (D′′)⊥ for Ľi ∈ R. Since Ľ′′
i = L′′

i , we have only

one choice, that is, L̃i = L′′
i + T, where T is any subspace (of dimension |Ľ′

i|) in Li ∩ (D′′)⊥

maps onto Ľ′
i via the canonical projection. We next want to determine the number of

choices of W ⊆ Li such W + L̃i ∈ R. We first observe that if Ľ ∈ R, then the projection,

say Ľ′′′
i , of Ľi to D/(D′′)⊥ is the same as that of Li. Since |Li ∩ (D′′)⊥/Ľi ∩ (D′′)⊥| = 1 and

Li−1 ⊆ Ľi, we see that all possible choices for W ∈ Li such that W + L̃i ∈ R is bijective to

the space

Ľ′′′
i /L′′′

i−1 � (Ľ′′
n−i)

#/(Ľ′′
n−i+1)# � Ľ′′

n−i+1/Ľ′′
n−i,

where L′′′
i−1 is the projection of Li−1 to D/(D′′)⊥. Thus, in case (iv), the left-hand side of

(30) is equal to v−|Ľi/Ľi−1|q|Ľ′′
n−i+1/Ľ′′

n−i| = f′i ⊗ H′′−1
i H′′

n+1−i(L
′, Ľ′, L′′, Ľ′′).

In case (v), to build a subspace Ľi in Li such that it is in R, there are Ľ′
i/Ľ′

i−1

choices to build the component L̃i = Ľi ∩ (D′′)⊥. This is done by using a similar argument

as in the 1st step of case (iv) since L′′
i ⊃ Ľ′′

i and |L′′
i /Ľ′′

i | = 1. By a similar argument as the

step two in case (iv), we see that the number of choices for a subspace W in Li such that

W + L̃i ∈ R is again Ľ′′
n−i+1/Ľ′′

n−i for a fixed subspace from the 1st step. Thus, the value

of (30) in case (v) is equal to

v−|Ľi/Ľi−1|q|Ľ′
i/Ľ′

i−1|q|Ľ′′
n−i+1/Ľ′′

n−i| = H′
i ⊗ F′′

i H′′
n+1−i(L

′, Ľ′, L′′, Ľ′′).

In case (vi), there is only one element in R. First of all, Ľi ∩ (D′′)⊥ = Li ∩ (D′′)⊥ for

Ľi ∈ R. Second of all, by fixing a decomposition of D = D′′ ⊕ T ⊕ W as in Lemma 3.2.1, we

see that if Ľi ∈ R, then the projection of Ľi to D/(D′′)⊥ is (Ľ′′
n−i)

#. Thus, by an argument

similar to the 2nd step of case (iv), we see that there is only one Ľi in R. This implies

that the value of (30) in case (vi) is equal to v−|Ľi/Ľi−1| = H′−1
i ⊗ E′′

n−iH
′′−1
i (L′, Ľ′, L′′, Ľ′′). We

see that the 2nd identity follows from the above computations.

Finally the last identity follows from the definitions and �̃j (Hi)=H′
i⊗H′′

i H′′
n+1−i. �

Corollary 3.2.4. We have (1 ⊗ Δ̃)̃Δ
j = (̃Δ

j ⊗ 1)̃Δ
j
.

The corollary follows by checking if the relation holds for generators, which is

immeidate.
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24 Z. Fan and Y. Li

3.3 Renormalization

Given a pair (b, a) in 	d,n for n = 2r + 1 (see (7)), we set

u(b, a) = 1

2

⎛

⎝
∑

i+j≥n+1

bibj − aiaj +
∑

i≥r+1

ai − bi

⎞

⎠

=
∑

i>j,i+j≥n+1

bibj − aiaj + 1

2

⎛

⎝
∑

i≥r+1

b2
i − a2

i + ai − bi

⎞

⎠ ∈ Z.

(31)

The coproduct Δ̃
j

in (29) can be decomposed as

Δ̃
j = ⊕Δ̃

j

b′,a′,b′′,a′′ ,

where Δ̃
j

b′,a′,b′′,a′′ is the component from Sj

d(b, a) to Sj

d(b′, a′) ⊗ S(b′′, a′′) such that

bi = b′
i + b′′

i + b′′
n+1−i, ai = a′

i + a′′
i + a′′

n+1−i, ∀1 ≤ i ≤ n.

We renormalize Δ̃
j

in (29) as follows:

Δj = ⊕b,a,b′,a′,b′′,a′′Δ
j

b′,a′,b′′,a′′ , (32)

where Δj

b′,a′,b′′,a′′ = v
∑

1≤i≤j≤n b′
ib

′′
j −a′

ia
′′
j vu(b′′,a′′)Δ̃

j

b′,a′,b′′,a′′ . Note that Δj is again an algebra

homomorphism, due to the fact that u(c, a) = u(c, b) + u(b, a). By a straightforward

computation based on Proposition 3.2.3, we have

Proposition 3.3.1. For any i ∈ [1, r],

Δj (ei) = e′
i ⊗ K′′

i + 1 ⊗ E′′
i + K′

i ⊗ F′′
n−iK

′′
i .

Δj (fi) = f′i ⊗ K′′
n−i + k′−1

i ⊗ K′′
n−iF

′′
i + 1 ⊗ E′′

n−i.

Δj (Ki) = K′
i ⊗ K′′

i K′′−1
n−i .

Proof. Fix an i ∈ [1, r]. Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k =

a′
k − δk,i + δk,i+1 + δk,n−i − δk,n+1−i and b′′

k = a′′
k for all k ∈ [1, n]. We have u(b′′, a′′) = 0 and

∑
1≤k≤j≤n b′

ka′′
j −a′

ka′′
j = −a′′

i +a′′
n−i. So, after the twist, the 1st term on the right of Δ̃

j
(ei)

in Proposition 3.2.3 becomes e′
i ⊗H′′

i+1H′′−1
n−i |b′,a′,b′′,a′′v−a′′

i +a′′
n−i = e′

i ⊗K′′
i |b′,a′,b′′,a′′ where the

notation f |b′,a′,b′′,a′′ is the restriction of f to Xj

d′(b
′) × Xj

d′(a′) × Xd′′(b′′) × Xd′′(a′′).
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Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k and b′′
k = a′′

k −
δk,i + δk,i+1 for all k ∈ [1, n]. Then we have

∑
1≤k≤j≤n b′

kb′′
j − a′

ka′′
j = a′

i+1 and u(b′′, a′′) =
a′′

n−i. Thus, after the twist, the 2nd term on the right of Δ̃
j
(ei) in Proposition 3.2.3 is

equal to H′−1
i+1 ⊗ E′′

i H′′−1
n−i |b′,a′,b′′,a′′va′

i+1+a′′
n−i = 1 ⊗ E′′

i |b′,a′,b′′,a′′ .

Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k and b′′
k =

a′′
k + δk,n−i − δk,n+1−i for all k ∈ [1, n]. Then we have

∑
1≤k≤j≤n b′

kb′′
j − a′

ka′′
j = −a′

i and

u(b′′, a′′) = −a′′
i + δi,r+1 = −a′′

i , where the latter equality is due to i ∈ [1, r]. Hence,

after the twist, the 3rd term on the right of Δ̃
j
(ei) in Proposition 3.2.3 is equal to

H′
i+1 ⊗ F′′

n−iH
′′
i+1v−a′

i−a′′
i |b′,a′,b′′,a′′ = k′

i ⊗ F′′
n−iK

′′
i |b′,a′,b′′,a′′ .

The 1st equality in the proposition follows from the above analysis.

Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k + δk,i − δk,i+1 −
δk,n−i + δk,n+1−i and b′′

k = a′′
k for all k ∈ [1, n]. Then we have

∑
1≤k≤j≤n b′

kb′′
j − a′

ka′′
j =

a′′
i − a′′

n−i and u(b′′, a′′) = 0. So, after the twist, the 1st term on the right of Δ̃
j
(fi) in

Proposition 3.2.3 becomes f′i ⊗ H′′−1
i H′′

n+1−iv
a′′

i −a′′
n−i |b′,a′,b′′,a′′ = f′i ⊗ K′′

n−i|b′,a′,b′′,a′′ .

Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k and b′′
k = a′′

k +
δk,i − δk,i+1 for all k ∈ [1, n]. Then we have

∑
1≤k≤j≤n b′

kb′′
j − a′

ka′′
j = −a′

i+1 and u(b′′, a′′) =
−an−i + δi,r. So, after the twist, the 2nd term on the right of Δ̃

j
(fi) in Proposition 3.2.3

becomes H′
i ⊗ F′′

i H′′
n+1−iv

−a′
i+1−an−i+δi,r |b′,a′,b′′,a′′ = k′−1

i ⊗ vδi,r F′′
i K′′

n−i|b′,a′,b′′,a′′ = k′−1
i ⊗

K′′
n−iF

′′
i |b′,a′,b′′,a′′ .

Assume that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k and b′′
k = a′′

k −
δk,n−i + δk,n+1−i for all k ∈ [1, n]. Then we have

∑
1≤k≤j≤n b′

kb′′
j − a′

ka′′
j = a′

n+1−i = a′
i and

u(b′′, a′′) = a′′
i . So, after the twist, the 3rd term on the right of Δ̃

j
(fi) in Proposition 3.2.3

becomes H′−1
i ⊗ E′′

n−iH
′′−1
i va′

i+a′′
i |b′,a′,b′′,a′′ = 1 ⊗ E′′

n−i|b′,a′,b′′,a′′ .

The above analysis implies the 2nd equality in the proposition. Since the twist

will not affect the original term when b′ = a′ and b′′ = a′′, we have the 3rd equality. �

Recall the canonical basis {{M}|M ∈ �
j

d} of Sj

d from [1, 3.6]. We have the following

positivity result of the canonical basis of Sj

d with respect to the coproduct Δj .

Proposition 3.3.2. If Δj ({M}) =∑M ′∈�
j

d′ ,M ′′∈�d′′ hM ′,M ′′
M {M ′}⊗{M ′′}, then we have hM ′,M ′′

M ∈
Z≥0[v, v−1].

