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Abstract

The quantum groups of finite and affine type A admit geometric realizations
in terms of partial flag varieties of finite and affine type A. Recently, the quantum
group associated to partial flag varieties of finite type B/C' is shown to be a coideal
subalgebra of the quantum group of finite type A. In this paper we study the
structures of Schur algebras and Lusztig algebras associated to (four variants of)
partial flag varieties of affine type C. We show that the quantum groups arising from
Lusztig algebras and Schur algebras via stabilization procedures are (idempotented)
coideal subalgebras of quantum groups of affine sl and gl types, respectively. In this
way, we provide geometric realizations of eight quantum symmetric pairs of affine
types. We construct monomial and canonical bases of all these quantum (Schur,
Lusztig, and coideal) algebras. For the idempotented coideal algebras of affine sl
type, we establish the positivity properties of the canonical basis with respect to
multiplication, comultiplication and a bilinear pairing. In particular, we obtain
a new and geometric construction of the idempotented quantum affine gl and its
canonical basis.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Iwahori [Iw64] provided a geometric realization of Iwahori-Hecke alge-
bras H%{,‘ as convolution algebras on pairs of (finite type) complete flags over a
finite field. Iwahori-Matsumoto [IM65] have subsequently realized the affine Hecke
algebras using pairs of complete flags of affine (or p-adic) type over a local field.
These works are foundational for geometric representation theory.

The Drinfeld-Jimbo quantum groups [Dr86, Jim86] have played important
roles in many areas of mathematics. Beilinson, Lusztig and MacPherson [BLM90|
provided a geometric realization of quantum Schur algebras and the quantum group
U(gl,,) of finite type A. The BLM construction utilizes the n-step flag varieties in
an ambient space of dimension d, and the convolution algebra on pairs of n-step
flags can be identified with what became known as quantum Schur algebra Sflf‘d;
this can be viewed as a generalization of Iwahori’s construction of Hecke algebras
in finite type A.

Beilinson, Lusztig and MacPherson [BLM90] further established multiplica-
tion formulas in ng‘d with divided powers of Chevalley generators, which allows
them to observe some remarkable stabilization phenomenon as d — oco. A suitable
limit construction gives rise to the idempotented quantum group U(g[n) and its
(stably) canonical basis. The construction is easily modified further to produce
variants such as U(gl,,), U(sl,), and the idempotented form U(sl,). The idempo-
tented form U(sl,) also has a canonical basis (cf. [Lu93], [K94]), in analog with
the Kazhdan-Lusztig bases for Iwahori-Hecke algebras [KL79].

1.1.2. Independently and around the same time, Dipper and James [DJ89,
DJ9I1] introduced the quantum Schur algebra as the endomorphism algebra of a
sum of permutation modules of the finite type A Hecke algebra. A version of
quantum GL,, [DD91] also fits well in this framework. The identification between
algebraic and geometric definitions of the quantum Schur algebra follows as either
version of quantum Schur algebra forms the centralizer of the Hecke algebra action
on the same tensor space [DJ91, GL92]; see [Du92]. Moreover, there are natural
surjective homomorphisms

U(g[n) - Sgl,]dv U(5[n) - Sgl,]d'
In this way, we have obtained g-Schur duality or Schur-Jimbo duality [Jim86].

1.1.3. There have been some generalizations of the BLM-type construction
using the n-step (partial) flag varieties of affine type A earlier on; see Ginzburg-
Vasserot [GV93] and Lusztig [Lu99,Lu00] (also cf. [VV99,Mc12,P09, GRV93]
for further developments); see also [CP96] for an affine version of Schur-Jimbo
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2 1. INTRODUCTION

duality. We shall refer to the convolution algebra arising this way as affine quantum
Schur algebra, denoted by S,, 4. However, there is a major difference between affine
and finite type A, which was first made clear by Lusztig. He showed that a natural
homomorphism from the quantum affine sl,, of level zero to the affine quantum
Schur algebra,

Ul(sl,) — Sn.a,

is no longer surjective (the image of this map is denoted by U, 4 and called Lusztig
algebra in this paper). Alternatively, one could characterize U, 4 as the proper
subalgebra of S,, 4 generated by the Chevalley generators.

There has been a new (algebraic) approach recently developed by [DF13,
DF14] (see also [G99]) which allows one to construct a larger algebra Ul(gl,)
(called the idempotented quantum affine gl,, in this paper; also known as the quan-
tum loop algebra of gl,,), from BLM-type stabilization of the affine Schur algebras
Sn.a-

1.1.4. Since the constructions of Iwahori and Iwahori-Matsumoto are valid
for flag varieties of any finite and affine type, it is a natural question since the
work of [BLM90] in 1990 to ask for generalization of the above type A construc-
tions to other, say classical, types. The progress in this direction has been made
only in recent years. Motivated by [BW13], Bao, Kujawa, and two of the au-
thors [BKLW14, BLW14] provided a geometric construction of Schur-type alge-
bras iSfL?d (denoted therein by S? for n odd and S* for n even) in terms of n-step
flag varieties of type By (or Cy).

The authors of [BKLW14, BLW14] further established multiplication formu-
las in the Schur algebras iSfffd with divided powers of Chevalley generators, which
again enjoy some remarkable stabilization properties as d — oo. They showed the
quantum algebra arising from the stabilization procedure is a coideal subalgebra
iU(gl,,) of U(gl,,) (this coideal subalgebra was denoted in loc. cit. as U7 for n odd
and U for n even); the pair (U(gl,,),iU(gl,,)) forms a so-called quantum symmetric
pair, which we shall explain below.

1.1.5. Let g be a symmetrizable Kac-Moody algebra over C and U(g) be the
quantized enveloping algebra of g. Let ¢ be a Lie algebra involution on g of the
second kind (cf., e.g., [Kol4, §2]) and let g* be the subalgebra of :-invariants in g.
(For simple Lie algebras g of finite type, the classification of g* corresponds to the
classification of real simple Lie algebras, c¢f. [OV].) The quantum analogue iU(g)
of the enveloping algebra U(g") is not a Hopf algebra, but it is a coideal subalgebra
of U(g) in the sense that the comultiplication A on U(g) satisfies

A :iU(g) — iU(g) ® U(g).

By [Le02, Theorem 7.5] and [Kol14, Theorem 10.8], iU(g) specializes to U(g") at
g = 1. The pair (U(g),iU(g)) is called a quantum symmetric pair. The algebra
iU(g) admits a Serre-type presentations which is nevertheless more complicated.

The theory of quantum symmetric pairs was systematically developed by Let-
zter [Le99,Le02] for finite type (also see [N96] for some early examples). It was
subsequently generalized by Kolb [Ko14] to the Kac-Moody setting, and one can
find in loc. cit. an informative introduction for the background and extensive
references on quantum symmetric pairs.
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There are recent and ongoing developments for general coideal algebras iU(g) in
a way strikingly parallel to the well-known constructions associated to the Drinfeld-
Jimbo quantum groups, such as connections to canonical bases, categorification,
geometry, and solutions to generalized Yang-Baxter equations (known as reflection
equations); cf., e.g., [BK15, BW16] for samples. To distinguish from many other
different coideal subalgebras in the literature, we shall refer to the coideal subalge-
bras appearing in quantum symmetric pairs as tquantum groups, where ¢ stands for
involution or isotropic.

1.1.6. An (iU(gl,), HE)-duality (termed as iSchur duality) was discovered
algebraically and categorically in [BW13] as a crucial ingredient for a new ap-
proach to Kazhdan-Lusztig theory of classical type. A new canonical basis (called
wcanonical basis) was constructed in [BW13] for various tensor product modules
of iU(gl,,). In the special case of the tensor product of the natural representation
of iU(gl,,), the scanonical basis was shown to coincide with the Kazhdan-Lusztig
basis of type B, and thus it provides a new approach to the irreducible and tilting
character problems in the BGG category O. (Similarly, the type D KL basis is
identified with 2canonical basis with a different choice of parameter [Baol6], and
thus 2canonical bases provide a new uniform approach for KL theory of classical
type.) We refer to loc. cit. for further applications of canonical basis to KL theory
of ortho-symplectic Lie superalgebras.

1.1.7. The iSchur duality has been subsequently realized in [BKLW14] by
using mixed pairs of n-step flags and complete flags of type B/C. The canonical
basis for the idempotented form iU(gl,) was first constructed in loc. cit.. It has
been shown in [FL14] that coideal like algebras together with their :canonical bases
arise from partial flag varieties of type D. There has been a further geometric
realization in [LW15] of the idempotented coideal subalgebra iU(sl,) of U(sl,)
and its scanonical basis.

For canonical bases, there is a major difference between U(gl,,) and U(sl,), or
between idempotented coideal subalgebras of gl and sl type: the canonical basis of
U(s[n) admits remarkable positivity properties with respect to multiplication and
a bilinear pairing [SV00,Mc12,LW15] and so does the canonical basis of iU(sl,, )
[LW15]. It is recently shown in [FL15] that the canonical bases of idempotented
quantum (affine) sl, and idempotented coideal algebra iU(sl,) admit positivity
property with respect to the comultiplication. In contrast, the canonical bases of
U(gl,) and of iU(gl,,) both fail to exhibit a positivity property with respect to
multiplication; see [LW15].

1.2. The goal: affine type C

1.2.1. The goal of this paper is to initiate the study of the Schur algebras and
quantum groups arising from partial flag varieties of classical affine type beyond
type A, generalizing the constructions in finite type B/C described in Section 1.1.

In this paper, we focus on the affine type C. As we shall see, the affine type C
setting already provides a more challenging and much richer setting than the finite
type C and the affine type A. For each of the two type A quantum affine algebras
(of level zero) U(f/s\[n) and U(g[n), we shall provide geometric realizations of four
different (idempotented) coideal subalgebras and their canonical bases. (The four
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cases are denoted by 37, 12, y, 12, respectively; we also write ¢ = 37.) The correspond-
ing four Dynkin diagrams with involutions are depicted in Figures 1, 2, 3 and 4,
respectively, as follows, where n = 2r+2,2r+1,2r+ 1 and 2r, respectively. There-
fore, in total we have provided a geometric realization of eight distinct quantum
symmetric pairs of affine type.

FI1GURE 1. Dynkin diagram of type AS}H with involution of type

Y=«
0 1 r—1 r
) O— -+ o) o)
] @ (|
) O— -+ o) o)
2r+1 2r r+2 r+1

FIGURE 2. Dynkin diagram of type Aélr) with involution of type 7.

0 1 r—1
0 o 0
\’r‘
b
) | >
2r 2r —1 r+1

F1GURE 3. Dynkin diagram of type Ag}n) with involution of type 1.

1 r—1 r
O/o— o o
(ande)
\oj go go
2r r+2 r+1

FIGURE 4. Dynkin diagram of type Aglrll with involution of type .

1 r—1
0/07 P O\T
S0 o0
\()j P go/
2r—1 r+1

In summary, the quantum algebras behind the various kinds of flag varieties
are listed in Table 1, as follows for comparison.
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TABLE 1. Comparison for various quantum algebras.

Flag variety: | Complete flag Partial flag

Type A: quantum gl,,, sl,

of finite type | Iwahori-Hecke algebra | Type B/C/D: coideal subalgebras
of quantum gl,,, sl,

Type A: affine quantum gl,,, sl,

of affine type | Affine Iwahori-Hecke | Type C: coideal subalgebras

algebra of affine quantum gl,,, sl,

1.2.2. To help the reader to follow and digest this long paper, we organize
various chapters in three parts. Here is a brief summary.

e Part 1 contains the basic constructions of the affine Schur algebra S;, ; and
its distinguished Lusztig subalgebra Uj, ,, as well as their ji, 1), u-variants.
Then we study in depth the multiplicative and coideal like comultiplicative
structures of these algebras.

e In Part 2 we study the structures of the family of Lusztig algebras U}, ,
(and their g, 17, 1-siblings), and show that they lead to coideal subalgebras
U¢(sl,) of U(sl,). The corresponding idempotented forms U*(sl,,) (and
their ju, 13, 21-siblings) are shown to admit canonical bases with positivity.

e Part 3 is focused on the study of the stabilization properties of the family
of Schur algebras S , (and their g2,1), 22-siblings), leading to stabilization

algebras which are identified as idempotented coideal subalgebras U‘(gA[n)
of quantum affine gl,; these stabilization algebras are shown to admit
canonical bases (without positivity).

The following diagram is a brief road map of some main constructions (there
are 4 distinct cases where ¢ can be replaced by g, j1, 9, %):
U Stabilization lim U* ~ Uc "‘[
n,d ’ El n,d ? (sln)

d—oo

(1.2.1) l

c
Sn,d

Stabilization . ¢ ~ e Y
{Eland U (g[n)

d—o0

1.2.3. While the quantum algebras arising from partial flags of classical types
(except type A) are not of Drinfeld-Jimbo quantum groups, they are meaningful and
significant generalizations of the type A quantum groups because of their geometric
origin. There has been an intimately related category O interpretation and an
application of canonical bases arising from quantum symmetric pairs of finite type
[BW13] (also cf. [ES13,Bao16] for type D).

It is expected that the quantum symmetric pairs of affine type (and their cat-
egorifications) will play a fundamental role in modular representations of algebraic
groups and quantum groups of classical type. We also expect a Langlands dual
picture of the constructions of this paper, realizing the coideal algebras of affine
type in terms of Steinberg-type varieties of finite type (cf. [CG97] for some earlier
instances of such dual pictures).
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1.3. An overview

1.3.1. An overview of Part 1.

1.3.1.1. Most of the geometric constructions in [BKLW14, BLW14] (and also
[LW15,FL15]) in finite type B/C were treated in two separate cases, depending
on the parity of n, even though the statements are uniform. The results for iSE?d

and iU(g[n) with n odd are established first, and then the subtler even n case is
settled by relating to the odd n case.

Before proceeding to the affine type, it is instructive for us to explain informally
some of the main ideas of [BKLW14] (and [BLW14]). We shall fix an even
positive integer n and set n = n + 1 (which is odd) in this section. We shall write
182’; = Sflﬁdn, iU(gl,) = U’(gl,), 182’1(1 = S;ﬁdn, iU(gl,,) = U(gl,,), and use similar
notations for the idempotented forms.

The Schur algebra S]’ﬁn is most naturally realized via pairs of n-step type B

flags. Even though the geometric realization for S% dn could naturally use n-step
type C flags, [BKLW14] instead chose to work Wlth n-step type B flags subject
to a maximal isotropic condition on the middle subspaces of flags. This approach
of using the type B geometry alone allows one to relate the Schur algebras as well
as the coideal algebras with indices n,n of different parities.

The Dynkin diagram automorphism of type gl, has no fixed point as n is odd,
which is Figure (1) with vertices 0 and 2r + 1 removed, while it has a fixed point
for type gl,,, which is Figure (2) with vertices 0, 2r removed. Working with flags
subject to maximal isotropic middle constraints can be loosely understood as giving
rise to the Schur algebras and coideal algebras with a fixed point; the imbedding of
such flags into a variety of flags without maximal isotropic constraints is a way of
resolving such a fixed point, and this is how we succeeded in understanding S:l’iin

(and respectively, U*(gl,,)) through its relation to Sfl’fin (and respectively, U?(gl,)).

As a preparation toward affine type C, we reformulate the main geometric con-
structions of [BKLW14,FL15]| in the framework of finite type C flags in Appen-
dix A, expanding the outline in [BKLW14, §6]. Recall that S;’iln can be realized
using n-step type C flags (note the middle subspace in such a flag is automati-
cally maximal isotropic). To realize S;’ﬁijn (recall n = n 4+ 1), we employ n-step
type C flags, and then identify an n-step flag as an n-step flag subject to a maxi-
mal isotropic condition on the middle subspace. Then all type B constructions in
[BKLW14, BLW14 FL15] can be repeated in such a finite type C setting. (This
might be regarded a manifestation of Langlands duality philosophy.)

1.3.1.2. Let us return to the affine cases. There is a lattice presentation of the
complete and n-step flag varieties of affine type A due to Lusztig; see Chapter 2.
Such a lattice presentation can be adapted to affine type C, on which the symplectic
loop group Spp(2d) acts (where F' = k((¢))); cf. Sage [Sa99] for complete flags
and its variant for the n-step partial flag variety X ; which is formulated in this
paper, for n even.

However, for our purpose we need to define such a X . in a somewhat delicate
way, keeping in mind the lesson we learned from finite type B/C. That is, X q
is defined to avoid “maximal isotropic” constraints and (as shown later) it will
give rise to Schur algebras associated to the affine Dynkin diagram automorphism
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without fixed points in Figure 1; the most obvious candidate of n-step flag variety
of affine type C will not do.

The orbits for the product X, 4 X &, 4 under the diagonal action of the group
Spr(2d) can be parameterized by the set =, 4 of Z x Z-matrices with entries in N
satisfying certain natural periodicity and centro-symmetry conditions. Denote by
Efbp , the set of aperiodic matrices in Z,, 4 (recall the notion of aperiodic matrix was
introduced in [Lu99] in the affine type A setting).

The Schur algebra S}, ; is by definition the (generic) convolution algebra of pairs
of flags in X7 ;. It admits a canonical basis (IC basis) which enjoys a positivity
with respect to multiplication. We formulate a subalgebra Uj, , of S] , generated
by the Chevalley generators. We caution that the Chevalley generators do not form
a generating set for the algebra S;, ;, that is, U}, ; is a proper subalgebra of S;, ,
in general. Our first main result is the following.

THEOREM A (Theorem 5.4.3). The algebra U;, ; admits a monomial basis
{CalA € E7%;} and a canonical basis {{A}alA € Z3F,}, which are compatible with
the corresponding bases in S;, ; under the inclusion Uj, ; C Sj ;.

1.3.2. An overview of Part 2. Generalizing the constructions in affine type
A and finite type C' [FL15] (see also [Lu00]), we introduce a comultiplication-
like homomorphism A® = Ag, ;. © S} ; = S}, 3 ® Sy 4, for a composition d =
d' 4+ d’. This further leads to a transfer map of affine type C' (which is an algebra
homomorphism) P4d—n * Spa — Sg_p ., Which is shown to preserve the Chevalley
generators. Both homomorphisms Afi,’d,, and ¢, ,, make sense on the level of
Schur algebras instead of Lusztig algebras.

The algebra Uy, is by definition a suitable subalgebra of the projective limit
of the projective system {(U}, ;, ¢4, ,)}i>1, just as Uy, is a limit algebra for
a similar affine type A projective system. Recall by Proposition 2.3.2 (due to
Lusztig) we have an algebra isomorphism U,, & U(f/:\[n) We show that the family
of homomorphisms {Af, ;. } gives rise to a homomorphism A : Uj — U; ® U,
and an injective homomorphism 3, : Uf, — U,, whose images on the Chevalley
generators are explicitly given.

THEOREM B (Theorem 6.1.4). The algebra U, is a coideal subalgebra ofU(ﬁA[n),

and the pair (U(;[n),Ufl) forms a quantum symmetric pair of affine type in the
sense of Letzter and Kolb [Kol4]. (The relevant involution is illustrated in Fig-
ure 1.)

Thanks to Theorem B, it makes sense to denote U;, = Uc(g[n); note the level
for our affine type algebras is always zero. One can also formulate an idempotented
form of Uf, denoted by U; or U‘(sA[n), which is analogous to the idempotented
quantum groups as formulated in [BLM90, Lu93]. Following the approach of
[Mc12] in the affine type A setting and [LW15] in the finite type B setting, we
construct canonical basis for UfL and establish its positivity with respect to the
multiplication and a bilinear pairing of geometric origin. Following [FL15] in the
finite type B setting, we establish the positivity of the canonical basis for U:L with
respect to the comultiplication.

THEOREM C (Theorem 6.4.3, Theorem 6.4.5). The algebra US, admits a canon-
ical basis BS,. The structure constants of the canonical basis B, with respect to the
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multiplication and comultiplication are all positive, that is, they lie in Nfv,v™1] and
so do they with respect to the bilinear pairing, that is, they lie in N[[v—1]].

Recall in the finite type C' setting, there are geometric realizations of two
quantum symmetric pairs (with superscripts j and 1), the superscript j corresponds
to the Dynkin diagram involution without fixed point and 2 to the involution with a
fixed point. The involution for ;[n (where n is even) in Figure 1 has no fixed point.
In this paper we construct three more variants of quantum symmetric pairs arising
from the affine type C' flags. The remaining three cases are labelled by superscripts
7,13, 1 and they correspond to involutions which are illustrated in Figures 2, 3 and
4, respectively (the superscript ¢ for the algebras above could be denoted by 77).

In each of the three new variants, we have counterparts of Theo-
rems A, B and C. The proofs are sometimes more difficult, as it is already clear
in the finite rank s-version [BLW14,LW15,FL15].

There is also a totally different, purely algebraic, construction [BW16] of
canonical bases for general quantum symmetric pairs of finite type (which is ex-
tendable to cover the QSP of affine type considered here). That approach does not
establish the positivity of canonical bases.

1.3.3. An overview of Part 3. In contrast to the finite types, the Schur
algebra S|, ; is not generated by the Chevalley generators in general, that is, U}, ,
is a proper subalgebra of S , (this phenomenon already happens in affine type

A [Lu99]). The next goal (Part 3) is to understand the limit algebra K¢ arising
from the family of Schur algebras {S;’d}dzl as well as its ji,12,2e-variants. One
key difficulty we encounter here is that the Schur algebras Sj, ; do not have any
obvious (finite) generating set to start with, and this makes it tricky to understand
the stabilization.

To that end, we introduce a new idea by imbedding S;, ; into the Lusztig algebra
Uu 4 (With 7 = n+2). The imbedding S;, ; — U}, ; is constructed as an imbedding

4~ S5 4 (in a way similar to the embeddlng S” — S;, 4 earlier) which factors
through Uu 4~ As Lusztig algebras have a nice set of Chevalley generators and they
are well understood in Part 1 and Part 2, we gain insights about Sj, , this way.

One first result which we obtain via such an imbedding is to establish a (bar
invariant) monomial basis {fa|A € =, 4} for S;, ;, and we see that Sy, , is generated
by the standard basis elements [A]; with A tridiagonal. (In affine type A, it was first
shown [DF13] that the Schur algebra is generated by the standard basis elements
®[A]q4 for A bidiagonal.) In our affine type C setting, thanks to the centrosymmetry
condition of the matrices A parametrizing the basis of Sj ,, the appearance of
tridiagonal matrices parametrizing a generating set is perhaps not surprising. It
does make any possible multiplication formula in affine type C with [A] for A
tridiagonal enormously complicated.

The imbedding S} ; — U} ; and the monomial basis for S;, ; further allow
us to study fruitfully the stablhzatlon as d goes to infinity of the multlphcatlon
comultiplication, and bar involution on S, ;. The stabilization properties for S,

allow us to introduce a limit algebra K; and establish its main properties.

THEOREM D (Theorems 9.4.6, 9.7.3). The algebra K;L admits a standard ba-
sis {[A]|A € E,}, a monomial basis {f4]A € Z,}, and a stably canonical basis
{{A}|A € E,}. Moreover, there is a natural surjective algebra homomorphism
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V,q: K — 8¢ , which sends each stably canonical basis element to a canonical
basis element or zero.

In a completely analogous way and as a byproduct, we can formulate the stabi-
lization properties of the family of Schur algebras S,, 4 of affine type A and introduce
its stabilization algebra K,,, and prove a theorem for K, analogous to Theorem D.
Such results in affine type A were first obtained in [DF13, DF14] by a completely
different and algebraic approach, and they also identify K, as the idempotented
quantum affine 3[,, Our geometric approach here offers a shortcut to some main
results in loc. cit. and obtains new results on the comultiplication structure.

The stabilization property of the comultiplication on S, , leads to the following.

THEOREM E (Propositions 9.6.1, 9.6.2, Remark 9.6.3). The pair (K,,K¢)
forms a quantum symmetric pair (in an idempotented form,).

Similarly, the other families of Schur algebras {S}' ;}4,{S}/ ;}a, and {S}' ;}a ad-
mit similar stabilizations which lead to limit algebras K%', K%, Kﬁ]’, respectively. We
also establish the counterparts of Theorems D and E for the algebras K7 K, KZ;
In the process, we actually establish the following interrelations in Section 10.5
(where one finds the precise definition of subquotients) among the algebras K¢, K%,
KY, Ki} in a conceptual way.

THEOREM F (Proposition 9.8.2, Theorems 10.3.6, 10.4.1, 10.5.1). We have the
following diagram of subquotient constructions (sq stands for subquotients):

el
Ky
y 5q
el <G C
KT, Kn ﬁq Kn+2
-
Ky

Moreover, all the subquotient constructions are compatible with the stably canonical
bases.

We have developed a Hecke-algebraic approach in a companion paper [FLLLW]|
simultaneously, which redevelops some of the main results of Part 3 of this paper
in a completely different way. See also [FL17] for a third approach based on an
explicit multiplication formula on tri-diagonal standard basis elements.

1.4. The organization

The paper is divided into three parts. Part 1 consists of Chapters 2-5, and
it deals with the Schur algebras and Lusztig algebras arising from convolution
algebras on pairs of partial flags of affine type C. Part 2 consists of Chapters 6-8,
and it studies the limit algebras of each of the four families of Lusztig algebras
and identifies them as (idempotented) coideal subalgebras of the quantum affine sl.
Part 3 consists of Chapters 9-10, and it treats the stabilization algebras arising from
the four families of Schur algebras, and identify them as (idempotented) coideal
subalgebras of the quantum affine gl,,.
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In the somewhat preliminary Chapter 2, which is exclusively on affine type
A, we review the constructions of [Lu99] in affine type A and set up the type
A notations. We formulate Lusztig algebra U, 4 as the (proper) subalgebra of the
Schur algebra S,, 4 generated by Chevalley generators. A new result in this Chapter
is a geometric construction of a monomial basis for U,, 4 and then for U(sA[,L) This
makes our approach here and further generalization in affine type C below quite
different from those in [Mc12,SV00]. In particular, the approach here does not
rely on the crystal basis theory of Kashiwara and Ringel-Hall algebras.

Before proceeding to the remaining chapters, we recommend the reader to
browse Appendix A. In Appendix A, we review and expand the geometric con-
structions from [BKLW14, FL15] in finite type C. Recall most of the results in
loc. cit. were formulated in detail in the geometric setting of finite type B.

From now on we take n to be a positive even integer.

In Chapter 3, we present lattice models for the variety V¢ of complete flags of
affine type C, following [Sa99], [H99] and [Lu03]. We also formulate a variety X; ;
of n-step flags of affine type C'. Then we classify the orbits of products X ; x Y
and X ; x X ; under the diagonal action of the loop symplectic group.

In Chapter 4, we study the Schur algebra S;, ; arising from the convolution al-
gebra of pairs of n-step flags of affine type C. We present multiplication formulas in
S;, 4 with the Chevalley generators and with their divided powers. We then specify
some general scenarios where these multiplication formulas produce a leading term
with coeflicient 1. The results in this chapter are local in the sense that they are
analogous to the results in finite types A and C.

In Chapter 5, we introduce the Lusztig algebra U}, ; as the (proper) subalgebra
of the Schur algebra S], ; generated by Chevalley generators. We then introduce a
coideal algebra type structure which involves both Schur algebras (and respectively,
Lusztig algebras) of affine types C' and A. This leads to an imbedding j,, 4 from
S¢ n.d O Sp.q, and also from Uy, ato U,, 4. The canonical basis and monomial basis
are shown to be compatible w1th the inclusion U}, ;, C S} .

In Chapter 6, we introduce the transfer maps ¢ d.d—n o0 Schur algebras S}, ; and

Lusztig algebras Uy, ;. We then construct algebras Uy, (or UfL) from the projective
system of algebras {(Uy}, 4, ¢5 4_,,) ta>0. We show that Uj, (or U¢) is isomorphic to

an (idempotented) coideal subalgebra of U(sl,), and (U(sl,), US) forms an affine
quantum symmetric pair. The canonical basis of U;L is established and shown to
admit positivity with respect to multiplication, comultiplication, and a bilinear
pairing.

In the remainder of the Introduction we set n = n — 1 (which is odd) and
17 =n — 2 (which is even).

In Chapter 7 and Chapter 8, we present several more projective systems
{(szd’¢d d—n)}d>0, {(Uffdv ji]d w)taz0, and {(U} 4, ¢ 4, ) Ya>o. We emphasize
that each of these Lusztig algebras arises from convolution algebras of geometric
origin. We obtain the limit algebras Uy, Uy, Uy’ and their idempotented coun-
terparts. We show that Uy (respectively, U/, or U}) is isomorphic to a coideal

subalgebra of U(sly) (respectively, U(sl,) or U(s[ )). The monomial and canonical
bases of Uy, ;, U/, and Uy ; are established by relating to their counterparts for

U¢ ;. The canonical bases of UZ, UY and U” are established and shown to admit
pOSlthIty with respect to multiplication, comultlphcatlon and a bilinear pairing.
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In Chapter 9, we study the stabilization properties of the family of Schur al-
gebras S} (as d varies). To overcome the difficulty of working with the Schur
algebra S} ; which does not have a good finite generating set, we study S;, ; via
an imbedding into a Lusztig algebra of higher rank. This allows us to understand
generating sets, monomial bases, multiplication, comultiplication and bar operators
of the Schur algebras and their stabilization properties in a conceptual way and lift
all these structures to a stabilization algebra K; We show that Kfl admits a sta-
bly canonical basis, and the pair (K,, K¢) forms a quantum symmetric pair in an
idempotented form, where K,, is isomorphic to the idempotented quantum affine
gl,,.

In Chapter 10, we formulate the main results for the stabilizations of the re-
maining 3 families of Schur algebras of types p,27,1, following the blueprints in
Chapter 9. Moreover, we establish interrelations among all the stabilization alge-
bras K¢, Ki, K, and Kﬁ; of types 37, 11,17, 1, and among their stably canonical
bases.

Notation: N ={0,1,2,...}.
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CHAPTER 2

Constructions in affine type A

This chapter is preliminary in nature. Most of it has been well known [Lu99,
Lu00, SV00, Mc12] (also cf. [DF14]). However we present a new geometric
construction of a monomial basis (and hence canonical basis) for the modified
quantum group U(f/:\[n), in analogy to the one in [BLM90, Proposition 3.9], with-
out use of crystal basis [K91] and the theory of Ringel-Hall algebras [R90], (see
also [Sch06, DDPWO08,DDF12], [VV99,LL15)).

2.1. Lattice presentation of affine flag varieties of type A

Let k be a finite field of ¢ elements, where ¢ is a prime power. Let F = k((¢))
be the field of formal Laurent series over k and o = k[[¢]] the ring of formal power
series. Let d be a positive integer. Let GLp(d) (respectively, GL,(d), GLg(d))
be the invertible d x d matrices with coefficients in F' (respectively, o, k). Con-
sider a reduction mod-¢ map ev|.—g : GL,(d) = GLk(d), €+ 0. The parahoric
subgroups of GLp(d) are inverse images of parabolic subgroups of GLg(d) under
ev].—o, and the parahoric subgroups which are inverse images of Borel subgroups
are called Twahori subgroups. The affine partial flag of type A is then defined to
be the homogeneous space GLp(d)/P where P is a parahoric subgroup.

Let V be an F-vector space of dimension d. A free o-submodule £ of V' of rank
d is called a lattice in V. Let Y* be the set of all lattice chains L = (L;);cz where
each L; is a lattice in V, such that L;,_y C L; and L;,_4 = €L; for all i € Z. We fix
a basis {e1,...,eq} for V, and we set

em =€ ¢, ifm=sd+iforielld.

Then we have a total order for (€,,)mez as follows:

...,5‘617...766,1,61,...,6(1,671617...,6 [ .
Clearly,
L0:061@~~~€Boed
is a lattice in V. More generally, for m = sd + i with 1 < ¢ < d, we define the

lattice

L, = [€m+la cees em—i-d]o

=0c %1 @ Do SegPoe Tler @ @ o e

We set L = (L,|m € Z) to be the standard lattice chain. There exists a
surjective map

GLp(d) = Y%, g+ g.L.

