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Abstract

The quantum groups of finite and affine type A admit geometric realizations
in terms of partial flag varieties of finite and affine type A. Recently, the quantum
group associated to partial flag varieties of finite type B/C is shown to be a coideal
subalgebra of the quantum group of finite type A. In this paper we study the
structures of Schur algebras and Lusztig algebras associated to (four variants of)
partial flag varieties of affine type C. We show that the quantum groups arising from
Lusztig algebras and Schur algebras via stabilization procedures are (idempotented)
coideal subalgebras of quantum groups of affine sl and gl types, respectively. In this
way, we provide geometric realizations of eight quantum symmetric pairs of affine
types. We construct monomial and canonical bases of all these quantum (Schur,
Lusztig, and coideal) algebras. For the idempotented coideal algebras of affine sl

type, we establish the positivity properties of the canonical basis with respect to
multiplication, comultiplication and a bilinear pairing. In particular, we obtain
a new and geometric construction of the idempotented quantum affine gl and its
canonical basis.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Iwahori [Iw64] provided a geometric realization of Iwahori-Hecke alge-
bras Hfin

W as convolution algebras on pairs of (finite type) complete flags over a
finite field. Iwahori-Matsumoto [IM65] have subsequently realized the affine Hecke
algebras using pairs of complete flags of affine (or p-adic) type over a local field.
These works are foundational for geometric representation theory.

The Drinfeld-Jimbo quantum groups [Dr86, Jim86] have played important
roles in many areas of mathematics. Beilinson, Lusztig and MacPherson [BLM90]
provided a geometric realization of quantum Schur algebras and the quantum group
U(gln) of finite type A. The BLM construction utilizes the n-step flag varieties in
an ambient space of dimension d, and the convolution algebra on pairs of n-step
flags can be identified with what became known as quantum Schur algebra Sfin

n,d;
this can be viewed as a generalization of Iwahori’s construction of Hecke algebras
in finite type A.

Beilinson, Lusztig and MacPherson [BLM90] further established multiplica-
tion formulas in Sfin

n,d with divided powers of Chevalley generators, which allows
them to observe some remarkable stabilization phenomenon as d→∞. A suitable
limit construction gives rise to the idempotented quantum group U̇(gln) and its
(stably) canonical basis. The construction is easily modified further to produce

variants such as U(gln), U(sln), and the idempotented form U̇(sln). The idempo-

tented form U̇(sln) also has a canonical basis (cf. [Lu93], [K94]), in analog with
the Kazhdan-Lusztig bases for Iwahori-Hecke algebras [KL79].

1.1.2. Independently and around the same time, Dipper and James [DJ89,
DJ91] introduced the quantum Schur algebra as the endomorphism algebra of a
sum of permutation modules of the finite type A Hecke algebra. A version of
quantum GLn [DD91] also fits well in this framework. The identification between
algebraic and geometric definitions of the quantum Schur algebra follows as either
version of quantum Schur algebra forms the centralizer of the Hecke algebra action
on the same tensor space [DJ91,GL92]; see [Du92]. Moreover, there are natural
surjective homomorphisms

U̇(gln) � Sfin
n,d, U̇(sln) � Sfin

n,d.

In this way, we have obtained q-Schur duality or Schur-Jimbo duality [Jim86].

1.1.3. There have been some generalizations of the BLM-type construction
using the n-step (partial) flag varieties of affine type A earlier on; see Ginzburg-
Vasserot [GV93] and Lusztig [Lu99,Lu00] (also cf. [VV99,Mc12,P09,GRV93]
for further developments); see also [CP96] for an affine version of Schur-Jimbo

1



2 1. INTRODUCTION

duality. We shall refer to the convolution algebra arising this way as affine quantum
Schur algebra, denoted by Sn,d. However, there is a major difference between affine
and finite type A, which was first made clear by Lusztig. He showed that a natural
homomorphism from the quantum affine sln of level zero to the affine quantum
Schur algebra,

U̇(ŝln) −→ Sn,d,

is no longer surjective (the image of this map is denoted by Un,d and called Lusztig
algebra in this paper). Alternatively, one could characterize Un,d as the proper
subalgebra of Sn,d generated by the Chevalley generators.

There has been a new (algebraic) approach recently developed by [DF13,

DF14] (see also [G99]) which allows one to construct a larger algebra U̇(ĝln)
(called the idempotented quantum affine gln in this paper; also known as the quan-
tum loop algebra of gln), from BLM-type stabilization of the affine Schur algebras
Sn,d.

1.1.4. Since the constructions of Iwahori and Iwahori-Matsumoto are valid
for flag varieties of any finite and affine type, it is a natural question since the
work of [BLM90] in 1990 to ask for generalization of the above type A construc-
tions to other, say classical, types. The progress in this direction has been made
only in recent years. Motivated by [BW13], Bao, Kujawa, and two of the au-
thors [BKLW14,BLW14] provided a geometric construction of Schur-type alge-

bras iSfin
n,d (denoted therein by Sj for n odd and Sı for n even) in terms of n-step

flag varieties of type Bd (or Cd).
The authors of [BKLW14,BLW14] further established multiplication formu-

las in the Schur algebras iSfin
n,d with divided powers of Chevalley generators, which

again enjoy some remarkable stabilization properties as d �→ ∞. They showed the
quantum algebra arising from the stabilization procedure is a coideal subalgebra
iU(gln) of U(gln) (this coideal subalgebra was denoted in loc. cit. as Uj for n odd
and Uı for n even); the pair (U(gln), iU(gln)) forms a so-called quantum symmetric
pair, which we shall explain below.

1.1.5. Let g be a symmetrizable Kac-Moody algebra over C and U(g) be the
quantized enveloping algebra of g. Let ı be a Lie algebra involution on g of the
second kind (cf., e.g., [Ko14, §2]) and let gı be the subalgebra of ı-invariants in g.
(For simple Lie algebras g of finite type, the classification of gı corresponds to the
classification of real simple Lie algebras, cf. [OV].) The quantum analogue iU(g)
of the enveloping algebra U(gı) is not a Hopf algebra, but it is a coideal subalgebra
of U(g) in the sense that the comultiplication Δ on U(g) satisfies

Δ : iU(g) −→ iU(g)⊗U(g).

By [Le02, Theorem 7.5] and [Ko14, Theorem 10.8], iU(g) specializes to U(gı) at
q = 1. The pair (U(g), iU(g)) is called a quantum symmetric pair. The algebra
iU(g) admits a Serre-type presentations which is nevertheless more complicated.