Proof. The proof is similar to that of Proposition 2.3.6. We consider the orthogonal

group G
j

d and the isotropic flag variety X
j

d(a) over Fq, whose Fq-points are exactly Gj

d

and Xj

d(a), respectively. The linear form Qj can be extended naturally to a form Qj on

Fq
D

. Suppose that D′′ is isotropic with respect to Qj . We can fix a decomposition Fq
D =
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26 Z. Fan and Y. Li

D′′ ⊕ T ⊕ W such that Lemma 3.2.1 (a)–(c) hold. With respect to the bases in Lemma 3.2.1

(c) and a fixed basis of T, we can further assume that the associated matrix of Qj is

of the form

⎛

⎜⎜⎝

0 0 1

0 1 0

1 0 0

⎞

⎟⎟⎠, since Qj is defined over an algebraic closed field. Recall that

Gm = GL(1, Fq). We define an imbedding Gm → G
j

d by t �→

⎛

⎜⎜⎝

0 0 t.1

0 1 0

t−1.1 0 0

⎞

⎟⎟⎠ where

the 1s denote the identity matrix of the desired rank. Then the Gm-fixed-point set of

X
j

d(a) consists of all flags L such that Li = (Li ∩ D′′) ⊕ (Li ∩ T) ⊕ (Li ∩ W) for all i,

hence is �(a′,a′′)!aX
j

d′(a′) × Xd′′(a′′). Furthermore, the attracting set of X
j

d′(a′) × Xd′′(a′′),
for all (a′, a′′) ! a, is the algebraic variety X

j+
a,a′,a′′ whose Fq-point set is Xj+

a,a′,a′′ = {L ∈
Xj

d|(π�(L), π ′′(L)) ∈ Xj

d′(a′) × Xd′′(a′′)}. Thus, we have

where the 1st arrow is an inclusion and the 2nd is induced by the definitions. Arguing

in a similar way as Lemma 2.3.4, we see that �
j

b′,a′,b′′,a′′ is the function version of the

hyperbolic localization functor π
j
! ι∗j . Now applying Braden’s [4] result, we are done. �

Remark 3.3.3. Note that the rank of the vector bundle πj is

∑

1≤i<j≤n

a′
ia

′′
j + 1

2

⎛

⎝
∑

i+j>n+1

a′′
i a′′

j −
∑

i>r+1

a′′
i

⎞

⎠ .

This provides an explanation of the twist in (32).

Moreover, we have the following coassociative property.

Proposition 3.3.4. (1 ⊗ Δ)Δj = (Δj ⊗ 1)Δj . More precisely, we have the following

commutative diagram for the quadruple d, d′, d′′, d′′′ such that d = d′ + d′′ + d′′′
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Positivity Under Coproduct 27

3.4 The imbedding jd : Sj

d → Sd

In this section, we set d′ = 0 and d′′ = d, then the coproduct Δj in (29) becomes Δj :

Sj

d → Sj
0 ⊗ Sd. Observe that Sj

0 consists of only one basis element, so we have Sj
0 � A.

Thus, the coproduct Δj becomes the following algebra homomorphism, denoted by jd,

jd : Sj

d → Sd. (33)

The following corollary is by Proposition 3.3.1, ei = 0, fi = 0, and K′
i = vδi,r in Sj

0.

Proposition 3.4.1. There is a unique algebra imbedding

jd : Sj

d → Sd

such that jd(ei) = Ei + KiFn−i, jd(fi) = FiKn−i + En−i, jd(Ki) = vδi,r KiK
−1
n−i, ∀1 ≤ i ≤ r.

Proof. By Proposition 3.3.1, we have

jd(ei) = e′
i ⊗ K′′

i + 1 ⊗ E′′
i + K′

i ⊗ F′′
n−iK

′′
i = 0 + E′′

i + vδi,r F′′
n−iK

′′
i = E′′

i + K′′
i F′′

n−i,

which is the 1st identity if we skip the superscripts. The remaining two are obtained in

exactly the same manner, and hence skipped. �

Remark 3.4.2. The homomorphism jd matches with the imbedding j in [1, Proposition

4.5]. The only difference is an involution ω on U defined by (Ei, Fi, Ki) �→ (Fi, Ei, K
−1
i ).

By Propositions 3.3.2 and 3.4.1, we have the following corollary.

Corollary 3.4.3. Let {B} be a canonical basis element in Sj

d. If jd({B}) = ∑
gB,A{A},

where the sum is over the set of canonical basis elements {A} in Sd, then gB,A ∈
Z≥0[v, v−1].

We will need to the following lemma later.

Lemma 3.4.4. The map jd in (33) is injective.

Proof. Recall from [1, Theorem 3.10] that Sj

d has a monomial basis mj
A indexed by

A ∈ �
j

d (which is denoted mA therein). It is enough to show that the set {jd(mj
A)|A ∈ �

j

d}
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28 Z. Fan and Y. Li

is linearly independent in Sd. We set

deg(1λ) = 0, deg(ei1λ) = i, deg(fi1λ) = n − i, ∀λ ∈ 	
j

d,n, 1 ≤ i ≤ r.

Similarly, we define

deg(1λ) = 0, deg(Ei1λ) = i, deg(Fi1λ) = −i, ∀λ ∈ 	d,n, 1 ≤ i ≤ n.

We write ν′ < ν if ν′
i ≤ νi for all i and ν′

i0
< νi0 for some i0. Suppose that deg(mj

A) = ν ∈
Z≥0[I]. By Proposition 3.4.1, we have

jd(mj
A) ∈ ⊕b−a=ν

Sd(b, a) ⊕ ⊕d−c<ν
Sd(d, c).

For A = (aij) ∈ �
j

d, we set

�d(A) = {B = (bij) ∈ �d|bij = 0, ∀i < j, bij = aij, ∀i > j, co(B) ! co(A)},

where b ! a if bi + bn+1−i + δi,r+1 = ai for all 1 ≤ i ≤ n. By Proposition 3.4.1, we see that

jd(mj
A) =

∑

B∈�d(A)

mB + lower terms,

where mB denotes the monomial attached to B in [3, Proposition 3.9] and “lower term” is

the remaining summand in ⊕d−c<ν
Sd(d, c). Now suppose that we have

∑

A∈�
j

d

cAjd(mj
A) = 0, cA ∈ A.

Let M be the set of maximal ν ∈ Z[I] in the set {deg(mj
A)|A ∈ �

j

d} with respect to the

natural partial order in Z[I], that is, ν′ ≤ ν if and only if ν′
i ≤ νi for all i. We have

0 =
∑

A∈�
j

d

cAjd(mj
A) =

∑

A:deg(mj
A)∈M

cAjd(mj
A) + lower term.

So we have
∑

A:deg(mj
A)∈M cAjd(mj

A) = 0. By [3,Proposition 3.9] and the fact that �d(A) ∩
�d(A′) = ∅ if A �= A′, the set {∑B∈�d(A) mB}, where A runs over all matrices in �

j

d such

that deg(mj
A) ∈ M, is linearly independent in Sd. Thus, cA = 0 for all A ∈ �

j

d such that

deg(mj
A) ∈ M. Inductively, cA = 0 for all A ∈ �

j

d. Therefore, the set {jd(mj
A)|A ∈ �

j

d} is

linearly independent. Lemma is proved. �
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Positivity Under Coproduct 29

The following is nothing but a special case of Proposition 3.3.4.

Corollary 3.4.5. Suppose that d′+d′′ = d. We have the following commutative diagram.

Remark 3.4.6. Sj

d can be regarded as a “coideal” subalgebra of Sd in view of

Lemma 3.4.4 and Corollary 3.4.5.

3.5 Type A duality versus type B duality

In this section, we use the algebra homomorphism jd,v, the specialization of jd to v = v,

to establish a direct connection between the geometric type A duality in [14] and the

geometric type B duality in [1].

For any nonnegative integers a, b, we write 1a0b for the sequence (1, · · · , 1, 0,

· · · , 0) containing a copies of 1’s and b copies of 0’s. Similarly, we can define 1a0b1c, etc.

Recall Xd, Xd(b) for b ∈ 	d,n from Sections 2.2 and 2.3. We set

Td,n = AGd
(Xd × Xd(1d)), and HAd

= AGd
(Xd(1d) × Xd(1d)).

By [14], we know that HAd
is a Hecke algebra of type Ad and Td,n is a tensor space

V⊗d
n where Vn is a free A-module of rank n. Now the standard convolution defines

commuting actions of Sd and HAd
on Td,n from the left and the right, respectively:

Sd × Td,n → Td,n
ψ← Td,n × HAd

. (34)

Moreover, the two actions centralize each other.

We shall recall a similar picture in [1] if the Xd is replaced by its j-analog. Recall

Xj

d, Xj

d(b) for b ∈ 	
j

d,n from Sections 3.1 and 3.3. We set

Tj

d,n = AGj

d
(Xj

d × Xj

d(12d+1)) and HBd
= AGj

d

(
Xj

d(12d+1) × Xj

d(12d+1)
)

. (35)
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30 Z. Fan and Y. Li

Then Tj

d,n is also isomorphic to the tensor space V⊗d
n , and there is the following diagram

of commuting actions.

Sj

d × Tj

d,n → Tj

d,n ← Tj

d,n × HBd
. (36)

A slight variant of the imbedding jd,v yields the following linear map:

ζ ′
d,b,v : AGj

d
(Xj

d(b) × Xj

d(12d+1)) → ⊕b′′|$b,a′′|$12d+1AGd
(Xd(b′′) × Xd(a′′)), ∀b ∈ 	

j

d,n,

where b′′ |$ b stands for bi = b′′
i + b′′

n+1−i + δi,r+1 for all i. For a′′, b′′ |$ 12d+1, we set

Ta′′
d,n = AGd

(Xd × Xd(a′′)) and b′′
HAd

= AGd
(Xd(b′′) × Xd(1d)).

Let ζd,b,v be the composition of ζ ′
b,v with the projection to the components of

a′′ = 1d0d+1:

ζd,b,v : AGj

d
(Xj

d(b) × Xj

d(12d+1)) → ⊕b′′|$bAGd
(Xd(b′′) × Xd(1d)),

where we identify Xd(1d0d+1) with Xd(1d). Summing over all b ∈ 	
j

d,n, we get a linear

map

ζd,v ≡ ⊕b∈	d,n
ζd,b,v : Tj

d,n → Td,n.

Take n = 2d + 1, b = 12d+1, we obtain a linear map

ζ 1
d,v : HBd

→ ⊕b′′|$12d+1
b′′

HAd
,

which is not necessarily an algebra homomorphism. Note that we identify T1d0d+1

d,n and
1d0d+1

HAd
with Td,n and HAd

, respectively. We thank W. Wang for pointing out a mistake

in a previous version of the following proposition.

Proposition 3.5.1. We have the following commutative diagram relating the geometric

type A duality with the geometric type B duality.
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Positivity Under Coproduct 31

where ψ2 is the natural imbedding and ψ2ψ1 is the ψ in (34).

We can describe the linear map ζd,v explicitly. Let �d,n be the set of n×d matrices

A such that aij ∈ {0, 1} and
∑

1≤i≤n aij = 1 for all 1 ≤ j ≤ d. Then we have

Td,n = spanA
{ a[A]|A ∈ �d,n

}
, (37)

where a[A] = vdAζA and dA =∑i≥k,j<l aijakl.

Let �
j

d,n be the subset of �2d+1,n such that aij = an+1−i,2d+2−j for all 1 ≤ i ≤ n

and 1 ≤ j ≤ 2d + 1. (In particular, we have ar+1,d+1 = 1.) We have

Tj

d,n = spanA{[A]|A ∈ �
j

d,n}, (38)

where [A] = v�Aζ
j
A and �A = 1

2

(∑
i≥j,k<l aijakl −

∑
i≥n+1,d+1>j aij

)
.

Let Jm be the m × m matrix whose (i, j)-th component is δi,n+1−j for all 1 ≤ i, j ≤
m. To a matrix A ∈ �d,n, we define a matrix

AJ = (A|εr+1|JnAJd),

where εr+1 is the column vector whose entries are zero except at r + 1, which is 1. Then

the assignment A �→ AJ defines a bijection �d,n
�→ �

j

d,n.

Proposition 3.5.2. ζd,v([AJ ]) = a[A], for all A ∈ �d,n.