15
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It is clear that the stabilizer I* of L in GLg(d) consists exactly of the mod-¢ upper
triangular matrices. Thus I* is an Iwahori subgroup of GLg(d). We thus have the
identification of affine flag variety of type A:

(2.1.1) GLp(d)/I* — Y°.

There are similar lattice chain models for the partial flag varieties of type A.

2.2. Monomial basis for quantum affine sl,

In this section, we shall construct an explicit monomial basis for quantum affine
sl, (the construction here will be generalized in latter chapters).

For the partial flag cases, the treatment is similar. More generally, we consider
the set X, 4 of n-periodic lattice chains in V. Here dimp V' = d and a sequence
L = (L;);ez of lattices in V is called an n-periodic lattice chain if L; C L;y; and
L; = €Ly, for all i € Z. The group GLp(d) acts naturally on X, 4 from the left,
and then acts on the product X, 4 x X, 4 diagonally, for a pair (n,n’) of positive
integers.

Let ©,,,4 be the set of all matrices A = (a;;); jez with non-negative integer
entries satisfying the following conditions:

(2.2.1)
10+n—1
(1) aij = Qign,jon (Vi,j € Z); (13) Z Zaij = d, for each (or for all) i € Z.
i=ig JEZ

The condition (i7) can be equivalently replaced by (ii") below:

(i7") For any jo € Z, Z;‘):J;:Ll > iz Gij = d.
A matrix A in ©,,, 4 automatically satisfies that, for any i € Z, the sets {j €
Zla;; # 0} and {j € Z|a;; # 0} are finite.

Following [Lu99], the GL g (d)-orbits in X}, 4 X X,/ 4 are parametrized by the set
O |n,a- More precisely, to a pair of n-periodic lattices (L, L), we define a matrix
A = (aij)i jez where

Qij = dimy LZﬂL;/(LZ,lﬁL;+LZﬂL;71), (V’L,j EZ)
This defines a bijection GLp(d)\Xp,q X X4 <+ Opjns a. Let O4 denote the associ-
ated GLp(d)-orbit indexed by A. We are mostly interested in the case when n’ = n,
and we shall write
®n,d = ®n|n,d-
We set
(2.2.2) Ana={A=N)iez e NPINi = Ay, Vi€ Zy Y N =d}.
1<i<n

To each matrix A € ©,, 4, we define its row/column sum vectors ro(A) = (ro(A);)iez
and co(A) = (co(A);)iez in Ay, q by

I'O(A)i = Zaij, CO(A)]‘ = Zaij (VZ,_] S Z)

JEZ 1EZL

Let A,B,C € ©,,4, we fix L, L’ € X,, 4 such that dimy L;/L;_1 = ro(A); and
dimy, L} /L _; = co(B); for all 4,5 € Z. We set

95 5(VQ) = #{L € X, /(L L) € O4, (L, L) € Op, (L, L') € Oc}.
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By [Lu99], gi 5(/q) is independent of the choices of L, L" and is the specialization
of a polynomial ¢§ p(v) € Zv,v™'] at v = \/g. Note that g§ 5 = 0 for all but
finitely many C.

We set A = Z[v,v~!]. The affine Schur A-algebra of type A, denoted by Sy, 4. ,
is by definition the (generic) convolution algebra Agr, . (a)(Xn,a X Xn,q). Denote by
e4 the characteristic function of the orbit O4, for A € ©,, 4. Then the algebra
Sna.a is a free A-module with an A-basis {es|A € O, 4}, with multiplication
given by eq xep = > g9 g(v)ec. We then set

(2.2.3) Sn,d = Q(v) ®a Sng;a-

To A € ©,, 4, we define

d = Z ;A

1<i<n,i>k,j<l
and

[A] = v %aey,.
The set {[A]|A € ©,,q4} is the standard basis of S,, 4. Let {*{A}q|A € O, 4} be the
canonical basis of S,, 4 [Lu99]. Given i,j € Z, let E¥ be the Z x Z matrix whose
(k, £)th entries are 1, for all (k,£¢) = (i,7) (mod n), and 0 otherwise; that is,
(2.2.4)

EY = (&g 0)kecz, where & =1if (k,¢) = (4,5)(mod n), otherwise & ¢ = 0.

DEFINITION 2.2.1. The subalgebra of S,, ; generated by the standard basis
elements [X] such that either X or X — E%*! or X — E*T1¢ is diagonal, is denoted
by U, 4 and called Lusztig algebra (of affine type A).

Let U, 4.4 be the subalgebra of S,, 4. 4 generated by the standard basis element
[X] such that either X — RE“*1 or X — RE*T1 is diagonal, for various R € N.
For each A € Ay, 4, let Dy be the diagonal matrix in O,, ¢ whose diagonal is A. For
each R € N, i € Z, we set

(2.2.5)
B0 Y, E Y HE - Y D), K HEET
)\GAn,d

where the first and second sums run over all X such that X — RE*™1? and X —
RE“**! are diagonal, respectively. Clearly, we have EZ(-R) = E;R), FER) = F;R),
Hfl = H]il and K;H = Kjil for all i = j (mod n). For convenience, we also set
1)\ = [D)\L

It is known from [Lu99] that U, 4.4 is an A-lattice of U, 4 and generated

by EER), F and Kfﬂ for all i and R € N. Recall a Z x Z-matrix A = (a;5) is

i
aperiodic if

(2.2.6) for any p € Z — {0} there exists k € Z such that a1, = 0.

We denote by @Z{’ ', the set of all aperiodic matrices in ©,, 4. Lusztig [Lu99| showed
that U, 4 is a proper subalgebra of S,, 4 and further the subset {*{A}4]|4 € ©77,
of the canonical basis of S,, 4 form a canonical basis *{A}4 of U, 4. Note that
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the latter result is completely nontrivial since the standard basis element [A] for A
aperiodic is not in U, 4 in general.
For a € Z and b € N, we define

2(a—i+1) _ 1
a v a
1<i<b

We define two partial orders “<,,”

A= (aij),A’ = (a’ij) S @md, let

and “<” on O, 4 as follows. For any

(2.2.8) A<gg A= > au< Y apy, Vi<j,
k<il>j k<il>j
Z ag; < Z (1;@17 Vi > j.
k2i,l<j k>i,l<j
(2.2.9) A< A =A<y, A ;ro(A) =r10(A),co(A4) = co(A").

We further say that “A <ug A", (respectively, “A < A"”)if A <, A" (respectively,
A< A’) and A # A’. For convenience, we write “[A]+ lower terms” to stand for
“[A] plus a linear sum of various [B] with B < A”.

The following lemma is a slightly stronger affine version of [BLM90, Lemma
3.8], which is used to obtain an affine analogue of [BLM90, Proposition 3.9] for
quantum affine sl,,.

LEMMA 2.2.2. Let A,B,C € ©,, 4 and R be a positive integer.

(1) Assume that B — RE™"*! is diagonal for some h € [1,n] and co(B) =
ro(A). Assume further that R = Ry + - - - + R; and the matriz A satisfies
the following conditions:

Apj = 0, Vj > k;ah+17k+i = Ri, i€ [1,”, Ah+1,k > Ro, Ah+1,5 = 0, V] >k +1.

Then we have

l
[B] * [A] = [A+ ZRi(Eh’k'H — EMYRED] L lower terms.
i=0
(2) Assume that C — RE"M1R is diagonal for some h € [1,n] and co(C) =
ro(A). Assume further that R = Ro+-- -+ Ry and A satisfies the following
conditions:
apj = 0, VJ <k, ap k4i = R;,i € [O,Z — 1], ah k+1 > Rl; ap+1,j = 0, Vj <k+1

Then we have
!
[C]*[A] =[A - ZRi(EhJ"H — EMUYEED] 4 Tower terms.
i=0

Proor. By [Lu99, Section 3], we have

(2.2.10) (Bl [A] =) "D T] {ahu;r tu] A+ St (BM = Br),

t u€Z v u€Z
where 8(t) = EPU apjty — Zj>u ht1,5tu + Zj<u tjty. Here the bar is the invo-

lution on Q(v) defined by o = v~'. Observe that A+ Y\_, R;(E™F — EM1F) s
the leading term for the right hand side of (2.2.10).
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We shall show its coefficient is 1. Note that the leading term is determined by
thti = R;, tj =0, Vi € [O,Z], J € [k,k+l]

Ohy + tu

In this case, we have Huez { t
u

}—1and

l
B(t) =D (t; — ansr)tu = Y (t; = ang1,;)Ri = 0.

J>u i=0 j>k+i
This shows (1). Part (2) can be proved similarly. O

A product of standard basis elements [G1]* [Ga] % -+ * [G,,] in S,, 4 is called an
aperiodic monomial if for each i, either G; — RE?7*! or G; — REITYJ is diagonal
for some R € N and j € Z. The following proposition is a missing piece in the affine
generalization of [BLM90], corresponding to Proposition 3.9 in the loc. cit. We
refer to [DDO05] and the references therein for early treatments using Ringel-Hall
algebras and generic extension.

PROPOSITION 2.2.3. For any A € O, there exists (and we shall fix) an

aperiodic monomial 5 such that (§ = [A] + lower terms. Moreover, the set {(5 |
A e O is a basis for Uy, q.

PROOF. Recall [Lu99] that {*{A}4|A € ©;";} forms a canonical basis for
U, 4. Assuming the first statement on the existence of such (%, we then have
¢4 = “{A}at+lower terms in Uy, 4, and hence {¢} | A € ©;";} forms a basis for
Una.

It remains to prove the existence of such an aperiodic monomial (%. Let us fix
some notations. Given a matrix A = (a;;) € ©,, 4, we define a matrix

Jrist(A) = A~ Z akfl,j(Ek_l’j — E’“j) € 0,4
s<j<t
Let W(A) = > ic1, 17 — ilaij. It is clear that W(fi;s,¢(A)) < ¥(A) for all k, s and
t with k < s <t, where the equality holds if and only if

(2.2.11) ag—1,; =0, Vs < j <t

We are now ready to prove the existence of such an aperiodic monomial (§ by
induction on ¥(A). If ¥(A) =0, then A is a diagonal matrix, and (§ = [4].

We now assume that U(A) > 1 and that the existence of such ¢, for all
aperiodic matrices A" with W(A") < U(A). Set m = min{l € N|a;; = 0 for all |i —
jl > 1}. If there exists k € Z such that ag p+m = 0 and ar—1 k—14m # 0. By
(2.2.11), we have U(fi.s:(A4)) < U(A) for all k < s <.

Let u = max{s < k+m—1] fi,s k+m—1(A) is aperiodic}. We have ay; = 0 for
all [ > u. (Otherwise, there exists j > u such that ay; # 0. Then fi.; k+m—1(4)
is aperiodic, which contradicts with the definition of u.) By Lemma 2.2.2 (1), we
have

(2.2.12) [B] * [ fe,uk+m—1(A)] = [A] + lower terms,
where B is the matrix such that co(B) = ro(fx v k+m—1(4)) and
k+m—1

B— E akfl,lEk_Lk
l=u

is diagonal.
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If there exists k € Z such that ap y—m # 0 and ag—1 x—1—m = 0, We can prove
a statement similar to (2.2.12) by using Lemma 2.2.2(2). By induction on ¥(A),
the existence of (4 follows. O

EXAMPLE 2.2.4. Let n = 2. Let A be a lower triangular matrix whose nonzero

entries are located at (5,5), (6,7) (mod 2), for 2 < j <6, which are
ass = 1,a62 = 2,063 = 3,a64 = 2, a65 = 1, a66 = 2.
Let A" = (aj;) be the lower triangular matrix whose nonzero entries are specified
by
agy = 2,055 = 3,a5, = 2,a55 = 2, agg = 2.
Applying the algorithm in the proof, Egs) x [A'] = [A] + lower terms. Inductively,
we have
Egs) * Egﬂ * E§5) * E(()z) * leo(a) = [A] + lower terms.

2.3. Algebras U, and U,

Recall a transfer map ¢g4—n : Unag — Up g—n was introduced in [Lu00] by

sending the generators EER), FER) and K to the respective generators. Let us

define a partial order <,, on N by declaring that
a<,biff b—a=pn for some p > 0.

Then {(Uy 4, d,d—n)}den form a projective system over the poset (N, <,). We
shall consider its projective limit:

Unpo = @Un,d = {.I‘ = (xd)dEN € H Umd‘(bd,d—n(xd) = Td—n Vd}

d deN
The bar involution on U, 4 induces a bar involution ™ : U,, oo = U, «, since it
commutes with the transfer map [Lu00]. Similarly, we have an integral version:
Unooia = m Uy, g.4. Since Q) ®4 Uy 4.4 = Uy, 4 for all d, we have Q(v) ®4
Un,oo;.A = Un,oo-

As we deal with all d € N simultaneously, we will write
1>\,d7Ei,d7Fi,daKf;7 vi<i<n

for the generators in U, 4, which are denoted without d in the subscript previously.
Since the transfer map sends generators E; 4, F; 4 and Kli; to the respective gener-
ators, we can define elements E;, F; and Kzil forall1 <¢ < nin U, by declaring
that their d-th component is E; 4, F; 4 and Kii(}, respectively. (Similarly, we can
define the a-th divided power E) and F\*).)

DEFINITION 2.3.1. Let U,, be the subalgebra of U,, », generated by E;, F; and
K forall 1 <i < n.

Clearly, the restriction of the natural projection ¢g : U, oo = Up 4 gives us a
surjective algebra homomorphism:

¢q: U, — Uy q4.
We set,
(2.3.1) Zp ={X= (N)iez | \i € Z, \i = Niyn, Vi}.
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We define an equivalence relation ~ on Z,, by
A~vpsA—p=(..,p,p,Dp,...), for some p € Z.

Let Z,/ ~ be the set of equivalence classes and A be the equivalence class of A. Let

X=1Zn/~,  Y={veZn| Y v=0}
1<i<n
Then the standard dot product on Z, induces a pairing - : Y x X — Z. Set
I={1,...,n}. We define two injective maps I — Y, I — X, by letting
T —€ + €41, 1= —€ + €41, V1<i<n,
respectively, where ¢; is the i-th standard basis element in Z,, that is (¢;); = &; ;.
We thus obtain a root datum of affine type A, in [Lu93, 2.2].

For each A € X, we define an element 13 in U, « by setting (15)a = 0 unless
Al == > 1<icnAi = d mod n, and in which case (15)¢ = 1,4 where p € A and
|p| = d. We define U,, to be the U,-bimodule in U, ~ generated by 15 for all
X € X. It is clear then that U, is naturally a subalgebra in U,, o,. The algebra U,
admits a decomposition

Un = EDUan = @ ﬁ(Un)S\a
Xex B,AEX
where 5(U,)5 = 1,U,15.

Let U(sl,) be the affine quantum group of type A,,_1 (of level zero) attached
to the above root datum. Let U(sl,) be its modified form. The following result is
due to Lusztig [Lu00, Proposition 3.5] (more precisely, the first one was explicitly
written down therein, while the second one is folklore as it follows in the same way
as in the finite type A case [BLM90].)

PRrROPOSITION 2.3.2. We have the algebra isomorphisms U(sA[n) ~ U,, and
U(sl,) ~ U,.

ProOOF. We regard U, as the left modules of U, and U(f:\[n) Then we have
two algebra homomorphisms U,, — End(U,,), and U(sl,,) — End(U,,). Both maps
are injective and have obviously the same image, so they must be isomorphic. (In
short, U,, and U(;[n) act faithfully on U,,.) O

Therefore the geometric pair (Un,Un) is identified with the algebraic pair
(U(sl,), U(sl,)).






CHAPTER 3

Lattice presentation of affine flag varieties
of type C

We present lattice models for the variety V¢ of affine complete flags and a
variety X ; of n-step flags in an F-vector space V' of affine type C, for n even.
Then we classify the Spp(V')-orbits on X ; x X ;, X ; x V¢, and Y x Y°©.

3.1. Affine complete flag varieties of type C

Recall k is a finite field of odd ¢ elements, F = k((g)) is the field of formal
Laurent series over k, and o = k[[¢]] the ring of formal power series. Let d be a
positive integer. Let

0 0 0
|
(3.1.1) S , M:Mgd:(o J).

. . -J 0
ro - 00/,.,

O =

Let V = 2?4 be a symplectic vector space over F' with a symplectic form (,) :
V x V — F specified by M. Let g be the transpose of a matrix g. We define the
symplectic group with coefficients in F'
(3.1.2) Spr(2d) = {g € GLp(2d)|g = Mg~ *M~'}.
We also define Sp,(2d) and Sp(2d) similarly. By our choice of M, we see that
P N Spp(2d) is parahoric if P is parahoric in GLp(2d). In particular, I¢ = I* N
Spr(2d) is Iwahori and it is the stabilizer of the standard lattice chain L in Sp (V).
Therefore, we have the bijection
(3.1.3) Spy(2d) /I¢ ~ Spp(2d).L = Y.
So the lattice presentation of affine flag variety of type C' is reduced to a description
of Y°. For any lattice £ of V', we set
L#* ={veV|(vL)Col}.

Then the o-module £# is again a lattice of V and (£#)# = L£. We shall use freely
the following properties: for any two lattices £ and M

(L + M)* = L% N M*, (LN M)* = L + MF.

Following Sage [Sa99], we call a lattice alternating if L C L# or L D L#. An
alternating lattice £ is called sympletic if £ or £L# is homothetic to a lattice A, i.e.,
L or L# is equal to e®A for some a € Z, such that

(3.1.4) eN CA* CA.

Clearly L, are symplectic for z € Z. The following proposition can be found
in [H99, Sa99, Lu03|.

23
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PROPOSITION 3.1.1. The set V¢ is the set of all collections L = (L.).cz of
symplectic lattices in V subject to the following conditions:

L.C L.y, dimp L.y /L. =1, L,=¢cL. 94, L¥ =L_., (Vz€Z).

For our purpose later, we define a variant of the set Y as follows. Let V¢ be
the set of all chains L = (L.|z € Z) of symplectic lattices subject to the following
conditions:

0, if z=-1,d mod 2d + 2,
1

L.CL.y1, L.=c¢L.ioqr2, L¥=L_., (V2€1Z).

, otherwise;

dimy, L,11/L, =
(3.1.5) b Len/ {

Clearly, we have a natural bijection: )¢ ~ )¢,

Via the identification Spp(2d)/I¢ 2 Y*, there is a left action of Spp(2d) on Y*
which is transitive. Let Spp(2d) act on the product Y¢ x V¢ diagonally. We shall
describe the Sp(2d)-orbits in V¢ x Y°.

Recall a set O,/ ¢ was defined in (2.2.1) for any positive integers d,n,n’. Let
Yq be the following subset of O34 2244224 of matrices with entries being 0 or 1:

(3.1.6)
g = {A € Matzxz ({0, 1})|a—i,—j = @ij = Gitad+2,j+2a+2 (Vi,j € Z),
the Oth and (d + 1)st rows/columns are zero,

3 exactly one nonzero entry per row/column i € [0,2d + 1]\{0,d + 1}}

We define a map from the set of Spy(2d)-orbits in Y x Y to *X4:

(3.1.7) @ :Spp(2d)\Y* x Y — Xy

by sending the orbit Sp(2d).(L,L’) to A = (asj)i,jez where
Lioi+LinL

Lia+LinLi

Q5 = dlmk
By the definition of a;;, we have

L 1+LinL _LF+LE L

(3

a_; _ dimy, —_ — dimy
J L ;4 +L—10L/_]‘_1 L;#-FL?_lﬂL;#
. (Ll N (Lifl + L;‘—l))# . L;N (Lifl + L;)
= dimg 7 = dimyg 7
(Lim(Li_1 —|—Lj))# Lim(Li—l +Lj_1)
Li i+ L;NnL
= dimk 1 ! J = aij.

Lia+LinLi
So the map ¢ is well defined. The following proposition can be found in [H99], see
also [Lu99].

PROPOSITION 3.1.2. [H99, Proposition 2.6] Let A = (a;;); jez be the associated
matriz of (L, L") under ¢. Then we can decompose V into V. = &, jezVi; as k-
vector spaces satisfying that dimy, Vi; = a4y,

(3.1.8) Li= @ Vu Li= @ Vu Vijel

kl€Z:k<i kl€Z:1<j



3.2. AFFINE PARTIAL FLAG VARIETIES OF TYPE C 25

Moreover, there exists a basis {e}j|1 < m < a;;} of Vij such that

(3.1.9)
€rj = €€ odya oy ViJ € L, 1 <m < agy,

(e;’;,eﬁ/) = —(eﬁ/,eg), Vi, j okl € Z,1 <m < a;;,1 <m' <ay,
(eif exr ) = e(elfs exy ato)itare))s Vi bkl €Z,1<m <a;, 1 <m' < ap,
(el ep) = Omabmae s VI<i<k<2d+2i+k=2d+2j+1=2d+2.
From the above proposition, we have the Iwahori-Bruhat decomposition for the
group Spy(V).
PROPOSITION 3.1.3. The map ¢ : Spp(2d)\Y¢ x Y — 3, in (3.1.7) is a
bijection.
ProoOF. By Proposition 3.1.2, ¢ is clearly surjective. Assume now that the

associated matrix of two pairs (L,L’) and (L,L’) of symplectic lattice chains is
the same matrix, say A. By Proposition 3.1.2, we can find bases {e{}} and {f]}

for the pairs (L, L) and (L, L’), respectively, subject to the conditions (3.1.8) and
(3.1.9). We define a map g : V' — V by sending e} to f/7' for all 4,j € Z and
1 < m < a;;. Then we have g € Spp(2d) and g(L, L) = (L, L'). So ¢ is injective.
The proposition is proved. ]

3.2. Affine partial flag varieties of type C'

Now we fix an even positive integer
n=2r+2, forsomer € N.
Let X7 , be the set of all chains L = (L) zez of symplectic lattices in V' subject to
the following conditions:
(3.2.1) L.CL.yy, L.=¢L..,, L¥=L_, , (Vz€Z).
REMARK 3.2.1. The shift by —1 in the condition LZ# = L_,_1 in definition of
Xy 4 (see (3.2.1)) allows the valuation at Lo to vary. In contrast the valuation at

Ly is always zero in the case of 5)‘.

The group Spp(2d) acts transitively from the left on A, ; in a standard way.
Let Spp(2d) act diagonally on the products Xy ; x Xj; ; and Xy g x Yo Let 1L, 4

be the subset of ©,2442,2¢ (for O, 4 see (2.2.1)), which consists of all matrices
A = (a;;) € Matzxz(N) such that

(3.2.2)

0, Vj=0,d+1 (mod 2d + 2
i —j = Qjj = Qiyn, j+2d+2 (Vi,5 € Z), Zau { ’ ( :

= 1, otherwise.

Similar to (3.1.7), we have a map
(3.2.3) Spr(2d)\ Xy 4 X YV — 1, 4.
More generally, let °=,, 4 be the subset of ©, 24 given by
“Bn.a = {(ai;) € Matzxz(N)| a_i —j = aij = Gitnjin, (Vi)

(324) Z Z Qi = 2d, ago, Qr41,r4+1 € QZ}

1<i<n j€Z
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Similar to (3.1.7) again, we have a map

PROPOSITION 3.2.2. The maps in (3.2.3) and (3.2.5) are bijective.

PrOOF. Note that the first bijection (3.2.3) is a special case of the second
bijection (3.2.5). So we only need to prove the second bijection, and we shall
deduce it from Proposition 3.1.3 as follows. For a given matrix A € ‘5, 4, we can
delete all its zero rows and zero columns. Let us denote the resulting matrix by
dlt(A), which is essentially determined by the stripe [1,a] x Z of dlt(A) for some
a < 2d. Tt is then possible to find a (nonunique) matrix w € ¥4 (see (3.1.6)) such
that A can be obtained from w by adding consecutive rows between [1,2d + 2].
Now pick a representative, say (L, L'), in the orbit O,,. We can construct a pair of
partial flags by removing subspaces in L and L’ corresponding to the summations
of consecutive rows, whose associated matrix is dlt(A). This shows that the map
(3.2.5) is surjective.

Now if there are two pairs, say x, y, of flags whose associated matrix is A, we
fix a matrix w € ‘¥ such that it can be merged to A, and use the above process
to find two pairs, 2, ¢’ of flags in O, such that they can reach z, y, respectively,
by throwing away certain steps. Moreover, w can be chosen to be the one obtained
from A by blowing up the entries in A of value strictly greater than 1 to an identity
matrix locally. For example, if a;; = 2 and z = (L,L’), we can find a vector
we L;N L; —(Li—1 N L;» + L; N L_4) such that L; 1 + ou and L;‘—1 + ou are
symplectic lattices. We expand L by plugging the lattice L; 4+ ou in between L; and
L; 1. Similarly, we can expand L’. Then the matrix of the resulting pair will be
the one by blowing up A at (i,7) to be a 2 x 2 identity matrix locally. By repeating
the above process, we have the desired pair x’ for £ whose matrix is w. Since z’
and y’ are in the same orbit, there is a g € Spp(2d) such that g.z’ = y’, which
induces that g.x = y. So z and y are in the same orbit. Therefore the map (3.2.5)
is injective, and hence a bijection. The proposition is proved. (Il

3.3. Local property at L

LeMMA 3.3.1. Let L = (L.)zez € X ;. We have
v(L,) € [-d,0], v(Ly41) € [-2d,—d], and v(L,;)+v(Ly41)= —2d.

PRrROOF. Note that the valuation of Ly is non-positive because L_1 = L#. So
the valuation v(L,) < 0.
By definition, for any lattice £, we have

v(L#) = —v(L), wv(eLl) =2d+v(L).

So we have
0(Lyt1) = v(e 'L (rq1)) = —2d + v(L_(p41)) = —2d + v(L¥) = —2d — v(Ly).
Since v(Ly41) < v(L,), we have v(L,) > —d, and —d > v(L,41) > —2d. O

More generally, we have v(L;) € [—d,0],v(L;) +v(Lp_1-;) = —2d, Vi€ [0,r],
by the same type of argument above. But we do not need this general fact.
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Then, we can find a ‘maximal isotropic’ lattice L,; isometric to
Lq = [eat1,...,e2a,6 'e1,....e "edo,
such that
Lr C LM - Lr-{-l-
Here the basis {e;|1 < i < 2d} is chosen such that the associated matrix of the
symplectic form on V is given by (3.1.1). The lattice Ly satisfies the following
properties:
(La,La) = o, (La,eba) =0, (ehg,La) =o.
So the map
(_a _)H : LrT /gLrT X LrT/‘er* -k
(j>g)rf = evl|c—0 €(2,y)

is a non-degenerate symplectic form on L, /eL,+ ~ k*?.
Moreover, L_1/eL,+ and Lg/eL,+ are orthogonal complements to each other
with respect to the above form (—,—),+ on L,i/eL,;.

LEMMA 3.3.2. We have the following bijection

(3.3.1) {lattices L' in V‘ L,CcIH*cL é Lo} =
3. )

{k-subspaces W of Lo/eL,+| L_1/eL.s CW C Lo/eL,, wtcwy,

1
which sends L' to L' [eL,+. (Here and below C denotes subspaces of codimension
1.)

Therefore, the computation at Ly is exactly the same as the computation at
L,. In particular, we have the following lemma which we shall use freely.

LEMMA 3.3.3. (1) Suppose that L is a lattice such that Ly C L C Lo
and dimy, Lo/L = 1, then the lattice L is symplectic and L¥ C L.
(2) If the pair (L_1,Lg) is replaced by (Ly, Ly41) such that dimy L/L, = 1,
then L is symplectic and L C L¥.






CHAPTER 4

Multiplication formulas for Chevalley generators

In this chapter, we study the convolution algebra Sj, ; of pairs of n-step flags
of affine type C'.  We present multiplication formulas in S; ; with (the divided
powers of) Chevalley generators. We then specify some general scenarios when
these multiplication formulas produce a leading term with coefficient 1.

4.1. Some dimension computation
Fix L € X} ;. For A € °E, 4 (which was defined in (3.2.4)), we define
(4.1.1) X5 =A{L'€ X (L, L) € O4}.

This is an orbit of the stabilizer subgroup Stabgpvy(L) of Sp(V), and one can
associate to it a structure of quasi-projective algebraic variety. We are interested
in computing its dimension d9 (in order to define the standard basis element [A]
later on). We have the following affine type C analogue of [Lu99, Lemma 4.3].

LEMMA 4.1.1. Fiz L € X} ;. For A€ ‘E, 4, the dimension of X is given by

1
df4 = 5( Z Q0K + Z -aij + ' Z .aij).
i>k,j<l i>20>7 i>r4+1>j
i€[1,n]
PROOF. The proof is similar to that of in [Lu99, Lemma 4.3]. Indeed, we can
fix a decomposition V' = ®; jezVij as k-vector spaces such that dimy Vj; = a;;. We

can further assume that V;; admits a k-basis {ef}|1 < m < a;;} satisfying

gepr =€y iny Vi, jE€EZL,mE 1, a;].
We define a symplectic F-form on V by, for any i,k € [1,n], j,l € Z,
Smmr€ 2, ifi+tk=nj+l=ni<r+1,
—Om.mr€ 2, ifi+tk=nj+l=ni>r+1,
Smme2, fithk=nj+l=ni=r+1,j<r+1,
—Omm €2, ifi+tk=nj+l=ni=r+1,7>r+1,

(€55, €r ) = Omapsriati—me 5 i (4,5) = (k1) = (r + 1,7 + 1),
m < Gry1r41/2,

_5m,ar+1,r+1+17m’5_2= if (4,7)=(k,))=(r+1,r4+1),
m > apry1r41/2 41,

E(e;?, eZLfn,lfn)'

Now set L = (Li)iez and L' = (L) ez, where

Li= @ Vu, Li= @B Vu Vijeci
klCZ:k<i kl€Z:1<]
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We see that (L, L') € O4. Let

X = {z e sp(V)|a(L) C L}, X' ={x € sp(V)[a(L) C L, (L) C L'},
We have

dim X% = dimy, X/X'.

Now = = (2(; 5),k,1) : Vij — Vi) € sp(V) if and only if the following conditions are
satisfied:
(412) Tntintg)(ntkont) (W) = €75y (k) (EW), Vo € Vi_in—j,
o (z(u),u’) + (u,z(u')) =0, Vu,u' €V.

The second condition in (4.1.2) is equivalent to
(413) tx(i,j),(k,l)M + Ml'(sn—k,sn—l),(sn—i,sn—j) =0, Vi, jkl s€Z,
where M is a certain matrix associated to the symplectic form (-, -).

In particular, if i + k # sn or j +1 # sn, Vs € Z, then the linear map x; ;) (k1

completely determines (s, —,sn—1),(sn—i,sn—j) for all s € Z. So the contribution for
these linear maps in dim X/X’ is

1
(414) 5 Z Qi Qf]-
i>k,j<l,i€[0,n—1]
i+k#sn or j+l#sn

If we have i+k = sn or j+1 = sn for some s € Z, then the equation (4.1.3) becomes
tI(i7j)7(k,[)M + Mz(uj),(k,l) = 0. By (412), the collection of linear maps T(i,5),(k,1)
such that ¢ + k£ = sn and j + [ = sn for some s € Z determines the collection of
linear maps x(; j),(k,) such that i +k = (s +2)n and j + 1 = (s + 2)n. So they are
determined by the following two subsets:

{zap,wpli+k=0,7+1=0}, A{zu),wli+k=nj+1=n}

So the contribution of these kind of linear maps to dim X/X’ is

(4.1.5) % Z Qi Kl +% Z @ij +% Z @ij-

i>k,j<l,ic[0,n—1] i>0>j i>r+1>]
i+k=sn,j+l=sn
The lemma follows by summing up (4.1.4) and (4.1.5). O

4.2. Standard and canonical bases of Schur algebras

It turns out a “type B” parametrization in place of the “type C” parametriza-
tion via ‘E, ¢ is more natural, for the Sp(V')-orbits in & ; x & ; and then for
bases of the Schur algebras later on. (Such a phenomenon already occurred in the
finite type; cf. [BKLW14,FL15].) We introduce the “type B” parametrization
set

(4.2.1) Epa={A+EY + ETbrHA € °E, 4}
That is, =, 4 is the set of matrices A € Matzz(N) subject to the following condi-
tions:

Qij =i —j = Qi—njn (Vi,j €ZL), ago,0rq1,r4+1 € 2Z+ 1,

(4.2.2) ot
Z Zaij =2d+2, for one (or each) iy € Z.

i=ig+1 jEL
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By definition we have a bijection
(4.2.3) “Ep.d < En.d, Ars A+ EO0 4 prebr+l

From now on, we shall switch to the indexing set Z,, 4 for the rest of the paper.
Hence by abuse of notations, an Spp(2d)-orbit on X ; x Xy ; is denoted by Oy

and the set in (4.1.1) is denoted by X%, now for A € Z,, 4.