The theory of quantum symmetric pairs was systematically developed by Let-
zter [Le99,Le02] for finite type (also see [N96] for some early examples). It was
subsequently generalized by Kolb [Ko14] to the Kac-Moody setting, and one can
find in loc. cit. an informative introduction for the background and extensive
references on quantum symmetric pairs.
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There are recent and ongoing developments for general coideal algebras iU(g) in
a way strikingly parallel to the well-known constructions associated to the Drinfeld-
Jimbo quantum groups, such as connections to canonical bases, categorification,
geometry, and solutions to generalized Yang-Baxter equations (known as reflection
equations); cf., e.g., [BK15,BW16] for samples. To distinguish from many other
different coideal subalgebras in the literature, we shall refer to the coideal subalge-
bras appearing in quantum symmetric pairs as ıquantum groups, where ı stands for
involution or isotropic.

1.1.6. An (iU(gln),H
fin
Cd

)-duality (termed as iSchur duality) was discovered
algebraically and categorically in [BW13] as a crucial ingredient for a new ap-
proach to Kazhdan-Lusztig theory of classical type. A new canonical basis (called
ıcanonical basis) was constructed in [BW13] for various tensor product modules
of iU(gln). In the special case of the tensor product of the natural representation
of iU(gln), the ıcanonical basis was shown to coincide with the Kazhdan-Lusztig
basis of type B, and thus it provides a new approach to the irreducible and tilting
character problems in the BGG category O. (Similarly, the type D KL basis is
identified with ıcanonical basis with a different choice of parameter [Bao16], and
thus ıcanonical bases provide a new uniform approach for KL theory of classical
type.) We refer to loc. cit. for further applications of ıcanonical basis to KL theory
of ortho-symplectic Lie superalgebras.

1.1.7. The iSchur duality has been subsequently realized in [BKLW14] by
using mixed pairs of n-step flags and complete flags of type B/C. The ıcanonical

basis for the idempotented form iU̇(gln) was first constructed in loc. cit.. It has
been shown in [FL14] that coideal like algebras together with their ıcanonical bases
arise from partial flag varieties of type D. There has been a further geometric
realization in [LW15] of the idempotented coideal subalgebra iU̇(sln) of U(sln)
and its ıcanonical basis.

For canonical bases, there is a major difference between U̇(gln) and U̇(sln), or
between idempotented coideal subalgebras of gl and sl type: the canonical basis of
U̇(sln) admits remarkable positivity properties with respect to multiplication and

a bilinear pairing [SV00,Mc12,LW15] and so does the canonical basis of iU̇(sln)
[LW15]. It is recently shown in [FL15] that the canonical bases of idempotented

quantum (affine) sln and idempotented coideal algebra iU̇(sln) admit positivity
property with respect to the comultiplication. In contrast, the canonical bases of
U̇(gln) and of iU̇(gln) both fail to exhibit a positivity property with respect to
multiplication; see [LW15].

1.2. The goal: affine type C

1.2.1. The goal of this paper is to initiate the study of the Schur algebras and
quantum groups arising from partial flag varieties of classical affine type beyond
type A, generalizing the constructions in finite type B/C described in Section 1.1.

In this paper, we focus on the affine type C. As we shall see, the affine type C
setting already provides a more challenging and much richer setting than the finite
type C and the affine type A. For each of the two type A quantum affine algebras

(of level zero) U(ŝln) and U(ĝln), we shall provide geometric realizations of four
different (idempotented) coideal subalgebras and their canonical bases. (The four
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cases are denoted by jj, jı, ıj, ıı, respectively; we also write c ≡ jj.) The correspond-
ing four Dynkin diagrams with involutions are depicted in Figures 1, 2, 3 and 4,
respectively, as follows, where n = 2r+2, 2r+1, 2r+1 and 2r, respectively. There-
fore, in total we have provided a geometric realization of eight distinct quantum
symmetric pairs of affine type.

Figure 1. Dynkin diagram of type A
(1)
2r+1 with involution of type

jj ≡ c.

0 1
· · ·

r − 1 r

2r + 1 2r
· · ·

r + 2 r + 1

Figure 2. Dynkin diagram of type A
(1)
2r with involution of type jı.

0 1
· · ·

r − 1

r

2r 2r − 1
· · ·

r + 1

Figure 3. Dynkin diagram of type A
(1)
2r with involution of type ıj.

1
· · ·

r − 1 r

0

2r
· · ·

r + 2 r + 1

Figure 4. Dynkin diagram of type A
(1)
2r−1 with involution of type ıı.

1
· · ·

r − 1

0 r

2r − 1
· · ·

r + 1

In summary, the quantum algebras behind the various kinds of flag varieties
are listed in Table 1, as follows for comparison.
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Table 1. Comparison for various quantum algebras.

Flag variety: Complete flag Partial flag
Type A: quantum gln, sln

of finite type Iwahori-Hecke algebra Type B/C/D: coideal subalgebras
of quantum gln, sln

Type A: affine quantum gln, sln
of affine type Affine Iwahori-Hecke Type C: coideal subalgebras

algebra of affine quantum gln, sln

1.2.2. To help the reader to follow and digest this long paper, we organize
various chapters in three parts. Here is a brief summary.

• Part 1 contains the basic constructions of the affine Schur algebra Sc
n,d and

its distinguished Lusztig subalgebra Uc
n,d, as well as their jı, ıj, ıı-variants.

Then we study in depth the multiplicative and coideal like comultiplicative
structures of these algebras.
• In Part 2 we study the structures of the family of Lusztig algebras Uc

n,d

(and their jı, ıj, ıı-siblings), and show that they lead to coideal subalgebras

Uc(ŝln) of U(ŝln). The corresponding idempotented forms U̇c(ŝln) (and
their jı, ıj, ıı-siblings) are shown to admit canonical bases with positivity.
• Part 3 is focused on the study of the stabilization properties of the family
of Schur algebras Sc

n,d (and their jı, ıj, ıı-siblings), leading to stabilization

algebras which are identified as idempotented coideal subalgebras Uc(ĝln)
of quantum affine gln; these stabilization algebras are shown to admit
canonical bases (without positivity).

The following diagram is a brief road map of some main constructions (there
are 4 distinct cases where c can be replaced by jj, jı, ıj, ıı):

(1.2.1)

Uc
n,d

Stabilization−−−−−−−−→
d�→∞

lim
←−

Uc
n,d

≈−−−−→ U̇c(ŝln)⏐⏐�
Sc
n,d

Stabilization−−−−−−−−→
d�→∞

lim
←−

Sc
n,d

≈−−−−→ U̇c(ĝln)

1.2.3. While the quantum algebras arising from partial flags of classical types
(except type A) are not of Drinfeld-Jimbo quantum groups, they are meaningful and
significant generalizations of the type A quantum groups because of their geometric
origin. There has been an intimately related category O interpretation and an
application of canonical bases arising from quantum symmetric pairs of finite type
[BW13] (also cf. [ES13,Bao16] for type D).