Proof. Suppose that ro(AJ) = b. We set a′′ = 1d0d+1, b′ = 0r110r, and a′ = 0d110d. Then

by the definition of ζd,v, we have

ζd,v([AJ ]) = vtb′′ �̃j

b′,a′,b′′,a′′([A
J ]), (39)

where

tb′′ =
∑

1≤i≤j≤n

b′
ib

′′
j −

∑

1≤i≤j≤2d+1

a′
ia

′′
i +

1

2

⎛

⎝
∑

i+j≥n+1

b′′
i b′′

j −
∑

i≥r+1

b′′
i −

∑

i+j≥2d+1

a′′
i a′′

j +
∑

i≥d+1

a′′
i

⎞

⎠ .

Note that the following formula tb′′ is compatible with the twist in (32), since we need to

rescale from n components to 2d + 1 components for a′ and a′′. Now using the fact that
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32 Z. Fan and Y. Li

a′′ = 1d0d+1, b′ = 0r110r, and a′ = 0d110d, the twist tb′′ can be simplified to

tb′′ = 1

2

⎛

⎝
∑

i+j≥n+1

b′′
i b′′

j −
∑

i≥r+1

b′′
i

⎞

⎠ .

By the definition of AJ , we can also simplify the numeric �AJ as follows:

�AJ = 1

2

⎛

⎝
∑

i≥k,j<l

aJ
ija

J
kl −

∑

i≥r+1,d+1>j

aJ
ij

⎞

⎠ , AJ =
(
aJ

ij

)

= 1

2

⎛

⎝

⎛

⎝
∑

i≥k,j<l<d+1

+
∑

i≥k,j<d+1≤l

+
∑

i≥k,d+1≤j<l

⎞

⎠aJ
ija

J
kl −

∑

i≥r+1,d+1>j

aij

⎞

⎠ .

(40)

The 1st sum simplifies to
∑

i≥k,j<l<d+1 aijakl. The 3rd sum simplifies to

∑

i≥k,d+1≤j<l

aJ
ija

J
kl =

∑

i≥k,j<d+1≤l

an+1−i,2d+2−jan+1−k,2d+2−l =
∑

i≥k,j<l<d+1

aijakl+
∑

i≥r+1,d+1>j

aij.

The 2nd sum is reduced to

∑

i≥k,j<d+1≤l

aJ
ija

J
kl =

∑

i+k≥n+1,j,l<d+1

aijakl +
∑

i≥r+1,d+1>j

aij = 2tro(A).

So we get tb′′ − �AJ = −dA + tb′′ − tro(A). Thus, the identity (39) can be rewritten as

ζd,v([AJ ]) = v−dA+tb′′−tro(A) �̃
j

b′,a′,b′′,a′′(ζ
j

AJ ),

where ζ
j

AJ denote the characteristic function attached to the Gj

d-orbit indexed by AJ .

Recall that a′′ = 1d0d+1. This implies that for any L̃′′ ∈ Xd(a′′), we have Zj

L̃′,L̃′′
consists of only one point, that is, the flag L̃ such that L̃i = L̃′′

i for all i ≤ r and L̃i =
(L̃′′

n+1−i)
⊥ for all i ≥ r+1. Furthermore, if (L′′, L̃′′) ∈ OA, then (L, L̃) ∈ OAJ for any L ∈ Zj

L′,L′′

and L̃ ∈ Zj

L̃′,L̃′′ because Li ∩ L̃j = L′′
i ∩ L̃′′

j , ∀j ≤ d. Hence, we have �̃
j

b′,a′,b′′,a′′(ζ
j

AJ ) =
δb′′,ro(A)ζA. The proposition is proved. �

By Proposition 3.5.2, we have

Theorem 3.5.3. For all A ∈ �d,n, we have ζd,v(
{
AJ
}
) = a{A} +∑BJ≺AJ ,ro(B) �=ro(A) cB,A

a{B}
where cB,A ∈ Z≥0[v, v−1].
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Recall the parabolic Kazhdan–Lusztig polynomials PBJ ,AJ and PB,A of type Bd and

Ad, respectively. If ro(B) = ro(A), the remainder in the above theorem vanishes, so we

have

Corollary 3.5.4. PBJ ,AJ = PB,A if ro(B) = ro(A).

More generally, we have the following commutative diagram of algebras.

3.6 Transfer maps on Sj

d

The transfer map

φ
j

d,d−n : Sj

d → Sj

d−n

is defined to be the composition where χ

is in (13). It is clear that φ
j

d,d−n is an algebra homomorphism. Moreover, we have

Proposition 3.6.1. φ
j

d,d−n(ei) = e′
i, φ

j

d,d−n(fi) = f′i, and φ
j

d,d−n(k±1
i ) = k′±1

i , ∀i ∈ [1, r].

Proof. By definitions, we have χ(E′′
i ) = 0, χ(F′′

i ) = 0, and χ(H′′
i ) = v. So we have

φ
j

d,d−n(ei) = e′
iχ(H′′

i+1H′′−1
n−i ) + H′−1

i+1χ(E′′
i H′′−1

n−i ) + H′
i+1χ(F′′

n−iH
′′
i+1) = e′

i,

φ
j

d,d−n(fi) = f′iχ(H′′−1
i H′′

n+1−i) + H′
iχ(F′′

i H′′
n+1−i) + H′−1

i χ(E′′
n−iH

′′−1
i ) = f′i,

φ
j

d,d−n(ki) = K′
iχ(K′′

i K′′−1
n+1−i) = k′

i.

The lemma is proved. �

Together with [1, Theorem 3.10], we have

Corollary 3.6.2. The homomorphism φ
j

d,d−n is surjective.
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34 Z. Fan and Y. Li

4 Positivity for the Modified Coideal Subalgebra U̇j

4.1 The coideal subalgebra Uj

By definition, Uj ≡ Uj (sln) is an associative algebra over Q(v) generated by ei, fi, k±i

for 1 ≤ i ≤ r and subject to the following defining relations. For any 1 ≤ i, j ≤ r and

aij = 2δi,j − δi,j+1 − δi,j−1,

kikj = kjki,

kik
−1
i = k−1

i Ki = 1,

kiej = vaij+δi,rδj,rejki,

kifj = v−aij−δi,rδj,rfjki,

eifj − fjei = δi,j
ki − k−1

i

v − v−1 , if (i, j) �= (r, r),

e2
r fr + fre

2
r = (v + v−1)(erfrer − er(vkr + v−1k−1

r )),

f2
rer + erf

2
r = (v + v−1)(frerfr − (vkr + v−1k−1

r )fr),

eiej = ejei, if |i − j| > 1,

fifj = fjfi, if |i − j| > 1,

e2
i ej + eje

2
i = (v + v−1)eiejei, if |i − j| = 1,

f2
i fj + fjf

2
i = (v + v−1)fifjfi, if |i − j| = 1.

Recall the algebra U from Section 2.5 from [1, Proposition 4.5], see also [2], we

have an injective algebra homomorphism

j : Uj → U,

defined by

j (ei) = Ei + KiFn−i, j (fi) = FiKn−i + En−i, j (ki) = vδi,rKiK
−1
n−i, ∀1 ≤ i ≤ r.

Here n = 2r + 1. By composing j with Δ in (16), we have an algebra homomorphism

Δj : Uj → Uj ⊗ U defined by

Δj (ei) = ei ⊗ Ki + 1 ⊗ Ei + ki ⊗ Fn−iKi,

Δj (fi) = fi ⊗ Kn−i + k−1
i ⊗ Kn−iFi + 1 ⊗ En−i,

Δj (ki) = ki ⊗ KiK
−1
n−i, ∀1 ≤ i ≤ r.
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4.2 The algebra U̇j

On Zn, we define an equivalence relation “≈” by μ ≈ λ if and only if μ − λ = m(2, · · · , 2)

for some m ∈ Z. Let μ̂ denote the equivalence class of μ with respect to ≈. Consider the

following subset in the set Zn/≈ of equivalence classes.

Xj = {̂μ ∈ Zn/≈ |μi = μn+1−i, ∀1 ≤ i ≤ n, μr+1 is odd}. (41)

We define

U̇j = ⊕μ̂,̂λ∈Xj μ̂Uj

λ̂
,

μ̂Uj

λ̂
= Uj /

⎛

⎝
∑

1≤i≤r

(ki − v−μi+μi+1)Uj +
∑

1≤i≤r

Uj (ki − v−λi+λi+1)

⎞

⎠ .

The algebra U̇j is the modified form of Uj (see [1, 4.6] for the gln version). Let

πμ̂,̂λ : Uj → μ̂Uj

λ̂

be the natural projection.

Recall the set Xj from (41) and si the i-standard basis element of Zn. We define

an abelian group structure on Xj by μ̂ + λ̂ = π̂ , with π = μ + λ − sr+1. We set

Ij = {1, · · · , r}.

The assignment i �→ −si + si+1 + sn−i − sn+1−i + sr+1, ∀i ∈ Ij , defines an embedding

of abelian groups Z[Ij ] ↪→ Xj . We shall identify elements in Z[Ij ] with their images

in Xj . Then the algebra Uj in Section 4.1 admits a Z[Ij ]-graded decomposition Uj =
⊕ω∈Z[Ij ]U

j (ω) defined by

ei ∈ Uj (i), fi ∈ Uj (−i), k±1
i ∈ Uj (0), Uj (ω)Uj (ω′) ⊆ Uj (ω + ω′), ∀i ∈ Ij .

Let μ̂Uj

λ̂
(ω) = πμ̂,̂λ(U

j (ω)). By a standard argument, we have

Lemma 4.2.1. μ̂Uj

λ̂
(ω) = 0 unless μ̂ − λ̂ = ω ∈ Z[Ij ] ⊆ Xj .
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4.3 Positivity with respect to Δj

We introduce the following notations to simplify the presentation. For any μ, μ′, μ′′ ∈ Zn,

we write

(μ′, μ′′) ! μ, (42)

if and only if μ′
i +μ′′

i +μ′′
n+1−i = μi, for all 1 ≤ i ≤ n. If μ′ = sr+1, we simply write μ′′ ! μ.

Assume that (μ′, μ′′) ! μ, then by definition we have

Δj (ki − v−μi+μi+1) =(ki − v−μ′
i+μ′

i+1) ⊗ KiK
−1
n−i + v−μ′

i+μ′
i+1 ⊗ (Ki − v−μ′′

i +μ′′
i+1)K−1

n−i

+ v−μ′
i−μ′′

i +μ′
i+1+μ′′

i+1 ⊗
(
K−1

n−i − vμ′′
n−i−μ′′

n+1−i

)
.

This induces a unique linear map

Δj

μ̂′,λ̂′,μ′′,λ′′ : μ̂Uj

λ̂
→ μ̂′U

j

λ̂′ ⊗ μ′′Uλ′′ , ∀(μ′, μ′′) ! μ, (λ′, λ′′) ! λ

such that the following diagram commutes.

(43)

Recall B is the canonical basis for U̇. Let Bj be the canonical basis for U̇j defined

in [21].