LEMMA 4.2.1. The dimension of X for A € 2, 4 is given by

(4.2.4) dA—%( Z a;jag — Z aij — Z aij).

i>k,j<l i>0>j i>r+1>j
i€[0,n—1]

PROOF. Let A = (a;;) € ‘Ep,4. We shall denote A’ = (agj) € E,,q4 correspond-
ing to A via the bijection (4.2.3). Thus we have

(4.2.5) aj; = aij + 0y Z 0,i+kn + 0ij Z Or1,itkn-
kezZ ke
It follows from Lemma 4.1.1 that

dA/ZdEZ%( Z Qg + Z aij + Z (lij)

i>k,j<l i>0>j i>r41>]
i€[1,n]
o 1 o / / /
D) ;A — QA — QA — Q;;
i>k,j<l 1>0>k I>r+1>k 1,4, ki >kn>j
1€[1,n] i€[1,n]
/ / /
i,j, ki >r+1+kn>j i>0>j i>r+1>j
i€[1,n]
1
_ !/ !/ ! /!
=5( X dhab— X al— 0 dy).
i>k,j<l i>0>j i>r4+1>j
1€[1,n]
The lemma is proved. O

We also introduce
(4.2.6)

Yg = {A € Matzyz({0,1})|a—i —j = aij = Gir2a+2,j+2d+2 (Vi,j € Z),
3 exactly one nonzero entry per row/ column}.

Note the description of X4 is much cleaner than ‘X4, cf. (3.1.6). Nevertheless, the
bijection (4.2.3) induces a natural bijection

(4.2.7) g X, A A4 EO L grolrtl

The bijection ¢ : Spp(2d)\ Y x Y — %4 in Proposition 3.1.3 can be reformulated
using Y4 in place of “X4.

Recall the Schur algebra of affine type A, S, 4,4, was defined in Section 2.2.
The A-algebra S, ; 4 is defined in the same way, now as the (generic) convolution
algebra Agy, (24) (X 4x Xy ;) attached to the variety & ; introduced in the previous

n

chapter. We then set
(4.2.8) nd = Q(v) ®a S, g4
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The algebras S;, ; 4 and S; ; are called the Schur algebras (of affine type C).
Denote by e4 the characteristic function of the orbit O4, for A € =, 4. Then
{ealA € B, 4} forms a basis for S;, ;. 4 and S;, ;. Set

(4.2.9) [A] = v %ey, for A€E, .

REMARK 4.2.2. We have

(4.2.10)
dA —d tA
_ i( S (10(A)? = co(4)2) = (r0(A)o — co(A)o) — (0(A)y1 — co(A)r41) ).

1<i<n
Hence the assignment [A] — [*A] defines an anti-involution ¥ : Sy, ; — Sy, ;. Note
from [Lu99, 1.6(a)] that
: L, . L
. Z a” = dlmk —L7T72 r: L/_T_27 A Z aZj = dlmk _Lr m?"L{r7
i>—(r+1)>j izrtl>g
for any (L,L’) € Oy .

Recall the partial orders <,j, and < on ©,, 4 from (2.2.8) and (2.2.9). These two
partial orders restrict to similar ones on =, 4, still denoted by the same notations.
Since any matrix A in =, q satisfies that a;; = a—;,—; for all 4,5 € Z. The two
conditions in (2.2.8) are equivalent to each other. Hence, the partial order <,j, on
Zn,q can be simplified as follows. Given any A = (a;;), A’ = (a;j) € E,.4, one has

(4.2.11) A<y A = Z ap < Z ah,, Vi<j.
k<i,l>j k<i,1>j

Since the Bruhat order of affine type C is compatible with the Bruhat order of
affine type A, we see that the partial order “<” is compatible with (though possibly
weaker than) the Bruhat order of affine type C.

Assume for now that the ground field is Fq. Let IC'4 be the intersection coho-

mology complex of the closure X ﬁ of X ﬁ, taken in certain ambient algebraic variety
over IF,, such that the restriction of the stratum IC4 to X% is the constant sheaf
on X%. We refer to [BBD82] for the precise definition of intersection complexes.
The restriction of the i-th cohomology sheaf %;é (IC4) of IC4 to Xé for B< A

is a trivial local system, whose rank is denoted by np 4,;. We set
(4.2.12) {Ata = Z Pp 4[B], where Ppa= ZnB,A,ivi_d*‘J“dB.
B<A i€Z
The polynomials Pp 4 satisfy
(4.2.13) Pia=1 and Ppa€v 'Zv™!] for any B < A.
Recall {[A]|A € E, 4} forms an Q(v)-basis of S;, - In light of [BBD82,Lu97], we

have the following.

PROPOSITION 4.2.3. The set {{A}q|A € Ep.4} forms an A-basis of Sy 4.4 and
a Q(v)-basis of S;,.a (called the canonical basis). Moreover, the structure constants
of S;, a4 with respect to the canonical basis are in N[v, v71].
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4.3. Some multiplication formulas
Recalling E% from (2.2.4), we set
(4.3.1) E] =EY + B0,
Note that we have
B = 25%, Eg+1,r+1 — 9frtLrtl
We have the following affine analogue of [BKLW14, Lemma 3.2], whose proof
also explains why the formula therein is the same as those in [BLM90].
LEMMA 4.3.1. Assume that i € Z and A, B,C € E, 4.
(1) Ifro(A) = co(B) and B — Eé’i"'l is diagonal, then we have

p2(1+aip) 1

(4.3.2) eB k¥ eyx = E ’U2 Xjsp i 1 6A+E§p7E;+l,p.

PEZL
ait1,p>(By P )iga,p

(2) Ifro(A) =co(C) and C — E;'H’i is diagonal, then we have

p2(+taitip) _ 1
T 2_1 CAa-Ep+E;r

02 —

(433) ec keyg = Z /1)2 E]‘<p @i41,5

pEZL
aiJ)Z(E;'p)i,p

v

PROOF. The proof is essentially the same as that of [Lu99, Proposition 3.5].
Obtaining the structure constant in the first formula is reduced to computing the
orders of the following two sets:

{U symplectic lattice|L; 1 + (L; N L, _;) CU C L;dimy, L; /U = 1},

p—1
{U symplectic lattice|L; 1 + (L; N L,) C U C L;,dimy, L; /U = 1}.
1
Since the lattices U such that L;_; C U C L; are automatically symplectic (and
U# C U) by Lemma 3.3.3, the computations in loc. cit. still work and we have the
first formula.
For the second formula, it is reduced to computing the difference of the orders

of the following two sets:

{U symplectic lattice|L; C U C L; + (Liy1 N Ly),dimy, U/ L; = 1},

{U symplectic lattice|L; C U C L; 4+ (Liz1 N L;, ), dimg U/L; = 1},

And again in this case, the lattices involved are automatically symplectic and thus
the computations in loc. cit. work here again. The second formula is obtained. [J

We now generalize Lemma 4.3.1 to a multiplication formula by “divided powers”
of Chevalley generators.

LEMMA 4.3.2. Assume that A,B,C € Z,, 4 and R € N.
(1) Ifro(A) = co(B) and B — REé’iJrl is diagonal for some i € [1,r], then we

have
_ 22.>’aijtu H aiu+tu ) )
epxea =) v ty | CAHS s tu(B =BT
t UEZ

where the sum is over all sequences t = (t,|u € Z) such that t,, € N and
> ez tu = R.
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(2) Ifro(A) =co(B) and B — REQ’1 is diagonal, then we have

epxeyq = E UQ Zj>u agjty+2 Zj<u<—] tjt“+zu<0 tu (tu—1)
t

to—1 .
. H Aoy +ty +t—y H Qoy + ty i_[ [aOO +1+ 22] e o L
ty ty [i + 1] A+ ez tu (B —Eg¥)-

u>0 u<0 i=0
(3) Ifro(A) = co(C) and C — RE;™" is diagonal for some i € [0, —1], then
we have
_ 25 @i, gt Git1,u 1
ec *x ey = zt:v Dicu Tit1, I_IZ |: i tz; u] eA*Euez b (B — BTy
ue

(4) Ifro(A) = co(C) and C — RE,™"" is diagonal, then we have

ecxep = E 02 cu Gttt 23, g tuti T3 sy Bu(Bu—1) H |:a7"+1;5u+tu:|
t u<r+1 “

try1—1 .
H |:ar+1,u +tu + tn—u:| ﬁ [ar+1,r+1 +1+ 22]

B eA_Zu tu(ET‘U,_ET+1;u)7
u>r+1 tu i=0 o+ 1] < oo
where the sum is taken over t = (tylu € Z) such that t, € N and
> ez tu = R.

PRrROOF. The proofs of (1), (3) and (4) are essentially the same as that
of [BKLW14, Proposition 3.3], while the proof of (2) is similar to the proof of
(4). Let us give a proof of (2) and skip (1), (3) and (4). We shall prove by induc-
tion on R. When R = 1, we have (2) by Lemma 4.3.1. Write Br for B in order
to keep track of the R, and A, for the matrix A+ >, o, t,(EJ" — E§*) associated
with t. Let G4, denote the coefficient of e4, in (2). By Lemma 4.3.1, we have
e, xep, = [R+1llep,,,. So

1

€Bpi; ¥ €A = T5——= g Ga,1Ga,pea
R+1 [R+1] — tsP t+p?

where p € N7 is the sequence whose nonzero entry is 1 at the position p.
It suffices to show that
1

[R+1]

Z GatGa,p=Gas
t,g:t-l—g:s
for any sequence s € N? such that YowezSu = R+ 1. By Lemma 4.3.1, the
coefficient G4, p is equal to 0?2250 405250, (G- g0 4 1, + ¢, + 1]. The v-
power terms of G4, and G4, , together yield the v-power term of G 4 s multiplying
with v225>r% . The v-binomial coefficients of Ga, and GAt,2 yield the v-binomial
coefficient of G 4 s multiplying with [s,]. So we have

1 1
GaiGa,p=Gas 2250t ) = G
R+ 1] t; A Aee = EASTR ] 2 vl = G
p=s pPEZ
By induction, we have proved (2). a

Lemma 4.3.2 can be rewritten in terms of the standard basis [A] as follows.
Recall that we have a bar involution : Q(v) — Q(v) defined by v = v~1.
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PROPOSITION 4.3.3. Assume that A,B,C € 2, 4 and R € N.

(1) Ifro(A) = co(B) and B — REé’iJrl is diagonal for some i € [1,r], then we
have

Z @H{“’“”]AJFZt (Ei* — ESF),

u€”Z wu€EZ
1
B = Z ity — Zai-i-l,jtu + thtu + 5(5” Z tity + Z t;
j>u i>u j<u jtu<n <t

where the sum is over all sequences t = (ty|u € Z) such that t, € N and

Y oueztu = R.
(2) Ifro(A) = co(B) and B — REJ" is diagonal, then we have

Z 5! H {a()u—i—t +ty ] H [a(mt:r tu}

u>0 u<0

) ti—_[ [aoo + 1+ 2@]

o [i +1]

A+t (B — By

UEL

where the sum is over all sequences t = (t,|u € Z) such that t, € N and
ZUEZ - R and

B SRS ST RN SRR g St}

Jjzu Jj>u j<u,j+U<0 >0
(3) Ifro(A) = co(C) and C — RE;HJ is diagonal for some i € [0,r — 1], then
we have

Zv% H |:a1+1u+t ]

UEZL

A— Zt (Bt — E;7V ) |

UEZL

where the sum is over all sequences t = (t,|u € Z) such that t,, € N and
ZuGZ - R and

= aiigte — > agte+ Y tity + 510 S otitu+ >t

i<u i<u ji<u j+u>0 3>0

(4) Ifro(A) = co(C) and C — RE,*"" is diagonal, then we have

A] = Z,U’Y; H |:a7‘+1%1;+ tu:| H |:a'r‘+1,u +tiu + tnu:|
t

u<r+1 u>r+1
trp1—1 -
142
[[ ety S - )|
i=0 [i + 1] uez
where
ti—t; R*-R
SODURINIED SINIEED DRI Dl SRt
i<u j<u j<u,jtu>n j<r+1

and t = (tylu € Z) such that t, € N and ), ., t, = R.
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PROOF. Let us prove (1). By definition, we have dg = Rb;; = Zj,u aijty. Let
us denote (k, I)-th entry in A+Y", , tu(Ei*—E;™") by ‘aj;. A lengthy calculation
yields

Z iaij iakl — Zaijakl =2 Z aijtu -2 ZaHthu +2 thtu + (51"7« Z tjtu,

j<u i>u ji<u jtu<n

UEZL

where the sums on the left-hand side run over all (i, 5, k,1) such that i > k, j <
and i € [0,n — 1]. We also have

[
E aij = E Aijs

i>0>j i>0>j
E % — E E
CL,L'j = aij - 62',« tj.
i>2r+1>j i>r+1>j J<r+1

Putting the above computations together, we have

dAt - dA = Za/ijtu - Zai+l,jtu + Ztgtu + %613,7" Z t]tu + Z tj y

i<u j>u i<u Jtu<n Jj<r+1

where Ay = A+, , t (B — E,7). Now from Lemma 4.3.2(1), we have
By = —dp + dAt —da+2 Z a;ty + 2 Z Aty -
Jj>u u€Z

The above calculations give rise to the formula for §;, and (1) follows.
We now prove (2). We set Aoy = A+ Y,y tu(Eg" — E§*) and write its
(i,7)-entry by %a;;. We have

Bi=—dp—da+da,, +2> aoitu+2 D> titu+ > tu(tu—1).
i>u j<u.jtu<0 u<0

R?>—R

By definition, we have dg = Zj w B0jtu + . Moreover, we have

dap, —da = Z agjtu = Z arjtu + thtu + % Z titu — th

i<u j>u j<u J+u>0 3>0

Thus,

2 _
Bg:Zaojtu—Zaljtu— i D) R+Zt]tu

j>u J>u Jj<u
1
+2 Z tjtu—l—ztu(tu—l)—l-i(.z tjtu—th)
j<u,j+u<0 u<0 J+u>0 7>0
R*-R 1 )
:Zaojtu—zaljtqu 7+ Z tjtu—§zztj—tj.
j>u i>u J<u,j+u<0 7>0

So we have proved (2).



4.4. THE LEADING TERM 37
For (3), we have dc = }_, , ait1,5tu, and

dA Zuezt (E“‘ EL+1u —dA— E a1+17] E a”

Jj>u j<u
1
+ Z Lty + 551',0 Z Lty + Z tj
j<u j+u>0 7>0

So we have the formula for ~; in (3).
2_
For (4), we have dc =, |, arq1,jtu + S

, and

dy_s, ompeepytioy =04 =D ariijtu = Y anjty
Ji>u j<u
1
+Zta‘tu+§ D titu— Dot
i<u Jjtu<n J<r+1
So we have the formula for ~; in (4). O

4.4. The leading term
We have the following affine generalization of [ BKLW14, Lemma 3.9].

LEMMA 4.4.1. Let A,B,C € 5, 4. Let R be a positive integer.

(1) Assume that B — REg’h+1 is diagonal for some h € [0,7] and co(B) =
ro(A). Assume further that the matriz A satisfies one of the following
conditions:

ap; =0, Vj > k; a1y =R,a1; =0, Vi >k, ifh=0,k>0;o0r

anj =0, Vj > k; app1k = Ryapt1,; =0, Vi >k, ifh€[l,r—1]; or

arj =0, Vj > k; arp16=R,ar41; =0,V >k, ifh=rk>r+1; or

arj =0, Vj2>r+1; ary1p41 > 2R, 0p41,;,=0,Vi>r+1, ifh=rk=r+1

Then we have [B] % [A] = [A+ R(Eg’k - Egﬂ’k)] + lower terms.
(2) Assume that C — REZ'H’h is diagonal for some h € [0,r] and co(C) =
ro(A). Assume further that A satisfies one of the following conditions:
alj:O, Vi < k; aOk:R,aonO, Vi < k, z’fh:O,k<0; or
a1; =0, Vj<k; app>2R,a0; =0, Vj<k, ifh=0k=0; or
an; =0, Vj<k;apg=R; apt1,=0, Vj<k, ifhell,r—1]; or
ar;j =0, Vj<k; arp=2"R; ar415; =0, Vj<Kk, ifh=rk<r.

Then we have [C] x [A] = [A — R(E;,”]C - E(;L'H’k)] + lower terms.
PrOOF. We prove (1). Set

M = A+ R(E)* — EJTYR), = A+ tu(Epr - BT,
UEZ

with }°, ., tu = R. By an argument similar to the proof of [BLM90, Lemma 3.8],
it is enough to show that M’ <., M. Assume that h € [1,7 — 1]. By definition,
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the (r, s)-th entry m,s of M is

Mys = Qrg + R E 5s,k+ln (5r,h+ln - 5r,h+1+ln)
l€Z

+R Z 5s,n—k+ln (6r,n—h+ln - 57",7L—1—h+ln)-
lez
Observe that
(441) > R Sehttn(Grntin — Srnsitin)
r<i,s>j lEZ
B {R, if i =h+1in,j < k+ln, for some I,

0, otherwise.

(442) Z + RZ 6s,n7k+ln (6'r,n7h+ln - 6'r,n717h+ln)
r<i,s>j lEZ

_J-R, ifi=n—-1-h+ln,j<n—k+ln, for some Iy,
N 0, otherwise.

On the other hand, the (r, s)-th entry m;. , of M’ is equal to

!/
My.s = Qrs + E tsfln(ér,thln - 5r,h+1+ln) + § tnferln(&r,nchrln - 57‘,n717h+ln)-
l€Z lEZ

Notice that

(443) Z Z ts—ln (6r,h+ln - 5r,h+1+ln)

r<i,s>j lEZL

B Zerlanj ts, ifi=h+Ilin, for some [,
0, otherwise.

(444) Z Z tnfs+ln (5r,n7h+ln - 6T,n717h+ln)

r<i,s>j lEZL

{_Zn—s+l1n>]‘ ts, ifi=n—1—h+1Ilin,
0,

otherwise.

To show that M’ <,, M when A is subject to the second condition, it suffices
to show that (4.4.1) > (4.4.3) and (4.4.2) > (4.4.4) when i < j. Indeed, since
A satisfies the second condition, we have ¢, = 0 unless v < k. If i < j and
i = h + l1n for some l1, we have Zs+l17L2j ts <Y onts < R.If, moreover, h > k,
then > _,ts <> .o, ts =0. From these data, we see that (4.4.3) < (4.4.1) when
i < j. When i < j, we see that (4.4.2) is equal to —R when j < n —k + l;n, and
in this case (4.4.4) is also equal to —R. So we have (4.4.4) < (4.4.2) when i < j.
Therefore we have (1) when A is subject to the second condition.

For A subject to either of the remaining conditions, the proof of (1) is entirely
similar and is left to the readers.

We now prove (2) for h € [1,r — 1], i.e., when A is subject to the second
condition. Suppose that M = A — R(EM — Eg“*k) and M' = A= o, tu(Ef" —
E‘ZLH’") with } 5 t. = R. It suffices to show that M' <, M. Similar to the
proof of (1), it is reduced to show that (4.4.1) < (4.4.3) and (4.4.2) < (4.4.4) when
i < j. By assumption, we see that ¢, = 0 unless u > k. When (4.4.1) takes value
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R, then j < k+lin, which implies that 3 ., .~ . ts =3 ., ts = R. Hence (4.4.1)
< (4.4.3) in this case. When (4.4.2) takes value 0, we have either j > n —k +lin
for some l; or ¢ #n — 1 — h+ Ilin for any [;. For the latter case, (4.4.4) is always
zero. For the former, we have ) te =Y sents = 0. Thus we have (4.4.2) <

n—s+lin ”s

(4.4.4). Therefore we have proved (2) if A satisfies the second condition.
For the remaining cases, the proof of (2) is again similar and skipped. (Il

The following lemma is the counterpart of Lemma 2.2.2.

LEMMA 4.4.2. Let A,B,C € 2, 4. Let R be a positive integer.

(1) Assume that B — REg’h+1 is diagonal for some h € [0,7] and co(B) =
ro(A). Assume further that R = Ry + --- + Ry and the matriz A satisfy
one of the following conditions:

aom = 0, a1 x+; = R, a1 > Ro, a; =0, ifh=0, k>1;

apm =0, anyi1 ki = Ri, ant1k > Ro, any1,; =0, if he[l,r—1];

Grm =0, Gry1 ks = Ry, arp16 > Ro, ar41,;, =0, ifh=r k>r+1;

rm =0, Gry1 kys = Biy a1 x > 2Ry, apg1,; =0, ifh=r k=r+1

for allm >k, i€ [1,1] and j > k+1. Then we have
1
[B] * [A] = [A+ Z Ri(E)FY — BRI L lower terms.
i=0
(2) Assume that C' — REZ'H’h is diagonal for some h € [0,7] and co(C) =
ro(A). Assume further that R = Ro + -+ + R; and A satisfy one of the

following conditions:
a1m =0, agr+; = Ry, aor+1 > Ry, agj =0, ifh=0, k+1<0;
a1m =0, agrt+i = Ry, ago > 2Ry, agj =0, if h=0k+1=0;
Aht1m =0, appyi = Riy apprr > R, apy =0, if h € [1r —1];
Qr41,m = 0, Qp k4i = Ri; Ay k41 > Rl; Qrj = Oa ’th =T, k<.
forallm <k+1,i€[0,l—1] and j < k. Then we have
!
[C]+[A] =[A - ZRi(Eg’kH - Engl’kH)] + lower terms.
i=0
ProOF. We show (1). By a similar argument as that for Lemma 4.4.1, the
leading term is [A + Eé:o Ry(EpFT — EJTVRYO] Tt remains to show that its
coefficient is 1. In this case, we have

thri:Ri,VZ'E [0,1], and tj =0, ng[k,k"f'l]
By Proposition 4.3.3, we have

agy + 1ty +1- agy + 1 to—1 Tagot142i] .
Hu>0 ! tu h Hu<0 ut b Hzozo [aiotEi_i_l] 1 — 1, if h=0,
u u
Apy + 1 .
[Tz | ™ | =1 if h#£0.

129
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Moreover, we have

B = Zj>u(tj - ah+17j)tu + 2%(Z:J‘-|-u<n+1 tity — Ej<r+1 tj) =0, ifh 5& 0,
tjftj

e 2_
Bt = = Xy it = Xjno 3 RzR
%(132 Zj t? -2 J>u tit,) =0, if h=0.

In each case, the leading coefficient is 1, and whence (1). A similar proof of (2) is

skipped.

O



CHAPTER 5

Coideal algebra type structures of Schur algebras
and Lusztig algebras

In this chapter, we formulate a coideal algebra type structure which involves
Schur algebras of both affine type C' and A, and its behavior on the Chevalley
generators. This leads to an imbedding j, 4 from Sj ; to S, 4 (Schur algebra of
affine type A). We show the comultiplication and 3, 4 behave well when replacing
Schur algebras by Lusztig subalgebras. The canonical bases and monomial bases
are shown to be compatible under the inclusion Uj, , C S], .

5.1. The Lusztig algebra U ,

We now set
n=2r+2, (r e N).
Recall the Schur algebra S;, ; from (4.2.8). Let Uy, ; be the subalgebra of S; ,

generated by all elements [B] such that B, B — Eg’hﬂ or B — Eg“H’h is diagonal
for various h. Let U}, ;. 4 denote the A-subalgebra of S}, ; generated by all elements

[B] such that B, B — REQ"h+1 or B— RE:}H’h is diagonal for various h and R € N.
Following the affine type A setting, we make the following definition.

DEFINITION 5.1.1. The algebra U], ; is called the Lusztig algebra (of affine type
C).

For i € [0,r] and a € [—1,7 4 1], we define the following functions (with the
11
notation C, D denoting inclusions of codimension 1 and |W/| for the dimension of a
k-vector space): for any L = (Li)iez, L' = (L})icz € X 4
’ ’ 1
v b/ Lil =0 i L, C L Ly = Ly, V5 € [0,7]\{i};

0, otherwise.

(5.1.1) e;(L, L) = {

ryrr Yy . 1 i .
(5.1.2) fi(L, L) = v Bl L S L Ly = L, VG € [0, )\ {i;
0, otherwise.
(5.1.3)  hFY(L, L) = vF(la/LacslHoa0tbarii) g, |
(5.1.4) k;, =h,, h; "

It follows by the definition that for ¢ € [0,r] and a € [0,r + 1],

€; = Z[A]; f - Z[A], ha = Z U)\a]_)\’ k'L — Z v>\i+1—)\i1>\,

AEAT 4 AEAL 4

where the first two sums run over all A € =, 4 such that A — Eé“’i and A — Eé’”l
are diagonal, respectively, 1, stands for the standard basis element of a diagonal

41
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matrix whose diagonal is A\, and
(5.1.5)

nd = {(ai)z‘ez

a; €N,a;, =a_;,a; = ap_, Z a; = 2d + 2,a0,a,«+1 Odd}

1<i<n

So we have e;, f;, k"', hF! € Ut ,.

By the local property of Ly in Section 3.3, one can obtain the following relations
(5.1.6) by using a similar argument in [BKLW14, Proposition 3.1] for the relations
related to the generators e, f,., h,. and h,; for » > 1. Note that the generators
eg, fo, hg and h; play the roles of the respective generators f,., e,, h,; and h, in
the argument, by comparing items (1) and (2) in Lemma 3.3.3. For r > 1, we have

hofy = v*fyhy, hpey = v 2eghy,
(5.1.6) ejfo + foej = (v +v ") (eofoeg — (vhy "hg + v~ "hihg ey),
f2eq +eofs = (v +v 1) (foeofy — fo(vhy thy + v~ hihg ).
For 4,5 € [0, 7], we denote the Cartan integers by
(5.1.7) Cij =205 — 0 j41— 0ij—1.

PrOPOSITION 5.1.2. Let r > 1. The elements e;, f;, and kfl for i € [0,7]
satisfy the following relations in Uy, ,, for all i,j € [0,7]:

ko(k? -k _p)k, =1,
kk; ' =1, kk; =kjk;,
kiejkfl _ vc”-+5i,05j,0+5“6j,rej7
kifjk; ' = v 0n000 0 gy,
e;e; =eje;, §f; =1ff, V|i—j|>1,
efej + ejel2 =(v+ U_l)eiejei; V|i —j| =1,
£26 + 6,67 = (v+ o HEE,  Vi—j] =1,

ok

eifj —fje = 0y—— 5 v(i, j) # (0,0), (r, 1),

v+ ’U_l)(eOfoeo - (’Uko + ’U_lkal)eo)7
v+v 1) (e fre — e (vk, + v k1)),
v+ ’Ufl)(foeofo — fo(vko + Uﬁlkal)),
v+v ) (e f, — (vk, + vk DE,).

egfo + foeg =

effr +fe2=

T

fgeo + eofg =

~—~ ~ —~

f2e, + e f> =

PRrROOF. In light of (5.1.6) the verification of the relations is essentially reduced
to the finite type computations, which is given in [BKLW14, Proposition 3.1]. We
skip the detail. O

The following lemma is an analogue of [ BKLW 14, Corollary 3.13] which follows
by a standard Vandermonde determinant type argument.

LEMMA 5.1.3. The algebra Uy, ; is generated by e;, f; and k?[1 foralli € [0,7].

We will refer to the generators of the algebra Uj, , given by the above lemma
as Chevalley generators.
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5.2. A raw comultiplication

In this section, we shall give the definition of a raw comultiplication 3‘, which is
a key component in the construction of a refined comultiplication A€ in Section 5.3.

The raw comultiplication is originally defined by Lusztig in [Lu00] (though
this terminology was not used therein), which has geometric origin, while it is
incompatible with algebraic comultiplication in literature. To prove the positivity
of the algebraic comultiplication, in [FL15], the raw comultiplication is modified to
be the one, called refined comultiplication, which is compatible with its algebraic
definition. This construction is generalized to affine type C setting in Section 5.3.

We fix some notations to begin with. Let k = Fy, F' = k((¢)), and o = k[[¢]]
where ¢ is odd. Let V be a symplectic F-vector space of dimension 2d with the
form (—,—). Let V" be an isotropic F-subspace of V of dimension d”, and so
V! = V"t /V" is a symplectic space of dimension 2d’ with its symplectic form
induced from V; note that d' = d — d”.

Given a periodic chain L in X ;, we can define a periodic chain L” := 7" (L) €
Xy, (of affine type A) by setting L) = L; N V" for all i. We can also define a
periodic chain L' = 7%(L) € XS g by setting Lj = (L, N V"= + V") /V" for all i.
Given any pair (L', L") € XS ;i x X, 4, we set

2510 = {L € XS ylm*(L) = L, 7"(L) = L"}.
We can define a map
(5.2.1) AC:SE , — S8y ®@Spar, Vd +d" =d,
such that, when specializing the parameter v at v = /g, it is given by
(5.2.2)
AC(F)L, L1, L) = > f(L,L), VL,L'€ X4 L', L' € X, ar,
Lez:

L/,E/l
where L is a fixed element in Zj, ;,,. Note the appearance of S, 4~ in (5.2.1), which
is an Schur algebra of affine type A defined in (2.2.3).

By applying Proposition 3.1.2, we have the following analogue of [Lu00, Lemma
1.3].

LEMMA 5.2.1. Suppose that V" is an isotropic subspace of the symplectic space

V and L = (L;)iez € X, 4- Then we can find a pair (T, W) of subspaces in'V such
that

N V=V"eTeWwW, (VHt=V"aT,

(2) W is isotropic, (T,W) =0,

(3) There exist bases {z1,...,2s} and {wy,...,ws} of V' and W, respectively,

such that (z;, w;) = d;; for any i,j € [1,s],
4) Li= LNV o (LinT)® (L;NW), for any i € Z.

We can now show that the definition (5.2.2) is well defined (i.e., it is independent
of the choice of L), following the argument in [Lu00, 1.2]; see also [FL15, 3.2]. For
fixed L € X ;, let Z¢ be the set of all pairs (T, W) satisfying the first three
conditions in Lemma 5.2.1. Note that given a pair (T,W) in Z$, we have an
isomorphism 7 : T — V"+/V". Now if L € 25, pn, we define a map

w . Z~£ — ZEI’LII, (T, W) — LT’W,
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where
LZT7W: L;/@ﬂil(l’;)@([’li—l)ﬁ/a (Lﬁz—l)ﬁ/:{w € W|(U}, L/—/i—l) 60}, VZ € Z.

By Lemma 5.2.1, the map 1 is surjective.

Let Py be the stabilizer of the flag V" C V"+ in Spr(V). Let U = Uy~ be its
unipotent radical, i.e., the set of all g € Spr(V') such that g(x) = x for all z € V"
and g(y) —y € V" for all y € V"*. The Spp(V)-actions on XS ; and V restrict
to the U-actions on 2;,5 and Zj, 1., respectively. Clearly, 1 is U-equivariant and U
acts transitively on Zi, and so U acts transitively on Zj, ;. This means that if

Le Z}s », thereis g € U such that gL = L. From this, we have for all L € ZL s

(5.2.3) Yoo fLL)y= > fLyg'L)= > f(LL).

LEZ%/’LU LGZEI,L// LGZEI,L//

Therefore the definition of (5.2.2) and hence A¢ is independent of the choice of L.
Following the argument of [Lu00, Proposition 1.5], which is formal and not
reproduced here, we have the following proposition.

PROPOSITION 5.2.2. The map A¢ is an algebra homomorphism.