It is expected that the quantum symmetric pairs of affine type (and their cat-
egorifications) will play a fundamental role in modular representations of algebraic
groups and quantum groups of classical type. We also expect a Langlands dual
picture of the constructions of this paper, realizing the coideal algebras of affine
type in terms of Steinberg-type varieties of finite type (cf. [CG97] for some earlier
instances of such dual pictures).
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1.3. An overview

1.3.1. An overview of Part 1.
1.3.1.1. Most of the geometric constructions in [BKLW14,BLW14] (and also

[LW15,FL15]) in finite type B/C were treated in two separate cases, depending

on the parity of n, even though the statements are uniform. The results for iSfin
n,d

and iU̇(gln) with n odd are established first, and then the subtler even n case is
settled by relating to the odd n case.

Before proceeding to the affine type, it is instructive for us to explain informally
some of the main ideas of [BKLW14] (and [BLW14]). We shall fix an even
positive integer n and set n = n+ 1 (which is odd) in this section. We shall write

iSfin
n,d = Sj,fin

n,d , iU(gln) = Uj(gln), iS
fin
n,d = Sı,fin

n,d , iU(gln) = Uı(gln), and use similar
notations for the idempotented forms.

The Schur algebra Sj,fin
n,d is most naturally realized via pairs of n-step type B

flags. Even though the geometric realization for Sı,fin
n,d could naturally use n-step

type C flags, [BKLW14] instead chose to work with n-step type B flags subject
to a maximal isotropic condition on the middle subspaces of flags. This approach
of using the type B geometry alone allows one to relate the Schur algebras as well
as the coideal algebras with indices n, n of different parities.

The Dynkin diagram automorphism of type gln has no fixed point as n is odd,
which is Figure (1) with vertices 0 and 2r + 1 removed, while it has a fixed point
for type gln, which is Figure (2) with vertices 0, 2r removed. Working with flags
subject to maximal isotropic middle constraints can be loosely understood as giving
rise to the Schur algebras and coideal algebras with a fixed point; the imbedding of
such flags into a variety of flags without maximal isotropic constraints is a way of

resolving such a fixed point, and this is how we succeeded in understanding Sı,fin
n,d

(and respectively, U̇ı(gln)) through its relation to Sj,fin
n,d (and respectively, U̇j(gln)).

As a preparation toward affine type C, we reformulate the main geometric con-
structions of [BKLW14,FL15] in the framework of finite type C flags in Appen-

dix A, expanding the outline in [BKLW14, §6]. Recall that Sı,fin
n,d can be realized

using n-step type C flags (note the middle subspace in such a flag is automati-

cally maximal isotropic). To realize Sc,fin
n,d (recall n = n + 1), we employ n-step

type C flags, and then identify an n-step flag as an n-step flag subject to a maxi-
mal isotropic condition on the middle subspace. Then all type B constructions in
[BKLW14,BLW14,FL15] can be repeated in such a finite type C setting. (This
might be regarded a manifestation of Langlands duality philosophy.)

1.3.1.2. Let us return to the affine cases. There is a lattice presentation of the
complete and n-step flag varieties of affine type A due to Lusztig; see Chapter 2.
Such a lattice presentation can be adapted to affine type C, on which the symplectic
loop group SpF (2d) acts (where F = k((ε))); cf. Sage [Sa99] for complete flags
and its variant for the n-step partial flag variety X c

n,d which is formulated in this
paper, for n even.

However, for our purpose we need to define such a X c
n,d in a somewhat delicate

way, keeping in mind the lesson we learned from finite type B/C. That is, X c
n,d

is defined to avoid “maximal isotropic” constraints and (as shown later) it will
give rise to Schur algebras associated to the affine Dynkin diagram automorphism
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without fixed points in Figure 1; the most obvious candidate of n-step flag variety
of affine type C will not do.

The orbits for the product X c
n,d ×X c

n,d under the diagonal action of the group

SpF (2d) can be parameterized by the set Ξn,d of Z× Z-matrices with entries in N
satisfying certain natural periodicity and centro-symmetry conditions. Denote by
Ξap
n,d the set of aperiodic matrices in Ξn,d (recall the notion of aperiodic matrix was

introduced in [Lu99] in the affine type A setting).
The Schur algebra Sc

n,d is by definition the (generic) convolution algebra of pairs

of flags in X c
n,d. It admits a canonical basis (IC basis) which enjoys a positivity

with respect to multiplication. We formulate a subalgebra Uc
n,d of Sc

n,d generated
by the Chevalley generators. We caution that the Chevalley generators do not form
a generating set for the algebra Sc

n,d, that is, Uc
n,d is a proper subalgebra of Sc

n,d

in general. Our first main result is the following.

Theorem A (Theorem 5.4.3). The algebra Uc
n,d admits a monomial basis

{ζA|A ∈ Ξap
n,d} and a canonical basis {{A}d|A ∈ Ξap

n,d}, which are compatible with
the corresponding bases in Sc

n,d under the inclusion Uc
n,d ⊂ Sc

n,d.

1.3.2. An overview of Part 2. Generalizing the constructions in affine type
A and finite type C [FL15] (see also [Lu00]), we introduce a comultiplication-
like homomorphism Δc = Δc

d′,d′′ : Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ , for a composition d =

d′ + d′′. This further leads to a transfer map of affine type C (which is an algebra
homomorphism) φc

d,d−n : Sc
n,d → Sc

d−n,n, which is shown to preserve the Chevalley
generators. Both homomorphisms Δc

d′,d′′ and φc
d,d−n make sense on the level of

Schur algebras instead of Lusztig algebras.
The algebra Uc

n is by definition a suitable subalgebra of the projective limit
of the projective system {(Uc

n,d, φ
c
d,d−n)}d≥1, just as Un is a limit algebra for

a similar affine type A projective system. Recall by Proposition 2.3.2 (due to

Lusztig) we have an algebra isomorphism Un
∼= U(ŝln). We show that the family

of homomorphisms {Δc
d′,d′′} gives rise to a homomorphism Δc : Uc

n → Uc
n ⊗Un

and an injective homomorphism jn : Uc
n → Un, whose images on the Chevalley

generators are explicitly given.

Theorem B (Theorem 6.1.4). The algebra Uc
n is a coideal subalgebra of U(ŝln),

and the pair (U(ŝln),U
c
n) forms a quantum symmetric pair of affine type in the

sense of Letzter and Kolb [Ko14]. (The relevant involution is illustrated in Fig-
ure 1.)