Theorem 4.3.1. Let a ∈ Bj . If Δj

μ̂′,λ̂′,μ′′,λ′′(a) =∑b∈Bj ,c∈B nb,c
a b⊗ c, then nb,c

a ∈ Z≥0[v, v−1].

The rest of this section is devoted to the proof of Theorem 4.3.1.

For ω, ω′ ∈ Z[Ij ] and ν ∈ Z[I], we write

(ω′, ν) |$ ω, (44)

if and only if ω′
i + νi − νn−i = ωi, for all 1 ≤ i ≤ r. If ω′ = 0, we simply write ν |$ ω. By the

definition of Δj , we have

Lemma 4.3.2. For any ω ∈ Z[Ij ], Δj (Uj (ω)) ⊆ ⊕(ω′,ν)|$ωUj (ω′) ⊗ U(ν).
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Positivity Under Coproduct 37

The following lemma is a refinement of (43), and follows from Lemmas 4.3.2

and 4.2.1.

Lemma 4.3.3. Assume that μ̂, λ̂, μ̂′, λ̂′ ∈ Xj , ω, ω′ ∈ Z[Ij ], μ′′, λ′′ ∈ X, and ν ∈ Z[I] such

that μ̂ − λ̂ = ω, μ̂′ − λ̂′ = ω′, μ′′ − λ′′ = ν, (μ′, μ′′) ! μ, (λ′, λ′′) ! λ, (ω′, ν) |$ ω. The following

diagram commutes.

The assignment of sending generators of Uj to the respective generators of Q(v)S
j

d

defines an algebra homomorphism, denoted by

φ
j

d : Uj → Q(v)S
j

d. (45)

Moreover, this algebra homomorphism is compatible with the gradings. In particular,

φ
j

d(Uj (ω)) ⊆ ⊕b,a∈	
j

d,n:b−a=ω Q(v)S
j

d(b, a), ∀ω ∈ Z[Ij ]. (46)

On the other hand, we have

Δj (Q(v)S
j

d(b, a)) ⊆
⊕

(b′,b′′)!b
(a′,a′′)!a

Q(v)S
j

d′(b
′, a′) ⊗ Q(v)Sd′′(b′′, a′′), (47)

where d = d′ + d′′. By Lemma 4.3.2, (46), and (47), we have the following lemma.

Lemma 4.3.4. Assume that b, a ∈ 	
j

d,n, ω, ω′ ∈ Z[Ij ], ν ∈ Z[I] such that (ω′, ν) |$ ω. The

following diagram commutes.
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38 Z. Fan and Y. Li

Recall from [21] that we have an algebra homomorphism

φ̃
j

d : U̇j → Q(v)S
j

d (48)

defined by

φ̃
j

d(1̂λ) =
⎧
⎨

⎩
ζ

j
Ma

, if λ̂ = â, a ∈ 	
j

d,n,

0, o.w.

φ̃
j

d(ei1̂λ) =
⎧
⎨

⎩
eiζ

j
Ma

, if λ̂ = â, a ∈ 	
j

d,n,

0, o.w.
φ̃

j

d(fi1̂λ) =
⎧
⎨

⎩
Fiζ

j
Ma

, if λ̂ = â, a ∈ 	
j

d,n,

0, o.w.

(49)

By restricting to μ̂Uj

λ̂
, it induces a linear map

φ̃
j

d : μ̂Uj

λ̂
→ Q(v)S

j

d(b, a), if μ̂ = b̂, λ̂ = â.

In particular, we have the following lemma.

Lemma 4.3.5. Suppose b0, a0 ∈ 	
j

d,n satisfy b̂0 − â0 = ω ∈ Z[Ij ]. The following diagram

is commutative, where the arrow in the bottom is the natural projection.

(50)

By putting together Lemmas 4.3.4, 4.3.3, and (50), we have the following cube.

(51)
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Positivity Under Coproduct 39

where the sum on the bottom left is overall b, a ∈ 	
j

d,n such that b̂ − â = ω, while the

sum on the bottom right is over b′, a′ ∈ 	
j

d′,n and b′′, a′′ ∈ 	d′′,n such that (b′, b′′) ! b,

(a′, a′′) ! a, b̂′ − â′ = ω, and b′′ − a′′ = ν.

From (51) and the surjectivity of πμ̂,̂λ, we have the following proposition.

Proposition 4.3.6. The square in the back of (51) is commutative.

By using Proposition 4.3.6, we deduce Theorem 4.3.1 via a similar way for

Theorem 2.5.5.

4.4 Positivity with respect to j

Notice that for μ, μ′′ ∈ Zn such that μ′′ ! μ, we have

j ((ki − v−μi+μi+1)Uj ) ⊆
∑

1≤i≤n

(Ki − v−μ′′
i +μ′′

i+1)U.

Similarly, for any λ, λ′′ ∈ Zn such that λ′′ ! λ we have

j (Uj (ki − v−λi+λi+1)) ⊆
∑

1≤i≤n

U(Ki − v−λ′′
i +λ′′

i+1).

The above observations induce a linear map

j
μ̂,̂λ,μ′′,λ′′ : μ̂Uj

λ̂
−→

μ′′ U
λ′′ , ∀μ′′ ! μ, λ′′ ! λ (52)

such that the following diagram commutes.

(53)

Theorem 4.4.1. Let b ∈ Bj . If j
μ̂,̂λ,μ′′,λ′′(b) =∑a∈B gb,aa, then gb,a ∈ Z≥0[v, v−1].
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The proof of Theorem 4.4.1 is a degenerate version of the proof of Theorem 4.3.1.

For the sake of completeness, we provide it here. The following lemma is due to the fact

that

j (ei) ∈ U(i) + U(−(n − i)), j (fi) ∈ U(−i) + U(n − i), j (k±1
i ) ∈ U(0).

Lemma 4.4.2. For any ω ∈ Z[Ij ], j (Uj (ω)) ⊆ ⊕ν|$ωU(ν).

From Lemmas 4.4.2 and 4.2.1, we have the following refinement of (53).

Lemma 4.4.3. Assume that μ̂, λ̂ ∈ Xj , ω ∈ Z[Ij ], μ′′, λ′′ ∈ X, and ν ∈ Z[I] such that

μ̂ − λ̂ = ω, μ′′ − λ′′ = ν, μ′′ ! μ, λ′′ ! λ, ν |$ ω.

The following diagram commutes.

where jω,ν is the one induced from j by restricting to Uj (ω) and projecting down to U(ν).

Note that we have

jd(Q(v)S
j

d(b, a)) ⊆
⊕

b′′!b,a′′!a

Q(v)Sd(b′′, a′′). (54)

By Lemma 4.4.2, (46), and (54), we have the following lemma.

Lemma 4.4.4. Assume that b, a ∈ 	
j

d,n, ω ∈ Z[Ij ], ν ∈ Z[I] such that νi − νn−i = ωi for

any i ∈ Ij . The following diagram commutes.
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where the condition (�) is b′′ − a′′ = ν, b′′ ! b, and a′′ ! a.

By putting together Lemmas 4.4.4, 4.4.3, and (50), we have the following cube.

(55)

From (55) and the surjectivity of πμ̂,̂λ, we have the following proposition.

Proposition 4.4.5. The square in the back of (55) is commutative.

Recall that for any b ∈ Bj , we suppose that

j
μ̂,̂λ,μ′′,λ′′(b) =

∑

a∈B

gb,aa,

where gb,a ∈ Z[v, v−1] is zero except for finitely many terms. Let S = {a|gb,a �= 0}. Since

the set S is finite, we can find a large enough d using [21] and [25] such that

φ
j

d(b) = {B}d, φd(a) = {A}d, ∀a ∈ S,

where {B}d and {A}d are certain canonical basis elements in Sj

d and Sd, respectively.

Applying φ
j

d and Lemma 4.4.5, we have

jd({B}d) = jd(φ
j

d(b)) = φdj
μ̂,̂λ,μ′′,λ′′(b) =

∑

a∈B

gb,aφd(a) =
∑

a∈B

gb,a{A}d.
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By comparing the above with Corollary 3.4.3, we have gb,a = gB,A. So we have gb,a ∈
Z≥0[v, v−1] by Corollary 3.4.3. Theorem 4.4.1 follows.

4.5 The imbedding j̃

For any pair (μ̂, λ̂) in Xj , we define

jμ̂,̂λ ≡
∏

j
μ̂,̂λ,μ′′,λ′′ : μ̂Uj

λ̂
−→

∏
μ′′Uλ′′ ,

where the product runs over all μ′′, λ′′ in X such that μ′′ ! μ and λ′′ ! λ. We set

j̃ ≡
⊕

μ̂,̂λ∈Xj

jμ̂,̂λ : U̇j −→
⊕

μ̂,̂λ∈Xj

∏
μ′′Uλ′′ .

Proposition 4.5.1. The map j̃ is injective.

Proof. It suffices to show that for any nonzero element x in μ̂Uj

λ̂
, there is μ′′ and λ′′

such that j
μ̂,̂λ,μ′′,λ′′(x) is nonzero. Suppose that μ̂−λ̂ = ω. Let us pick an element u ∈ Uj (ω)

such that πμ̂,̂λ(u) = x. Since j is injective, we have j (u) �= 0 ∈ ⊕ν∈Z[I]U(ν). Thus, there

is ν such that the ν-component j (u)ν of j (u) is nonzero. It is well known (see [24]) that

we can then find a large enough d such that φd(j (u)ν) �= 0. In particular, there is a pair

b′′, a′′ in 	d,n such that the (b′′, a′′)-component of φd(j (u)ν) is nonzero. Take μ′′ = b′′ and

λ′′ = a′′. By chasing along the cube (55), we see immediately that j
μ̂,̂λ,μ′′,λ′′(x) �= 0. �

Remark 4.5.2. j̃ can be regarded as an idempotented version of j .

5 ı-Version

In this section, we show the positivity of the i-canonical basis of the modified coideal

subalgebra of quantum sl� for � even. Since the arguments are more or less the same as

the n odd situation, the presentation will be brief.

5.1 ı-Schur algebras and related results

Recall n = 2r + 1 and D = 2d + 1. We set

� = n − 1.
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Positivity Under Coproduct 43

Recall �
j

d from (27). Let �ı
d = {A ∈ �

j

d|ar+1,j = δj,r+1, ai,r+1 = δi,r+1}. Let j =∑[A]d
where the sum runs over all diagonal matrices in �ı

d. Let Sı
d,� = jSj

d,nj. It is a subalgebra

in Sj

d,n and admits a basis [A]d for all A ∈ �ı
d. In particular, Sı

d,� contains the following.

ěi,d = jeij, f̌i,d = jfij, ǩi,d = jkij, ∀i ∈ [1, r − 1], ȟa,d = jhaj, ∀a ∈ [1, r], ťd

= j

(
frer + kr − k−1

r

v − v−1

)
j.

(56)

Similarly, we consider the subset �d,� of �d defined by the condition ar+1,j = 0

and ai,r+1 = 0 for all i, j. Let J = ∑
[A]d where the sum runs over all diagonal matrices

A ∈ �d,�. Then Sd,� = JSdJ is a subalgebra of Sd with a basis [A]d indexed by �d,�. Sd,�

contains the following.