Now we determine how the map A® acts on the generators. Recall from Chap-
ter 2 the Chevalley generators H;, E; and F; for Lusztig algebra U,, 4 of affine type
A (a subalgebra of the Schur algebra S,, 4 of affine type A), and that H,,o, = H;,
EnJﬂ' = Ez and Fn+i = Fl

PROPOSITION 5.2.3. For any i € [0,7], we have

Ac¢ 4! " 1"—1 /—1 nyy/—1 / " 11
Af(e;)) =e; @ H  H—y ,+hi @ E/H,—; , +hi, ®F, ; ;H,.

Af(f) =/ o H/'H,_,+h@F/H, ,+h ' @E, | H/ "
At(k;) =k, @ K/K/~}

n—1-—¢*
Here the superscripts ' and " indicate that the underlying Chevalley generators lie
in S, g and Sy 4, Tespectively.
PROOF. For any L € X} ,;, we have
|Liv1/Lil = |Liga /Li| + |L /LY | + | L1 i/ Lol

The proposition in the cases for i € [1,r] follows directly from Proposition A.3.2 for
the finite type; also cf. [FL15]. The case for ¢ = 0 follows from a similar argument
to that of the case for i+ = r. Note that when r = 0, one uses the non-degenerate
symplectic form on L, /Lo = e ' L¥ /L, inherited from that of V (see [Lu03]). [

5.3. The comultiplication A€

Recall A, 4 and A], ; from (2.2.2) and (5.1.5), respectively. The set &), 4 can
be decomposed as follows:
(5.3.1)

Xoa= || Xual@), where X, a(a)={V € X, 4| [Vi/Vi_1|=a;,¥1 <i <n}.

a=(a;)€EAn 4



5.3. THE COMULTIPLICATION A€ 45

Similarly the set X ; admits the following decomposition:
(5.3.2)
fL,d = |_| ﬁ,d(a),
a=(a;)EAS, ,
where & ;(a) ={V € Xﬁ’d’ [Vi/Vicil = ai — 8ip1 — 0im, V1 < i < n}.

Given a,b € A] ,, let SfL7d(b,a) be the subspace of S ; spanned by the
standard basis elements [A] such that ro(A) = b and co(A) = a. Similarly, for
a,b € A, 4, we define the affine type A counterpart S, 4(b,a). Let A{),yagb,/’au
be the component of A® from S;.a(b;a) to S}, (b',a’") ® S, 4/(b",a") such that
by =b,+ b +b",,a; =a},+a +a’,, foric Z. We set

—is
/ !/ 1 "y __ /31! /i
s(b’,a’,b" a") = E bib; — agaj,

1<k<j<n
and )
1 1 VAR n"_n 1" /!
u(b ,a):i( g bibj — aga; + g ak—bk),
1<k,j<n—1 n—1>k>r+1

ktj>n
for all b’,a’ € A}, ;, and b”,a” € A, gv. We renormalize the raw comultiplication
A¢ to be A¢t by letting

¢ b’ .a’ b’.a b".a") X ¢
Abt,a’,b”,a” = ,US( e 8 )+u( A )Ab/,a’,b”,a”v

5.3.3
(5.3.3) A= D AT

’ ’ 1 1"
b’,a’ b’ a

: S’fhd — S’fhd’ X Sn7d”-

"
,a

PROPOSITION 5.3.1. Let d =d' +d’. For all i € [0,7], we have
At(e;) = vPoV e @ KY + 1@ v 200G DE] 4 k] @ oo Do) | K.
AT (f) = v @Ky + k) @ ofte Gy Y
+1@u tiod-DE"
A(k,) =k @ K{K) 71

Here the superscripts follow the same convention as in Proposition 5.2.3.

PROOF. The third formula on A (k;) is clear.
Suppose that the quadruple (b’,a’, b” a”) satisfies the following conditions:

b = aj, — Op; + O 7 + Op iy — Opni Ok =ay, Vk, somei € [0,r],
where k,i’s are in Z/nZ. So we have
s(b',a’,b",a") = —a! +a_,_,+0diod" and u(b”,a")=0.
Suppose that the quadruple (b’,a’, b” a”) satisfies the following conditions:
. =ay, by =al— O + O i1, Yk, some i € [0,r].
Then we have s(b’,a’,b"”,a") = a;, , — 0;0(2d' 4+ 2), and u(b”,a") =a; _,_;.

Suppose that the quadruple (b’,a’,b” a”) satisfies the following conditions:

/ / /! " -
p =0y, by =ay+0 ==~ 0= Vk, someice€ [0,7].
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Then we have s(b’,a’,b” a”) = —a}, and u(b”,a”) = —a + 6; 0d”. The above
computations lead to the first formula on AT (e;).

The second formula on A¢f(f;) follows from the following computations. Sup-
pose that the quadruple (b’,a’,b”, a”) satisfies the following conditions:

/ ! /! " .
k=0, +0k; — 0T — Opmmi=i T Orn—i» Ok = ay, Vk, somei€ [0,r].

Then we have s(b’,a’,b”,a") =a —all_,_, — 9, od” and u(b”,a”) = 0.

Suppose that the quadruple (b’,a’,b” a”) satisfies the following conditions:
;:az, k_ak+5kl—5,5’i+—1,Vk, some i € [0,7].

Then we have s(b’,a’,b"”,a") = —aj, | + d;0(2d’' +2), and u(b”,a"”) = —a;,

n—1—1*

Suppose that the quadruple (b’,a’,b"” a”) satisfies the following conditions.

by = ay, by =ay =071 + 0= Vk, someic [0,7].
Then we have s(b’,a’,b”,a”) = a}, and u(b”,a”) =al/ — §,o(d" — 1).
The proposition is proved. |

The above formulas are indeed compatible with the ones in the finite type case
for ¢ € [1,r]; cf. [FL15] and Proposition A.3.2. Recall £4;.: S, ¢ — Spq in affine
type A from [FL15]. We generalize it to the affine type C' as

e Sha— Shas for i € [0,7],c € Z,
(5.3.4) o
€hic([A) =v=M[4],  for A€ E,,,
where
(5.3.5) gi(4) = Z Apg — Z Qs

r<i<s r>i>s

In particular, we have

—cd; 5 — yCOij _
g(i,i,c(ej) =v"° Jejﬂ fé,i,c(fj) = v fj, g(i,i,c(kj) - kj'

We define the algebra homomorphism (which is a refined comultiplication from the
raw multiplication A°)

(5.3.6) A= A4 g = (Ear 0.0 @ Ear0,—ar+2)8d n—1,—(d 1))
e} ACT . STC’L,d — STC’L,d/ ® Sn,d”-

PROPOSITION 5.3.2. For all i € [0,7] and A € =, 4, we have £ ; .({A}a) =
’UCEi(A){A}d.

PRrROOF. By the definition (5.3.5) and using a,s = a_, _s, we have

(Y- Y Yo (X - )

r<i<s r<—i<s —i<r<i  —i<s<i
i<s r<—1i
1
- 5 § + E - § - § Ay
—i<r<i  —i<r<i  —i<s<i  —i<s<i
1<s s<—1 r<—1 r>1

= ( Z Z )am:% ro(A)s — co(A)s.

—i<r<i —i1<s<1i —1<s<1i
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Now if the polynomial P4 p in (4.2.12) is not zero, then ro(B) = ro(A) and co(B) =
co(A), and hence ¢;(A) = ¢;(B). Therefore, we have

€ic{AYa) =€, (Y Pap[B]) = Y Papv=PI[B]

B<A B<A
= 0= 3" Py p[B] = v {A},.
B<A
The proposition is proved. O

Let a,b € A ;. Fix L € X ;(b) (which was defined in (5.3.2)), and let
P, = Stabgy,, (24)(L). We have a natural embedding

ba Xy g(a) — Ay 4(b) x &, 4(a), L' (L, L.
It is well known that ¢, 5 induces the following isomorphism of .4-modules:
tha t Aspa) (X5 a(b) X A7 4(a)) — Ap, (X 4(a)).

Let

Xf oo = {L € X5 4(a)|7*(L) € XS 4(2)), 7"(L) € Xpar(a”)}.
Then we have the following diagram

s g(a) =——— X0 - Xy (@) x Xy g (a”),

where ¢ is the imbedding and 7(L) = (7%(L), 7" (L)). By identifying
APy x Py (X ar (@) X X v (2")) = Ap,, (X} 4 (2') X Ap,, (Xn.av(2")),
we have the following linear map

T Ay (XS y(8)) — Ap, (X5 (&) x Ap,,, (X0 (a")).

By a similar argument as for [FL15, Lemma 1.3.5], the following diagram com-
mutes:
(5.3.7)

Aspp(2a) (X a(b) X X7 4(a)) ’ Ap, (X5 4(a))

< *
Ab/,a/,b”,a” L

'ASPF (2d") (X:,’,dl (b")x X,,ch,/ (@")) L:,/ Jal ®Ll§”,a”

— Ap, (X, #(2) ® A, (Xn 0 (2")).

Agy o 2arty (X ar (B")x X, g1 (a"))
Recall A°: S} ; — S}y ® 8, 47 from (5.3.6).
PROPOSITION 5.3.3. For A € 5, 4, write
Afal) = Y A e A
ATEE, 4 ,A"EO, 4
Then h’g/’A” € N[v,v™Y] for all A, A’ and A".

PRrROOF. By Proposition 5.3.2, the proof is reduced to showing the same type
of positivity with respect to Ac. By an argument similar to [FL15, Section 2.4]
and (5.3.7), the positivity for A¢ follows from [Br03, Theorem 8]. The proposition
is proved. ([l



48 5. COIDEAL ALGEBRA TYPE STRUCTURES

Now let us study the restriction of A® to U}, ;.

PROPOSITION 5.3.4. Letd =d +d". We have a homomorphism A® : U}, ; —
U;, o ® Uy ar. More precisely, for all i € [0,7], we have

A(e)) =e, @K/ +1® E/ + kK, @ v%°F" | K/,
AR = oK) +k 'ou K F/+10E,__,,
Af(k;) =kj @ KK 7).

Recall the comultiplication A in the affine type A from [FL15] (see also [Lu00]
for a related construction). This is an algebra homomorphism

A Sn,d — Sn,d’ ® Sn,d”
defined by
AE;)=E; oK/ +12E/,
(5.3.8) AF)=F,21+K, "o F/,
AK;) =K, K/, VO<i<n-—1.
Here the superscripts follow the same convention in Proposition 5.2.3.
PROPOSITION 5.3.5. The following coassociativity holds on Uj, 4
(1R A)A = (A" ®1)A".

PROOF. Beyond type A or finite type B/C we only need to check the desired
identity when acting on eq, fy and k(j)[. This can be verified directly. O

Now setting d’ = 0, we have €] = 0,f/ = 0,k; = v=%.0 % in S | and A
becomes the following algebra homomorphism
Jnyd 2S5 — Snd
Inda(ei) = E; + v 0K F, o,
Ind(f) =Bp_1_i + 00 F K, 1,
In,a(k;) = v 00 KK Vi € [0,7].

n—1-—1

(5.3.9)

It follows by restriction that we have also a homomorphism j, 4 : U:L, g — Upna.
Thanks to Propositions 2.2.3 and 5.4.1, the same argument as in finite type B/C
[FL15] gives us the following.

PROPOSITION 5.3.6. The homomorphism jy, q sz,d — Sp.a (and gn.q Ufl’d —
U,,.q4) is injective.

Proposition 5.3.3 in our setting of d’ = 0 gives us the following.

PROPOSITION 5.3.7. The map J,.q sends a canonical basis element in Sf, ; to
a sum of canonical basis elements of S, 4 with coefficients in Nv,v~1].
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5.4. Monomial and canonical bases of U:u d

Recall 2, 4 from (4.2.1) and the notion of aperiodic matrices from (2.2.6). We
denote

(5.4.1) Eny = {A € E,,4|A is aperiodic}.

A product of standard basis elements [G1] * [Ga] * - -+ x [Gp] in S, ; is called an

aperiodic monomial if for each i, G; — RE‘Z’jJr1 is diagonal for some R € N and
J € Z. The following aperiodic monomial is an analogue of ¢4 for U,, 4 (see Propo-
sition 2.2.3).

PROPOSITION 5.4.1. For any A € E'7.  there exists an aperiodic monomial
Ca € Uy, , such that

(5.4.2) Ca = [A] + lower terms.

PRrROOF. With the help of Lemma 4.4.2, the proof is the same as that for Propo-
sition 2.2.3. |

While the aperiodic monomial (4 with (5.4.2) is not unique, we shall fix one
for each A.

The following type C' aperiodicity follows from two kinds of positivity properties
and the highly nontrivial affine type A aperiodicity in [Lu99, Proposition 6.5].

PROPOSITION 5.4.2. Let M be an aperiodic monomial in S;, ;. Suppose that
M= ca{A}q where cy € Z[v,v™1]. If ca # 0, then A must be aperiodic.

PRrROOF. Recall the canonical basis elements in S,, 4 (and in U, 4) are denoted
by *{A}q4, and note that U,, 4 is generated by E;, F; and Kl-il for all 1 < i < n.
By (5.3.9), we have 7, 4(M) € U, 4. By [Lu99, Proposition 6.5], we see that

(5.4.3) Ind(M) = Z g5 “{B}4, where gp € N[v,v™'].

B aperiodic
For A = (a;j) € Ep,4, We set

(5.4.4)
En,d(A) = {B = (b”) c en,dlbij = O,Vi < j, bij = (lij,VZ' > j, CO(B) ': CO(A)},

where the notation ‘b = a’ stands for b; +b_; + ; , + ;41 = a; for all 1 <4 < n.
In particular, if A is aperiodic, so is any matrix in =, g(A). Since (4 = {A}q+
lower terms by Proposition 5.4.1, it implies that

ma{Ate) = > A}

A~ EEnyd(A)

+ > Y hap{Bla+Ra, ha peNpv,
A—€E, 4(A) B<A-

where R, is a linear combination of *{B}4 over N[v,v~!] for those B not lower
triangular. Indeed, this can be proved by induction on the length of the monomial
(4 and utilizing the fact that the action of the Chevalley generators Fz(»a) on a stan-
dard basis element of a lower triangular matrix A gives rise to a linear combination
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of standard basis element of either lower triangular matrices A’ < A or non-lower-
triangular matrices. The latter is an observation from the multiplication formula
for the Chevalley generator Fga) in (2.2.10). So

Ina(M) = gna(d ca{A}a)
A
(5.4.5) =2, 2. Ak

A A-€E, 4(A)

t2 2D cabap {Blat ) eaBa

A A-€E, .4(A) B<A-
Observe also that c4 € N[v,v™!] due to the geometric interpretation of M. This
implies that the coefficient of “{A~}, in (5.4.5) is ca plus some terms in N[v, v 1]
since hy- p € N[v,v™!], hence nonzero. By comparing (5.4.3) and (5.4.5), we see
that A~ are all aperiodic. Therefore A is aperiodic. The proposition is proved. [

THEOREM 5.4.3. The set {{A}a|A € E}7;} forms a basis (called the canonical
basis) of Uy, ;. Also, the set {CalA € 7} forms a basis (called a monomial basis)
of Uy, 4

PROOF. For A € E}”;, we have (4 = [A]+lower terms by Proposition 5.4.1, and
$0 Ca € {A}a+2" 41 g A{A'}a; this sum can be additionally restricted to A" € =¥
by Proposition 5.4.2. Hence by an induction on A by the partial ordering, we
conclude that {A}4 € Uy, ;. Since {{A}q|A € E'¥,} is clearly linearly independent
and it forms a spanning set of U}, ; by Proposition 5.4.2, it is a basis of U, ,

Since the transition matrix from {CalA € E7F;} to the canonical basis i is uni-

triangular, {Ca|A € =77} forms a basis as well. O
The next proposition follows from Propositions 5.3.3, 5.3.4 and Theorem 5.4.3.
PROPOSITION 5.4.4. For B € /7, write

A'({B}a) = > iy {Cle © “{A}ar.

Ce:‘”’d, ,Ae@jpd,,

Then we have m CA € N[v,v™1].
We also have the following corollary of Proposition 5.3.7 and Theorem 5.4.3.

COROLLARY 5.4.5. The image of jn.q4 of a canonical basis element in U, ; is a
sum of canonical basis elements of U,, 4 with coefficients in N[v,v~1].
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CHAPTER 6

Realization of the idempotented coideal
subalgebra U¢ of U(sl,)

In this chapter we introduce the transfer maps ®4.4—rn OD Schur algebras S.d
and Lusztig algebras Uj, ;. We then construct algebras Uj, (or U;) from the
projective system of algebras {(U}, 4,65 4_,)}a>0. We show that Uj, (or U) is
isomorphic to an (idempotented) coideal subalgebra of U(f/:\[n), and (U(ﬁA[n),U%)
forms an affine quantum symmetric pair. The canonical basis of U, is established

and shown to admit positivity with respect to multiplication, comultiplication, and
a bilinear pairing.

6.1. The coideal subalgebra Uj;, of U,
Recall [Lu00] there exists a homomorphism x,, : S, — Q(v) such that
Xn(Ei) = xn(Fi) = 0, xn(H;) = v.
Following Lusztig [Lu00], we introduce the transfer map of affine type C,
Bdd—n  Sn.d = Sh.d—n
which is by definition the composition of the following homomorphisms (for d > n)

(6.1.1) d—n * Sn.a A Shd—n®Snn — 1®Xp $ den-

The following can be proved similarly to [Lu00] in affine type A and [FL15] in
type B/C.

PROPOSITION 6.1.1. For i € [0,7], we have ¢34, (e;) = e}, ¢4, (fi) = f],
P,a-n (ki) =K.

Now we consider the projective system {(Uy, 4,85 4_,,)}a>0 and its projective
limit:

U?C’L, = mUn d — {.I = (Id)deN S H Un d’¢dd ”(Id) = Td—n Vd}
d deN
Denote by ¢y, : «~ — Uj, , the natural projection. The bar involution on Uy, ,
induces a bar involutlon : U, oo = U}, o, since it commutes with the transfer

map (6.1.1). Similarly, we have an integral version: Ul on = @Un,d;ft- Since

Q) ®a Uy, 14 =Uj, , for all d, we have Q(v) ®4 U;, . 4 =Uj,
Recall from Sectlon 2.3 the counterparts of the above constructlons in the affine
type A setting, where we drop the superscript ¢. We have the following commutative

53
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diagram

In,d
U,as —— Una

¢;l,d7nJ/ J/de,dfn

In,d—n
¢ ,
n,d—n Un,dfn

That is, ¢d.d—n © In,d = In,d—n © ¢é,d—n' Thus by the universality of U,, », we have
a unique algebra homomorphism

In ¢ U;L,OO — Un,oo;

such that ¢q 0 3, = Jn.a © 0.
We define elements e;, f; and ki for all 0 <i < r in U, 00 by

(€)a = €ia: (fi)a = fia, (k7 )a=kjj, VdeN,
where the d in the subscript of e; 4 etc. indicates e; 4 is a copy of the Chevalley

generator e; in Uy, ;. Let Uj, be the subalgebra of Uy, . generated by (the Chevalley

generators) e;, f; and kl-il for all 0 < ¢ < r. Since ), q is injective for all d, so is
In 2 Uy, oo = Uy oo Tt follows by (5.3.9) that the image of Uy, under j,, lies in U,,.
Summarizing, we have obtained the following.

PROPOSITION 6.1.2. There is a unique algebra imbedding 3, : U;, — U, such
that

Inle;) = B + v K, F,, 1,
(612) .]n(fz) = En—l—i + Uéi’OFiKn_l_i7
(k) = p oot K KL Vi € [0,r].

n—1—1»

Recall from Proposition 2.3.2 that U,, = U(g[n) At the v = 1 limit, the images
of the generators under 7, are in the fixed point subalgebra by an involution 67 of
sl (which switches E’s and F’s); for an illustration of 677 see Figure 1.

Recall A¢ from (5.3.6). We have the following commutative diagram

A€
U’:L,d/er” —_— U’:L,d/ ® U’Il,d”
¢Z’+d/’,d’+d”—(u+b)nJ/ Jr¢sl/1d/,an®¢d”,d”—l;7z
[ A€ c
Un,d/er”f(aer)n - Un,d’—an ® Un,d”fbn

for any a,b € N. By universality, these A¢ (for d’,d”,n) induce an algebra homo-
morphism

A U;, o — Uj, o ®Up .
Moreover, the image of Uf, under Af is contained in Uf, ® U,, by Proposition 5.3.4.
Summarizing, we have the following.

PROPOSITION 6.1.3. There is a unique algebra homomorphism A€ : U, —
Ut ® U, such that, for all i € [0,r],

(6.1.3) A'(e)) =€, 9K; + 1 QE; + k; @ v%°F,_1_;K,.
(6.1.4) Af)=F 0K, 1 i +k '@v %K,  F,+10E, 1,
(6.1.5) A'k) =k @ KK 1 o
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This algebra homomorphism is coassociative by Proposition 5.3.5 in the sense
that

(6.1.6) (1®A)AS = (A°® 1)A".
As a degenerate case for (6.1.6), we also have
Aojgp=(n®1)0 A"
Summarizing the results from Propositions 6.1.2 and 6.1.3, we have proved the

following.

THEOREM 6.1.4. The algebra U¢, is a coideal subalgebra of Uy, and (U, UY)
forms an affine quantum symmetric pair in the sense of Kolb-Letzter [Kol4]. (see
Figure 1 for the relevant involution.)

The following is a variant of [Ko14, Theorem 7.1] in our setting and our nota-
tion.

PROPOSITION 6.1.5. For n = 2r 4+ 2 with r > 1, the Q(v)-algebra UY, has a
presentation with generators e;, f;, and kiil for i € [0,r] and relations given in
Proposition 5.1.2.

Note that the first relation in Proposition 5.1.2 (which is not present in [Ko14])
simply reflects the fact that various quantum affine algebras arising from geometry
in this paper are always of level zero.

For n = 2 (i.e., r = 0), the imbedding j; : U§ — Uy = U(ﬁ/[\g) in (6.1.2) is
defined by

eg— Ep + ’0711<0F17 fo — E; + ’U71K1F0, ko — K()Kl_l.

We shall give a presentation for U§, which was excluded from Proposition 6.1.5
above.

PROPOSITION 6.1.6. The Q(v)-algebra U§ has a presentation with generators
ey, fo, and kad and the following relations.
(6.1.7) koky ! =1, koeo = viegky,  kofy = v *foko,
(6.1.8)  epfy — [3legfoer + [leofoe] — foep = [3]!(v — v~ )eo(ko — ky *)eo,
(6.1.9)  fieg — [3]f3eofs + [3]foeofs — eofs = —[3]!(v — v~ Hfo(ko — kp ') fo.

Here [i] = == and [a]! = [T,<;<,[i]-

PROOF. Note that Uy is of level zero, so we have KoK = 1. Thus 7,(ko) =
K3. From this, we have the identity (6.1.7).

We now prove the identity (6.1.8). Since j,, is injective, it suffices to show that
(6.1.8) holds after applying 7,. In other words, it suffices to prove the identity in
Us,. Let S(eg,fy) denote the left hand side in (6.1.8). We define S(eg, E1) and
S(ep,v 'K 1Fy) in a similar fashion. By a lengthy calculation involving 4 x 24 = 64
terms, we have

(6110) S(eo, El) = [[3]]'(’[) - ’Ufl)eokoeo.
Similarly, we have

(6.1.11) S(eo, v 'K1Fo) = —[3]!(v — v !)eok; "ep.
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So the relation (6.1.8) follows by adding (6.1.10) and (6.1.11). Similarly, one can
show Eq. (6.1.9) and we leave the detail to the reader.

Now we invoke [Kol4, Theorem 7.1], which says no additional relations are
needed. This finishes the proof. |

6.2. The algebra U; and its monomial basis

Let

(6.2.1) Zy, = {X = (N)iez|hi € Z,Ni = Mgy Mi = Ay, Vi, Ao, Apg1 0dd}.
Let |[A| = A1 + ...+ X\,. Define an equivalence relation = on Z¢, by letting A =~ p if
andonly if A\—p=(...,p,p,p,...), for some even integer p. Let Z% / = be the set
of equivalence classes with respect to the equivalence relation ~; and let A be the
equivalence class of \.

Fix A\ € Z;/ =, we define the element 15 € Uy, ., as follows. (13)s = 0 if
d # || (mod 2n). If d = |A| + pn for some even integer p, we have (15)a = Ixypr-
Here A + pI is understood as A+ (...,p,p,p,...), and Lxipr € Uj, 4 is understood
to be zero if there is a negative entry in A + pl.

DEFINITION 6.2.1. Let Ufl be the Uj-bimodule in Uj, , generated by 15 for
all X € Z5/ ~.

It is clear that U is a subalgebra of U,  generated by 15, e;l5 and f;15
for all ¢ € [0,7] and X e Z¢/ ~. Similarly, we define the A-subalgebra 4U¢ of
U;, ., generated by ega)lx and fi(a)lx7 for all ¢ € [0,7] and @ € N. So we have
Qv)®a4 AU; = U:L The bar involution on Uj, ., induces a bar involution on Ufl,
which we denote by ~: U, — US. Note that it leaves the elements ega)lx and
fi(a)lx fixed, and hence we have ~: 4,U¢ — U<,

We denote
(6.2.2)

én = {A = (aij) € MatZXZ(Z)| 0,05 Ar41,r+1 € QZ+ ].,
aij >0 (i # j), aij = a—i—j = @iy jtn(¥i, )},
2% = {Ac §n|A is aperiodic}.

For A € En, we shall denote by

|Al =d
if Zi‘):tonﬂ > jez @ij = 2d + 2 for some (or each) ig € Z. We set, for d € Z,
(6.2.3) Sha={A€E,||A=d}, E,=Uina

Also clearly we have =, 4 C Z,, 4.
We define an equivalence relation ~ on Z%” by

(6.2.4) A~ B iff A— B = pl,, for some even integer p,

where I, = >, ..., E", and let A be the equivalence class of A. Whenever there

causes no ambiguity, we write I for I,,. We define ro(A) = ro(A) and co(4) =
co(A), and they are elements in Zf,/ ~. We can then define the element (3 in
U¢ by (Cz)a = 0 unless d = |A| mod 2n, and if |A| = d + p/2n for some even



6.2. THE ALGEBRA Ufl AND ITS MONOMIAL BASIS 57

integer p, ((3)a = Ca4p1, Where (aypr is the monomial basis attached to A+ pl in
Theorem 5.4.3. Since ¢f ; , (Catpr) = Cat(p—2)1, We see that (5 € Us.

The following linear independence is reduced to the counterpart at the Schur
algebra level, by an argument similar to [LW15, Theorem 5.5].

PROPOSITION 6.2.2. The set {§g|g € %/ ~} is linearly independent.

To show that (7 is indeed a basis for Ufl, let us take a closer look at the
behavior of the monomials at the Schur algebra level. For simplicity, we write

f_(ix1) for e; for all i € [0,7]. For A € A5, 4 and a pair (i,a) where i = (iy,...,1s)
and a = (a1,...,as) with 0 < i; <n and a; € N for all j, we set

Miax = fi(l(ll)fi(jz) . fi(saS)lA c U:L,dv
where 1) = [D,]q is the standard basis element of the diagonal matrix whose

diagonal is A\. Then gM; 5 » exhaust all possible monomials in U;y 4- The following

proposition is crucial in showing that the various £ ; forms a basis for U:l Recall
that I =3, ,., Ei.

PROPOSITION 6.2.3. Fiz a triple (i,a, \) with |A\| = d. There is a finite subset
Tiax of {A € E2P||A| = d} such that

d+pntia x+2pl = Z caC,,a, Vp, where cq € A is independent of p.
AEIi,a,A
PROOF. By the multiplication formula for simple generators, we see that the
standard basis element [A], possibly periodic, appearing in g4 pnMia r+2p1 is stabi-

lized for p > 0. In other words, there is a finite set J; a x in =, consisting of certain
A subject to |A| = d and

d+pnMi7a7>\+2pI = Z gAJ)[A + 2p[]a VP
A€T:,a,x
where g4, € A depends on p in general.

Note that Jj a, can be constructed in the following way. Fix a p large enough,
so that when we multiply out the monomial g4pnMia rt+2p7 in terms of standard
basis, we do not miss a term because that term has a negative entry in its diagonal.
Collect all the matrices, say A, parametrizing the standard basis element appearing
in gypnMiart2pr, and further throwing into this set all matrices B such that B <,
A. This resulting set is again finite. J; a x is then defined to be the set of matrices
obtained by subtracting the matrices in the previous set by 2pl.

Let Z; a  be the subset of J; a  consisting of aperiodic elements. It follows by
Theorem 5.4.3 that

dtprnMiaatopr = E cApCpa, VD,
AGIi,a)\

where c4,, € A depends on p in general.
By definition, we have
Patpn,dtpn—n (d+pnMiar+2pr) = dipn—nMiar+2pr—2r,
(rb(ci—&—pn,d—&-pn—n(CQpA) = Cp—2A7 VP-
This implies that

_ : ¢
CA,p = CAp—1, if C2(p—1)A #0¢€ Un,dJr(;D*l)n'
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For large enough p, ¢,,_,,4 is obviously nonzero, and so c4,, = ca is independent
of p > 0. Recall that the set Z; 5 5 is finite. So we can find a pg such that c4 , = ca
for all p > py and for all A € 7; 5 ». The proposition is thus proved. ]

Now we return from Lusztig algebras to the algebra U:L
PROPOSITION 6.2.4. The set {Q;\g € 2%/ ~} forms a basis for U, and an
A-basis for 4UE.

PROOF. Similar to the element 4M;a x, we can define its limit version M, 5 in

U¢. Moreover, these monomials exhaust all the possible monomials in Ufl The
proposition now follows from Proposition 6.2.3. O

6.3. Bilinear form on U
Recall that for i € [0,7], e; = Y.[A] where A — E;™"" is diagonal, f; = >_[4]
where A — E;’Z'H is diagonal, and k; = )7, s« ., pritrT Ay

Imitating McGerty [Mc12] in affine type A, we define a bilinear form (-, )4 on
S;, q as follows:

([A], [AN)a = 64, a0 20 # XKL,

where L' € X ;(ro(A")). With the help of the identity (4.2.10), the same argument
as in [Mc12, Proposition 3.2] gives us the following.

PROPOSITION 6.3.1. We have ([A] ¥ [B], [C])q = ([B], v¢4~%at [A!] % [C])q.

COROLLARY 6.3.2. For alli € [0,7], we have the following:

(1) (es[As], [A2])a = ([A1], vkifi[As])a.
(2) (£i[A1], [A2))a = ([A1], v eik; ! [Ag])a.
(3) (ki[Aa], [A2])a = ([A1], ki[A2])a-

PrOOF. We prove (1). If A — E;™"" is diagonal for some i € [0,7], then

da =co(A);y1 and dar =ro(A); = co(A); — 1.

Hence dg — dat = co(A);+1 — co(A); + 1. Thus, we have
Uki(L,L/) _ 6L7LIU1+CO(A)7L+1*CO(A)'L’ — 5L7L/UdA7dAt7VL,L/ c Xyid(CO(A)),

which implies (1). .
We now prove (2). If A — E;*"! is diagonal for some i € [0, 7], then

dA = CO(A)i and dAt = I"O(A)H_l = CO(A)H_l —-1- (51‘)0 — 5i,n-

So da —dat = co(A); —co(A)it1 + 1+ 00 + 0;n. Hence, if (L,L’) subject to
Le Xﬁ’d(co(A)), L,CL,L;= L;- for all j € [0,r]\{:}, then

vla=date (L, L) = o000k ey (L, L)
_ ,U1+572,0+67H"U7276""0767"’"eiki_1(L, L/) — 'Ufleiki_l(L’ L/)

Part (2) follows.
Part (3) follows from the fact that d4 = d4: = 0 if A is diagonal. O
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The same argument as in [Mc12] shows that there is a well-defined bilinear
form (-,-) on U, given by
n

(,y) = thjolo@dwm Ydipn)dipn: VT = (Ta),y = (ya) € Ufr
d=1

REMARK 6.3.3. The same adjointness property as in Proposition 6.3.1 holds
for the bilinear form (-, -) on U,

6.4. The canonical basis of U¢ and positivity

As we have set up all the preliminary preparation, the constructions and proper-
ties of the canonical basis for U¢, can be established without further difficulty. Actu-
ally as the technical proofs for the intermediate steps are literally the same as in the
affine type A setting [Mc12] and/or in the finite type B/C setting [LW15,FL15],
we will formulate the statements while referring to those papers for detailed proofs.