Thanks to Theorem B, it makes sense to denote Uc
n = Uc(ŝln); note the level

for our affine type algebras is always zero. One can also formulate an idempotented

form of Uc
n, denoted by U̇c

n or U̇c(ŝln), which is analogous to the idempotented
quantum groups as formulated in [BLM90, Lu93]. Following the approach of
[Mc12] in the affine type A setting and [LW15] in the finite type B setting, we

construct canonical basis for U̇c
n and establish its positivity with respect to the

multiplication and a bilinear pairing of geometric origin. Following [FL15] in the

finite type B setting, we establish the positivity of the canonical basis for U̇c
n with

respect to the comultiplication.

Theorem C (Theorem 6.4.3, Theorem 6.4.5). The algebra U̇c
n admits a canon-

ical basis Ḃc
n. The structure constants of the canonical basis Ḃc

n with respect to the
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multiplication and comultiplication are all positive, that is, they lie in N[v, v−1] and
so do they with respect to the bilinear pairing, that is, they lie in N[[v−1]].

Recall in the finite type C setting, there are geometric realizations of two
quantum symmetric pairs (with superscripts j and ı), the superscript j corresponds
to the Dynkin diagram involution without fixed point and ı to the involution with a

fixed point. The involution for ŝln (where n is even) in Figure 1 has no fixed point.
In this paper we construct three more variants of quantum symmetric pairs arising
from the affine type C flags. The remaining three cases are labelled by superscripts
jı, ıj, ıı and they correspond to involutions which are illustrated in Figures 2, 3 and
4, respectively (the superscript c for the algebras above could be denoted by jj).

In each of the three new variants, we have counterparts of Theo-
rems A, B and C. The proofs are sometimes more difficult, as it is already clear
in the finite rank ı-version [BLW14,LW15,FL15].

There is also a totally different, purely algebraic, construction [BW16] of
canonical bases for general quantum symmetric pairs of finite type (which is ex-
tendable to cover the QSP of affine type considered here). That approach does not
establish the positivity of canonical bases.

1.3.3. An overview of Part 3. In contrast to the finite types, the Schur
algebra Sc

n,d is not generated by the Chevalley generators in general, that is, Uc
n,d

is a proper subalgebra of Sc
n,d (this phenomenon already happens in affine type

A [Lu99]). The next goal (Part 3) is to understand the limit algebra K̇c
n arising

from the family of Schur algebras {Sc
n,d}d≥1 as well as its jı, ıj, ıı-variants. One

key difficulty we encounter here is that the Schur algebras Sc
n,d do not have any

obvious (finite) generating set to start with, and this makes it tricky to understand
the stabilization.

To that end, we introduce a new idea by imbedding Sc
n,d into the Lusztig algebra

Uc
n̆,d (with n̆ = n+2). The imbedding Sc

n,d → Uc
n̆,d is constructed as an imbedding

Sc
n,d → Sc

n̆,d (in a way similar to the embedding Sjı
n,d → Sc

n,d earlier) which factors
through Uc

n̆,d. As Lusztig algebras have a nice set of Chevalley generators and they
are well understood in Part 1 and Part 2, we gain insights about Sc

n,d this way.

One first result which we obtain via such an imbedding is to establish a (bar
invariant) monomial basis {fA|A ∈ Ξn,d} for Sc

n,d, and we see that Sc
n,d is generated

by the standard basis elements [A]d with A tridiagonal. (In affine type A, it was first
shown [DF13] that the Schur algebra is generated by the standard basis elements
a[A]d for A bidiagonal.) In our affine type C setting, thanks to the centrosymmetry
condition of the matrices A parametrizing the basis of Sc

n,d, the appearance of
tridiagonal matrices parametrizing a generating set is perhaps not surprising. It
does make any possible multiplication formula in affine type C with [A] for A
tridiagonal enormously complicated.

The imbedding Sc
n,d → Uc

n̆,d and the monomial basis for Sc
n,d further allow

us to study fruitfully the stabilization as d goes to infinity of the multiplication,
comultiplication, and bar involution on Sc

n,d. The stabilization properties for Sc
n,d

allow us to introduce a limit algebra K̇c
n and establish its main properties.

Theorem D (Theorems 9.4.6, 9.7.3). The algebra K̇c
n admits a standard ba-

sis {[A]|A ∈ Ξ̃n}, a monomial basis {fA|A ∈ Ξ̃n}, and a stably canonical basis

{{A}|A ∈ Ξ̃n}. Moreover, there is a natural surjective algebra homomorphism
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Ψn,d : K̇c
n → Sc

n,d which sends each stably canonical basis element to a canonical
basis element or zero.

In a completely analogous way and as a byproduct, we can formulate the stabi-
lization properties of the family of Schur algebras Sn,d of affine type A and introduce

its stabilization algebra K̇n, and prove a theorem for K̇n analogous to Theorem D.
Such results in affine type A were first obtained in [DF13,DF14] by a completely

different and algebraic approach, and they also identify K̇n as the idempotented

quantum affine ĝln. Our geometric approach here offers a shortcut to some main
results in loc. cit. and obtains new results on the comultiplication structure.

The stabilization property of the comultiplication on Sc
n,d leads to the following.

Theorem E (Propositions 9.6.1, 9.6.2, Remark 9.6.3). The pair (K̇n, K̇
c
n)

forms a quantum symmetric pair (in an idempotented form).

Similarly, the other families of Schur algebras {Sjı
n,d}d, {S

ıj
n,d}d, and {Sıı

η,d}d ad-

mit similar stabilizations which lead to limit algebras K̇jı
n , K̇

ıj
n , K̇

ıı
η , respectively. We

also establish the counterparts of Theorems D and E for the algebras K̇jı
n , K̇

ıj
n , K̇

ıı
η .

In the process, we actually establish the following interrelations in Section 10.5
(where one finds the precise definition of subquotients) among the algebras K̇c

n, K̇
jı
n ,

K̇ıj
n , K̇

ıı
η in a conceptual way.

Theorem F (Proposition 9.8.2, Theorems 10.3.6, 10.4.1, 10.5.1). We have the
following diagram of subquotient constructions (sq stands for subquotients):

K̇jı
n

sq

������
��
��
��

K̇ıı
η K̇c

n

sq

������������

sq������
��
��
��

K̇c
n+2sq

����

K̇ıj
n

sq

�����������

Moreover, all the subquotient constructions are compatible with the stably canonical
bases.

We have developed a Hecke-algebraic approach in a companion paper [FLLLW]
simultaneously, which redevelops some of the main results of Part 3 of this paper
in a completely different way. See also [FL17] for a third approach based on an
explicit multiplication formula on tri-diagonal standard basis elements.