Ěi,d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

JEiJ, if i ∈ [1, r − 1],

JEr+1ErJ, if i = r,

JEi+1J, if i ∈ [r + 1, � − 1].

F̌i,d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

JFiJ, if i ∈ [1, r − 1],

JFrFr+1J, if i = r,

JFi+1J, if i ∈ [r + 1, � − 1].

Ǩi,d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

JKiJ, if i ∈ [1, r − 1],

JKrKr+1J, if i = r,

JKi+1J, if i ∈ [r + 1, � − 1].

Ȟa,d =
⎧
⎨

⎩
JHaJ, if a ∈ [1, r],

JHa+1J, if a ∈ [r + 1, �].

Notice that we have JHr+1J =1 and Ǩr,d = Ȟ
−1
r,dȞr+1,d. Denote by Δ̃

j
the generic

version of �̃j , that is, the unique map such that A ⊗A Δ̃
j = �̃j .

Lemma 5.1.1. Let d′ + d′′ = d. Δ̃
j
(Sı

d,�) ⊆ Sı
d′,� ⊗ Sd′′,�. Moreover, for all i ∈ [1, r − 1]

Δ̃
j
(ěi,d) = ěi,d′ ⊗ Ȟi+1,d′′Ȟ

−1
�−i,d′′ + ȟ

−1
i+1,d′ ⊗ Ěi,d′′Ȟ

−1
�−i,d′′ + ȟi+1,d′ ⊗ F̌�−i,d′′Ȟi+1,d′′ .

Δ̃
j
(f̌i,d) = f̌i,d′ ⊗ Ȟ

−1
i,d′′Ȟ�+1−i,d′′ + ȟi,d′ ⊗ F̌i,d′′Ȟ�+1−i,d′′ + ȟ

−1
i,d′ ⊗ Ě�−i,d′′Ȟ

−1
i,d′′ .

Δ̃
j
(ǩi,d) = ǩi,d′ ⊗ Ǩi,d′′Ǩ

−1
�−i,d′′ .

Δ̃
j
(ťd) = ťd′ ⊗ Ǩr,d′′ + v2ǩ

−1
r,d′ ⊗ Ȟr+1,d′′ F̌r,d′′ + v−2ǩr,d′ ⊗ Ȟ

−1
r,d′′Ěr,d′′ . (57)

Proof. For convenience, we shall drop the subscript d and replace d′, d′′ by superscript
′ and ′′ respectively in the proof. The 1st three equalities are from definitions and
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44 Z. Fan and Y. Li

Δ̃
j
(j) = j′ ⊗ J′′. We now show the last one. By using jfrj = 0 and jerj = 0, we have

Δ̃
j
(jfrerj) = jfrerj ⊗ JH−1

r Hr+2J + jhrh−1
r+1j ⊗ JFrHr+2ErH−1

r+1J

+ jhrhr+1j ⊗ JFrHr+2Fr+1Hr+1J + jh−1
r hr+1j ⊗ JEr+1H−1

r Fr+1Hr+1J

+ jh−1
r h−1

r+1j ⊗ JEr+1H−1
r ErH−1

r+1J.

We observe that jh−1
r hr+1j = ǩr and jhrhr+1j = v2ǩ

−1
r . We further observe that

JFrHr+2ErH−1
r+1J = Ȟr+1

Ȟr − Ȟ
−1
r

v − v−1 , JFrHr+2Fr+1Hr+1J

= Ȟr+1F̌r, JEr+1H−1
r Fr+1Hr+1J

= Ȟ
−1
r

Ȟr+1 − Ȟ
−1
r+1

v − v−1 , JEr+1H−1
r ErH−1

r+1J = Ȟ
−1
r Ěr.

So we have

Δ̃
j
(ť) = ť

′ ⊗ Ǩ
′′
r + v2ǩ

′−1
r ⊗ Ȟ

′′
r+1F̌

′′
r + v−2ǩ

′
r ⊗ Ȟ

′′−1
r Ě

′′
r + R,

where the remainder R is equal to

− ǩr − ǩ
−1
r

v − v−1 ⊗ Ǩr + ǩ
−1
r ⊗ Ȟr+1

Ȟr − Ȟ
−1
r

v − v−1 + ǩr ⊗ Ȟ
−1
r

Ȟr+1 − Ȟ
−1
r+1

v − v−1

+ ǩr ⊗ ȞrȞ
−1
r+1 − ǩ

−1
r ⊗ ȞrȞr+1

v − v−1 .

We combine the terms with ǩr together and we get zero. So is the case when we

combine the terms with ǩ
−1
r . Hence, R is zero. Therefore, we have the last equality in the

lemma. �

We define the transfer map

φı
d,d−� : Sı

d,� → Sı
d−�,� (58)

to be the composition Sı
d,�

Δ̃
j

−→ Sı
d−�,� ⊗ S�,�

1×χ�−→ Sı
d−�,�, where χ� : S�,� → A is the signed

representation. By Lemma 5.1.1, we have
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Lemma 5.1.2. φı
d,d−�

(ěi,d) = ěi,d−�, φı
d,d−�

(f̌i,d) = f̌i,d−�, φı
d,d−�

(k±1
i,d) = k±1

i,d−�
and

φı
d,d−�

(ťd) = ťd−� for all i ∈ [1, r − 1].

Now we handle the case of Δj .

Proposition 5.1.3. For i ∈ [1, r − 1],

Δj (ěi,d) = ěi,d′ ⊗ Ǩi,d′′ + 1 ⊗ Ěi,d′′ + ǩi,d′ ⊗ F̌�−i,d′′Ǩi,d′′ .

Δj (f̌i,d) = f̌i,d′ ⊗ Ǩ�−i,d′′ + ǩ
−1
i,d′ ⊗ Ǩ�−i,d′′ F̌i,d′′ + 1 ⊗ Ě�−i,d′′ .

Δj (ǩi,d) = ǩi,d′ ⊗ Ǩi,d′′Ǩ
−1
�−i,d′′ .

Δj (ťd) = ťd′ ⊗ Ǩr,d′′ + 1 ⊗ vǨr,d′′ F̌r,d′′ + 1 ⊗ Ěr,d′′ .

(59)

Proof. Again only the last equality is nontrivial, and we drop the subscript d and d′, d′′

are replaced by ′ and ′′, respectively. Suppose that we have a quadruple (b′, a′, b′′, a′′) such

that b′
k = a′

k and b′′
k = a′′

k for all k, then the twists
∑

1≤k≤j≤n b′
kb′′

j − a′
ka′′

j and u(b′′, a′′) are

zero. Hence, we have the 1st term ť ⊗ Ǩr after the twist.

Suppose that we have a quadruple (b′, a′, b′′, a′′) such that b′
k = a′

k and b′′
k =

a′′
k +δk,r −δk,r+2, then we have

∑
1≤k≤j≤n b′

kb′′
j −a′

ka′′
j = −(a′

r+2 +1) and u(b′′, a′′) = −a′′
r . So

after the twist, we have v2ǩ
′−1
r ⊗ Ȟ

′′
r+1F̌

′′
r |b′,a′,b′′,a′′v−(a′

r+2+1)−a′′
r = 1⊗ vǨrF̌r|b′,a′,b′′,a′′ , hence

we have the 2nd term.

If a quadruple (b′, a′, b′′, a′′) satisfies b′
k = a′

k and b′′
k = a′′

k − δk,r + δk,r+2. Then
∑

1≤k≤j≤n b′
kb′′

j − a′
ka′′

j = a′
r+2 + 1 and u(b′′, a′′) = a′′

r − 1. Thus, adding the twists, there is

v−2ǩ
′
r ⊗ Ȟ

′′−1
r Ě

′′
r |b′,a′,b′′,a′′va′

r+2+1+a′′
r−1 = 1 ⊗ Ěr|b′,a′,b′′,a′′ . Whence we obtain the 3rd term.

By the above analysis, we have the last equality. The proposition is proved. �

Now we take care of the degenerate version when d′ = 0 and d′′ = d. In this case,

Δj degenerates to an algebra homomorphism

ıd : Sı
d,� → Sd,�,

since Sı
0,n−1 � A. Observe that ěi,0 = 0, f̌i,0 = 0, and ǩi,0 = vδi,r , for all i ∈ [1, r], and t0 = 1

in Sı
0,n−1 from which the statements in Proposition 5.1.3 now read as follows.
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46 Z. Fan and Y. Li

Corollary 5.1.4. For all i ∈ [1, r − 1],

ıd(ěi,d) = Ěi,d + Ǩi,dF̌�−i,d, ıd(f̌i,d) = Ě�−i,d + K�−i,dF̌i,d, ıd(ǩi,d) = Ǩi,dǨ
−1
�−i,d.

ıd(ťd) = Ěr,d + vǨr,dF̌r,d + Ǩr,d.
(60)

Proposition 5.1.5. ıd is injective.

Proof. This is because jd is injective by Proposition 3.4.1. �

Let Δı : Sı
d,� → Sı

d′,� ⊗ Sd′′,� be the homomorphism induced from Δj . By

Proposition 3.3.2,

Proposition 5.1.6. Let M ∈ �ı
d. If Δı ({M}) =∑M ′∈�ı

d′ ,M ′′∈�d′′ ,� hM ′,M ′′
M {M ′} ⊗ {M ′′}, then we

have hM ′,M ′′
M ∈ Z≥0[v, v−1].

Write ıd({B}) =∑A∈�d,�
gB,A{A}. By Proposition 5.1.6, we have

Corollary 5.1.7. gB,A ∈ Z≥0[v, v−1].

Recall Tj

d,n and �
j

d,n from (38). Note that Tj

d,n is defined over A, but can be lifted

to its generic version Tj

d,n. Let �ı
d,� be the subset of �

j

d,n defined by ar+1,d+1 = 1. Let Tı
d,�

be the space of Tj

d,n spanned by [A]d where A ∈ �ı
d,�. In the same fashion, let Td,n be the

generic version of Td,n in (37), and let �d,� be the subset of �d,n defined by ar+1,d+1 = 1.

Similarly, we have Ta′′
d,�. Let HAd

and HBd
be the generic version of the Hecke algebra HAd

and HBd
used in Proposition 3.5.1. The following is the ı-analog of Proposition 3.5.1,

obtained by restricting the digram therein to the desired subspaces.

Proposition 5.1.8. We have the following commutative diagram.

Moreover, ζd([AJ ]d) = [A]d for all A ∈ �ı
d,�.
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5.2 Positivity in the projective limit

Consider the projective system (Sı
d,�, φ

ı
d,d−�

)d∈Z≥0
of associative algebras. Define an

element ei in the projective system whose d-th component is ei,d ∀d ∈ Z≥0. This is well-

defined by Lemma 5.1.2. Similarly, define fi, t and k±1
i .

Let Uı
� be the subalgebra of the projective system generated by ei, fi, k±1

i for all

i ∈ [1, r − 1] and t. By [21], this is a coideal subalgebra of the quantum sln for n even. A

presentation of this algebra by generators and relations can also be found in [21].

Set �ı
∞,� = �d∈Z≥0

�ı
d,�. We say two matrices are equivalent if they differ by an

even multiply of the identity matrix I�. We denote �ı
∞,�/ ≈ for the set of equivalence

classes.