With the help of the bilinear form (-, -) and Theorem 5.4.3, the same arguments
as in [Mc12], or [LW15] prove the following.

PROPOSITION 6.4.1. For any A € 77, we have
¢Zl+pn,d+(p—l)n({2PA}(1+P") = {QP—QA}d-l-(p—l)na Vp > 0.
Moreover, we have
{2pA}dipn = (pa + Z cA,B,p CopB
BEEP:B<A
with ca,B,p € A independent of p for p>> 0.

Recall 2, and 29 from (6.2.2).

DEFINITION 6.4.2. For any Ae é%p/ ~, an element by € U:l is defined as
follows: (bz)a = 0 if d # |A| mod 2n; If |A| = d 4 sn for some integer s, we set

(bA\)dJranrpn - {QpA}dJranrpna Vp Z Do, for some fixed Po,
and for general ¢ < po, we set (b3)d+sniqn = ¢(c:l+sn+p0n,d+rn+qn({2poA}d+5n+p0n)'
The fact that b; as defined above lies in U¢ follows from Proposition 6.4.1.

Moreover, ¢ 7 = b;+ lower terms. The next theorem now follows from the existence
of the monomial basis {¢;} for U¢; cf. Proposition 6.2.4.

THEOREM 6.4.3. The set B := {bg’g € éflp/ ~} forms a basis for U,

The basis B, is called the canonical basis of UY,.
As a consequence, we deduce formally the following results by the same argu-
ments in [LW15] and [FL15].

PROPOSITION 6.4.4. The signed canonical basis {j:bg‘jl\ € 2%/ x} is charac-

terized by the bar-invariance, integrality (i.e. bz € AUY,), and almost orthonormal-
ity (i.e., (b3.b3,) =065 7 mod v 1Z[[v]]).

The canonical basis of U;L enjoys several remarkable positivity properties as fol-
lows. The proofs use the same arguments as in [LW15] and [FL15]. In particular,
for the positivity with respect to comultiplication, the positivity of the canonical
basis in the Lusztig algebra U, ; as in Proposition 5.4.4 is used.



60 6. THE IDEMPOTENTED COIDEAL SUBALGEBRA U:L OF U(s’.\[n)

THEOREM 6.4.5. The structure constants of the canonical basis Bﬁl lie in
N[v, v~1] with respect to the multiplication and comultiplication, and in v~ N[[v~]]
with respect to the bilinear pairing.

6.5. Another presentation of the algebra UfL

We shall give a more familiar description of the algebra Ufl We start with
introducing the limit version of the imbeddings j, 4.

Recall Z,, from (2.3.1) and Z¢, from (6.2.1), and there is an inclusion Z{, C Z,.
Recall the notation |= from (5.4.4), and we extend it further to Zf, x Z,, as follows.
Given a pair (A, \') € Z§, X Z,,, we write N &= X if

N =N+ A, + 0+ 0,11, V1I<i<n.
We write X' = X if A |= A for some ) in the equivalence class A and the notation A
is defined in Section 2.3. (In this case, we shall assume that X' = \.)
~ Rgcall 2(Un)s fl"OIfl Sec/t\ion 2.3. We set 5(Uy,)5 = 13U5,15. For a quadruple
(A, 13, N, @) such that A = X and i’ = [, we define a linear map
Iv g 8Un)s — w(Un)s,
to be the composition
A(U5)5 = Uf =5 Upoo — w(Un)y,
where the first map is a natural inclusion and the third one is the projection. Set
na= 1 wpsess@s— 11 #Us.
NEX, B = NEX, i =
Recall the imbedding 3, : U}, o, = Uy, o from Section 6.1. We have
In( ﬁ(U:z)X) - H ﬁ’(Un)X"
NEX, =R
The injectivity of 7, implies that the homomorphism j5 a is injective.

Now a modified form of UY,, denoted by Ufl_’alg, can be defined algebraically in
a standard way as
:L,alg = @ﬁ,XEZ;/% ﬁ( :L@lg)}:a
where

ﬁ( . %@lg)x _ U;l/( Z (kz _ U*/JiJr/J«z‘Jrl)U:L 4 Z Usl(kz _ U*)\i‘i’)\ii»l))'

0<i<r 0<i<r

The algebra homomorphism 7, : Uf, = U,, then induces a linear map
T psas #(Unags — w(Un)x

such that the following diagram commutes:
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Set
i H N N (U ag)s — H
NEX NEX
mER R

Since 3, is injective, ji,ﬁ is injective.
By definition, there exists a unique linear map

Dgagns: #(Unag)s — PpegacaUn.a(b,a),
where Uj, ;(b,a) = 1(Uj, ;)1a, such that the following diagram commutes:
UC

n T ﬁ(-c )/X

n,alg

¢JJ/ l%,alg,ﬁ,i

c , _TT¢
n,d @beﬁ,ae)\Un,d(b’ a)
From this we have constructed an algebra homomorphism
‘T¢ c
¢d,alg @A JAEL, /"‘¢d alg, i\ Un,alg — U"ad'
Since ¢q a1 commutes with the transfer maps, i.e., ¢dg—nalg = Odd—nPdalg. W

obtain an algebra homomorphism v : U¢ — Uj, »- Observe that the image

n,alg
of this homomorphism is exactly U;L by considering the image of the idempotents

15. Therefore, we have a surjective algebra homomorphism: 1 : Un 1 alg — Ufl
By restriction, we have 1 5 : (U5 )z = a(U5,)5, for various u,)\ Since j5 5
and J J5 p are injective, and Ba=nha wﬁ 5, We conclude that ¢A b and hence v is

1nJect1ve Summarizing, we have estabhshed the following.

PROPOSITION 6.5.1. The map 9 : U — U;L is an algebra isomorphism.

n,alg

Therefore, a presentation of U‘ is reduced to finding a presentation of Un alge
and the latter can be obtained by modifying the definition/presentation of Uf, as
given in Propositions 6.1.5 and 6.1.6, in a way similar to Lusztig’s presentation for
modiﬁed quantum groups [Lu93]. The finite type counterpart of a presentation of
can be found in [BKLW14].

n alg






CHAPTER 7

A second coideal subalgebra of quantum affine sl,

In this chapter, setting n = n — 1 we consider a subvariety of X} ;. and study
its corresponding convolution algebra S7', which is a subalgebra of S, 4 We in-
troduce Lusztig subalgebra Uy, ; of the -Schur algebra S} ;. We study the prop-
erties of a comultiplication on UY' ,, which allow us to form a projective system
{(U} 45 0% 4_n)}a>0 and then two distinguished algebras Uy and UJ. We show

that (U(sl,), UY) forms an affine quantum symmetric pair. The canonical basis
of U is established and shown to admit positivity with respect to multiplication,
comultiplication, and a bilinear pairing.

Recall n = 2r + 2, and we now set

n=n—-1=2r+1 (r>1).

7.1. The Schur algebras of type 5

We shall construct Schur algebras S}/ ; and Lusztig algebras Uy ;. These alge-
bras are defined as the affine counterpart of [BKLW14], and many basic properties
of these algebras are established following [FL15, Section 5].

Recall the set =, 4 from (4.2.1). We introduce a subset = ; which consists of
matrices A € Z,, 4 whose (r + 1)st row and (r 4+ 1)st column entries are all zero
except a,y1,41 =1, i€,

(7.1.1) Ery={4e End|@ri1,j = Ori1,j, Qipi1 = 641, Vi, j € Z}.
Introduce the following idempotent in the algebra Sy a:
(7.1.2) b= ) AL
AEEf‘id:A diagonal
and form the following subalgebra of S}, ;:

(7.1.3) ijf,d :jTS:z,djT'

Then j, becomes the identity of 87, which will sometimes be denoted by 1 when
there is no ambiguity. Note that the algebra S”', is the generic version of the
convolution algebra on pairs of lattice chains in the set X', := {L € X} ,|L, =
Lyy1}. The set {[A]|]A € E];} forms a basis of S} .

63
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Introduce the following elements in S’ ;:

& =jrejr, L =JrLijr,
ki =5,k ., Vie[o,r—1],

(7.1.4) h¥' =j,h¥y, Vaeo,7),

. k, — k',

tr =Jr (frer + ﬁ).}r-
We note that

Jrerdr =0, jofrjr =0, jrefijr = 0.

Lusztig algebra (of type n) Uy, is defined to be the subalgebra of S} ; generated
by the Chevalley generators &, f;, R;tl, for all i € [0,7 — 1], and t,..

Now let us present the type A analogue of the above construction. Recall from
Section 2.2 in Chapter 2 that ©,, 4 parametrizes a basis of S,, 4. We set

@f,d = {A S @n,d‘ai7r+1 = O, Ar41,5 = O, VZ,] S Z}
Similar to j,., we define the following idempotent in S,, 4:

J, = > [A].

Ae€®©?' 1A diagonal

As the algebra J,.S,, ¢J, is canonically isomorphic to S, g (recall n = n — 1), we
shall simply identify S, 4 = J,-S;, ¢J below. Let

J.E;J,, if i €[0,r —1],
E;={J,E, 1 EJ,, ifi=r

JrEi+1J7n, ifi € [r—l—l,n—l].

J.F.J,, if i €[0,7—1],

F; ={J,F,F,.J,, ifi=r
JrFi+1Jr7 ifie [7’"‘1,11—1].

J, KT, if i e [0,r —1],
Kz:‘tl = JrK;thiilJrv ifi=r,
JKILT,, ifie[r+1,n-1].

il J.H,, ifac|0,r]
“ JHELT,, ifacr+1,n].
For convenience, one can extend the range of index ¢ from the interval [0,n—1] to Z

by setting E, = Ei_m for all i € Z, etc. We shall identify U, 4 with the subalgebra
of Sp.q generated by E;, F; and Kfl for all i € [0,n —1].

7.2. The comultiplication

Recall the algebra homomorphism A€ : Sy.a = Sy.a ® Sp,ar from (5.2.1), for
d’,d" such that d = d’ 4+ d”. We shall show its restriction to the subalgebra U”',
(denoted by the same notation) relates to the constructions above in Section 7.1.
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LEMMA 7.2.1. We have an algebra homomorphism A : U, — UL, U, 0.
More explicitly, for i € [0,r — 1], we have
Af(&) =¢é, ® H/ H/"1 ,+h]

—1 Ny —1 ./ 0/ !/
noi— Thip @EH 7 +hy F Hy .

)

)=f @ H/'H]_; +hj o F/H]_,_, +h ' o B_,_H/ "
Af(k;) =k, @ K/K/~1

)

B>
-
~—~
e
Il

n—1—z-

PRrROOF. The fact A‘(UﬂZ 2) € Uy ® Uy gv follows once we establish these
explicit formulas. N
We observe that A¢(j,) = ji. ® J//. So, by Proposition 5.2.3,
At(&:) =, @ 7 (e @ M, HIZ) + b} @ BYHIT,
+hi, @ F H L) @]
& A R e BT R, @ B,
The formulas for A¢(f;) and A¢(k;) are similarly proved. The last formula can be
proved in exactly the same manner as that of [FL15, Lemma 5.1.1]. O

Following the definition of ¢, ,, in (6.1.1), we define the transfer map
giidfn : Sf.,d — Siz,dfn
to be the composition

1® n
®Spn —s 87

Zc
Jt . QI \ Jt
d,d—n * Sn,d S n,d—n

n,d—n
where the homomorphism xy : Sp.n — Q(v) is the generalized signed representa-

tion of S, n. We have Xn(Ei) = Xn(Fi) =0 and x,(H,) = v for all i € [0,n — 1],
a € [0,n]. Thus by Lemma 7.2.1, we have for all ¢ € [0,r — 1],

(721) ilz,dfu(éi) = é’i’ ¢ilz,d7u(fi) = f.2/7 fiz,dfn(f(i) = R;’ le,dfn({‘””) = E;“

Recall A®: S} ; — 8], , ®8S,, 4 from (5.3.6). Let us consider the restriction
A‘|S.md, which will be denoted by A”".

PROPOSITION 7.2.2. We have an algebra homomorphism A7 : ] ; — S}, ®
Suav, and by restriction, a homomorphism A : U} ; — U}y @ Uy gv. More
explicitly, for all i € [0,r — 1], we have

AT(e;) =& @ K{ + 10 B/ + ki ® v F_,_KY,
AME) =T oKy, + K T ou K R+ 1o K],
A'(ki) = ki @ KIK T,

A'E) =t 9K/ + 12 E! + 1@ vK/F/.

(7.2.2)

PROOF. Since A”(j,) = j. ® J;, we see that A™(S] ;) C S} ; ® Sy ar.

So it remains to establish the formulas. The first three follow by A% (j,) = j. ®
J”” and Proposition 5.3.4. We now prove the last one on A’(t,.). The superscripts
"and " are dropped for simplicity for the rest of the proof.
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By applying Proposition 5.3.4 and using that j,e,.j, = 0 and j.f.j, = 0, we
have
(7.2.3)
A (efrerjr) = jofrenys © 3K Ko J + ok e © 3, K F BT,
+10J,E.n1EJ, +10 3K, 1 F, F 1K+ ke jr @ 3 Er 1 Fro 1 K J
By using the fact that

J. K. J, = H;1;JTKT+1JT = I:IrJrlerErFrJr = OerFrJrlErJrlJr =0,

we have
N i .
3K, 1 F,Fo K3, = Ho FH = 0K F
JE, 1F, K, J, =3, (F By + qujl_ivK[*llM H, !
= _H’“Zl_ UH{“H 1

So we can rewrite (7.2.3) as follows:
Aﬂ(jrfre”‘jr) = jrfrerjr & Kr +1® Er +1® Q)KTFT

. . ' I:Ir - I:I_l . . I:Ir - H7
+.]7‘kr_1.]r ® Hr+1 ,; +Jrk7‘.]r ® -
v—v v
L - e i1y o HeHepn H,'H
=t 0K, +1QE, + 1 ®vK,F, +Jrkr_1.]r & 7-’_1 —Jrkejr ® ﬁ

Finally, we have

v ke =kt H,'H,| HH,
A7 (Jr _1 Jr) *.]rkr.]r & +1 _.]rk .]r _+1 .
v— v—v" v—v
The formula for A% (%,.) follows by adding the above two equations. O

Now set d’ = 0. Since S}, = Q(v), we obtain an algebra homomorphism
(7.2.4) Tua = A"|w=0 : S} y — Sua,
which is injective by Proposition 5.3.6. Moreover,
& =f =0k =v 0t =1€8), Vie[0,r—1].

The following can now be read off from Proposition 7.2.2, while the injectivity of
Jin,q follows from a similar argument in [FL15].

PROPOSITION 7.2.3. We have an imbedding of algebras
Jond - S'xjf,d — Snd-
Moreover, for all i € [0, — 1], we have
(7.2.5) Ten,a(€:) ZVEZ‘ + 0 0K Fai, Jon, JE) =B + 00 F K1,
Tona(Ki) = TOKK Pna(tr) = E, + K, F, + K,.

In particular, we have an imbedding of algebras p, 4 : Uff,d — Uqa-
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7.3. The monomial basis of Uff’ a

Next, we shall construct a j--monomial basis of Uff 4» Which is bar invariant
and preserved by (bf;, d—n- The compatibility of a monomial basis with ¢g’ dn T€-
quires additional work in the current y setting than the previous c-case (compare
Theorem 5.4.3), and this will be carried out by a similar procedure as in finite type
t-version in [LW15].

Let A be a matrix in Eff’d. Let dlt;(A) be the Z x Z matrix obtained from A
by deleting the kth rows and columns for all £k = ¢ mod n. Note that dlt,;(A) and
A share the same [—r,7] x [—r,r]-minors. The resulting matrix dlt,1(A) = (b;;)
satisfies

(731) b*i,*j = bij = bi+n,j+na Z bij =2d+ 1, boo € 27Z + 1.
i€[1,n],jEZ

We shall denote by

(7.3.2) Eflz’d = {B = (b;;) € Matzxz(N)|B satisfies (7.3.1)}.
In particular, we have a bijection

(7.3.3) dltyy1 )y — 21, A dlteg(A).

DEFINITION 7.3.1. A matrix A in =)', is called j-aperiodic if dlt,;1(A) is
aperiodic.

Toward the construction of a suitable monomial basis, it is convenient for us

to freely use parametrization of standard basis for S}’ ; by matrices in E‘Zl” 4 Or E) g
under such a bijection, and thus it makes sense to say things like “[A] € S,
for A € E'ffd”. We shall add the index n to the old notation to denote E"*1

h,h+1 h,ht1 —h,—(h+1 h,h+1
it — phttt o gt (FD , !

corresponding to EM+1 , and so on, under

the bijection. (Note that the former has period n, while the latter has period n.)
LEMMA 7.3.2. Let A,B,C € é'ﬁd. Let R be a positive integer.

(1) Assume that B — RE(Z"?H is diagonal for some h € [0,r] and co(B) =
ro(A). Assume further that R = Ry + --- + Ry and the matriz A satisfy
one of the following conditions:

aom = 0, a1 x+i = Ry, a1 > Ry, a; =0, ifh=0, k>1;

apm =0, any1k4i = Ri, any1kx > Ro, any1,; =0, ifhe[l,r—1];

arm =0, @rg1k+i = Riy arp1k > 2R, aryp15 =0, ifh=r, k>r+1;
forallm >k, i€ [1,l] and j > k+1. Then we have

!
[B] «[A] = [A+ Z Ri(Eg)’fH - Eg;:l’kﬂ)] + lower terms.
i=0

(2) Assume that C — REg::l’h is diagonal for some h € [0, —1] and co(C) =
ro(A). Assume further that R = Ry + --- + R; and A satisfy one of the
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following conditions:

a1m =0, ao i = Ry, agry1 > Ry, agy =0, if h=0, k+1<0;
alm:(), a07k+i:Ri, apo ZQRI, aoj:O, th:(),k—kl:O,
aht1,m =0, appts = Riy anpy1 > Ry, ap; =0, ifhe[l,r—1];

forallm<k+1,i€[0,l—1] and j < k. Then we have
l
[C]«[A] =[A - Z Ri(Eg’fH - Eg:l’kﬂ)] + lower terms.
i=0
Note the above multiplication formula for h = r corresponds to multiplication
with the new generator t, in Sy 4

PRrROOF. All cases are directly taken from Lemma 4.4.2, except the third case in
(1), which can be obtained by applying Lemma 4.4.2(1), Cases 3-4, and
Lemma 4.4.2(2), Case 3. O

A gi-aperiodic monomial is by definition of the form [Xi] - % [X,,] in 87,
where X; € 27" satisfies the conditions that either X; — RES for h € [0,7] or

X — RE;Lng’h for h € [0,r — 1] is diagonal for each i. The same argument as for
Proposition 2.2.3 (or Theorem 5.4.3) gives us the following.

PROPOSITION 7.3.3. For each aperiodic matriz A in éfd, there exists a ji-

aperiodic monomial ya in Sff’d such that ya = [A] + lower terms.

We freely switch the index set for {y4} back to A € Eff’ 4 under the bijection
(7.3.3). By Proposition 7.2.3, 5, 5 : U, = Uygq is an imbedding, and we shall
regard Uy’ ; € Uy g by identifying U}, with its image under Jtn.q- Recall that Uy g
admits a canonical basis {{A}4|A € E4 4 p-aperiodic}.

We have the following analogue of Theorem 5.4.3.

PROPOSITION 7.3.4. The set {{A}4|A € E' ; p-aperiodic} forms a (canonical)
basis for Uﬁd. Also, {yA|A € Ef&d Ju-aperiodic} forms a monomial basis for Uff,d.

PROOF. We have an imbedding g, 4 : U}, — Uy by Proposition 7.2.3. A
counterpart of Proposition 5.4.2 makes sense in our setting. We also have Propo-
sition 7.3.3. Therefore we have all the three key ingredients available to rerun the
argument for Theorem 5.4.3. The proposition is proved. (I

Note that y4 is not bar invariant in general. As in the finite +-setting [LW15],
this monomial basis {y4} is not preserved by the transfer map (bfin_ 4» and thus this
basis is not directly applicable for studying the limiting algebra U%' in the following
Section 7.4. To overcome this obstacle, we introduce the hybrid monomial hy
obtained from y 4 by replacing every factor [X;] in the monomial y4 by its associated
canonical basis element {X;}4 if X; is of the form X; = X(D,R) := D + RE;" "
for some diagonal matrix D and for some R. We still have {X;}, € SI', thanks to
the fact that {X;}q € [Xi] + > <pcp AX(Dy, k) for some diagonal matrices Dy;
see [LW15]. Hence we have hy4 = y4 + lower terms € Sff 4- Thus we have obtained
the following.
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PROPOSITION 7.3.5. For each aperiodic matriz A in Efd, there exists a n-
aperiodic hybrid monomial hy in Sflz’d such that ha = [A] + lower terms, ha = ha,
and @) 4 (ha) = ha_or,, with Iy = Y, ;. Bl Moreover,

{ha|A € 21, p-aperiodic}
forms a (hybrid) monomial basis for U} ;.

(It is understood above that ha_oy, = 0 if A — 21, contains some negative
entry.)

EXAMPLE 7.3.6. Set r = 2 and so n = 5. Consider the j-aperiodic matrix
Ace é?d:

c-3|c2|cl|cOfcl|c2|c3|cd]|cH|cb]|cT
r0 3 1 113
rl 06| *]0|4
A= 12 |17 *|1 215
r3 512 *| 718
r4 410 *]61]0
rb5 3|1 *]1]3

where ‘ri’ and ‘cj’ in the table indicate the i-th row and j-th column of the matrix
A, respectively. We have

ya = égs) * 6[25] * f‘1(4) * Vé4) * égM) * é§12) * E[26] * f‘ég) # loo(ay = [A] + lower terms,
i I A R e A S AR Leo(a)y = [A] + lower terms,

where E[QR] and féR} denote > [X] and > {X }4, respectively, with the sum taken

over X such that X — RE,""" is diagonal.

7.4. The coideal subalgebra of type j

Now that the results at the ji-Schur algebra level are established (which is the
counterpart of Chapter 5), we will formulate the ji-analogue of Chapter 6. As most
of these are straightforward, we will skip some of the details.

Starting with the projective system {(U} ;, #} ;_,) }den, we construct two dis-
tinguished algebras U% and U out of the associated projective limit algebra Uy oo ;
the Chevalley generators of U% will be denoted again by &;, f;, k' (i € [0,7 — 1]),
and t,. The family of imbeddings {Pn.a : Uf&d — Uy,a}a>o induces an algebra
imbedding n, : U¥ — U,. The family of A% (for various d’ + d” = d) induce
an algebra homomorphism (which is coassociative in a suitable sense) A7 : U —
U} ® U,, whose action on the Chevalley generators can be presented explicitly.
Recall the algebra isomorphism U, = U(;[n). Summarizing we have established
the following.

THEOREM 7.4.1. The pair (U(f/s\ln),Uff) forms an affine quantum symmetric
pair. (see Figure 2 for the relevant involution.)
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Recall the Cartan integers c;; from (5.1.7). We give a presentation for the
algebra U¥’, which is a counterpart of Proposition 6.1.5 for U{,. This presentation
is a variant of [Kol4, Theorem 7.1] in our setting and our notation. Recall we
always assume r > 1 so n > 3.

VPROPOVSITION 7.4.2. The Q(v)-algebra U has a presentation with generators
e f;, and k;ftl (i € [0,r —1]) and t,, and the following relations: for all i,j €
[0,r —1],

ko(ki ki) =v",
ki '—1, kk —kk, ki, —ik,
ke k! = peutoiotiog,
fl ! = v 8i.005.0f

ele; +e;87 = (v+v heee, Vi-jl=1,
£2F, + £,£2 = (v + o HEEE, Vi-j] =1,
&l it +t.8l = (v+v e 1te 1,
£2 8, + 682, = (v+o Dt
t26, 1 +¢&, 1t>=(v+v e 1t,.6, 1 +é 1,
2f 1+t = (o +v Dt f o + £,
- o—1
&y — Bo =y, (0,4) # (0,0),

égfo + f‘oé% = (’U + U_l) (éofoéo - (’URQ + ’U_llv{gl)éo),

foeo + eofy = (v +v7") (foeofo — fo(vko + v 'kp 1)),

PROOF. We verify directly the above relations for Lusztig algebras Uff 4> and it
follows that the relations hold for U by construction. Then we use Theorem 7.4.1
and [Ko14, Theorem 7.1] to conclude that we do not need additional relations. O

Now the construction of canonical basis with positivity for the coideal algebra
in Section 6.4 can be repeated. Recalling E,, from (6.2.2), we introduce the following
subsets of =,,:
=r = {4 =(a;) € En‘ A1, = O, Qi1 = Oiyrt1 |

(7.4.1) - -
E3P = {A € ZJ/|A is p-aperiodic}.

Recalling E,hd from (6.2.3), we further introduce, for d € Z,
(7.4.2) 2, ={AeE|Al=d}, Er={JE,
d
We define an equivalence relation ~ on =2 as in (6.2.4) and let A be the equiv-
alence class of A. The hybrid monomial basis {ha} for S’ (cf. Proposition 7.3.5)
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gives rise to a monomial basis {h X|E € EJ°P / =} for the algebra U%. A bilin-
ear form (-,-) on U can be defined similarly as in Section 6.4 and shown to be
non-degenerate. The following is a yi-analogue of Theorems 6.4.3 and 6.4.5.

THEOREM 7.4.3. There exists a canonical basis B = {bg‘g € P/ ) for

UY, whose transition matriz with respect to the monomial basis {hg’g € B [ x)

is uni-triangular. Moreover, the structure constants of the canonical basis B lie in
N[v, v=1] with respect to the multiplication and comultiplication, and in v=*N[[v=]]
with respect to the bilinear pairing.






CHAPTER 8

More variants of coideal subalgebras of quantum
affine sl,,

This chapter offers two more variants of geometric origin (denoted by types y
and #2) of the constructions in Chapters 6 and 7. Set

n=n—-1=n—-2=2r(r>1).
Schur algebras S}/ »q and Lusztig algebras U Y na are introduced, and the family of

Lusztig algebras gives rise to algebras UY and UY. We show that (U(sly), UY)
forms an affine quantum symmetric pair. In addition, a family of algebras U} ; C

S, 4 is introduced and gives rise to algebras U}’ and UZZ Then (U(;[,,), Uy) forms
an affine quantum symmetric pair. The canonlcal bases of both algebras UY and
U, admit positivity with respect to multiplication, comultiplication, and a bilinear
pairing.
8.1. The Schur algebras of type ¢
Recall the set Z,, 4 from (4.2.1). We set

(811) Hgd—{AEEn,ﬂaoj:60j,ai025io,v2'jGZ}.
Introduce the idempotent jo in the algebra Sj, ; given by jo = ZAGJJ [A],

diagonal

and form the following subalgebra of S;, , (called Schur algebra of type 9):
(8.1.2) Sy 4 = JoS5, ado-
We further introduce the following elements in Sff, PE
é; = joedo, £ = jofijo,
k! =jokjo, Vie (1,7,
(8.1.3) b = johljo, Va e (0,7,

ko —k
to = Jo (eofo + _—O)Jo
We also have the following vanishing results in Sn 4» Which will be used freely:

Joeojo =0, Jjofojo =0, Jjofoeojo = 0.
The Lusztig algebra U}/, is defined to be the subalgebra of S/, generated by the

Chevalley generators &;, f;, ﬁfl, for i € [1,7], and to.
Let us also formulate a type A version which is compatible with the above
construction. Let

(8.1.4) 0, ={A€06,4lap; =0,a,0=0, Vi jeL}

73
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Using the idempotent Jy in S,, 4 given by Jo = ZAE@”d diagonal [A], we form the
subalgebra J¢S,, ¢Jo of S, 4, which is isomorphic to the algebra S, 4 defined ear-
lier. We shall always identify S, 4 = JoS,,qJo below. We introduce the following
elements in S, 4:

B {JOEOE_lJO, ifi =0,

JoEiJQ, if i € [1,11—1].
5 _ JJoF-1FoJo, ifi=0,
" JoFido, ifi e [1,n—1].
(8.1.5) e
Kt JoKg K=1Jo, ifi=0,
’ JOKjElJO, ifi e [1,n—1].
e JoHE1Jy, ifa=0,
“ JoHJ, ifa € [l,n].

We can extend the interval ¢ € [0,n — 1] to ¢ € Z by setting E; = EHH, etc. We
observe

JE_1Jo=0, JoF_1Jo=0, JoE_F_1Jo=0, JoFoEoJ,=0.

We identify U, 4 with the subalgebra generated by the Chevalley generators E;, F;
and K for all i € [0,n — 1].

8.2. Comultiplication and transfer map of type y
We shall study the restriction to Lusztig algebra U}/, (denoted by the same
notation) of A® : Sy.a = Si.a @ Spav from (5.2.1), for arbitrary d',d” such that
d=d +d".
PRrROPOSITION 8.2.1. We have an algebra homomorphism
A1 UY, — UPy © Upar

More explicitly, for all i € [1,7], we have

1 1
® H//-l-lH/I + h’LJrl Y EHHZ 1—1 + h/-l—l ® Fn 1—1 g—l—l’

) n—1—1¢

) f/®H// 1H// —i—h;@F;/HN —l—h/ 1®En . zH// 1
Af(k) =k, @ K/K/'~!
Af(to) = t) @ Kl + v’k @ H/Fl + 072k @ HI ' EY.

ProoF. The inclusion EC(U;{ 2) C U?  ® Uy qv follows once the formulas are
established. The superscripts  and ” will be dropped throughout the proof for the
sake of simplicity. The first three formulas follow from Proposition 5.2.3. To prove
the last one, we proceed similarly as in the j-version. By using jpoegjo = 0 and
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jofojo = 0, we have

A% (joeofojo) = jo @ JoAf(e0) A% (fo)jo © Jo
= joeofojo ® JoH H[Jo + joh; "hojo ® JoE(H " [FoHJ,
+ johihgjo ® JoF _1H 1 FoHoJg + johy "hy 'jo ® JoEcHZE_1Hy ' J,
+johihy 'jo ® JoF_\H,E_H, 'J,.
By using JoHoJo = 1, JoKoJo = Hy, and JoFoEoJo = 0, we have
JoEcH 1FoHJ, = JoEqH [FJo = JoH 'E(FyJ,

K H, -H'
= H;'JoE(FoJo = Hy 1JOMJ0 =M
v v—v
We also have
JoF_1H,FoHoJo = JoF_ H,FoJ, = H, Fy,
JoEcH™IE_H;'J, = Hy 'Ey,
H, -1
JoF_{HiE_1H;'Jo = JoH JoJoF 1 E_1Jo = Hlﬁ.
Observe that johihgjo = v2f<0. By the above analysis, we have
Kefr ey e e e o Hy —Hy!
At (joeofojo) = joeofojo ® Ko + k! @ Hy lﬁ
. L H, - H;
+ v’k @ HiFo + 07k, ' @ Hy EO+kO®H1°_402
By definition, we also have
k,' —k . HH, ., H'H;'
A (JO/U—IO‘]O) = —k0® fl}—l _01 +k01®17v_01

By adding the last two equalities, we have established the formula for 5‘(%0). ([l

n.d—n b0 be the composition

We define the transfer map (by’ dn i Sia— Sy

1® n
® Spn —2s 89

7 . QY \ )
d,d—n * Sn,d S nd—n-’

n,d—n

Recall that the “signed” homomorphism xy : Sqn — Q(v) satisfies that xy (El) =0,
Xn(Fi) =0 and Xn(I:Ii) = v. It follows by Proposition 8.2.1 that, for all i € [1,7],

~ ~ :t ~ :t ~ ~
(82.1) Gdg (&) =& & W(f) =1, P W) =K d.d—n (o) = to.
Hence we have constructed projective systems {(S} ;, ¢/ ;_,)}a>0 and

{(U”(p ¢d d— n)}d>0

We now describe the restriction of A®: SF ; — 8], ;, ®8;, g defined in (5.3.6)
to the subalgebra Sn 4» which shall be denoted by A",
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PROPOSITION 8.2.2. We have a homomorphism AV : S, — SV, @ Sy ar
and by restriction AY : U ; — U, @ Uy gv. More preczsely, for all i € [1,7],
we have

Av@) = oK/ +1oB + K oF | K/,
(8.2.2) A”(fi) f/ K/ i, k;' '"QKL_ L F/+ 10K,
L. A”(f{z) f{ ®KNKZ i i
AY(t) =t 9 K + 1@ vKIF) + 1@ EL.