1.4. The organization

The paper is divided into three parts. Part 1 consists of Chapters 2-5, and
it deals with the Schur algebras and Lusztig algebras arising from convolution
algebras on pairs of partial flags of affine type C. Part 2 consists of Chapters 6-8,
and it studies the limit algebras of each of the four families of Lusztig algebras
and identifies them as (idempotented) coideal subalgebras of the quantum affine sl.
Part 3 consists of Chapters 9-10, and it treats the stabilization algebras arising from
the four families of Schur algebras, and identify them as (idempotented) coideal
subalgebras of the quantum affine gln.
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In the somewhat preliminary Chapter 2, which is exclusively on affine type
A, we review the constructions of [Lu99] in affine type A and set up the type
A notations. We formulate Lusztig algebra Un,d as the (proper) subalgebra of the
Schur algebra Sn,d generated by Chevalley generators. A new result in this Chapter

is a geometric construction of a monomial basis for Un,d and then for U̇(ŝln). This
makes our approach here and further generalization in affine type C below quite
different from those in [Mc12,SV00]. In particular, the approach here does not
rely on the crystal basis theory of Kashiwara and Ringel-Hall algebras.

Before proceeding to the remaining chapters, we recommend the reader to
browse Appendix A. In Appendix A, we review and expand the geometric con-
structions from [BKLW14,FL15] in finite type C. Recall most of the results in
loc. cit. were formulated in detail in the geometric setting of finite type B.

From now on we take n to be a positive even integer.
In Chapter 3, we present lattice models for the variety Yc of complete flags of

affine type C, following [Sa99], [H99] and [Lu03]. We also formulate a variety X c
n,d

of n-step flags of affine type C. Then we classify the orbits of products X c
n,d × Yc

and X c
n,d ×X c

n,d under the diagonal action of the loop symplectic group.
In Chapter 4, we study the Schur algebra Sc

n,d arising from the convolution al-
gebra of pairs of n-step flags of affine type C. We present multiplication formulas in
Sc
n,d with the Chevalley generators and with their divided powers. We then specify

some general scenarios where these multiplication formulas produce a leading term
with coefficient 1. The results in this chapter are local in the sense that they are
analogous to the results in finite types A and C.

In Chapter 5, we introduce the Lusztig algebra Uc
n,d as the (proper) subalgebra

of the Schur algebra Sc
n,d generated by Chevalley generators. We then introduce a

coideal algebra type structure which involves both Schur algebras (and respectively,
Lusztig algebras) of affine types C and A. This leads to an imbedding jn,d from
Sc
n,d to Sn,d, and also from Uc

n,d to Un,d. The canonical basis and monomial basis
are shown to be compatible with the inclusion Uc

n,d ⊂ Sc
n,d.

In Chapter 6, we introduce the transfer maps φc
d,d−n on Schur algebras Sc

n,d and

Lusztig algebras Uc
n,d. We then construct algebras Uc

n (or U̇c
n) from the projective

system of algebras {(Uc
n,d, φ

c
d,d−n)}d≥0. We show that Uc

n (or U̇c
n) is isomorphic to

an (idempotented) coideal subalgebra of U(ŝln), and (U(ŝln),U
c
n) forms an affine

quantum symmetric pair. The canonical basis of U̇c
n is established and shown to

admit positivity with respect to multiplication, comultiplication, and a bilinear
pairing.

In the remainder of the Introduction we set n = n − 1 (which is odd) and
η = n− 2 (which is even).

In Chapter 7 and Chapter 8, we present several more projective systems
{(Ujı

n,d, φ
jı
d,d−n

)}d≥0, {(Uıj
n,d, φ

ıj
d,d−n

)}d≥0, and {(Uıı
η,d, φ

ıı
d,d−η)}d≥0. We emphasize

that each of these Lusztig algebras arises from convolution algebras of geometric
origin. We obtain the limit algebras Ujı

n , U
ıj
n , U

ıı
η and their idempotented coun-

terparts. We show that Ujı
n (respectively, Uıj

n , or Uıı
η ) is isomorphic to a coideal

subalgebra of U(ŝln) (respectively, U(ŝln) or U(ŝlη)). The monomial and canonical
bases of Ujı

n,d,U
ıj
n,d, and Uıı

η,d are established by relating to their counterparts for

Uc
n,d. The canonical bases of U̇jı

n , U̇
ıj
n and U̇ıı

η are established and shown to admit
positivity with respect to multiplication, comultiplication, and a bilinear pairing.
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In Chapter 9, we study the stabilization properties of the family of Schur al-
gebras Sc

n,d (as d varies). To overcome the difficulty of working with the Schur
algebra Sc

n,d which does not have a good finite generating set, we study Sc
n,d via

an imbedding into a Lusztig algebra of higher rank. This allows us to understand
generating sets, monomial bases, multiplication, comultiplication and bar operators
of the Schur algebras and their stabilization properties in a conceptual way and lift
all these structures to a stabilization algebra K̇c

n. We show that K̇c
n admits a sta-

bly canonical basis, and the pair (K̇n, K̇
c
n) forms a quantum symmetric pair in an

idempotented form, where K̇n is isomorphic to the idempotented quantum affine
gln.

In Chapter 10, we formulate the main results for the stabilizations of the re-
maining 3 families of Schur algebras of types jı, ıj, ıı, following the blueprints in
Chapter 9. Moreover, we establish interrelations among all the stabilization alge-
bras K̇c

n, K̇
ıj
n , K̇

ıj
n , and K̇ıı

η of types jj, jı, ıj, ıı, and among their stably canonical
bases.

Notation: N = {0, 1, 2, . . .}.
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Part 1

Affine flag varieties, Schur
algebras, and Lusztig algebras





CHAPTER 2

Constructions in affine type A

This chapter is preliminary in nature. Most of it has been well known [Lu99,
Lu00, SV00,Mc12] (also cf. [DF14]). However we present a new geometric
construction of a monomial basis (and hence canonical basis) for the modified

quantum group U̇(ŝln), in analogy to the one in [BLM90, Proposition 3.9], with-
out use of crystal basis [K91] and the theory of Ringel-Hall algebras [R90], (see
also [Sch06,DDPW08,DDF12], [VV99,LL15]).

2.1. Lattice presentation of affine flag varieties of type A

Let k be a finite field of q elements, where q is a prime power. Let F = k((ε))
be the field of formal Laurent series over k and o = k[[ε]] the ring of formal power
series. Let d be a positive integer. Let GLF (d) (respectively, GLo(d), GLk(d))
be the invertible d × d matrices with coefficients in F (respectively, o, k). Con-
sider a reduction mod-ε map ev|ε=0 : GLo(d) → GLk(d), ε �→ 0. The parahoric
subgroups of GLF (d) are inverse images of parabolic subgroups of GLk(d) under
ev|ε=0, and the parahoric subgroups which are inverse images of Borel subgroups
are called Iwahori subgroups. The affine partial flag of type A is then defined to
be the homogeneous space GLF (d)/P where P is a parahoric subgroup.