By [21], we know that φı
d,d−�

({A}d) = {A − 2I�}d−� if the diagonal entries of A are

large enough. To an element Â ∈ �ı
∞,�/ ≈, we define an element bÂ in the projective

system whose d-th component is {A + pI�}d for some p if d is big enough.

Let U̇ı ≡ U̇ı
� be the space spanned by bÂ for Â ∈ �ı

∞,�/ ≈. By [21], U̇ı is an

associative algebra, the idempotented version of Uı
� and bÂ forms the canonical basis Bı

of U̇ı defined in [21]. Let Xı
� be the subset of Â ∈ �ı

∞,�/ ≈ parametrized by the diagonal

matrices. This algebra admits a decomposition U̇ı = ⊕μ̂,̂λ∈Xı μ̂Uı
λ̂

where μ̂Uı
λ̂

= bμ̂U̇ı b̂λ.

Replace the projective system (Sı
d,�, φ

ı
d,d−�

) by (Sd,�, φd,d−�), we can define the

elements Ěi, F̌i and Ǩ±1
i in this projective system and they generate over Q(v) the

quantum sll: U�.

Set �∞,� = �d∈Z≥0
�d,�. We say two matrices are equivalent if they differ by a

multiply of the identity matrix I�. We denote �∞,�/ ∼ for the set of equivalence classes.

To an element A ∈ �∞,�/ ∼, we define an element bA in the projective system whose d-th

component is {A + pI�}d for some p if d is big enough. Then the space U̇� spanned by

bA for all A ∈ �∞,�/ ∼ is an associative algebra, the idempotented version of U� by [25]

and bA forms the canonical basis B�. Let X� be the subset of �∞,�/ ∼ consisting of all

diagonal matrices. U̇� = ⊕μ,λ∈X� μUλ, where μUλ = bμU̇bλ.

The linear map �ı on the ıSchur algebra level induces a linear map

Δı

μ̂′,λ̂′,μ′′,λ′′ : μ̂Uı
λ̂

→ μ̂′Uı

λ̂′ ⊗ μ′′Uλ′′ , ∀(μ′, μ′′) ! μ, (λ′, λ′′) ! λ, (61)

where ! is defined similar to (42) with row vectors replaced by diagonal matrices.

Write Δı

μ̂′,λ̂′,μ′′,λ′′(a) = ∑
b∈Bı ,c∈B nb,c

a b ⊗ c, for all a ∈ Bı , then we have the ı-analog of

Theorem 4.3.1, whose proof is the same as the Theorem 4.3.1 using Proposition 5.1.6.
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48 Z. Fan and Y. Li

Theorem 5.2.1. We have that nb,c
a ∈ Z≥0[v, v−1].

The linear map ıd induces a linear map

ı
μ̂,̂λ,μ′′,λ′′ : μ̂Uı

λ̂
−→

μ′′Uλ′′ , ∀μ′′ ! μ, λ′′ ! λ. (62)

We have the ı-analog of Theorem 4.4.1 by using Corollary 5.1.7.

Theorem 5.2.2. Let b ∈ Bı . If ı
μ̂,̂λ,μ′′,λ′′(b) =∑a∈B gb,aa, then gb,a ∈ Z≥0[v, v−1].

6 Positivity for Quantum Affine sln

In this section, we shall lift the positivity result on quantum sln in Section 2.5 to its

affine analog. As a byproduct, we provide a new proof of the multiplication formula

in [5].

6.1 Results from [24]

Following Section 2, fix a pair (d, n) of nonnegative integers. Set

	̂d,n =
⎧
⎨

⎩λ = (λi)i∈Z ∈ ZZ≥0|λi = λi+n, ∀i ∈ Z;
∑

1≤i≤n

λi = d

⎫
⎬

⎭ .

Let �̂d be the set of all Z × Z matrices A = (aij)i,j∈Z such that aij ∈ Z≥0, aij = ai+n,j+n,

and
∑

1≤i≤n;j∈Z aij = d. To each matrix A ∈ �̂d, we can associate r(A) and c(A) in 	̂d,n by

r(A)i =∑j∈Z aij and c(A)j =∑i∈Z aij for all i, j ∈ Z.

We need to switch the ground field from Fq to the local field Fq((ε)). Let Fq[[ε]]

be the subring of Fq((ε)) of all formal power series over Fq. Suppose that V is a d-

dimensional vector space over Fq((ε)). A free Fq[[ε]]-module L in V is called a lattice if

Fq((ε)) ⊗Fq[[ε]] L = V. A lattice chain L = (Li)i∈Z of period n is a sequence of lattices Li in

V such that Li ⊆ Li+1 and Li = εLi+n for all i ∈ Z. Let X̂d be the collection of all lattice

chains in V. Let Ĝd = GL(V) act from the left on X̂d in the canonical way. Then we can

form the algebra

Ŝd = AĜd
(X̂d × X̂d),

which is the so-called affine v-Schur algebra. It is well known that the Ĝd-orbits in X̂d ×
X̂d are parameterized by �̂d via the assignment (L, L′) �→ A, where aij =

∣∣∣∣
Li∩L′

j

Li−1∩L′
j+Li∩L′

j−1

∣∣∣∣
for all i, j ∈ Z. So we have

Ŝd = spanA{eA|A ∈ �̂d},
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where eA is the characteristic function of the Ĝd-orbit indexed by A. Furthermore, we

have Ŝd = ⊕b,a∈	̂d,n
Ŝd(b, a) where Ŝd(b, a) is spanned by eA such that r(A) = b and

c(A) = a.

If one lifts the functions to the sheaf level, one gets the generic version Ŝd of Ŝd

such that A ⊗A Ŝd = Ŝd. By abuse of notation, we write eA for the unique function x in

Ŝd such that A ⊗A x = eA (for all q).

The standard basis of Ŝd consists of elements [A] = v−dAeA where dA =
∑

1≤i≤n
i≥k,j<l

aijakl. Recall the Bruhat order ' on �̂d from [24]: A ' B if and only if

∑

i≥r,j≤s

ars ≤
∑

i≥r,j≤s

brs, ∀i < j ∈ Z;
∑

i≤r,j≥s

ars ≤
∑

i≤r,j≥s

brs, ∀i > j ∈ Z.

Following [24], one can associate a bar involution ¯ : Ŝd → Ŝd such that [A] =
[A] +∑A′'A,A′ �=A CA,A′ [A′] where CA,A′ ∈ A.

The canonical basis {A}d for all A ∈ �̂d of Ŝd is defined by the properties that

{A}d = {A}d and {A}d = [A] +∑A′'A,A′ �=A PA,A′ [A′] where PA,A′ ∈ v−1Z[v−1].

Let Ei,j be the Z × Z matrix whose (k, l)-th entry is 1 if (k, l) = (i, j) mod n, and

zero otherwise. For any i ∈ Z, we define the following elements in Ŝd:

Ei =
∑

A−Ei+1,i diagonal

[A], Fi =
∑

A−Ei,i+1 diagonal

[A],

H±1
i =

∑

A diagonal

v±c(A)i [A], K±1
i = H±1

i+1H∓1
i , ∀i ∈ Z.

(63)

By periodicity, we have Ei = Ei+n, Fi = Fi+n, H±1
i = H±1

i+n, and K±1
i = K±1

i+n, for all i ∈ Z.

The following lemma is from [24].

Lemma 6.1.1. There is an algebra homomorphism �̃ : Ŝd → Ŝd′ ⊗ Ŝd′′ for d′ + d′′ = d

with

�̃(Ei) = E′
i ⊗ H′′

i+1 + H′−1
i+1 ⊗ E′′

i , �̃(Fi) = F′
i ⊗ H′′−1

i + H′
i ⊗ F′′

i , �̃(Ki) = K′
i ⊗ K′′

i , ∀i ∈ Z.

6.2 The coproduct Δ

Recall the algebra homomorphism from Lemma 6.1.1. If b = b′ + b′′ and a = a′ + a′′, let

�̃b′,a′,b′′,a′′ : Ŝd(b, a) → Ŝd′(b′, a′) ⊗ Ŝd′′(b′′, a′′) be the composition of the restriction of Ŝd
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50 Z. Fan and Y. Li

to Ŝd(b, a) and the projection to Ŝd′(b′, a′) ⊗ Ŝd′′(b′′, a′′). We set

�
†
b′,a′,b′′,a′′ = v

∑
1≤i≤j≤n b′

ib
′′
j −a′

ia
′′
j �̃b′,a′,b′′,a′′ , �† = ⊕�

†
b′,a′,b′′,a′′ , (64)

where the sum runs over all quadruples (b′, a′, b′′, a′′) where b′, a′ ∈ 	̂d′,n and b′′, a′′ ∈
	̂d′′,n.

Proposition 6.2.1. The linear map �† in (64) is an algebra homomorphism. Moreover,

�†(Ei) = vδi,nd′′
E′

i ⊗ K′′
i + 1 ⊗ v−δi,nd′

E′′
i ,

�†(Fi) = v−δi,nd′′
F′

i ⊗ 1 + K′−1
i ⊗ vδi,nd′

F′′
i ,

�†(Ki) = K′
i ⊗ K′′

i , ∀i ∈ [1, n].

Proof. The case when i ∈ [1, n − 1] is proved in the same manner as the finite case in

Proposition 2.3.2. We now prove the case when i = n. Suppose that b′′ = a′′, and (b′, a′) is

chosen such that b′
i = a′

i−δi,n+δi,1 for all 1 ≤ i ≤ n. Then the twist
∑

1≤i≤j≤n b′
ib

′′
j −a′

ia
′′
j is

equal to d′′ −a′′
n. This implies that the term E′

i ⊗ H′′
i+1 in �̃(Ei) becomes vδi,nd′′

E′
i ⊗ K′′

i . For

the term H′−1
i+1 ⊗ E′′

i in �̃(Ei), the twist contributes a′
i − d′ for a quadruple (b′, a′, b′′, a′′)

such that b′ = a′ and b′′
i = a′′

i − δi,n + δi,1 for all 1 ≤ i ≤ n. The formula for �†(Ei) is

proved.

The proof for the formula �†(Fi) is entirely similar. The formula for �†(Ki) is

obvious. �

We set

εi(A) =
∑

r≤i<s

ar,s −
∑

r>i≥s

ar,s, ∀i ∈ Z, A ∈ �̂d. (65)

We define a linear map

ξd,i,c : Ŝd → Ŝd, ∀i, c ∈ Z, (66)

by ξd,i,c([A]) = vcεi(A)[A]. By [24], ξd,i,c is an algebra isomorphism with inverse ξd,i,−c. Set

Δ : Ŝd → Ŝd′ ⊗ Ŝd′′ (67)

to be the composition
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Proposition 6.2.2. The linear map Δ in (67) is an algebra homomorphism. Moreover,

Δ(Ei) = E′
i ⊗ K′′

i + 1 ⊗ E′′
i , Δ(Fi) = F′

i ⊗ 1 + K′−1
i ⊗ F′′

i , Δ(Ki) = K′
i ⊗ K′′

i , ∀i ∈ Z.