PROOF. The first three formulas follow by A"(jo) = jj ® Jj and Proposi-
tion 5.3.4. The last one can be obtained as that of Proposition 8.2.17 and we skip
the detail. O

Since &; = f; = 0,89 = 1,k; = 0%+ € Sff)o for all 7 € [1,r], we have the following
degenerate version of Proposition 8.2.2.

PROPOSITION 8.2.3. We have an imbedding of algebras
Una = A|ar=o : S;J,d — Snd
such that, for alli € [1,7],

Una(€) =B + 0 Fo 1K, 9, 0(F) =By + 00 K, F,

(8.2.3) ) o ) )
yn,d(ki) = UéI’TKiKn_l_i, @]md(to) = E() + ’UK()F() + Ko.

In particular, we have by restriction an imbedding of algebras v, 4 : Uf’d — Upq.

Following Definition 7.3.1, a notation of a g-aperiodic matrix in _: g s self-
explanatory. The following is a counterpart of Proposition 7.3.4, whose proof will
be skipped.

PROPOSITION 8.2.4. The algebra Ufid has a canonical basis

{{A}q| A € ) 4 w-aperiodic}.

8.3. Quantum symmetric pair (U(f/s\[n), UY/) and canonical basis on UY

The results in Chapter 7, in particular those in Sections 7.3-7.4, admit ¢-
counterparts with basically identical proofs; we shall outline these below.

Starting with the projective system {(U/ ;, ¢/ ;) aen, we construct two dis-

tinguished algebras UY and U¥ out of its associated prOJectlve limit algebra U}/ oo
the Chevalley generators of U}/ are denoted again by &;, fl, ki ,fori € [1,7], and to.
The family of imbeddings {9, 4 : U;}; = Uaa}a>1 induces an algebra imbedding

. : UY = U,. The family of A" (for various d’,d") induces an algebra homo-
morphism A% : Uy — Uy ® U, whose action on the Chevalley generators can be
presented explicitly. Recall the algebra isomorphism U, = U(f:\[n). Summarizing
we have established the following.

THEOREM 8.3.1. The pair (U(ﬁA[n),Uff) forms a quantum symmetric pair of
affine type. (see Figure 3 for the relevant involution.)
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Recalling =, from (6.2.2), we introduce the following subsets of Z:

Ev = {A=(ay) € Zn|ao; = G0 ai0 = dio},

saa) o T
EP = {A € 2| A is 1y-aperiodic}.

We define an equivalence relation ~ on "7 as in (6.2.4) and let A be the equiv-
alence class of A. A hybrid monomial basis {ha} for S/, can be constructed
(similar to Proposition 7.3.5 in p type), and it gives rise to a monomial basis
{hﬁm\ € 29 |~} for the algebra U¥. A bilinear form (-,-) on U¥ can be defined
similarly as in Section 6.3 and shown to be non-degenerate. We have the following
analogue of Theorem 7.4.3 (and also of Theorems 6.4.3 and 6.4.5).

THEOREM 8.3.2. There exists a canonical basis BY = {b;{};{ € WP/ x5} for
Ufﬁ, whose transition matriz with respect to the monomial basis is uni-triangular.
Moreover, the structure constants of the canonical basis BY are positive integral,
i.e., they all lie in N[v, v~ with respect to the multiplication and comultiplication,
and lie in v~ N[[v™1]] with respect to the bilinear pairing .

8.4. The Schur algebras of type u
Recallp=n—2,andson=n—1=2r for r > 1. We set

(841) E:;,d = Eflz’d n Ezn{dv jnO = jTjO'
The idempotent j, o gives rise to the subalgebra S:;’ d
(8.4.2) Sy = Jr0Sn airo =Sy NS,

Let U} ; be the subalgebra of S} ; generated by the following Chevalley generators:

& = Jjroeidro. £ =Jjrofiiro,
P )

(8.4.3) hi' =j.oh .0, Vae[0,r],

- . . 1v<071 — f(o . s £
to = Jjro(€ofo + m).]r,o = jrotojro,
Er = j’I‘,OET‘jT‘,O'

Note that €; = j,o€ijr,0 = jr,0€ijr0, €etc.

We shall also need a type A counterpart of the above construction as follows.
We set

(e VL ) — —
n,d — @md N G)n,d’ J’I‘,O - J’I‘J07 Sn,d - JT,OSn,dJr,O-
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Let U,, 4 be the subalgebra of S, 4 generated by the following Chevalley generators:

E J0EoE_1J, 0, ifi=0,
e Jr,OEiJr,07 ifie [1,’[] — 1].

F, = {JT’OFIFOJ’“‘” iti =0,

(8 4 4) JrrOFiJT,O7 1f’L = [17 n— 1]
- Kl — {Jr,ngﬂKi%Jno’ ifi=0,

J, 0K, 0, if i e [1,n—1].

Ijlil _ JT,OIfI%%Jr,Oy lf a = O,
@ JT,OHiﬂJT’,Ov ifa e []., 77]
We can make the indices periodic by setting E; = Ei-m, ete, i.e., i € Z/nZ.
Let us describe the restriction to the subalgebra U}, (denoted by the same
notation) of A : Sy.a = Sy ® Sy from (5.2.1), for arbitrary d’,d” such that
d = d' + d". The proof is similar to that for Proposition 8.2.1 and will be skipped.

PROPOSITION 8.4.1. We have an algebra homomorphism INE U, — Uy ®
U,.av. More precisely, for all i € [1,r — 1], we have

Af@) =& @ HY\ H T + hii o BYH D], + hiy, o F, HY,,
Af(f) =f @ H/'H]_,+hjoF/H, ,+h/ ' oK, , H/
M) = K @ KURYL,
A () = th ® Kij + v’k @ H/Fj) + v 2k, @ H) 'EY,
A(t,) =t @ K/ + oK @ HY  F + 02kl @ H/'E!.

We define the transfer map ¢ ,_, = Sy'y — S}

y.d—n to be the composition of
the following homomorphisms

1®X,, g®

7 . K22 K22
¢dd n'Snd Snd 7]®S”]x77 n,d—n"

Noting that x,(E;) = 0, x,(F;) = 0 and x, (H;) = v, we have, for all i € [1,r — 1],
¢d,d—n(ez’) =&, ¢dd n( i) = f/ ¢dd n(kzil) = ﬁ;il,
stil,d—n(fo) = E67 ¢dd 7]( ) - t

We now describe the restriction of A¢ (5.3.6) to the subalgebra S, 4> which
shall be denoted by A*. We shall skip the proof, as it is similar to earlier cases.

(8.4.5)

PROPOSITION 8.4.2. We have a homomorphism A" : 87! ; — S}, @Sy g, and
by restriction, a homomorphism A" : Uy g — Ul y @ Upar. More precisely, for
alli € [1,r — 1], we have

A"E)=¢& oK/ +10E! +k,0F/_ | K/,
A(f)=floK! , ,+k 'oK/ , F/+10E/_,_,,
(8.4.6) A"k;) =k, o KK/~

=t oK/ + 10 uvKF) +1QE],
=t oK'+ 10uvK'F/ +1QE/.
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A degenerate version of Proposition 8.4.2 gives us the following description for
the homomorphism u, g = A"|z—¢ : Sy a — Sn.d-

PROPOSITION 8.4.3. We have imbeddings of algebras
Upd Siﬁd — Sy.ds Und: Uiﬁd — U, q.

Moreover, for all i € [1,r — 1], we have

un.a(&) =E; +Foo1  K; = E; + F_K,,
121741(?1‘) = En—l—i + Kn—l—zﬁi = E—z + K—if‘za
”n,d(f{i) = K’LK;—ll—z = KiK:zlv

%n,d(EO) = Ey + vKoFy + Ko,

upa(t:) = E, + oK, F, + K,.

8.5. Realization of a new coideal subalgebra Uy

We first formulate quickly results on monomial and canonical bases for U},
analogous to Lusztig algebras of types jj, 1,77 treated earlier. Recall =7, from
(8.4.1). Following Definition 7.3.1, a notation of a w-aperiodic matrix A in =,
is self-explanatory. Similar to Proposition 7.3.4 (also see Proposition 8.2.4) we
can establish the canonical basis for U} ;- This is again based on the existence
of a monomial basis {ya} for U}’ ;, which can be established in a way similar to
Proposition 7.3.3. A hybrid monomial basis {ha} for U} ; can also be established
in a way similar to Proposition 7.3.5. We summarize these as follows.

PROPOSITION 8.5.1. The algebra U} ; admits a monomial basis {yA‘A SRCh
w-aperiodic} as well as a hybrid monomial basis {hA‘A € =} 4 w-aperiodic}. Also,

the set {{A}d|A € £} u-aperiodic} forms a canonical basis for Uy ;.

EXAMPLE 8.5.2. Let r = 1, hence n = 2. Consider the following matrix A in
=Y after deleting zero and second row and columns.

c-3lc2|cl|cOjcl|c2|c3|cd]|ch]|cb

0] 0 | O 2 [ *|0|3]4

rl 4 13 (0| *|2]0]0

r2 0|02 |*]0|3]|4
r3 41310 *|2|0]0

Then we have

where

£ = 3 X, # = 3 [X].

0,1 ;3 ) 2,1 ;3
X:X-RE,, diagonal x:X-RE; diagonal

This is a typical monomial appearing in a monomial basis of S5 4
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Now we shall formulate the w2-counterparts of the results on coideal algebras
arising from families of Lusztig algebras in Sections 7.4 and 8.3. Again we skip the
proofs as they are analogous to the earlier cases.

Starting with the projective system {(Uj' ;, &4 4_,,) }aen, we construct two dis-

tinguished algebras U, and Ui; out of its associated limit algebra Uy . ; the Cheval-
ley generators of U’ are denoted again by to, tr, &, f;, l;iil, for i € [1,r —1].
The family of imbeddings {u;,q4 : U} ; = Uy a}td>1 induces an algebra imbedding
u, : Uy — U,. The family of A" (for various d’,d") induces an algebra homo-

morphism A" : Uy — U} ® Uy, whose action on the Chevalley generators can be

presented explicitly. Recall the algebra isomorphism U, = U(sA[n). Summarizing
we have established the following.

THEOREM 8.5.3. The pair (U(sA[n),Uﬁl’) forms a quantum symmetric pair of
affine type. (see Figure 4 for the relevant involution.)

Recalling =% from (7.4.1) and Z from (8.3.1), we introduce the following
subsets of =,,:

=1 =gl A =) =w,ap __ =n . T
(8.5.1) B, =ENNEY, P ={Ae=] |A is w-aperiodic}.

We have the following 22-analogue of Theorem 7.4.3 and Theorems 8.3.2.

THEOREM 8.5.4. There exists a canonical basis Bi; = {bgm\ € éﬁf"”’/ ~} for

Uﬁ;, whose transition matriz with respect to the monomial basis is uni-triangular.
Moreover, the structure constants of the canonical basis Bﬁ; all lie in N[v, v~] with
respect to the multiplication and comultiplication, and in v='N[[v~]] with respect

to the bilinear pairing .

Recall the Cartan integers c;; from (5.1.7). We now give a presentation for the
algebra U}, which is a counterpart of Propositions 6.1.5 and 7.4.2. This presenta-
tion is again a variant of [Ko14, Theorem 7.1] in our setting and our notation.

PROPOSITION 8.5.5. Let r > 2 and so n = 2r > 4. The Q(v)-algebra Uﬁ; has a
presentation with generators €;, f'i, 12?[1 fori € [1,7—1] and t), for k= 0,7 and the
following relations for alli,j € [1,r — 1], k € {0,r}:

k? ‘k72~71 =1,
kk'=1, kk;=kk;,
Rzé]l;l_l =vie R Eifjl;:l = ’U_Cij‘fij7
l;szr = Ekllzu EOET = E7’{307
6.6, =¢;8;, fGf;=1ff, Vi—jl>1,
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&je; +¢;67 = (v+v )& e, Vi—jl=1,
2, + £, = (v + o OHEES, Vi—j] =1,
&2t + tpe? = (v+ v V)etre;, V)i—kl=1,
B8+ 602 = (0 + o O)EGE, VIi— k=1,
178 + &t = (v + v )&;t8; + &, VIk — j| = 1,
t2f; + £, = (v + o HEtf; + £, V]k —j| =1,
9 -1
T

The case for n = 2 is excluded from Proposition 8.5.5 above. The algebra U%
is generated by to and t;, and we have an imbedding u UY — U(sly) defined by

to — Ey + vKoFg + Ko, t; — E; + K Fy + K;.
~ PrOPOSITION 8.5.6. The Q(v)-algebra Uy has a presentation with generators
to and t1, and the following relations:
(852) B — 3182k + [3EhE — 1E = [212(Eots — Fi1ko),
(853) By — [3]82Eet: + [3Efot2 — B = [212(E1Ey — toF

n

Here [n] = & e

PRrROOF. We first prove (8.5.2). Since us is injective, it suffices to show that
(8.5.2) holds in U(gg) after applying ue. So we can assume that we are working in
U(s/[;) Let S(to, t1) denote the term on the left-hand side of (8.5.2). Similarly, we
can define S(to, Eq), etc., so that we have

S(to,t1) = S(to, Eq) + S(to, vK1Fy) + S(to, K1).

By expanding out S(to, 1:]1), which has 4 x 3* = 324 terms in total, and using the
defining relations of U(sly), we have

(8.5.4)  S(to, E1) = [2[2(BEoE; — E1Ey — (0¥ — )KoE; — (v° — 0)KoFE;).

More premsely, the term E0E1 - ElEo comes from simplifying the sum of the

terms in S(to, El) involving K0F0E0E1 or its variants such as K0E0F0E0E1 The

term KoE; comes from snnphfymg the sums of K2 FOEOEl, KOFOE EO and theirs

variants. The term KoFoE; is a result of simplifying the sums of K FQEOEl7

K2F2E | E( and their variants. The rest of the terms in S(to, E;) sums to zero.
Similarly, with a very lengthy calculation as above, we obtain

(855) S(Eo,vklf‘l) [[2]] ((7) — ’U)K EOF1 + KoKl(FoFl Flﬁo)
+ (’U —v )K()KlFl),
(8.5.6) S(to, K1) = [2]%((v® — VK1 Eo — (v — v H) KK Fy).

From (8.5.4)-(8.5.6), it is straightforward to observe that S(to,t;) is equal to the
right-hand side of (8.5.2).

The equality (8.5.3) can be proved similarly. By Theorem 8.5.3 and [Ko1l4,
Theorem 7.1], we do not need more relations for the coideal subalgebra UY of

U(sh). O
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REMARK 8.5.7. The algebra UY is the so-called ¢-Onsager algebra in the lit-
erature, see [Kol4, Example 7.6] and the references therein.
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Schur algebras and coideal
subalgebras of U(gl,)






CHAPTER 9

The stabilization algebra Kfl arising
from Schur algebras

In this chapter we study the stabilization of the family of Schur algebras S}, ,

(as d varies), which leads to the formulation of the stabilization algebra K:L as
well as its monomial and stably canonical bases. One difficulty of working with
the Schur algebra Sf, , directly is that it does not have a good generating set. We
overcome the dlﬁiculty by embedding S;, ; into a Lusztig algebra of higher rank.
This allows us to understand monomial bases multiplication, comultiplication and
bar operators of the Schur algebras and their stabilization properties in a conceptual
way and lift these structures to Kc We show that the pair (Kn,K ) forms a
quantum symmetric pair in an idempotented form, where K,, is isomorphic to the
idempotented quantum affine gl,,.

9.1. Monomial bases for Schur algebras

Recall n = 2r 4+ 2 for » > 0. We set
r=r+1, n=27F+2.

We consider the subset =7 d which consists of all matrices A € =Zj 4 such that
a1; = a;1 = 0 for all 7,5 € Z. Then the deletlng operator dlt; of the row and
column +1 mod 7 defines a bijective map = _ 4~ En,a- Wedenote by™: 2, g — Zi g
the inverse map to dlt;. More generally, we may regard “as an imbedding

(9.1.1) " EBpd — Bna, A A,

by adding suitable rows and columns of zeros.

As we will study the behavior of the various bases in Sf nd and Sy g under
stabilization, we shall put a subscript d to emphasize the dependence of d, e.g.,
[A] 4.

Just like our study of 23, 32 and 21 versions, we consider the following idempotent
in S} ; and its associated subalgebra:

(9.1.2) S:%d = jls;z,djla where jl = Z [A.}d~
A€E,, 4:A diagonal

PROPOSITION 9.1.1. There is an algebra imbedding p : S, ; — S5, 4, [Ala =

[A]g, for A € E,.4, and an induced algebra isomorphism p : Sh.d = S;yd, which
are compatible with the canonical bases.

85
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ProoF. We define an imbedding Xy a— Xg g L L by adding to L an extra

copy of Li and L_ mod n. Specifically, the lattice chains from 0 to # in L are
(Los Lo, L1, , Ln—1, Ln—1, Ly).

This imbedding clearly induces an injective algebra homomorphism Sj, ; — S ;,

with image being S;’d. |

By Proposition 9.1.1, we can study Schur algebra S;, ; through S;,d, which has
an advantage that it admits an inclusion

(9.1.3) S5,.4 C US4,
since S; 4 is spanned by canonical basis elements parametrized by matrices whose
second columns are zero; such matrices are automatically aperiodic. Hence we have
p:Sna— U
The pair (Sy, ;, U, ) for S§, ; plays a similar role as what the pairs (S}, S5, ),
(S 4)85,.4) and (S}, S5, ;) do for ST, Szid, and S;' ;, respectively.
We shall put a superscript “ on the Chevalley generators of S 4. For conve-

nience, let f, = €y ifr+1<i<n-—1and f, = f}vH_i for all © € Z. To each
tridiagonal matrix A € Z,, 4 such that A — >, .., oziE;:er+1 is diagonal, we set
ag = a, and

co(A)»

where the idempotent Loody 18 the standard basis element attached to the diagonal

matrix in Zj ¢ with diagonal co(A). Note that the product is taken in S - Since

it lies in the component S, ;(ro(A),co(A)) and hence lies in the image of p, we can

define an element f4.4 in S;, 4 to be its preimage under p, i.e.,

(9.1.5) faa=p ' (Faa).

LEMMA 9.1.2. For each tridiagonal matriz A in Z,, 4, we have [Alq = f4.4 +
lower terms.

PrOOF. It is reduced to showing a similar statement for fA;d in S§, , via p. We

first observe that the monomial f‘fliﬁ’l) * (f’fff””l”) * f'w(;i”{e‘) ook f‘l(a(’)) * 1.4 (a
part of (9.1.4)) has a leading term [A’]4 of a certain tridiagonal matrix A’ such
that A= .., 1 ai_lEé:%+1 — an_lEgj;l’nH is diagonal. In particular, the off-
diagonal upper triangular entries of A’ are the same as those of A except at (0,2),
(1,2), (n,n+2), (n+1,n+2) mod n. After composing with f'éa‘)) «£0%=1) and using
Lemma 4.4.1, we see that the leading term of fA;d is exactly [A]d. Transporting
back via p~!, the lemma is thus proved. ]

As a product of bar-invariant Chevalley generators in S}, ;, f 'A;q is bar invariant
in S§ ;. Since the imbedding p is compatible with the bar operators in S, ; and
S}.q» the preimage p~1(fa.4) must be bar invariant in S, ¢ Thus we have the
following.

LEMMA 9.1.3. One has m = f4,q for all tridiagonal A € =,, 4.
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To a matrix, we define the depth of A by
(9.1.6) dep(A) = max{l € N|a; ;4; # 0 for some 7}.

The following description of leading terms leads to the determination of a set
of multiplicative generators for the Schur algebra S7, .

PROPOSITION 9.1.4. Let A, B € £, q such that ro(A) = co(B) and dep(A) <m
for some positive integer m. Assume further that B —% .., &E;”H 1s diagonal
for some B € Zy, and a;y1 i4m > Bi > 0 for alli. Then we have

[Bla * [A]lg = [A + Z Bi(Eé’Hm — Eé+1’i+m)} . + lower terms.
1<i<n

PROOF. It is enough to show a similar statement with [B]; replaced by fp.4
by Lemma 9.1.2. We then transport this problem to the setting of S ; and use
Lemma 4.4.2. Now the order in (9.1.4) allows us to push Sy and f3,,_1 across rows
1 and n 4 1 respectively to the desired positions. The statement then follows by
pulling back to Sj, ; via p. ([l

Let us present an example explaining the proof of Proposition 9.1.4.

ExXAMPLE 9.1.5. Let A be the following matrix in Z4 4 with n =4 and 7 = 6.
c-3|c2|cl|cO|cl|c2|c3|cd|ch]|cb]|cT

r0 7 * do * 7

rl 6 * dl * 5

r2 4 * d2 * 4

r3 5 * |ds| *| 6

r4 7 * do * 7

where d; is the diagonal entries of A and * are some nonnegative integers irrelevant
to the discussion. Now let (8;)1<i<a = (2,4,5,3) such that B -3, ., BiEy ™ s
diagonal and ro(A) = co(B). We want to determine the leading term of fp.4 * [4]4.
By definition, we have

fB;d = f'ég) * f'f) * f‘é5) * f}@ * f‘2(2) * ?1(3) * 1co(B)
Now we expand A at row/column +1 to get the matrix Ain E6,4, which is com-
pletely determined by its upper triangular part as follows.
c-1|cOfecl|c2|c3|cd|cdH|cb|cT|c8]|cI

r0 do | O 7
rl 01010
r2 dl *
r3 d2
r4 dg
rd
r6 do 0 * 7

(en) Ben) Hen) Han) Naw)
O|  *| >

o O

(e} Rap
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Then we apply 'f'B;d to [A]4 to get the following leading term.

c-1|cO|cl|c2|cd3|cd|ch|c6|cT|c8|cI]|clO]|cll
r0 do| O] 2|3
rl 0[0|0]O0
r2 di| *|1 21012
r3 do| *|1 0| 2|01 4
r4 d3| 0| *|0|2]5
rb 0/0]J0]0]O
r6 do| 0| * | 2 3

This leading term is corresponding to the expected matrix in =4 ¢ whose upper
triangular part is as follows.

c-1{cO|cl|c2|c3|cd|ch|cb|cT

10 | * 23

rl dy | ¥ 2] 2

r2 dg * 2 4

r3 ds | * 1 2|5
rd d | * 23

The following theorem is obtained by applying Proposition 9.1.4 repeatedly.

THEOREM 9.1.6. For any matric A = (a;;) € Enq of depth m, there exist
unique tridiagonal matrices Ay, As,..., A, € E,.4 satisfying ro(A,,) = ro(A4),
co(A1) = co(A4), ro(A4;) = co(A;41) for1 <i<m—1 and

S I
1<j<n k<j—it1
is diagonal for all 1 <1 <m such that the following formulas hold in S, ;:
(9.1.7) [Am]a * [Am_1]a * -+ - % [A1]a = [A]lq + lower terms,
(9.1.8) fa.qa:="Fa, axfa,, ax---*xfs,.q=[Alqg+ lower terms.

PrOOF. We prove (9.1.7) by induction with respect to the depth of A. If
dep(A) = 0, the matrix A is diagonal, and the statement is clearly true. Now
assume that dep(A) = m > 0 and the statement holds for all matrices of depth
< m. Set - ‘

A/ = A — Z (li’ier(E;’ler — EéJrl’Zer).
1<i<n
Let B be the unique tridiagonal matrix in =, 4 such that B—>",_, ., ai7i+mEé’i+1
is diagonal and co(B) = ro(4’). By Proposition 9.1.4, we have [Blq * [A'lq =
[A]4 + lower terms. Now observing that dep(A4’) < m, we complete the proof of
(9.1.7) by induction.
The second formula (9.1.8) for f4.q follows from (9.1.7) and Lemma 9.1.2. O

COROLLARY 9.1.7. The set {fa,a|A € Ena} forms a basis for S}, ; (called a
monomial basis).
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COROLLARY 9.1.8. The set {f4.q|A € E,, 4 tridiagonal} (respectively, {[A]4|A €
En.4 tridiagonal}) forms a generating set for the algebra Sya-

9.2. Stabilization of the Schur algebras

In this section, we study the stabilization of the multiplication and bar operator
of the Schur algebras Sj, ;.
Recall that I, =37 ., E. Recall the operation” from (9.1.1) so that I,, =
I — Ey'y. We set
sA=A+pl, VA€cE,.

Introduce the algebra Z = Q(v)[v',v'~1] with a bar involution such that 7 =
v™tand v/ = v'7!. For a € Z and b € N, we define the following polynomials in %:

,U2(a7i+1)v/—2 -1

a a
b= L e ]

W 1<i<b ,

For0<i<n-—-1, A€ Eﬁvd with a; ; = 0 for all j € Z and t = (t,)uez € N such
that > .7 t. = R, we define a polynomial QﬁﬁR;A(v,v’) in Z as follows. For any
i€ [0, —1\{0,7+1,1,n+ 1}, we define

Qi + Ty 165 n . ag; +t;
(921) QLralvv) =07 ] { ] ) e [ ] ,
v,v’

wEZL,uF#t tu ti
where
1
Br = Z aijtu_z ai+1,jtu+z tjtu+§(5i7%+5i7ﬁ—1) Z titu + Z tj
j>u J>u j<u JHu<2(i+1) J<it1
For i =1 or n+ 1, we define
(922) Qg,R;A(rl}? ’U/) = ’U’Bt H |:a’zut+ tu:| . fUI_ZiEu tu.
uEZL,uFi “

For i =0 or ¥ + 1, we define

(9.2.3)
L-1T. 1 Lo
) Qin + to + taiuy Qi+ ta] T L0+ 1+24],
Qi poa(v,v) = v { ] { ] . -
where
t2—t; R2-R
Br=D aijtu = apijtut D Ltu—) oo
j>u j>u j<u,j+u<2i >t

The following lemma follows directly from the definition.

LEMMA 9.2.1. We have QZR; ﬁA(U7 1) = Q;R;A(v,vfp), for all p € 27 and all
admissible i,t, R, A.
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Given the same data (i, A,t) as above, we define
(9.2.4) Airs=A+ ) tu(Egy — EgEH).
UEL
It is convenient to introduce the following notations for later use.
(9.2.5) faa=[Ala=0, VALE,

The following lemma describes the stabilization behavior of the multiplication for-
mulas in S, ; after adding pl,.

LEMMA 9.2.2. Assume A, B € éﬁyd and R € N satisfy the following properties:
ro(A) = co(B), B — RE‘Z’?rl is diagonal for some 1 < i <7 and a1; = 0 for all
j € Z. Then we have

5Blaszn * [3Alas 20 = D Qb poa(W, v ) 5Ai Rtlarzn, Vp € 2.
t

where the sum runs over all sequences t = (t,) € N such that ", ., tu = R and

Airt € Eﬂ,d; independent of p.

PROOF. We observe that the specialization Qj p. 4 (v, 1) of Qf p. 4 (v, ") at v’ =
1 is exactly the structure constant of [A; g]q in the multiplication formulas in
Proposition 4.3.3, modulo some changes of indexes for ¥ +1 < ¢ < n — 1. The

lemma follows then from Lemma 9.2.1 and the convention (9.2.5). O

We shall need a stronger version of Lemma 9.2.2. Given tuples i = (i1, ...,1s)
and a = (ay,...,as) € N® we introduce the notation

i = (i, i1, 000s),  asi = (a, @41, .., as), V1<I1<s.
Given a tuple t = (¢1,...,ts) of sequences such that
(9.2.6)
the l-th component t; = (¢; ;) ez € N% satisfies Ztl’j =qg foralll1 <[ <s
JEL

and a matrix A € E;Ld such that a; ; = 0 for all j € Z, we define inductively the
matrix Aj a ¢ and the polynomial Qf . o (v,v') in Z via (9.2.4) as follows:

Ai,a,t = (A

i>2,a>2,t>2 )il ,a1,t1

t
(v,0") - i;j,aZQ;A(v,v’).

(9.2.7) .

AN t
iya;A(v’v ) = Qiiqal§Ai>2,a>2,t>2

By Lemma 9.2.1 and by induction on the length of i, we have
(928) f,a;A(’Uv U_p) = Q}:,a;i;A(’lh 1)

Given a pair (i,a) and A € éﬁvd such that a;; = 0 for all j € Z, we define
the set Tia 4 to be the set of all tuples t = (¢1,...,%;) of sequences in N% such
that the I-th component ¢; = (t;;);ez satisfies ZjeZ t1; =ajforall <j<s,

Aisjas s, € Eﬁ’d for all 1 <1 < s. Clearly, we have T a 4 = Tia,;a for all p.

iy,

PROPOSITION 9.2.3. Assume A, B; € éﬁyd, for all1 < j <'s and pairs of tuples
(i,a) satisfy the following properties: ro(A) = co(Bs), ro(B,) = co(By_1),V1 <
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u<s, B, — auEé“Tv’f“H is diagonal for 1 <u <s, and a1, =0 for all j € Z. Then
we have

[ﬁBl]dJr%n*'"*[ﬁBS]dJr%n*[ﬁA]dJr%n: Z Qia;A(vvUﬁp)[ﬁAiﬁa,t]dJr%n’ Vp € 2Z.
t€Tia,A
PROOF. Let Tiaa.qa be the subset of 7ia 4 consisting of all t such that
Aizzvazz,tzz € Hp,q for all 1 < I < s, where s is the length of i. In view of
Lemma 9.2.2, the left-hand side of the equality in the lemma is equal to

Y Qtaa® v ) sAiatlargn:
t€Ti,a, Aid+pn
It is reduced to showing that if 5A4; .+ € Eid+2n and iz ezt & Eit,d+En for
some [, then the structure constant of [z‘a’Ai,a,t]d+§n is zero. In such a case, there
is an lo such that ;A4i., av, s, & Sndrzn and 5Ais, L as 1ts 1 € Shdt2ni
this implies that the 4;,41-th diagonal entry of ﬁAiZlmaZlo!tZlo is negative, while
nonnegative after adding the 4;,1-th entry of the tuple ¢;, 1. The latter condition
further yields that the factor Q" (v,1) of Q¥,. ,(v,1), and

Ho+1,010+155 15, s ts, ia;A
hence itself, is zero (see [BLW14, Lemma A.20]). Now the proposition follows by
applying (9.2.8). O

Now we discuss the stabilization of S, ;. We set ,A = A + pI,,. The following
proposition describes the relationship between the standard basis elements [A]; and
the elements f4.4 under the stabilization with respect to pI,. Note that the partial
orders <,z and < on =, 4 can be defined on én,d as well in exactly the same way.

PROPOSITION 9.2.4. Let A € En,d- There exist Z; € En,d; for 1 < i< m, with
Z; < A, Qi(v,v") € Z and py € N such that

(9.2.9) pAlaren =f aar2n + Z Qi(v,v ") [pZilarzn, VP = po,p € 2N,
i=1

PrOOF. We transport the statement via p to a similar one for pr;d+§n in

S5 4ipn- The existence of po, Z; and Q;(v,v") follows by Proposition 9.2.3. The
AT
claim on the leading term follows from Theorem 9.1.6. ]

Now we can formulate the stabilization of the multiplication of Sj, ;.