Let V be an F -vector space of dimension d. A free o-submodule L of V of rank
d is called a lattice in V . Let Ya be the set of all lattice chains L = (Li)i∈Z where
each Li is a lattice in V , such that Li−1 ⊂ Li and Li−d = εLi for all i ∈ Z. We fix
a basis {e1, . . . , ed} for V , and we set

em = ε−sei, if m = sd+ i for i ∈ [1, d].

Then we have a total order for (em)m∈Z as follows:

. . . , εe1, . . . , εed, e1, . . . , ed, ε
−1e1, . . . , ε

−1ed, . . . .

Clearly,

�L0 = oe1 ⊕ · · · ⊕ oed

is a lattice in V . More generally, for m = sd + i with 1 ≤ i ≤ d, we define the
lattice

�Lm = [em+1, . . . , em+d]o

= oε−sei+1 ⊕ · · · ⊕ oε−sed ⊕ oε−s−1e1 ⊕ · · · ⊕ oε−s−1ei.

We set �L = (�Lm|m ∈ Z) to be the standard lattice chain. There exists a
surjective map

GLF (d)→ Ya, g �→ g.�L.

15
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It is clear that the stabilizer Ia of �L in GLF (d) consists exactly of the mod-ε upper
triangular matrices. Thus Ia is an Iwahori subgroup of GLF (d). We thus have the
identification of affine flag variety of type A:

(2.1.1) GLF (d)/I
a −→ Ya.

There are similar lattice chain models for the partial flag varieties of type A.

2.2. Monomial basis for quantum affine sln

In this section, we shall construct an explicit monomial basis for quantum affine
sln (the construction here will be generalized in latter chapters).

For the partial flag cases, the treatment is similar. More generally, we consider
the set Xn,d of n-periodic lattice chains in V . Here dimF V = d and a sequence
L = (Li)i∈Z of lattices in V is called an n-periodic lattice chain if Li ⊆ Li+1 and
Li = εLi+n for all i ∈ Z. The group GLF (d) acts naturally on Xn,d from the left,
and then acts on the product Xn,d × Xn′,d diagonally, for a pair (n, n′) of positive
integers.

Let Θn|n′,d be the set of all matrices A = (aij)i,j∈Z with non-negative integer
entries satisfying the following conditions:
(2.2.1)

(i) aij = ai+n,j+n′ (∀i, j ∈ Z); (ii)

i0+n−1∑
i=i0

∑
j∈Z

aij = d, for each (or for all) i0 ∈ Z.

The condition (ii) can be equivalently replaced by (ii′) below:

(ii′) For any j0 ∈ Z,
∑j0+n′−1

j=j0

∑
i∈Z

aij = d.

A matrix A in Θn|n′,d automatically satisfies that, for any i ∈ Z, the sets {j ∈
Z|aij �= 0} and {j ∈ Z|aji �= 0} are finite.

Following [Lu99], the GLF (d)-orbits in Xn,d×Xn′,d are parametrized by the set
Θn|n′,d. More precisely, to a pair of n-periodic lattices (L,L′), we define a matrix
A = (aij)i,j∈Z where

aij = dimk Li ∩ L′
j/(Li−1 ∩ L′

j + Li ∩ L′
j−1), (∀i, j ∈ Z).

This defines a bijection GLF (d)\Xn,d ×Xn′,d ↔ Θn|n′,d. Let OA denote the associ-
ated GLF (d)-orbit indexed by A. We are mostly interested in the case when n′ = n,
and we shall write

Θn,d = Θn|n,d.

We set

(2.2.2) Λn,d =
{
λ = (λi)i∈Z ∈ NZ|λi = λi+n, ∀i ∈ Z;

∑
1≤i≤n

λi = d
}
.

To each matrix A ∈ Θn,d, we define its row/column sum vectors ro(A) = (ro(A)i)i∈Z

and co(A) = (co(A)i)i∈Z in Λn,d by

ro(A)i =
∑
j∈Z

aij , co(A)j =
∑
i∈Z

aij (∀i, j ∈ Z).

Let A,B,C ∈ Θn,d, we fix L,L′ ∈ Xn,d such that dimk Li/Li−1 = ro(A)i and
dimk L

′
j/L

′
j−1 = co(B)j for all i, j ∈ Z. We set

gCA,B(
√
q) = #

{
L̃ ∈ Xn,d|(L, L̃) ∈ OA, (L̃, L

′) ∈ OB , (L,L
′) ∈ OC

}
.
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By [Lu99], gCA,B(
√
q) is independent of the choices of L,L′ and is the specialization

of a polynomial gCA,B(v) ∈ Z[v, v−1] at v =
√
q. Note that gCA,B = 0 for all but

finitely many C.
We set A = Z[v, v−1]. The affine Schur A-algebra of type A, denoted by Sn,d;A,

is by definition the (generic) convolution algebra AGLF (d)(Xn,d ×Xn,d). Denote by
eA the characteristic function of the orbit OA, for A ∈ Θn,d. Then the algebra
Sn,d;A is a free A-module with an A-basis {eA|A ∈ Θn,d}, with multiplication
given by eA ∗ eB =

∑
C gCA,B(v)eC . We then set

(2.2.3) Sn,d = Q(v)⊗A Sn,d;A.

To A ∈ Θn,d, we define

daA =
∑

1≤i≤n,i≥k,j<l

aijakl,

and

[A] = v−da
AeA.

The set {[A]|A ∈ Θn,d} is the standard basis of Sn,d. Let {a{A}d|A ∈ Θn,d} be the
canonical basis of Sn,d [Lu99]. Given i, j ∈ Z, let Eij be the Z× Z matrix whose
(k, 	)th entries are 1, for all (k, 	) ≡ (i, j) (mod n), and 0 otherwise; that is,
(2.2.4)
Eij = (Ek,�)k,�∈Z, where Ek,� = 1 if (k, 	) ≡ (i, j)(mod n), otherwise Ek,� = 0.

Definition 2.2.1. The subalgebra of Sn,d generated by the standard basis
elements [X] such that either X or X−Ei,i+1 or X−Ei+1,i is diagonal, is denoted
by Un,d and called Lusztig algebra (of affine type A).