Proof. We have ξd,n,c(Ei) = v−cδi,nEi, ξd,n,c(Fi) = vcδi,nFi, and ξd,n,c(Ki) = Ki. Proposition

follows from these computations and the formulas in Proposition 6.2.1. �

6.3 The compatibility of ξd,i,c and the canonical basis

We have

Theorem 6.3.1. ξd,i,c({A}d) = vcεi(A){A}d where ξd,i,c is in (66).

Theorem 6.3.1 follows from the following critical observation.

Theorem 6.3.2. Write {A}d =∑A′'A PA,A′ [A′]. If PA,A′ �= 0, then εi(A) = εi(A
′) for all i.

We make two remarks before we prove Theorem 6.3.2.

Remark 6.3.3. The algebra isomorphism
∏

1≤i≤n ξd,i,−1 is the linear map ξ in [24, 1.7].

In view of Theorem 6.3.1, we have ξ({A}d) = v−∑1≤i≤n εi(A){A}d.

Remark 6.3.4. Even if A′ ≺ A, εi(A
′) may not be the same as εi(A). For example, take

A′ = 2
∑

1≤i≤n Ei,i and A = ∑
1≤i≤n Ei,i + Ei,i+1. Then we have A′ ≺ A, εi(A

′) = 0 and

εi(A) = 1 for all 1 ≤ i ≤ n.

The remaining part of this section is devoted to the proof of Theorem 6.3.2.

The main ingredient is a connection between the numerical data εi(A) in (65) and the

multiplication formulas in [5], which we shall recall and provide a new proof. Before we

state the formula, we need to recall a lemma from [26, Section 2.2] as follows.

Lemma 6.3.5. Let V be a finite-dimensional vector space over Fq. Fix a flag (Vi)1≤i≤n in

V such that
∣∣Vi/Vi−1

∣∣ = li ∀1 ≤ i ≤ n. The number of subspaces W ⊂ V such that |W∩Vi| =
∑i

j=1 aj ∀1 ≤ i ≤ n is given by q
∑

n≥i>j≥1 ai(lj−aj)
∏n

i=1

[
li
ai

]
where

[
li
ai

]
=∏1≤j≤ai

qli−j+1−1
qj−1

.

The following multiplication formula in Ŝd is first obtained in [5]. In a forthcom-

ing paper [10], we provide a multiplication formula for affine type C case. To a matrix

T = (tij)i,j∈Z, we set Ť = (ťij)i,j∈Z where ťij = ti−1,j.
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Proposition 6.3.6. (1) Suppose that A = (aij), B = (bij) ∈ �̂d satisfy that c(B) = r(A) and

B −∑n
i=1 αiE

i,i+1 is diagonal for some αi ∈ Z≥0. We have

eB ∗ eA =
∑

T

q
∑

1≤i≤n,j>l(aij−ti−1,j)ti,l
∏

1≤i≤n,j∈Z

[
aij + tij − ti−1,j

tij

]
eA+T−Ť ,

where the sum runs over all T = (tij) such that ti+n,j+n = tij and r(T)i = αi for all

1 ≤ i ≤ n.

(2) If C ∈ �̂d satisfies that c(C) = r(A) and C −∑n
i=1 βiE

i+1,i is diagonal, then

eC ∗ eA =
∑

T

q
∑

1≤i≤n,j<l(aij−tij)ti−1,l
∏

1≤i≤n,j∈Z

[
aij − tij + ti−1,j

ti−1,j

]
eA−T+Ť ,

where the sum runs over all T such that tij = ti+n,j+n and r(T)i = βi for all 1 ≤ i ≤ n.

Proof. (1) It suffices to show the similar statement in Ŝd. Let A′ = (a′
ij)i,j∈Z be a matrix

in �̂d such that r(B) = r(A′) and c(A) = c(A′). Let OA′ be the Ĝd-orbit in X̂d × X̂d indexed

by A′. Fix (L, L′) ∈ OA′ , and we denote

Z = {L′′ ∈ X̂d | Li−1 ⊂ L′′
i

αi⊂ Li, ∀1 ≤ i ≤ n}.

Note that (L, L′′) ∈ OB if and only if L′′ ∈ Z. Clearly, Z has a partition Z =⊔T ZT where

ZT = {L′′ ∈ Z||L′′
i ∩ (Li−1 + (Li ∩ L′

j))/L′′
i ∩ (Li−1 + (Li ∩ L′

j−1))| = a′
ij − tij, ∀i, j ∈ Z}

and the union runs over all T such that ti+n,j+n = tij and r(T)i = αi for all 1 ≤ i ≤ n. For

each L′′ ∈ ZT , we have the following identities.

aij = |L′′
i ∩ L′

j/L′′
i ∩ L′

j−1| − |L′′
i−1 ∩ L′

j/L′′
i−1 ∩ L′

j−1|,
a′

ij = |Li ∩ L′
j/Li ∩ L′

j−1| − |Li−1 ∩ L′
j/Li−1 ∩ L′

j−1|,
a′

ij − tij = |L′′
i ∩ L′

j/L′′
i ∩ L′

j−1| − |Li−1 ∩ L′
j/Li−1 ∩ L′

j−1|,
(68)

where the last identity follows from the definition of ZT . By (68), we have

tij = |Li ∩ L′
j/Li ∩ L′

j−1| − |L′′
i ∩ L′

j/L′′
i ∩ L′

j−1|.
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Thus, a′
ij − tij = aij − ti−1,j, that is, A′ = A + T − Ť. Summing up the above analysis, we

have

eB ∗ eA(L, L′) =
∑

L′′∈�̂d

eB(L, L′′)eA(L′′, L′) =
∑

L′′∈Z

eA(L′′, L′)

=
∑

T

∑

L′′∈ZT

eA(L′′, L′) =
∑

T

#ZT eA+T−Ť(L, L′).
(69)

So it is reduced to compute the cardinality of ZT . For each i ∈ [1, n], we set

Z(i) = {k ∈ Z|k ∈ [1, i] mod n} and we define Z[1,i]
T to be the set of all lattice chains

L′′ = (L′′
k)k∈Z(i) such that L′′

k satisfies |Lk−1 + L′′
k ∩ L′

j/Lk−1 + L′′
k ∩ L′

j−1| = a′
ij − tij for all

j ∈ Z. Consider

where πi((L
′′
k)k∈Z(i)) = (L′′

k)k∈Z(i−1) and the equality is due to L′′
i ∩ (Li−1 + (Li ∩ L′

j)) =
Li−1 + L′′

i ∩ L′
j We observe that the fiber of πi gets identified with the set of subspaces

W in Li/Li−1 such that |W ∩ (Li−1 + Li ∩ L′
j)/Li−1/W ∩ (Li−1 + Li ∩ L′

j−1)/Li−1| = a′
ij − tij.

Observe that |(Li−1 + Li ∩ L′
j)/Li−1| − |(Li−1 + Li ∩ L′

j−1)/Li−1| = a′
ij, and by applying

Lemma 6.3.5, we have #π−1
i (Li) = q

∑
l<j(a

′
ij−tij)til

∏
j∈Z

[
a′

ij

tij

]
, where Li is any element in

Z[1,i−1]
T . So πi is surjective with constant fiber. Hence,

#ZT =
∏

1≤i≤n

#π−1
i (Li) = q

∑
1≤i≤n,l<j(a

′
ij−tij)til

∏

1≤i≤n,j∈Z

[
a′

ij

tij

]
. (70)

The statement (1) follows from (69) and (70).

Let us prove (2). Let A′ be a matrix such that r(A′) = r(C) and c(A′) = c(A). Fix

(L, L′) ∈ OA′ . We consider the set Y = {L′′X̂d|Li−1

βi−1⊆ L′′
i−1 ⊆ Li, ∀1 ≤ i ≤ n}. Then Y

admits a partition Y = �YT , where

YT =
{
L′′ ∈ Y|

∣∣∣Li−1 + L′′
i−1 ∩ L′

j/Li−1 + L′′
i−1 ∩ L′

j−1

∣∣∣ = ti−1,j, ∀i, j ∈ Z
}

.

By applying Lemma 6.3.5 and arguing similar to (1), we have

#YT =
∏

1≤i≤n

q
∑

l>j ti−1,l(a
′
ij−ti−1,j)

∏

j∈Z

[
a′

ij

ti−1,j

]
.
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Moreover, for L′′ ∈ YT such that (L′′, L′) ∈ OA if and only if A′ = A − T + Ť. Therefore, we

have (2). The proposition is thus proved. �

Remark 6.3.7. If n = 1, Proposition 6.3.6 shows that eB ∗ eA = eA ∗ eB. (Here we use

(eA ∗ eB)t = eBteAt .) This implies that Ŝd is commutative for n = 1, which corresponds to

the geometric Satake of type A.

Lemma 6.3.8. Suppose that [B] ∗ [A] = ∑
QC

B,A[C]. If B = ∑
1≤j≤n βjE

j,j + αjE
j,j+1 or

∑
1≤j≤n βjE

j,j + αjE
j+1,j, and QC

B,A �= 0, then εi(A) + εi(B) = εi(C) for all i ∈ Z.

Proof. Assume that B = ∑
1≤j≤n βjE

j,j + αjE
j,j+1. Then we have εi(B) = αi. If QC

B,A �= 0,

then by Proposition 6.3.6 (1), the matrix C is of the form A + T − Ť. Thus, we have

εi(C) = εi(A) + εi(T − Ť) = εi(A) +
∑

r≤i<s

tr,s − ťr,s +
∑

r>i≥s

tr,s − ťr,s

= εi(A) +
∑

i<s

ti,s −
∑

i≥s

−ťi+1,s = εi(A) +
∑

s∈Z

ti,s = εi(A) + αi = εi(A) + εi(B).

Therefore, the lemma holds for B =∑1≤j≤n βjE
j,j + αjE

j,j+1.

For the case when B = ∑
1≤j≤n βjE

j,j + αjE
j+1,j, then εi(B) = −αi and C is of the

form A − T + Ť if QC
B,A �= 0 by Proposition 6.3.6 (2). So we have εi(C) = εi(A) − εi(T − Ť) =

εi(A) − αi = εi(A) + εi(B). Therefore, the lemma holds in this case. We are done. �

Next we introduce a 2nd numerical data. We define

degi

⎛

⎝
∑

1≤j≤n

βjE
j,j + αjE

j+1,j

⎞

⎠ = −αi, degi

⎛

⎝
∑

1≤j≤n

βjE
j,j + αjE

j,j+1

⎞

⎠ = αi.

Suppose that M = [A1] ∗ · · · ∗ [Am] is a monomial in [Aj] where Aj is

either
∑

1≤k≤n βjkEk,k + αjkEk+1,k or
∑

1≤k≤n βjkEk,k + αjkEk,k+1. We define degi(M) =
∑

1≤j≤m degi(Aj). To the same monomial M, we also define its length �(M) to be

�(M) = ∑
1≤j≤m

∑
1≤k≤n αjk. (We define [A] to be a monomial of length zero if A is

diagonal.) Then we have

Lemma 6.3.9. Let M be a monomial and write M =∑RA[A]. If RA �= 0, then degi(M) =
εi(A) for all i ∈ Z.
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Proof. We argue by induction on the length �(M) of M. When �(M) = 1, the lemma

follows from the definitions. Assume now that �(M) > 1 and the lemma holds for

any monomial M ′ such that �(M ′) < �(M). We write M = [A1] ∗ [M ′], where A is either
∑

1≤j≤n βjE
j,j + αjE

j+1,j or
∑

1≤j≤n βjE
j,j + αjE

j,j+1, and M ′ is a monomial of the remaining

terms in M. Thus, �(M ′) < �(M). Suppose that M ′ =∑RA′ [A′], then we have

M = [A1] ∗ M ′ =
∑

A′
RA′ [A1] ∗ [A′] =

∑

A′,B
RA′QB

A1,A′ [B].