PROPOSITION 9.2.5. Assume that Aq,...,A; € En,d satisfy co(A;) = ro(A;11)
for all1 <i<1l—1. There exist Z1,...,Zm € Zna, G1(v,V),...,Gn(v,V") € Z,
and po € N such that
(9210)  [pAilasgn * [pAolargn * -+ [pAlargn = D Gi(v,v ") Zilas zns
i=1
Vp > po,p € 2N.

PRrROOF. By Proposition 9.2.3, we have a formula similar to (9.2.10) with ,A4;
replaced by £ 4.4+ - The proposition now follows by using Proposition 9.2.4 and
an induction with respect to the partial order < on the A;’s. O

We have the following corollary to Theorem 9.1.6 and Proposition 9.2.5.
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COROLLARY 9.2.6. For any matriz A € En,d of depth m, there exist tridiago-
nal matrices Ay, Ao, ..., Ay n Emd satisfying ro(A,) = ro(A), co(A;) = co(A),
ro(4;) = co(Aj1) for1<i<m—1and A =37 o<, (O k< it arji1)EY T s
diagonal for all 1 < i < m such that

[pAm]dJrgn * [pAm—l]dJr%n *ooee Xk [pAl]dnL%n

= [PA}dJr%n + Z Gi(vvvip)[pzi]dJr%na vp € 2Nap > Pos

=1

where py, Gi(v,v') € Z and Z,...,7Z;, € Emd are as in Proposition 9.2.5 such that
Z; < A.

The following stabilization of the bar operator on S; ; is a counterpart of
[BLM90, Proposition 4.3]. It can be proved in the same way by induction with
respect to the partial order < on A, with the help of (9.2.9) and Corollary 9.2.6;
we skip the detail.

PROPOSITION 9.2.7. Assume that A € émd. Then there exist Y; € En,d with
Y, < A, Hi(v,v") € Z for all 1 <i < s and py € N such that

0211 A4 e, = pAlargn + ZHi(va_p)[P}/;]d+§na Vp = po,p € 2N.
i=1

9.3. Comultiplication and stabilization

In the section, we take advantage of the embedding p : S}, ; — U}, ; to study
the coassociativity and stability behavior of the comultiplication A€ : Spa —
Sy, a0 ® Sp.ar (vecall A® was defined in (5.3.6)).

To avoid any ambiguity, we put a subscript n to the comultiplication A€ of Sy
and use A} for that on S§ ;. We apply the same convention to the imbedding p
too. Note that exactly the same definition gives rise to an imbedding S,, 4 — S 4,
which we shall again denote by pg. The following lemma shows the compatibility
of the comultiplications and the imbedding p.

LEMMA 9.3.1. The following diagram is commutative:

A(
Sha — Sha ®@Snar

Pdl lpd/ ®pgrr

A
Uia — Uha ®@Una

PROOF. By definitions, we have a similar commutative diagram with the A®’s
replaced by the raw ones AS; cf. (5.2.1). Now the twists s(b’,a’,b” a”) and
u(b”,a’”) remain unchanged under the obvious imbeddings A,, ¢ — Ay 4 and AS g —

A%,d' This immediately shows that the commutative diagram for A®’s can be
extended to the one in the lemma. |

PROPOSITION 9.3.2. The comultiplication A on S;,.q 18 coassociative, that is,

(1® A)A® = (A° @ 1)A°.
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ProoOF. By Lemma 9.3.1, this is a consequence of the fact that the restriction

of A} to Uy, ; is coassociative in Proposition 5.3.5. O

REMARK 9.3.3. Recall the comultiplication A on S, 4 of affine type A from
(5.3.8). It follows by the same argument as above that the comultiplication A on
Sp,q is coassociative, that is, (1 ® A)A = (A® 1)A.

Now, we study the stabilization behavior of the comultiplication Af, (cf. (5.3.6))
as d varies. Recall the notation = from Section 6.5. We generalize it as follows.
For any X, A in Z& and N’ € Z,,, we say that (M, \') E XN if A, = X, + A/ + )\, for
all 4. Let

A‘E)’,a’,b”,a” : S:l,d(b7 a) — S,,C,L’d i S:l,d, & Sn’d'/ — S;’d(b/,a/) ® Sn’d” (b//, a//)
be a component of A with (b’,b”) = b, (a’,a”) = a, where the first and third

maps are the natural inclusion and projection, respectively. Recall the notation
ra=a+(...,p,p,p,...). We put

Ay =A°
’ 7 1 1 ! !’ 17 17
p=b’,a’,b" a pb’,pa’, ;b ,a

PROPOSITION 9.3.4. Assume that d' +d" =d and let b',a’ € Z¢ and b”,a” €
Z,, be so thatpA{,,,a,)b/,ﬁ,/ is defined. Fiz A € =, 4. There exist matrices A}, € E,, 4

where 1 < i < for some I, matrices A;’ n én,d” where 1 < j < m for some m,
Cij(v,v)eZ for1 <i<l,1<j<m, and py € N such that

PAlc:)’,a’,b”,a"([2PA]CH‘P7I) = Z Cz,j (’U, ’Ufp)[pA;]d/_i_%n@ a[pA;'l]d"-‘,-pna

UL

Vp > po, p € 2N.

PrOOF. We prove this by induction with respect to the partial order on A. By
Proposition 9.2.4, we have

[2pA}d+pn - f2pA;d+pn + Z Qi(v; U_QP)[QpZi]dern, Vp Z Po,P € 2N.
i=1
If we define Qi(v, v') = Q;(v,v"?) for all 4, then we can rewrite the above equality
as

m
l2pAlatpn = £,, Aidpn + Z Qi(v,v" P)[2pZilaspn, VP > po,p € 2N.
i=1
With this equality and by induction, it is reduced to proving a similar statement
with [A]q replaced by fa.4. By Lemma 9.3.1, this is in turn reduced to proving

a similar result for f4.4, which is then a consequence of Proposition 9.2.3 and
Proposition 5.3.4. The proposition follows. (]

9.4. The algebra K% and its stably canonical basis

Let K¢ be the vector space over Q(v) spanned by the formal symbols [A] where
A € E,. By Proposition 9.2.5 and applying a standard argument, the space K,
becomes an associative algebra without unit with the product

(941) [Al] . [AQ} = Z Gi(ﬂ, 1)[Zi], VAl,AQ S En,
i=1
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where G;(v,v") and Z; for all 1 <i < m are as in Proposition 9.2.5. Corollary 9.2.6
implies the following.

PROPOSITION 9.4.1. For any matriz A in Zn of depth m, there exist tridiag-
onal matrices Ay, As,...,Am € E, satisfying ro(A,,) = ro(A), co(4;) = _CQ(A),
ro(A4;) = co(Aj1) for 1 <i<m—1and A; — 3 i, (Dohejina ak7j+1)E§’J+1 is
diagonal for all 1 < i < m such that

m/y = [Ap] - [Am—1] - ... - [A1] = [A] + lower terms.

Thus {m/,|A € Z,} forms a basis for K¢, (called a semi-monomial basis). Notice
that the element m’, is not necessarily bar-invariant.

For each matrix A € =,,, we define the element f4 € K, to be

fa= [A] + Z Qi(v’ 1)[21],
i=1

where Q;(v,v") and Z; are in (9.2.9). In particular, we have
fa = [A] + lower terms.

Moreover, we can give a more precise description of @Q;(v,v’) and Z,. By the
definition of f4 in (9.1.8) (also see (9.1.5)) and Proposition 9.2.3, we have the
following.

PRrROPOSITION 9.4.2. For any matric A € Emd, there exists a pair of tuples
(i,a) such that

(9.4.2) f4 = Z Q;a;Dco(A)(v,1)[d1t1(DCO(A))i7a7t},

teﬂ,a‘Dco(A)

where Dco(A') is the diagonal matriz in Eﬁﬁd with diagonal co(A) and dlty is the
deleting operation inverse to the operation ~
Assume that B € én’d and B — ), .cp BiE;"i'H is diagonal. Let iy and bg

denote the sequences of subscripts and superscripts in the left hand side of (9.1.4)
(with A replaced by B), respectively, that is,

i0 = (Oan7n+ 1,TL— 1,n,n— 2, a]-)v bO = (ﬂO;ﬂnflaﬂnflaﬂnfb' o aBO)v

where By = B, The following multiplication formula in K;L follows by Proposi-
tion 9.2.3.

PROPOSITION 9.4.3. Let A,B € 2, be such that co(B) = ro(A) and B —
Di<i<n BZ—E;’ZH is diagonal. Then the following multiplication formula holds in
K¢ :

(9.4.3) fp- (A= > Qf i, 1) [dlt1 (A)iy bo.¢] -

t€7—i0,b0‘;\'

Now we show that the element fa € K¢, can be expressed as a monomial in fy,
for various tridiagonal matrices A; (similar to the Schur algebra case).

PROPOSITION 9.4.4. Let A € En, and we retain the notations of tridiagonal
matrices A; from Proposition 9.4.1. Then we have

fa="Fa, fa, o fa,.
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Moreover, we have fi="f4.

PROOF. Let Kc _a be the free Z-module spanned by the matrices i in Z,. Sim-
ilar to (9.4.1), we can define an associative algebra over Z by

Ay g Ao = ZGi(’U,U/) Zi, VAl,AQ S En

i=1

Similar to (9.4.2), we can define

(944) f.»/4 = Z ;,a;DCO(A) (’U, ’U/) dlty (DCO(A))i7a7t'

teﬂ,a,Dco(A)

Then by Proposition 9.2.3, we have
fy=1=1 S, S

By specializing v’ at v/ = 1, we obtain the product formula for fy.
The bar invariance of f4 follows from the same fact on the Schur algebra level
and the formal stabilization procedure as above. We skip the detail. O

-1

By Proposition 9.2.7, we can define a bar involution on Kfl by v = v~ and

letting
[A]=[A]+ > Hi(v,1)[Yi], VA€E,,

where H;(v,v") and Y; < A are as in Proposition 9.2.7. The next proposition follows
by a standard argument.

PROPOSITION 9.4.5. For any A € E,, there exists a unique element {A} in K¢,
such that

Ay =1{4, {4 = Z maalA], maa €v ' ZTY.

A'<A
Moreover, {{A}|A € E,,} forms a basis for K¢, (called the stably canonical basis).
Let us summarize the main results of this section.

THEOREM 9.4.6. The algebra K¢ admits a standard basis {l4]]A € E.}, a
semi-monomial basis {mA|A € Z,,}, a monomial basis {£4]A € E,,}, and a stably

canonical basis {{A}|A € Z,}.

9.5. The algebra K,, of affine type 4 and its comultiplication

In this section, we revisit the Schur algebras of affine type A and study its
stabilization algebra K,,. The constructions in this section will serve as a prerequi-
sites for the constructions of the comultiplication of the algebra KfI in the following
section.

Recall the comultiplication A from (5.3.8) of affine type A. The following
stabilization for the comultiplication A at the Schur algebra level is the counterpart
of Proposition 9.3.4 which can be proved in the same way.
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PROPOSITION 9.5.1. Assume that d' + d” = d, and let b',a’,b",a" € Z, be
50 that ,Av & b7, 05 defined. For each A € O, 4, there exist A, € ©,, ¢ where
1<i<1 for somel, A;-' € 0, q» where 1 < j < m for some m, *°C; ;(v,v") € Z#
for1<i<Il, 1<j<m, and pg € N such that

pAb’,a’,b”,a"(a[QPA]dJern) = Z uCi,j (U7 U_p) a[pA;]d’ern () a[pA;'/]d"+pn7

1<i<l,1<j<m

Let
O, = {A = (aij)i jezlaij € N,Vi # j,a;; € Z,Vi € Z}.
Let K,, be the vector space over Q(v) spanned by the symbols *[A] for all A € ©,,.
Replacing S, ; by the Schur algebra S, 4 from Chapter 2 and repeating the con-

structions in the preceding sections, we can endow K,, with an associative algebra
structure, a bar involution, a canonical basis {*{A}|A € ©,,}. Indeed the treatment
is much simpler in the current type A setting since the analogous basis elements
“f, and “[A] coincides when A is tridiagonal.

REMARK 9.5.2. The associative algebra structure on K,, and its stably canon-
ical basis were first introduced in [DF13] by a completely different and Hecke al-
gebraic approach, (also see [LL15]). Moreover, they showed that K,, is isomorphic

to the idempotented quantum affine gl,,, U(gl,,).

Moreover, by Proposition 9.5.1, we can define a comultiplication for K, as
follows. Let p,Ka, for any b, a € Z,,, be the subspace of K,, spanned by the standard
basis elements “[A] such that ro(A) = b and co(4) = a. For any b,a,b’,a’,b" a” €
Z,, such that b’ +b” = b and a’ + a”’ = a, we define a linear map

Ab’,a’,b”,a” . bKa e b’Ka/ ® b”Ka”v
A o b o (V[A]) = Z °Cij(v,1) *[Af] @ “[A]],
1<i<l1<j<m

where A}, A7, ®C;;(v,v") are from Proposition 9.5.1. We shall call the collection

A = (Ab’,a’,b”,a”)b’,a’,b”,a”eZn

the comultiplication of K,,. Let “giB and ahf’c denote the structure constants

with respect to the multiplication and comultiplication in Kn, respectively, i.e.,
“A]-[Bl = Y 94O,
ceo,
Ab’,a’,b”,a”(a[A]) = Z uhg’C a[B] ® a[C}

B,CeO,,

ProPOSITION 9.5.3. The comultiplication A is_an algebra homomorphism in
the following sense: for all matrices A, B,C’',C" € ©,,, one has

2 : a C apC,C" _ E : apA',A"ap B',B"a _C' a _C”
(951) gA,B hc = hA hB gA'7B' gA”,B"'
CEén A',A”,B',B”Eén



9.5. THE ALGEBRA K, OF AFFINE TYPE A AND ITS COMULTIPLICATION 97

PRrOOF. We first show that the sums in the two sides of the equation (9.5. 1)
are finite. For two fixed matrices A, B in @n, there are only finitely many C € O,
such that g9 4.5 7 0 by definition. So the sum on the left-hand side is finite. To see
that the sum on the righthand side of (9.5.1) is finite, we first observe that for each

Ae (:)n, if the structure constant “hﬁ AT g nonzero, then A’, A” <, A. Next we

observe that for ¢’,c” € Z,, the set {(4’, A”)|“hA A" # 0,r0(A4") = ¢/, co(A”) =

c”} is finite. This is because if A, A” <, A, then the number of the choices for
the entry (i,7) for i # j of A’ and A” is finite. Now the row and column vectors
of A’ and A” are fixed respectively, forcing the choice of the diagonal entries of A’
and A” to be finite. In the sum of the right-hand side of (9.5.1), we must have that
ro(A") = ro(C"), co(B’) = co(C"), ro(A”) = ro(C”) and co(B") = co(C"), which
are fixed. So the sum on the righthand side of (9.5.1) is indeed finite.

Once we observe that both sums in (9.5.1) are finite, the proof of the equation
is reduced to showing a similar equation on the level of the Schur algebra S, 4 for
very large d, which is in turn equivalent to the fact that the comultiplication A on
S,.4 is an algebra homomorphism in [FL15]. The proposition is thus proved. O

Proposition 9.5.3 can be equivalently reformulated as the following commuta-
tive diagram: for all tuples a,a’,;a”,b,b’,b”, ¢ € Z, such that b’ + b” = b and
a’ +a” = a, we have

(9.5.2)
vKa
/ W
bKe @ cKa b Kar @ prKar
[TAa®A m@m
Pa3

H b’ KC/ X b//KCN X <! Ka/ X c//Ka// H b’KC’ X </ Ka/ X b’ KC// X e/’ Ka//

where m represents the multiplication of K,,, all products run over all tuples (¢’ ¢”)
such that ¢’ +¢” = ¢, [[ A ® A stands for the product of Ap/ ¢/ b7 e @ Acr a7 a7
and P»3 permutes the second and third entries.

PROPOSITION 9.5.4. The comultiplication A is coassociative in the following
sense: for any matrices A, A’ A", A" € ©,, we have

B A/// A/7A// _ a A/)B a A//)A///
(9.5.3) i R Syl e
Be®,, Be®O,,

PROOF. By arguing in a similar way as in the proof of Proposition 9.5.3, we see
that both sums in (9.5.3) are finite. The equality can then be reduced to proving
a similar equation on the Schur algebra level as in the proof of Proposition 9.5.3,
which in turn follows by the coassociativity in Remark 9.3.3. ([l



98 9. THE STABILIZATION ALGEBRA K; ARISING FROM SCHUR ALGEBRAS

Proposition 9.5.4 can be equivalently reformulated as the following commuta-
tive diagram: for all sequences a,a’,a”,a’”’,b,b’,b”,b"" € Z,,, we have

Ab’+b” Jal+all b alll

pKa b’+b”Ka’+a” R b Karn

Ab/>a/>b”+b”/1a”+a”/l J/Ab’,a/,b”,a”@l

b’ Ka/ ® b”+b”’Ka"+a"’ _ b'Ka’ ® b//Ka// ® b///Ka///

1®Ab// all bl allt

9.6. The comultiplication on K;L

Recall K¢ from Section 9.4. For any a, b € Z¢, let , K¢ denote the subspace of
K¢ spanned by the standard basis element [A] such that ro(A) = b and co(A) = a.
For any b,a,b’,a’ € Z{, and b”,a” € Z,, such that (b’,b"”) = b and (b”,a") |~ a,
we define a linear map

A{)/,a’,b”,a” : bI{Ei — b’K;/ ® b”Ka”;

Apy o ar ([A]) = D Cijlo, DA @ °[A]],
i.J

where C; j(v,v"), A} and A7 are as in Proposition 9.3.4. We shall call the collection
AC = (Alc)’,a/,b”,a”)b/7a/€Z,fL,b”,a”€Zn

the comultiplication of K. Let gi g and hf’c be the structure constants of the

multiplication and comultiplication of K;L, respectively, with respect to the standard
bases.

ProOPOSITION 9.6.1. The comultiplication A® on K; is an algebra homomor-
phism in the following sense: for all matrices A, B,C" € Z2,,, C" € ©, one has

c c.c" A,A", B'.B" ¢ 0 C"
(961) E gA,BhC = E hA hB gA',B’ gA”,B”'
CeE, A’ B'€E,,,A" ,B"€O,,

ProOOF. The proof is the same as that of Proposition 9.6.1, and shall not be
repeated. ([l

Proposition 9.6.2 can be equivalently presented in terms of the following com-
mutative diagram: for all sequences a,a’;b,b’,c € Z¢ and a’,b"” € Z,, such that
a’+a” Faand b’ +b” = b, we have

(9.6.2)
bK§
/ W
bKE ® K K, @ prKar

HA‘@A‘l Tm‘@m

w23

1 oK @ prKer @ oK @ enKar [T vKS ® oK @ prKer @ o Kar

Here m* stands for the multiplication in K%, all products run over all sequences

¢ € Zf, and ¢’ € Z,, such that ¢/ + ¢” = ¢, and [[ A® ® A® stands for the product
Of Alc)l)cl)bll)cll ® Ac

c/76/7(://73//.
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PROPOSITION 9.6.2. The comultiplication A¢ is coassociative in the following
sense: for any matrices A, A’ € 2,, A", A" € ©,,, we have

C A/II A/ AI/ A/ B A/I A/II
(9.6.3) E hy™ he ™ = E hoy” Chy 7.
CeE, BeO,,

PrOOF. The proof is similar to that of Proposition 9.5.4, where we use Propo-
sition 9.3.2 instead of Remark 9.3.3. O

Proposition 9.6.2 can be equivalently formulated as the following commutative
diagram: for a,a,a’,b,b,b’ € Z¢, a” a’”,b" b" € Z, such that (a’,a"”) E a,

n?

(b/,b") = b, (a,a”) = a and (b,b”) = b, we have
A

. lc),a‘b”’,a”’ . ¢ .
BK bKa ® b///Ka///

ma

c c
Ab’ a’/ b/ +b/! BII+BIIIJ/ J/Ab"a"b” a”®1

b/ K;I ® b//+b///Ka//+a/// % b/K;, ® b//Ka// ® b///Ka///,
1®Ab”,a”,b’”,a”’

- REMARK 9.6.3. In light of Propositions 9.6.1 and 9.6.2, we say that the pair

(K,,K¢) forms an idempotented quantum symmetric pair. Recall from

Remark 9.5.2 that K, is isomorphic to the idempotented quantum affine gl

U(gl,,)-

mn?’

9.7. A homomorphism from K;L to S} 4

Recall that we set [A]q =0 and f4,4 =0 in Sy,.q if A& =, 4. We define a linear
map
Vg K, — S5,
[A] — [A]g, for A€ E,.

LEMMA 9.7.1. Forall A € En, we have U,, 4(f4) = fa.q. In particular, the map
W,, 4 commutes with the bar involutions.

PrROOF. By Proposition 9.2.3, we have
(971) fA§d = Z Q;,a;DC(A-) (’U, 1) [dltl(Dco(A))iﬁLt] d:

teﬂ,a‘Dc(A)

The equality U, 4(f4) = f4.4 follows readily by comparing (9.7.1) and (9.4.2).
Since f4 and f4.4 are bar-invariant, it follows that ¥,, ; commutes with the bar
maps. ([l

PROPOSITION 9.7.2. The map V,, q is a surjective algebra homomorphism.
ProoF. By Theorem 9.4.6 and Lemma 9.7.1, it suffices to show that
U a(fa, - £a,) = faga* faya, VAL A € E,.

Let (i1, a;1) and (iz2, a2) be the pairs of tuples associated to f4, and f4,, respectively,
in (9.4.2). The product f4, - f4, can then be written in a similar form as (9.4.2)
with (i,a) replaced by (ijiz,ajas), by Proposition 9.4.4. Similarly, the product
fa,.q4*fa,.q admits a similar form of (9.7.1) with (i, a) replaced by (i1iz, ajaz). By
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arguing in a similar fashion as the proof of Lemma 9.7.1, we see that ¥, 4 sends
the product f4, - fa4, to fa,.q % fa,.q4. O

By a standard argument such as the proof of [BKLW14, Theorem A.21], we
reach at the following result.

THEOREM 9.7.3. We have ¥,, 4({A}) = {A}q if A € E,,4, and zero otherwise.

9.8. The algebra K:l as a subquotient of K;L

Let K;z.,l,o be the subalgebra of K¢ spanned by the elements [A] such that
(A); = co(A); = 0. Let Z be the subspace of K¢
]

—

#.1,0 spanned by those elements
[A] such that a; 1 < 0. Then a similar argument for Lemma 9.7.1 (see also [BLW 14,
A .3]) gives us the following.

LEMMA 9.8.1. The subspace I is a two-sided ideal of K%,l,o and TN{{A}|A €

Eﬁ} forms a basis of I.
Let K;L,l,O/I be the quotient algebra of K;L,l.,o by Z. By Lemma 9.8.1, the set
{({AY+Z|A€Ey,a1, =a;1 =0,Vi € Z}
is a stably canonical basis of K%,I,O/I' We shall identify the subquotient KE,l,O/I

n
with the stabilization algebra K¢,.

PROPOSITION 9.8.2. The assignment p : [A] — [A] + T, for all A € E,,, de-
fines an isomorphism from the algebra K, to the subgquotient K%’LO/I of K with
compatible stably canonical bases.

PROOF. By a similar argument as in the proof of Lemma 9.7.1, we have
p(fa) =f;+Z, VAeZ,.
A similar argument as in the proof of Proposition 9.7.2 shows that p is an algebra
homomorphism by showing that p(fa, - fa,) = £i, - f4, + 7 for all A1, Ay € E,,.
By Lemma 9.8.1 we know that p is an algebra isomorphism. A standard argument

shows the compatibility with the canonical bases. The proposition is thus proved.
|

Clearly, the projection Wy 4 : K& — S}, 4 induces a projection ¥y, g : K;L,l,O/I —
S} 4 We have the following commutative diagram:

KfL e K%,l,o/I

\I/n,dl J/\I/nd

c P ¢
Spa —  Sia

REMARK 9.8.3. The construction of Kfl as a subquotient of Kfl here is modeled
on the construction in [BLW14] (see also [FL14]), where an algebra U” is realized

as a subquotient of an algebra U7 with compatible stably canonical bases.



CHAPTER 10

Stabilization algebras arising from other Schur
algebras

In this chapter, the approach to the stabilization of the family of Schur algebras
Sh.d (as d varies) in the preceding Chapter 9 will be adapted with modifications
to study the remaining 3 families of Schur algebras of types sz, 7y and 1. We will
present more details for the type 2 while merely formulating the main statements
for types 17 and 2.

10.1. A monomial basis for Schur algebra S”',

Recall that n = n — 1 = 2r + 1. Recall the set 2, from (7.1.1), the set =2,
from (7.3.2), and the bijection from (7.3.3)

.=t =J
dltygy s E0, — S0,

We also set A = dlt; !, (A) for all A € Ef&d.

Recall the subalgebra S ; of Sy, ; from (7.1.3). Since the comultiplication A
on Sy, ; is coassociative, so is the comultiplication A% on S .

For each tridiagonal matrix A € Z3'; such that dlt,41(4) = >,y aiEé’jfl is
diagonal, we define

(10.1.1) £ g = £ £ s 1 w1 € ST

We call a matrix A € Ef’ 4 J-tridiagonal, if the associated matrix dlt,;1(A) is
tridiagonal. Given any matrix A = (a;;) in Enz’d of depth m > 1 and dlt,1(A) =
(aj;), we define p-tridiagonal matrices Ay, Ag,..., A, € Z); by the conditions

that ro(A;,) = ro(A), co(A1) = co(A), 10(4;) = co(Aj41) for 1 <i <m —1 and
dlty41(Ai) = 201 <jen(Cr<iin a%’jH)Eg)’ffl is diagonal for all 1 < ¢ < m. Then
we set o B
(10.1.2) Ela =4 g+ Ef k- E)
By definition, the element f¥ , is bar-invariant.

By an argument similar to Theorem 9.1.6, we have the following.

ProOPOSITION 10.1.1. (1) We have %, = [A]q+ lower terms, for all A €
=7t
=

(2) The set {f}4|A € Z]' ;} forms a bar-invariant basis of S} ; (called a mono-
mial basis).

101
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10.2. Stabilization of Schur algebras of type 5

Now we shall formulate the stabilization of the family of Schur algebras
{S{ 4}a>1, analogous to the family of Schur algebras {S;, ;}a>1 treated in Sec-
tion 9.2.

Recall 27 nd (7.4.2) is a variant of = d which does not require the diagonal
entries to be nonnegatlve

Recall the set E,Ld from (623) For0<i<n-—1,Ac¢c E,Ld for allj € Z,
t = (tu)uez € NZ such that > jeztu = R, we define the polynomials Qf Ra €EZ as
follows. For any i € [1,n — ]\{T r + 1}, we define

(10.2.1)
7.t Be Qi Tl | 1(8i146im-1) iy 1o tu | @i T i
QZRA(’U vy =v H [ t v 1> N E
uEZ,uFi v,V
where
1
Br= aijtu—»_ Git1tuty titut 5 (0ir+din-1) S titut Yt
Jjzu Jj>u Jj<u jHu<2(i+1) J<i+l1
We further define
(10.2.2) Qlpa(v,0) =0 ] [‘““j t“} T Zizute for i =1,
UEL,uFi “
(10.2.3)
t ’ Qi + Ty + T2 Qi + 1 Lt
@ty alone’) = T |0ty e T [ oS,
u>1 u<t
for i=r +1,
where
t7—t; R’-R
CE I YUNPINED DRI Dk
j>u ji>u J<u,j+u<2i J>i
Given tuples i = (i1,...,4s) and a = (ay,...,as) € N® and a tuple t =
(t1,...,ts) satisfying (9.2.6), we defined the polynomials Qit’a;A in (9.2.7). We

can similarly define the polynomials Ql a A(v,v’ ) in £, inductively on s starting

with (10.2.1)-(10.2.3), for A € :ff_d.
Propositions 10.2.1-10.2.5 are the jy-counterparts of Propositions 9.2.3-9.2.7.

We skip the similar proofs. The notations are understood in this section that
In=1, - E/t*Y+ and 5A = A + pl,.

ProprosITION 10.2.1. Assume A, B; € én,d; for 1 < j <s, and a pair of tuples
(i,a) satzsfy the following properties: ro(A) = co(Bs), ro(Bj) = co(B;_1),V1 < i <
s, B; E;J,’ZJJr is diagonal and ar41,; = 65,41 for all j € Z. Then we have

5B1laszu* - [5Bslas pa*l5Alaszn = Y Qa0 v P)pAsatlarzn, Vp € 2Z.
t€Ti,a,A
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PROPOSITION 10.2.2. Let A € éfid. There exist Z; € éff_d, for 1 <i < m, with
Z; < A, Qi(v,v") € Z and po € N such that

(1024)  [pAlasgn =14 50 +ZQ Zilayzn: VP2 po,p € 2N.

PROPOSITION 10.2.3. Assume that A,...,A; € éfid satisfy co(A;) = ro(A;11)
forall1 <i<1—1. There exist Z1,...,Zm € Eff)d, Gi1(v,v"),...,Gp(v,0) € Z,
and py € N such that

(10.2.5)

m

A s gn * [pA2largn * - % [pAlargn = D Gi(v,07P)[3Zilas g,
=1
Vp = po,p € 2N.

COROLLARY 10.2.4. For any matrizx A € Ef’d of depth m and dlt,1(A) =

(ai;), there exist unique p-tridiagonal matrices Ay, Az,..., Ay € Effd satisfying
ro(A,;,) = ro(A), co(A;) = co(A), ro(A;) = co(Ait1) for 1<i<m-—1 and

dltyy1(Ai) = 21 <jenCrejina a27j+1)Eg:f;+1 is diagonal for all 1 < i < m such
that

l

5 Am)a+2n * [5Am—laszn * - [pAdar 20 = BAlasn + O Gi(0,07) 524420,
=1
vp € 2N7p Z Do,

where po, G;(v,v") € # and Z,...,7Z; € Ef,d are given in Proposition 10.2.3 such
that Z; < A.

PRroPOSITION 10.2.5. Assume that A € éffd. Then there exist Y; € éf_d with
Y, < A, Hi(v,v") € Z for all 1 <i < s and pyg € N such that

(1026) ﬁ g d+” +ZH ]d—i—pm szpo,pe 2N

The following is a counterpart of Proposition 9.3.4.

PROPOSITION 10.2.6. Assume that d'+d"” = d and thatb’,a’ € Z¢, and b”,a”
Zn so0 that pAY, oy qn 18 defined. Let A € :f,:d. There exist A € ””d, where
1 <i <1 for somel, AY € ©) ;,, where 1 < j <m for some m, C; j(v,v') € Z for
1<i<l,1<j5<m, and pg € N such that

3O o ar (GpAlarpn) = Y Cij(0,0 ) [pAl w4 20® “[5A7artpn,
1<i<l,1<j<m

Vp > po,p € 2N.

10.3. The stabilization algebra K7
Recall the set =% and éf ; from (7.4.2). Consider the Q(v)-space K}’ spanned

by the formal symbols [A] for all A € Z7. We define an associative algebra structure
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on KZ' by
m ~
(10.3.1) [A1] - [A2] =) " Gi(v,1)[Zi], VA1, Ay € 2,
i=1
where G;(v,v") € #Z and Z; are from Proposition 10.2.3.
For each A € =¥, we define

(10.3.2) £ =[A]+)_ Gi(v,1)[Z]
where G;(v,v") € #Z and Z; are from Corollary 10.2.4. It follows by definition that

{f%'|A € EI'} forms a basis of K%' (called a monomial basis).
By Proposition 10.2.1, we can establish the following.

ProprosIiTION 10.3.1. (1) For any A € Eff, there exists a pair (i,a) of
tuples such that
(10.3.3) = > Q.. @D[(Deowaiatl:
teTia Deo(a)

where Do) is the diagonal matriz in =2 with diagonal co(A).

(2) The element £ can be written in a product form as

(10.3.4) T R R

v —1

where A; are p-tridiagonal matrices defined similarly as in (9.4.4).
(3) We have £ = %, for A € E'.