Let Un,d;A be the subalgebra of Sn,d;A generated by the standard basis element
[X] such that either X − REi,i+1 or X − REi+1,i is diagonal, for various R ∈ N.
For each λ ∈ Λn,d, let Dλ be the diagonal matrix in Θn,d whose diagonal is λ. For
each R ∈ N, i ∈ Z, we set

E
(R)
i =

∑
[X], F

(R)
i =

∑
[X], H±1

i =
∑

λ∈Λn,d

v±λi [Dλ], K±1
i = H±1

i+1H
∓1
i ,

(2.2.5)

where the first and second sums run over all X such that X − REi+1,i and X −
REi,i+1 are diagonal, respectively. Clearly, we have E

(R)
i = E

(R)
j , F

(R)
i = F

(R)
j ,

H±1
i = H±1

j and K±1
i = K±1

j for all i ≡ j (mod n). For convenience, we also set

1λ = [Dλ],
It is known from [Lu99] that Un,d;A is an A-lattice of Un,d and generated

by E
(R)
i , F

(R)
i and K±1

i for all i and R ∈ N. Recall a Z × Z-matrix A = (aij) is
aperiodic if

(2.2.6) for any p ∈ Z− {0} there exists k ∈ Z such that ak,k+p = 0.

We denote by Θap
n,d the set of all aperiodic matrices in Θn,d. Lusztig [Lu99] showed

that Un,d is a proper subalgebra of Sn,d and further the subset {a{A}d|A ∈ Θap
n,d}

of the canonical basis of Sn,d form a canonical basis a{A}d of Un,d. Note that
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the latter result is completely nontrivial since the standard basis element [A] for A
aperiodic is not in Un,d in general.

For a ∈ Z and b ∈ N, we define

(2.2.7)

[
a
b

]
=
∏

1≤i≤b

v2(a−i+1) − 1

v2i − 1
, and [a] =

[
a
1

]
.

We define two partial orders “≤alg” and “≤” on Θn,d as follows. For any
A = (aij), A

′ = (a′ij) ∈ Θn,d, let

A ≤alg A′ ⇐⇒
∑

k≤i,l≥j

akl ≤
∑

k≤i,l≥j

a′kl, ∀i < j,(2.2.8)

∑
k≥i,l≤j

akl ≤
∑

k≥i,l≤j

a′kl, ∀i > j.

A ≤ A′ ⇐⇒A ≤alg A′, ro(A) = ro(A′), co(A) = co(A′).(2.2.9)

We further say that “A <alg A′”, (respectively, “A < A′”) if A ≤alg A′ (respectively,
A ≤ A′) and A �= A′. For convenience, we write “[A]+ lower terms” to stand for
“[A] plus a linear sum of various [B] with B < A”.

The following lemma is a slightly stronger affine version of [BLM90, Lemma
3.8], which is used to obtain an affine analogue of [BLM90, Proposition 3.9] for
quantum affine sln.

Lemma 2.2.2. Let A,B,C ∈ Θn,d and R be a positive integer.

(1) Assume that B − REh,h+1 is diagonal for some h ∈ [1, n] and co(B) =
ro(A). Assume further that R = R0 + · · ·+Rl and the matrix A satisfies
the following conditions:

ahj = 0, ∀j ≥ k; ah+1,k+i = Ri, i ∈ [1, l], ah+1,k ≥ R0, ah+1,j = 0, ∀j > k + l.

Then we have

[B] ∗ [A] = [A+

l∑
i=0

Ri(E
h,k+i − Eh+1,k+i)] + lower terms.

(2) Assume that C − REh+1,h is diagonal for some h ∈ [1, n] and co(C) =
ro(A). Assume further that R = R0+ · · ·+Rl and A satisfies the following
conditions:

ahj = 0, ∀j < k, ah,k+i = Ri, i ∈ [0, l − 1], ah,k+l ≥ Rl; ah+1,j = 0, ∀j ≤ k + l.

Then we have

[C] ∗ [A] = [A−
l∑

i=0

Ri(E
h,k+i − Eh+1,k+i)] + lower terms.

Proof. By [Lu99, Section 3], we have

(2.2.10) [B] ∗ [A] =
∑
t

vβ(t)
∏
u∈Z

[
ahu + tu

tu

]
[A+

∑
u∈Z

tu(E
hu − Eh+1,u)],

where β(t) =
∑

j≥u ahjtu −
∑

j>u ah+1,jtu +
∑

j<u tjtu. Here the bar is the invo-

lution on Q(v) defined by v̄ = v−1. Observe that A +
∑l

i=0 Ri(E
h,k − Eh+1,k) is

the leading term for the right hand side of (2.2.10).
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We shall show its coefficient is 1. Note that the leading term is determined by

tk+i = Ri, tj = 0, ∀i ∈ [0, l], j �∈ [k, k + l].

In this case, we have
∏

u∈Z

[
ahu + tu

tu

]
= 1 and

β(t) =
∑
j≥u

(tj − ah+1,j)tu =

l∑
i=0

∑
j>k+i

(tj − ah+1,j)Ri = 0.

This shows (1). Part (2) can be proved similarly. �
A product of standard basis elements [G1] ∗ [G2] ∗ · · · ∗ [Gm] in Sn,d is called an

aperiodic monomial if for each i, either Gi −REj,j+1 or Gi −REj+1,j is diagonal
for some R ∈ N and j ∈ Z. The following proposition is a missing piece in the affine
generalization of [BLM90], corresponding to Proposition 3.9 in the loc. cit. We
refer to [DD05] and the references therein for early treatments using Ringel-Hall
algebras and generic extension.

Proposition 2.2.3. For any A ∈ Θap
n,d, there exists (and we shall fix) an

aperiodic monomial ζaA such that ζaA = [A] + lower terms. Moreover, the set {ζaA |
A ∈ Θap

n,d} is a basis for Un,d.

Proof. Recall [Lu99] that {a{A}d|A ∈ Θap
n,d} forms a canonical basis for

Un,d. Assuming the first statement on the existence of such ζaA, we then have
ζaA = a{A}d+lower terms in Un,d, and hence {ζaA | A ∈ Θap

n,d} forms a basis for
Un,d.

It remains to prove the existence of such an aperiodic monomial ζaA. Let us fix
some notations. Given a matrix A = (aij) ∈ Θn,d, we define a matrix

fk;s,t(A) = A−
∑

s≤j≤t

ak−1,j(E
k−1,j − Ek,j) ∈ Θn,d.

Let Ψ(A) =
∑

i∈[1,n] |j − i|aij . It is clear that Ψ(fk;s,t(A)) ≤ Ψ(A) for all k, s and

t with k ≤ s ≤ t, where the equality holds if and only if

(2.2.11) ak−1,j = 0, ∀s ≤ j ≤ t.