If A1 =∑1≤j≤n βjE
j,j + αjE

j+1,j, then by Lemma 6.3.8 and induction hypothesis, we have

degi(M) = −αi + degi(M
′) = −αi + εi(A

′) = εi(B), if QB
A1,A′ �= 0, RA′ �= 0.

Similarly, if A1 =∑1≤j≤n βjE
j,j + αjE

j,j+1, then

degi(M) = αi + degi(M
′) = αi + εi(A

′) = εi(B), if QB
A1,A′ �= 0, RA′ �= 0.

Lemma follows. �

By a result in [5] (see also [18]), there exists a monomial MA such that

MA = [A] +
∑

A′≺A

SA,A′ [A′], for some SA,A′ ∈ Z[v, v−1]. (71)

Since [A] forms a basis for Ŝd, the monomial MA forms a basis for Ŝd. In particular,

[A] = MA +
∑

A′≺A

RA,A′MA′ , for some RA,A′ ∈ Z[v, v−1]. (72)

Moreover, we have

Lemma 6.3.10. Suppose that RA,A′ �= 0 in (71), then εi(A) = εi(A
′).

Proof. We prove by induction with respect to ' in descending order. If A′ = A, it

is trivial. Suppose that for all A′′ such that A′ ≺ A′′ ' A, the statement holds. If [A′]
appears in MA′′ for some A′′ such that A′ ≺ A′′, then εi(A) = εi(A

′′) = degi(MA′′) = εi(A
′)

by induction hypothesis. If [A′] does not appear in MA′′ for all A′′ such that A′ ≺ A′′, then

the coefficient of [A′] in the right-hand side of (72) is 0, contradicting to the assumption.

We are done. �

Furthermore,
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Lemma 6.3.11. Suppose that [A] = [A] +∑A′≺A CA,A′ [A′] for some CA,A′ ∈ Z[v, v−1]. If

CA,A′ �= 0, then εi(A) = εi(A
′) for all i ∈ Z.

Proof. By (72) and Lemma 6.3.10, we have [A] = MA + ∑
A′≺A,εi(A′)=εi(A) RA,A′MA′ . By

Lemma 6.3.9, we have MA′ = ∑
A′′'A′,εi(A′′)=εi(A′) SA′,A′′ [A′′]. The lemma follows by putting

the previous two identities together. �

Finally, we are ready to prove Theorem 6.3.2. We set φ = {A′|PA,A′ �= 0, εi(A
′) �=

εi(A)}. We only need to show that φ is empty. Pick an element B in φ that is maximal with

respect to the partial order '. Clearly, we have B �= A. We rewrite {A} as follows:

{A} = PA,B[B] +
⎛

⎝
∑

B≺A′
+
∑

A′≺B

+
∑

A′ �'B,B�'A′

⎞

⎠PA,A′ [A′].

Apply the bar operation to the above equality, we have

{A} = {A} = PA,B[B] +
⎛

⎝
∑

B≺A′
+
∑

A′≺B

+
∑

A′ �'B,B�'A′

⎞

⎠PA,A′ [A′].

By Lemma 6.3.11, we know that the coefficient of [B] in [A′] for B ≺ A′ is zero. Notice [B]

will not appear in the rest of the terms, except [B]. Hence, by comparing the coefficients

of [B] in the previous two equalities, we must have PA,B = PA,B. But PA,B ∈ v−1Z[v−1]

forces PA,B = 0, a contradiction to the definition of φ. Hence, φ is empty. Theorem 6.3.2

follows.

6.4 Positivity of Δ̂

We set X̂d(a) = {L ∈ X̂d||Li/Li−1| = ai, ∀i} and P̂a = StabĜd
(L) for a fixed chain L ∈ X̂d.

We still have the same commutative diagram as in Lemma 2.3.4.
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So the positivity of �̃b′,a′,b′′,a′′ is reduced to the positivity of π!ι
∗.

Fix b′, b′′ such that b′ + b′′ = b. Let d′ = |b′| and d′′ = |b′′|. Let V = T ⊕ W and

Lb = Lb′ ⊕ Lb′′ . Thus, we have π ′(Lb) = Lb′ , π ′′(Lb) = Lb′′ . Let Li be the i-th lattice in La.

We consider the following subset in X̂d(a).

YL0,p
a := {̃L ∈ X̂d(a)|εpL0 ⊆ L̃0 ⊆ ε−pL0}, ∀p ∈ Z≥0.

It is well known that YL0,p for various p is a GLb
-invariant algebraic variety over Fq if

we replace the ground field Fq((ε)) by Fq((ε)), which we shall assume now and for the

rest of this section. Moreover, there exists a p0 such that

XLb
A := {L′|(Lb, L′) ∈ OA} ⊆ YL0,p, p ≥ p0.

Indeed, we have a0,p = 0 and ap,0 for p >> 0 due to the fact that
∑

j∈Z a0,j,
∑

i∈Z ai,0 < ∞. The 1st condition implies that L0 ⊆ L̃p, if L̃ ∈ XL
A, while

L̃0 ⊆ Lp, if L̃ ∈ XL
A, follows from the 2nd. Fix an l such that p < ln. Then we have

εlL0 ⊆ L̃0 ⊆ ε−lL0.

Set p0 = l, then we have XLb
A ⊆ YL0,p for p ≥ p0.

Now we fix a 1-parameter subgroup of PLb
:

λ : GL(1, Fq) → PLb
, t �→

(
1T 0

0 t.1W

)
.

The fixed point set (YL0,p
a )GL(1,Fq) = �a′,a′′Y

L′
0,p

a′ × Y
L′′

0,p
a′′ , and the attracting set associated

to Y
L′

0,p
a′ × Y

L′′
0,p

a′′ is

YL0,p
a′,a′′ =

{
L̃ ∈ YL0,p

a |π ′(̃L) ∈ Y
L′

0,p
a′ , π ′′(̃L) ∈ Y

L′′
0,p

a′′
}

.

Hence, we have the following cartesian diagram.
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where vertical maps are inclusions and top horizontal maps are induced from bottom

ones.
Hence, the positivity of π!ι

∗ is boiled down to that of π1!ι
∗
1, which follows from

Braden’s [4] work, since all objects involved are in the category of algebraic varieties

over Fq.

Proposition 6.4.1. If �̃b′,a′,b′′,a′′({A}d) =∑ m̃B,C
A {B}d ⊗ {C}d, then m̃B,C

A ∈ Z≥0[v, v−1].

Follows is an affinization of Proposition 2.3.6, by Proposition 6.4.1, and

Theorem 6.3.1

Theorem 6.4.2. If Δb′,a′,b′′,a′′({A}d) =∑ m̂B,C
A {B}d ⊗ {C}d, then m̂B,C

A ∈ Z≥0[v, v−1].

Following [24], the transfer map φ̂d,d−n : Ŝd → Ŝd−n is the composition of

where ξ is in Remark 6.3.3 and χ is the signed representation of Ŝn defined in [24, 1.8].

Note that by [24, 1.12] and an argument similar to [21, 3.3], χ sends a canonical

basis element to 1 or 0. By Remark 6.3.3 and Proposition 6.4.1, we have

Corollary 6.4.3. φ̂d,d−n({A}d) =∑ cA,A′ {A′}d−n where cA,A′ ∈ Z≥0[v, v−1].

6.5 Positivity in quantum affine sln

Let S̃n be the set of all a = (ai)i∈Z such that ai ∈ Z and ai = ai+n for all i ∈ Z. Let Ŷ = {a ∈
S̃n|∑1≤i≤n ai = 0}. Define an equivalence relation ∼ on S̃n by declaring a ∼ b if there is

a z in Z such that ai − bi = z for all i. Let X̂ be the set S̃n/ ∼ of all equivalence classes in

S̃n with respect to ∼. Let a denote the class of a. Both X̂ and Ŷ admit a natural abelian

group structure with the component-wise addition. Moreover, we have a bilinear form

〈−, −〉 : Ŷ × X̂ → Z, 〈b, ā〉 =
∑

1≤i≤n

biai.

Set Î = Z/nZ. For i ∈ Î, we associate an element, still denoted by i, in Ŷ whose

value is 1 for each integer in the equivalence class i and zero otherwise. This defines a

map Î → Ŷ. The same map induces a map Î → X̂, which sends i ∈ Î to the equivalence

class of i ∈ Ŷ in S̃n. By abuse of notations, we still use i to denote its image in Ŷ. The data

(̂Y, X̂, 〈−, −〉, Î ⊂ Ŷ, Î ⊂ X̂) is a root datum of affine An−1, neither X̂-regular nor Ŷ-regular.
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By definition, the quantum affine sln attached to the above root datum, denoted

by U(ŝln), is an associative algebra over Q(v) generated by the generators: Ei, Fi, Kμ for

all i ∈ Î, μ ∈ Ŷ, and subject to the relations K1K2 · · ·Kn = 1 and (15), for all i, j ∈ Î. Note

that the 1st defining relation of U(ŝln) is due to the degeneracy of the Cartan datum.

Moreover, U(ŝln) admits a Hopf algebra structure, whose comultiplication is

defined by

Δ(Ei) = Ei ⊗ Ki + 1 ⊗ Ei, Δ(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi, Δ(Ki) = Ki ⊗ Ki, ∀i ∈ Î. (73)

Let U̇(ŝln) be Lusztig’s idempotented algebra associated to U(ŝln). It is defined similar

to that of quantum sln in Section 2.5. Similar to the finite case, Δ then induces a linear

map

Δ
μ′,λ′,μ′′,λ′′ : μUλ(ŝln) →

μ′Uλ′(ŝln) ⊗
μ′′Uλ′′(ŝln), (74)

where μUλ(ŝl) is defined similar to μUλ in finite case and μ = μ′ + μ′′, λ = λ′ + λ′′ in X̂.

By the same definition as φd in (17), we still have an algebra homomorphism

φ̂d : U(ŝln) → Ŝd.

But this time φ̂d is not surjective anymore. Then the rest of the result in finite case can

be transported to affine case. In particular, we have

Theorem 6.5.1. Let b ∈ μUλ(ŝl) be a canonical basis element of U̇(ŝln). If Δ
μ′,λ′,μ′′,λ′′(b) =

∑
b′,b′′ m̂b′,b′′

b b′ ⊗ b′′, then m̂b′,b′′
b ∈ Z≥0[v, v−1].

By [22, 25.2.2], Theorem 6.5.1 remains valid over other root datum of affine type

An−1. We end this section with the following remark.

Remark 6.5.2. Soon after the 1st version of this paper appeared in arXiv, Fu uploaded

the paper arXiv:1511.05745 on arXiv proving the positivity result in Theorem 6.5.1.
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