Similarly, for A € =%, we set
my = [Am] - [Ap-] - [Ad],

where A;’s are the same as in (10.3.4). One also has m’; = £ + lower terms. Thus

m’l|A € Z2) forms a basis for K% (called a semi-monomial basis). Just like its
A
J7-sibling, the monomial m?; is not necessarily bar-invariant.
The following multiplication formula on K%' follows from Proposition 10.2.1.

=7

PROPOSITION 10.3.2. Assume the matrices A, B € =i satisfy that co(B) =
ro(A) and dlt, 1 (B) =32, cicp, ﬁiEé’;H is diagonal. Then we have a multiplication
formula of the form

(1035) f]JBZ : [A] = Z QJJZItbﬂ;A(’Ua 1) [Ai{f7b{)l,t]a

tETiJz,bw,A
where i = (r,r —1,...,1=7r) and b} = (B, Br—1,. .-, B—r).

We define a bar involution on K%' by
(10.3.6) [A] = [A]+) Hi(v,1)[Yi], VAeEL,

where H;(v,v’) and Y; < A are from Proposition 10.2.5. By a standard argument,
we can now establish the existence of the stably canonical basis for K .
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ProprosIiTION 10.3.3. (1) For any A €= =%, there exists a unique element
{A} in K such that
Ay ={a), {A =14+ ) mhul4] mhyev 27
A'<A
(2) The set {{A}A € E}} forms a basis for KJ (called the stably canonical
basis ).

Let us summarize the main results of this section as follows.

THEOREM 10.3.4. The algebra K% admits a standard basis {[A]|A € L},
a semi-monomial basis {m Z|A € Z'}, a monomial basis {f}|A € El'}, and a
canonical basis {{A}|A € EI'

r—!J'L r—!_]'L

Recall our convention that [4]g = 0 in S, for all A € = . The following
is a counterpart of Theorem 9.7.3.

THEOREM 10.3.5. The assignment [A] — [Alg, for all A € Z%, defines a sur-
jective algebra homomorphism W)’ ;- Ki' — S7 ;. Moreover, we have ¥ ;({A}) =
{A}q if A€ EV, and zero otherwise.

We have developed the current Chapter 10 on the stabilization algebra K7
which is based on the imbeddings S, — S, 4, in analogy to the stabilization

algebra K¢ in Chapter 9 which was based on the imbeddings Sya = Si.q- Just
as the imbeddings S, ; — Sj, ; lead to a realization of Kfl as a subquotient of K%
(see Proposition 9.8.2), the imbeddings S}’ ; — S, ; lead to a realization of K as

a subquotient of K.

We shall simply formulate the statement below and skip the detail (compare
with [BLW14]). Let JZ be the Q(v)-subspace of K¢ spanned by [A] for A =
(a;;) € =7 with @ry1r41 < 0. Then one shows that J2' is a two-sided ideal of K¢,
with a stably canonical basis

{{A}A = (aij) € El arg1,041 < 0},
Moreover, the natural linear map
Ki' — K /72, [Al=[Al+ T

is an algebra isomorphism, and it preserves the stably canonical bases. We sum-
marize these as follows.

THEOREM 10.3.6. The algebra K is a subquotient of the algebra K¢ with
compatible stably canonical bases.

We finally discuss the comultiplication on K%'. Let
2= (A= (Ohien € Z P = 1}, 20 = {A € ZylAesy =0},

Note that there is a canonical bijection Z% ~ Z,, which we shall identify. For
any a,b € ZI, let ,KZ denote the subspace of KJ spanned by the standard basis
element [A] such that ro(A) = b and co(A) = a. For any b,a,b’,a’ € Z} and
b” a"” € Z{"" such that (b’,b”) = b and (a’,a"”) = a, we define a linear map

(1037) Aﬁ’,a’,b”,a” : bKjaz — b’K;l' ® b”Ka"7
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by
A o ([AD) = Cij(v, 1)[A] @ °[A]],

where /K is a component of Ky, C; ;(v,v'), A}

tion 10.2.6. We shall call the collection

and A;’ are given in Proposi-

o |
AP = (A o b o o 2 ezi b 2 e,

the comultiplication of KJ. Let g9 5 and hg"cu be the structure constants of K%
of the multiplication and comultiplication, respectively, with respect to the standard
bases. We have the following ji-counterparts of the commutative diagrams (9.6.2)
and (9.6) for the comultiplication A€

ProposITION 10.3.7. (1) The A% is an algebra homomorphism in the
following sense: for all A, B,C' € 2, C" € O, one has
c C/7C” A/,A” B/7B c’ ol
(1038) Z gA,BhC = Z hA hB gA’ B/agA// B/
CEeEY A’,B/€EN A" B"E€O,

(2) The A7 is coassociative in the following sense: for all A, A’ € =AY,
A" € ©,, one has
C7A/// AI,A/I A/)B A//)A///
(10.3.9) SRS RG T = Y P chy
CeEY Be®,
Recall from Remark 9.5.2 that K, is isomorphic to an idempotented quantum
gl
PROPOSITION 10.3.8. The pair (K., K¥') forms a quantum symmetric pair.

10.4. Stabilization algebra of type y

Recall the subalgebra S/, of S.d from (8.1.2). In analogue with the operator
dlt, 1, we can define the opefator dltg. For each 17-tridiagonal matrix A € :f g (cf.
(8.1.1)) such that dlto(A) —>°, ;e i By, ! is diagonal, we introduce the following
element in S/ ;:

(10.4.1) £, = 60 800w ) £ 1000y € S

Now repeat the process of the ji-version. We obtain an associative algebra KY
with a basis [A] parametrized by the matrices A in =} (which is defined exactly
the same as = =% with the roles of r + 1 and 0 switched). Moreover, to each matrix
Ain :n,d’ we can define elements f%, m"] and {A} in Ky, similar to those elements
indexed by 7 in K%', now starting with (10.4.1). Then all the main results for K%
admit counterparts for the algebra KY.

THEOREM 10.4.1. (1) The algebra K¥ admits a standard basis {[A]|A €
5”}, a semi-monomial basis {m']|A € fff}, a monomial basis {f}]|A €
=Y}, and a canonical basis {{A}|A € E¥

(2) The assignment [A] — [Alg, for all A € E¥, defines a surjective algebm
homomorphism ¥/ ; - Ky — — 8} such that ¥ ,({A}) = {A}aif A€ E,
and zero otherwise.
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(3) KY is a subquotient of Kfl with compatible stably canonical bases.
(4) The pair (Ky, Ki) forms an idempotented quantum symmetric pair.

10.5. Stabilization algebra of type

Recall the subalgebra S7 ; of S}, ; from (8.4.2). For each n-tridiagonal matrix
A€ =}, (cf (8.1.1)) such that the matrix dlto,,(A) = >, <<, aiEé’j?H is diagonal,
we mtroduce the following element £, ; in S} : o

(10.5.1) iy = f(+1 N (f,(,a"*“ ook fr(iﬁ))

* (fﬁiafl) Kok féao)) * leo(a) € S:;,d

We collect the main results of Kﬁ; in the following. The proofs are very similar
to the previous cases, and so we shall skip them to avoid redundancy.

THEOREM 10.5.1.

(1) The algebra K%Z admits a standard basis {[A]|A € Eg}, a semi-monomial
basis {m't|A € E”}, a monomial basis {f}|A € Ei}}, and a canonical basis
[{ayla ey, i

(2) The assignment [A] = [Ala, for all A € =}, defines a surjective algebra
homomorphism W} ; - Kit — S} such that U} ;({A}) = {A}a if A€ E],
and zero otherwise. _

(3) K}t is a subquotient of K" and Ky, with compatible stably canonical bases.

(4) The pair (Km Ki;) is an idempotented quantum symmetric pair.

Let us summarize the interrelations among different family of Schur algebras,
as well as the interrelations among different family of stabilization algebras of types
17, J2, 17, 1.

Recall n =n+2, n=n+1, and n = n+ 1, where n is even. On the Schur
algebra level, we have the following commutative diagram for natural inclusions of
Schur algebras:

(10.5.2) S-ffd
S“ Sz,d% S%,d

¥
Sn,d
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On the stabilization algebra level, we have the following diagram of subquo-
tients:

(10.5.3) K%
PN
k %

K/

. sq . .
where the notation K; — K, stands for the statement that K is a subquotient
of K;. Remarkably, all the subquotients between various pairs of algebras preserve
the stably canonical bases.

REMARK 10.5.2. One can show that the Schur algebras S¥', and S, are iso-
morphic with compatible standard and canonical bases. This isomorphism can be

further lifted to the stabilization level. The proofs of these isomorphisms is given
in [FL17].



APPENDIX A

Constructions in finite type C

We shall present more details on results in finite type C which was only sketched
in [BKLW14]. In addition, we will present details on comultiplications and transfer
maps in finite type C, adapting the finite type B formulation in [FL15]. This will
serve as a helpful preparation for formulation and computations in affine type C'
which are presented in the main text.

A.1. Multiplication formulas
Recall that n = 2 4+ 1. We fix a non-degenerate skew-symmetric bilinear form
Q : ng X ]ng — F,;. Let Sp(2d) be the symplectic subgroup of GL(2d) which

consists of all elements ¢g such that Q(gu, gu’) = Q(u,u),Vu,u’ € IF(QId. Consider
the following sets

Xe={0=LyCL C...CLy=FLn; =L},
1 1 1
Ye={0=1LoCLiC...CLya=FLogs =L},
CE = {A = (aij) S Matan(N)’ Z CL,L'j = 2d, aij = an+1_i7n+1_j,Vi,j S [1,11]},

i,j€[1,n]
°II = {B = (b;;) € MatnxQd(N)‘ > bi=1,
1€[1,n]
bij = bay1-i,2d41-5, Vi € [L,n],j € [172‘1]}7
CE — {0’ = (0'”) (S Matzdx2d(N)’ Z J’L] - ]- = Z Uij’

i€[1,2d] jel1,2d]

Oij = O2d41—i2d+1—j; Vi, J € [1,2d]}.

1
The notation C above denotes inclusion of codimension 1 as before. The action of
Sp(2d) on F2¢ induces a well-defined action of Sp(2d) on X, and Y;. Let Sp(2d) act
diagonally on X x X, and Y, x Y..
LEmMA A.1.1. [BKLW14, Lemma 6.5] There are natural bijections
Sp(2d)\ X, x X, +— 5,
Sp(2d)\ X, x Y, +— ‘II,
and
Sp(2d)\Y: X Y, +— X%,
Let S} = Agp(2a)(Xe x X¢) be the algebra of Sp(2d)-invariant A-valued func-
tions on X x X, where A = Z[v,v™1] and the multiplication is given by a convo-

lution product.
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The most typical phenomenon of type C already shows up when n = 5, and
so let us consider this case in detail. Let Vi, be a 2d-dimensional vector space over
k = F, equipped with a non-degenerate symplectic form. Let (L;|0 < i < 5) be a
flag of vector subspaces in Vj such that L;- = Ls_; for i € [0,5]. Consider the set

Zi:{Ung\dimkUzl,UgLi,U,@Li_l}, Vi € [1,4]

The following lemma is an analogue of [FL14, Lemma 3.1.3] with an easier proof.

dim Ly g™ F3/F2 1
LEMMA A.1.2. For n = 5, we have #7353 = ¢ = and #7Z, =
dim Lg ¢&™ Ly/Lg_q
q —=—

PROOF. Because all lines in Vj, are isotropic, we have

#ZS _ qdim Ls _ 1 B qdim Lo 1 _ qdim Ly qdim Ls/Ly _ 1
q—1 q—1 q—1
The counting for Z, is the same. ([l

We have the following multiplication formula in finite type C. Let E;; for
all 1 < 4,7 < n, the standard basis of the space of n by n matrices. We set
EZ]» = Ei’j + Enfi,nfj for all 1 < i,j <n.

PROPOSITION A.1.3. Suppose that h € [1,7] and R € N.
(1) For A, B € °= such that ro(A) = co(B) and B — REZJL+1 is diagonal, we

have

n
2%, ta apy +1
(All) Ep *kepq = Z’U Zj>u Qhj H |: Utu u:| 6A+E;=1 tu(E}eLu_E}Gl+1,u)7
t

u=1

where t = (t,,) € N* such that

n .
tu < a , if h<r

Z tu.=R and u = htlu ]
u—1 ty + tn+17u < Ah+1,u, it h=r.

(2) For A,C € ‘2 such that ro(A) = co(C) and C — RE2+1,h is diagonal, we

have
(A.1.2)
n Tt
_ 2> Qht1,itu Ah41,u u . .
ec key = E v j<u 5t H |: t eA—ZZl:1 tu(Eis:,u_E}Bm-%—l,u)7 if h< T,
t u=1
ecren =3 v2Ticu bttt D cug bt D teltut) T {arﬂf + tu]
t u<r+1 “
try .
H Ari1u + ty +tayi—u H [ar+1,r+1 + 21] e
tu [Z] A=3Th—1 t“r(Efu+E£+1,u)

u>r+1 i=1

if h=r, where t = (t,) € N" such that > »_, t, = R and t, < ap,.

PROOF. We only give a sketch as it is similar to [BKLW14, FL14]. First
the proposition is proved for R = 1 with the help of Lemma A.1.2 (which takes
care of a genuine type C counting). Then a similar argument using induction as in
[BKLW 14, Proposition 3.3] or [FL14, Corollary 4.3.4] proves the general case. [
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For A = (a;5) € ‘=, we set
d(A) =dim Oy and ds =d(A)—d(B),
where B = (b;;) is the diagonal matrix such that b; = ", a;.

LEMMA A.14. For any A = (a;;) € °E, we have

(A.1.3) dA:% > agam+ Y

i>k,j<l i>r1>)

PRrROOF. The proof is similar to the proof of  BKLW14, Lemma 3.5] or [FL14,

Lemma 4.5.1]. See also the proof of Lemma 4.1.1. O
We set
(A.1.4) [A] =v™%e,s. VA€ CE.

It is clear that {[A]|A € “E} form an A-basis of ‘S, which is called a standard
basis.

By a direct calculation using (A.1.4), we have the following reformulation of
Proposition A.1.3 in terms of [A].

PROPOSITION A.1.5. Suppose that A,B,C € ‘Z, h € [1,r] and R € N.
(1) Ifro(A) =co(B) and B — REz hi1 18 diagonal, then we have

(A.1.5) (B [A] =) 0O H {ah““ ] A+Zt (B = Ep 1))

t u=1 u=1

where the sum over t is as in Proposition A.1.3(1) and

t):Zahjtu_zathl,jtu—’_Zt“tj+5hn< Z 27 t + Z t _1 )

u<yg u<j u<j u<j u<r+1
u+j<n+1
(2) Assume that ro(A) = co(C) and C— RE} , , is diagonal. Then for h <r
we have

(A16)  [C1x[4] =Y O T] [“h“;; * t“] [A=> tu(Ef, — By ),

u=1

where the sum over t is as in Proposition A.1.3(2) and

"(t) = Z Apt1,50u — Z anjtu + Zt“tj;

u>j u>j u>j

For h = r, we have

Z U'y(t H |:ar+1 U + t :| H |:ar+1,u + ttu + tn+1u:|
u

u>r+1 u<r+1
(A.1.7) e ——T n
Qr41,r + 2
11 %[A =Yt Bl Bl ),
i=1 u=1

where

— t2  R? ty
= Z Gp41,5tu — Z apjty + Z tytj — Z 5 + - + 5

u<j u>j n+1—j<u<j u<r+1 u>r+1
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Let

[T

¢ = {A = (aij) EMatnxn(Z)|aij >0 if 4 7é j,

(A.18) 7
Aij = Qnil—inti—js Vi, J, and apy1 41 € 2Z}.

Denoted by ‘K’ the free A-module spanned by {[4]|A € E.}. For any matrix A,
we set

Here I = >, ;.. Eii. By a similar argument as that for Proposition 4.2 in
[BLM90], we have the following proposition.

PROPOSITION A.1.6. Suppose that Aq,..., A € = (s > 2) satisfy that co(A;) =
ro(A;y1) for alli. Then there exist Z1,...,Zm € 2., ‘Gi(v,v") € Q(v)[v'] such that

m

opAr] # [apAa] %+ % [pp A = Y “Gi(v,07P)[5pZi],  for p>> 0.

i=1
By specialization at v' = 1, we have the following corollary.

COROLLARY A.1.7. Retain the assumption in Proposition A.1.6. There is a
unique associative A-algebra structure on ‘K7 given by

m

[Ar]  [Ag] %+ % [A] =) Gi(v,1)[Zi].

i=1
A.2. Tsomorphisms between type C and type B

Recall that 87 = S, is the convolution algebra on n-step type B flags defined
in [BKLW14], and it admits a standard basis {[A]|A € "=}, where (°Z is denoted
by E4 in loc. cit.)

b= — {A = (aij) € Matan(N)‘ Z Q5 = 2d + 1,

4,J€[1,n]
Aij = Ani1—int1—j, Vi, J € [1,n]}.

Clearly sending A — A — E,41,11 defines a bijection °Z = ‘=. Let 1 : S, — S/,
be the A-linear map sending [A] +— [A — Ey41,41] for all A € ‘E. Tt is clear that
1 is an A-linear isomorphism.

PROPOSITION A.2.1. The map 1 : S}, — S’ is an A-algebra isomorphism.

PRrROOF. Since the structure of the two algebras are completely determined by
the multiplication formulas in Proposition A.1.5 and [BKLW14, Proposition 3.7,
we only need to see if they match under the correspondence [A] — [A — E; 41 741,
which can be checked directly. |

Let ¢ : K? — ‘K7 be the A-linear map sending [A] — [A — E,41.,41] for all
A € Z., where K7 is the algebra defined in [BKLW 14, Section 4], a finite type B
counterpart of ‘K7. The algebra isomorphisms ) : S/, — S’ (for varies d) and
the stabilization procedure (Proposition A.1.6 and Corollary A.1.7) which defines
the algebra ‘K7 (and similar for K7?) lead readily to the following identification.

ProPOSITION A.2.2. The map 15 : K9 — ‘K7 is an A-algebra isomorphism.



A.3. THE COMULTIPLICATION 113

A.3. The comultiplication
We define e;, f;, hf! € ©S?, for i € [1,7] and a € [1,r + 1], as follows: for all
L, L' e X,
7 ! 1
o~ B /L0 S L, C LY Ly = L V5 € [1r\{i};

0, otherwise.

(A31) ei(L,L') = {

’ ’ 1
vl L S L Ly = L VG € (1L r\{i)
0, otherwise.

(A32)  £(L.L)= {

(A3.3)  hiNL, L) = oFla/Laaltbarii)s, |

Also set k; = hiHh;l in Sfj. Note that our h, corresponds to d;l in [ BKLW14,
(3.3)], and the definitions of e;, f;, h, above for finite type C formally coincide with
those for finite type B [BKLW14, (3.1)-(3.3)] (except e, f., h,41).

PROPOSITION A.3.1. The isomorphism 1 : S% — °S’, sends e;, f;, h, :=d !
forie[1,r] and a € [1,r + 1] in S) to the elements in °S) in the same notations,
respectively.

PrRoOOF. The element e; on both sides is a sum of all standard matrices A such

that A — EY +1,; is diagonal. Hence we have the result for e; by the definition of 1.
Similarly, one can prove the results for f; and h,. O

We shall denote by S, the Schur algebra of finite type A arising from n-step
flags in an d-dimensional space. For any ¢ € [1,n — 1], a € [1,n], we define the
following elements in Sy:

’ ’ 1
v Ve VALV, C VLV = VY #

0, otherwise.

VIVl VAV V= V) e £ e
(A.3.4) F. (v, V)= dv s VIO VLV =V Y A
0, otherwise,
HE (V, V) = o Ve/Vorrlsy v WY,V € X,
+ +
K; t= Hz'+11Hz:'F1-

In a completely analogous way to the definition A7 in [FL15, §3.2], for a com-
position d = d' + d”, we have a comultiplication

A¢:S5 — S @Sy
Then we have the following proposition, similar to [FL15, Proposition 3.2.4].
PROPOSITION A.3.2. For any i € [1,r], we have
At(e;) = ef @ HY, H—) + b7} @ BYH, ) + hiy, @ Fy_HY, .
A“(f) =f @ H/'H},,_, +hj @ F/H,,,_, +h o B]_;H/".
Af(k;) =k, o K/K//~ 1.
Proor. With the help of Lemma A.1.2, the proof of [FL15, Proposition 3.2.4]
can be essentially repeated here. ([l



114 A. CONSTRUCTIONS IN FINITE TYPE C
By checking the image of algebra generators of S/, we have the following propo-
sition.

PrOPOSITION A.3.3. The following diagram is commutative:

s, — 2 -89S,

b e

c

‘§) — 2 <8l @S,
Following [FL15], we introduce the following notation
Afhd = {a = (a;) € N“’ Zai =2d+1,a; = an+1,i}.
An isotropic flag L of type C defines a unique element a(L) € Afhd by
a(L); =dim L;/L;_1 + 6; y41, Vi.
Then we have the following partition:

Xe= || Xe@). Xe@)={Lla(L) = a}.

acA]

For any a,b € A] ;, let S} (b, a) be the subspace of ‘S}, spanned by all functions
supported on X (b) x X.(a). Then we have

chi = @b,aEAde cS‘Zl(b, a).
We shall denote t1, 5 and pp,a the embedding of °S’ (b, a) into “S’, and the projection

of ¢S’ to ¢S (b, a), respectively. By abuse of notations, the projection from Sy to
Sa(b, a) is still denoted by py . For any b,a,b’,a’,b” and a” satisfying that

/ /1 /! ! 1 1 .
by =b; +b; +b, 1, and a;=a;+a; +ay,,_; Vie[ln],
we set Af:)’,a’,b”,a” - (pb’7a’ ®pb”,a”) o AC o Lb,a~ Let
AC - @ A|c3/7a/7]:’//7=i//7
b,a,b’,a’,b" a

where Af, .y g = pXgisyn Viby —aiagyu( ”’a”)AE',a',b",a”’ and u(b,a) is the
function defined in [FL15, (44)] in finite type B setting. The definition of A€
is completely analogous to the definition of A in [FL15, (45)]. The following
proposition follows by comparing the definitions.

PROPOSITION A.3.4. Given d = d' + d”, we have the following commutative

diagram:

A
(A.3.5) S ——— -~ 8 @Sy

‘| =

csj Af csj ®S
d = P dr-

The transfer map
(bfi,dfn : ch — ch,n
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. oy A€ 1®

is defined to be the composition ¢Sy A, ‘S, ® S, X ‘Sqi-n ®A=°S4_.,
where x(na) = det(A) for any A € °E and 74 is the characteristic function on the
orbit corresponding the matrix A. This is analogous to the transfer map ¢7 , . :

S/, — 87, defined in [FL15, §3.6] in the finite type B setting. By Proposition
A.3.3, we have the following proposition.

PROPOSITION A.3.5. The following diagram is commutative:

J
7 d,d—n 7
Sd Sd—n

P

cgJ P, 4—n Y
d d—n

Finally, we address the -version. Recall that n =n — 1 = 2r. Let
Xi={0=V,CViC...CV, =F24V,_; =V}
The convolution algebra on X x X? is denoted by °S!,. We shall naturally embed
X! into X, by sending a n-step flag in X! as above to an n-step flag
0=VpCcwhc..cVv,cV,C...CV,=F"
(where the maximal isotropic subspace V. in the middle is repeated). Therefore,
¢S} is naturally a subalgebra of *S;. Consider the following set
Et = {A = (CL,L'j S CE‘CLT_;'_L]‘ =0= Qi r41, VZ,j}

By [BKLW14, Lemma 6.1], we have a natural bijection Sp(2d)\X? x X} + ‘=,
and moreover, {[A]|A € El} forms a basis of °S’. Recall a completely analogous
subalgebra S of S’ was defined in [BKLW14, §5]. The standard basis of S}
is parametrized by a subset Z* C =, and there is a natural bijection =* — =,
Aw— A— E, ;1,41. The following proposition follows by the definition of .

PROPOSITION A.3.6. The restriction of ¢ : S, — ¢S’ induces an algebra
isomorphism S}, ~ SY;.

REMARK A.3.7. It should be clear for the reader that the various canonical
bases from finite type B/C geometries are compatible under the isomorphism ).






AC
[«
Ab’,a’,b”,a”

AT

Nomenclature

Canonical basis element of S,, 4

Canonical basis element of K,,

Canonical basis element of S;, ,

Stably canonical basis element of K¢,
Standard basis element of Kn

Standard basis element of S;, ;

Standard basis element of S,, 4

Standard basis element of K¢,

Ring of Laurent polynomials Z[v,v~!]
Quantum v-binomial coefficient

Quantum (v, v’)-binomial coefficient
Matrix obtained from A by shifting entries up
by one row

Canonical basis of U,

Column sum vector of matrix A

Bijection E,, 4 — Z5,q4 whose inverse is dlt;
Comultiplication S;, ; — S}, ; @ Sy a~
Component of A® sending

S;,.q(b,a) to thd(b’, a)® S, (b, a")
Renormalized raw comultiplication

Sy 4= S5 v @Sy, an

Comultiplication Uhow — UL o ®Up o
Comultiplication of K¢,

Comultiplication of K,

Raw comultiplication S;hd — sz,d’ ® Sp,ar
Depth of matrix A

Operation of deleting kth rows/columns
for k =i mod n

n-periodic centrosymmetric elementary matrix
n-periodic elementary matrix

Monomial basis element of Sy, ;

Monomial basis element of K¢,

Field of formal Laurent series k((¢))
Idempotent of type 9 in S,, 4

Idempotent of type y in S7, ,
Monomorphism thd — Snd
Monomorphism U§, — U,

117

§2.2, page 17
§9.5, page 96
§4.2, page 32
§9.4, page 95
§9.5, page 96
§4.2, page 32
§2.2, page 17
§9.4, page 93
§2.2, page 17
§2.2, page 18
§9.2, page 89

§9.2, page 90
§6.4, page 59
§2.2, page 16
9.1, page 85
§5.3, page 46

§9.3, page 93

§5.3, page 45
6.1, page 54
§9.6, page 98
89.5, page 96
§5.2, page 43
§9.1, page 87

§7.3, page 67
§4.3, page 33
§2.2, page 17
§9.1, page 86
§9.4, page 94
§2.1, page 15
8.1, page 74
§8.1, page 73
§5.3, page 48
6.1, page 54
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JT,O

Jr,0

Jr

K,
K
Ky
Ki

An,d

(c.b) Fa

(?b(ci,dfn

(bd,dfn

Hn,d
22
\Ilmd

Nomenclature

Idempotent of type u in S,, 4
Idempotent of type » in S;, ;
Idempotent of type 72 in S,, 4
Idempotent of type 52 in S}, ,

Stabilization algebra of affine type C
Stabilization algebra of type =

Stabilization algebra of type o

Stabilization algebra of type n

Stabilization algebra of affine type A

Finite field of ¢ elements

Set of n-periodic symmetric tuples in N of size d
Set of n-periodic tuples in NZ of size d

An algebraic partial order on 0,, 4
Semi-monomial basis element of K¢,

a; =c¢; +b; +b_; for all 4

a; = bz + b—i + 51‘,71 + 51',7"4_1 for all 1 < 1 <n
=2r+2=n-+2

=n—1=n—-2=2r

=n—1=2r+1

Ring of formal power series k[[¢]]

Matrix A + pI,

Matrix A + p(Iy — Eé%)

8.4, page 78
68.4, page 77
§7.1, page 64
§7.1, page 63

§9.4, page 93

§10.5, page 107

§10.4, page 106
§10.3, page 104

§9.5, page 96
§2.1, page 15
§5.1, page 42
§2.2, page 16
§2.2, page 18
§9.4, page 94
§9.3, page 93
§5.4, page 49
§9.1, page 85
8.0, page 73
§7.0, page 63
§2.1, page 15
§9.2, page 91
§9.2, page 89

Transfer map between Schur algebras of affine type C §6.1, page 53

Transfer map between Lusztig algebras of
affine type A

Set of certain (0,1)-matrices of affine type C
Surjection Kf7Z =Sy

Surjection Ky — S/

Surjection K%' — SV 4

Surjection K¢ — Sh.a

=r+1

Algebra Q(v)[v, v'~!] with bar involution
Algebra imbedding S}, ; — S;, ;

Row sum vector of matrix A

Subspace of S;, ; of shape (b, a)

Schur algebra of affine type C

Subalgebra of S}, ; isomorphic to S}, ,
Schur algebra of type »

Schur algebra of type y

Schur algebra of type 5

Subspace of S,, 4 of shape (b, a)

Schur algebra of affine type A

Set of permutation matrices of affine type C
Set of permutation matrices of affine type B

Inclusions of codimension 1
Set of all aperiodic matrices in ©,, 4

§2.3, page 20
§3.2, page 25

§10.5, page 107
§10.4, page 107
§10.3, page 105

§9.7, page 99
§9.1, page 85
§9.2, page 89
§9.1, page 85
§2.2, page 16
§5.3, page 45
84.2, page 32
§9.1, page 85
68.4, page 77
8.1, page 73
§7.1, page 63
§5.3, page 45
§2.2, page 17
§3.1, page 24
§4.2, page 31

§5.1, page 41
§2.2, page 17



33
emd

Nomenclature

Set of matrices in ©,, 4 whose

Oth/r + 1th rows/columns are zero

Set of matrices in ©,, ¢ whose Oth row/column

are zero

Set of matrices in ©,, 4

whose r + 1st row/column are zero

Set of n-periodic Z x Z N-matrices of size d
Enlarged matrix set from ©,, by allowing

negative diagonal

Idempotented form of Uy,

Lusztig algebra of affine type C

Projective limit of Lusztig algebras of affine type C
Subalgebra of Uy, ., generated by

the Chevalley generators

Idempotented form of U,

Idempotented quantum affine sl,,

Lusztig algebra of type

Projective limit of Lusztig algebras of type ¢
Subalgebra of Uy o, generated by

the Chevalley generators

Lusztig algebra of type z

Projective limit of Lusztig algebras of type j
Subalgebra of U} o generated by

the Chevalley generators

Lusztig algebra of affine type A

Projective limit of Lusztig algebras of affine type A
Subalgebra of U,, o generated by

the Chevalley generators

Quantum affine s,

Affine type C n-step partial flags of shape a
Lattice model of n-step partial flags of affine type C
Affine type A n-step partial flags of shape a
Lattice model of n-step partial flags of affine type A
Set of aperiodic matrices in Z,, 4

Set of n-periodic centrosymmetric N-matrices

of size d of type B

Set of n-periodic centrosymmetric N-matrices

of size d of type C

Set of matrices in Z,, 4 whose

Oth/r + 1th rows/columns are zero

Set of matrices in Z,, 4

whose 0th row/column are zero

Set of matrices in Z,, 4

whose 7 + 1st row/column are zero

Set of matrices B in ©,, 4 such that co(B) = co(A)
Set of aperiodic matrices in En

Set of matrices of size d in En
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§8.4, page 78
68.1, page 74

§7.1, page 64
§2.2, page 16

89.5, page 96
6.2, page 56
§5.1, page 41
6.1, page 53

6.1, page 54
§2.3, page 21
§2.3, page 21
68.4, page 77
8.3, page 76

§8.3, page 76
§7.1, page 64
§7.4, page 69

§7.4, page 69
§2.2, page 17
§2.3, page 20

§2.3, page 20
§2.3, page 21
§5.3, page 45
§3.2, page 25
§5.3, page 45
§2.2, page 16
§5.4, page 49

84.2, page 30
§3.2, page 26
68.4, page 77
8.1, page 73
§7.1, page 63
85.4, page 49

§6.2, page 56
§6.2, page 56



Nomenclature

Enlarged matrix set from Z,, by allowing

negative diagonal 6.2, page 56
Lattice model of complete flags of affine type A §2.1, page 15
Lattice model of complete flags of affine type C §3.1, page 24

Aperiodic monomial in U, 4 associated to a matrix A §2.2, page 19
Aperiodic monomial in U}, ; associated to a matrix A §5.4, page 49
Set of n-periodic tuples in Z* §2.3, page 21
Set of n-periodic symmetric tuples in Z% §6.2, page 56
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