We are now ready to prove the existence of such an aperiodic monomial ζaA by
induction on Ψ(A). If Ψ(A) = 0, then A is a diagonal matrix, and ζaA = [A].

We now assume that Ψ(A) ≥ 1 and that the existence of such ζaA′ for all
aperiodic matrices A′ with Ψ(A′) < Ψ(A). Set m = min{l ∈ N|aij = 0 for all |i −
j| > l}. If there exists k ∈ Z such that ak,k+m = 0 and ak−1,k−1+m �= 0. By
(2.2.11), we have Ψ(fk;s,t(A)) < Ψ(A) for all k ≤ s ≤ t.

Let u = max{s ≤ k+m− 1 | fk;s,k+m−1(A) is aperiodic}. We have akl = 0 for
all l > u. (Otherwise, there exists j > u such that akj �= 0. Then fk;j,k+m−1(A)
is aperiodic, which contradicts with the definition of u.) By Lemma 2.2.2 (1), we
have

(2.2.12) [B] ∗ [fk,u,k+m−1(A)] = [A] + lower terms,

where B is the matrix such that co(B) = ro(fk,u,k+m−1(A)) and

B −
k+m−1∑

l=u

ak−1,lE
k−1,k

is diagonal.
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If there exists k ∈ Z such that ak,k−m �= 0 and ak−1,k−1−m = 0, we can prove
a statement similar to (2.2.12) by using Lemma 2.2.2(2). By induction on Ψ(A),
the existence of ζaA follows. �

Example 2.2.4. Let n = 2. Let A be a lower triangular matrix whose nonzero
entries are located at (5, 5), (6, j) (mod 2), for 2 ≤ j ≤ 6, which are

a55 = 1, a62 = 2, a63 = 3, a64 = 2, a65 = 1, a66 = 2.

Let A′ = (a′ij) be the lower triangular matrix whose nonzero entries are specified
by

a′52 = 2, a′53 = 3, a′54 = 2, a′55 = 2, a′66 = 2.

Applying the algorithm in the proof, E
(8)
1 ∗ [A′] = [A] + lower terms. Inductively,

we have

E
(8)
1 ∗E

(7)
0 ∗E

(5)
1 ∗E

(2)
0 ∗ 1co(A) = [A] + lower terms.

2.3. Algebras Un and U̇n

Recall a transfer map φd,d−n : Un,d → Un,d−n was introduced in [Lu00] by

sending the generators E
(R)
i , F

(R)
i and K±1

i to the respective generators. Let us
define a partial order ≤n on N by declaring that

a ≤n b iff b− a = pn for some p ≥ 0.

Then {(Un,d, φd,d−n)}d∈N form a projective system over the poset (N,≤n). We
shall consider its projective limit:

Un,∞ ≡ lim←−
d

Un,d =
{
x ≡ (xd)d∈N ∈

∏
d∈N

Un,d

∣∣∣φd,d−n(xd) = xd−n ∀d
}
.

The bar involution on Un,d induces a bar involution ¯ : Un,∞ → Un,∞, since it
commutes with the transfer map [Lu00]. Similarly, we have an integral version:
Un,∞;A = lim←−d

Un,d;A. Since Q(v) ⊗A Un,d;A = Un,d for all d, we have Q(v) ⊗A
Un,∞;A = Un,∞.

As we deal with all d ∈ N simultaneously, we will write

1λ,d,Ei,d,Fi,d,K
±1
i,d , ∀1 ≤ i ≤ n

for the generators in Un,d, which are denoted without d in the subscript previously.

Since the transfer map sends generators Ei,d, Fi,d and K±1
i,d to the respective gener-

ators, we can define elements Ei,Fi and K±1
i for all 1 ≤ i ≤ n in Un,∞ by declaring

that their d-th component is Ei,d, Fi,d and K±1
i,d , respectively. (Similarly, we can

define the a-th divided power E
(a)
i and F

(a)
i .)

Definition 2.3.1. Let Un be the subalgebra of Un,∞ generated by Ei,Fi and

K±1
i for all 1 ≤ i ≤ n.

Clearly, the restriction of the natural projection φd : Un,∞ → Un,d gives us a
surjective algebra homomorphism:

φd : Un −→ Un,d.

We set

(2.3.1) Zn = {λ = (λi)i∈Z | λi ∈ Z, λi = λi+n, ∀i}.
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We define an equivalence relation ∼ on Zn by

λ ∼ μ⇔ λ− μ = (. . . , p, p, p, . . .), for some p ∈ Z.

Let Zn/ ∼ be the set of equivalence classes and λ̄ be the equivalence class of λ. Let

X = Zn/ ∼, Y = {ν ∈ Zn|
∑

1≤i≤n

νi = 0}.

Then the standard dot product on Zn induces a pairing · : Y × X −→ Z. Set
I = {1, . . . , n}. We define two injective maps I → Y, I → X, by letting

i �→ −εi + εi+1, i �→ −ε̄i + ε̄i+1, ∀1 ≤ i ≤ n,

respectively, where εi is the i-th standard basis element in Zn, that is (εi)j = δī,j̄ .
We thus obtain a root datum of affine type An−1 in [Lu93, 2.2].

For each λ̄ ∈ X, we define an element 1λ̄ in Un,∞ by setting (1λ̄)d = 0 unless
|λ| :=

∑
1≤i≤n λi = d mod n, and in which case (1λ̄)d = 1μ,d where μ ∈ λ̄ and

|μ| = d. We define U̇n to be the Un-bimodule in Un,∞ generated by 1λ̄ for all

λ̄ ∈ X. It is clear then that U̇n is naturally a subalgebra in Un,∞. The algebra U̇n

admits a decomposition

U̇n =
⊕
λ̄∈X

Un1λ̄ =
⊕

μ̄,λ̄∈X

μ̄(U̇n)λ̄,

where μ̄(U̇n)λ̄ = 1μ̄U̇n1λ̄.

Let U(ŝln) be the affine quantum group of type An−1 (of level zero) attached

to the above root datum. Let U̇(ŝln) be its modified form. The following result is
due to Lusztig [Lu00, Proposition 3.5] (more precisely, the first one was explicitly
written down therein, while the second one is folklore as it follows in the same way
as in the finite type A case [BLM90].)

Proposition 2.3.2. We have the algebra isomorphisms U̇(ŝln) � U̇n, and

U(ŝln) � Un.

Proof. We regard U̇n as the left modules of Un and U(ŝln). Then we have

two algebra homomorphisms Un → End(U̇n), and U(ŝln)→ End(U̇n). Both maps
are injective and have obviously the same image, so they must be isomorphic. (In

short, Un and U(ŝln) act faithfully on U̇n.) �

Therefore the geometric pair (Un, U̇n) is identified with the algebraic pair

(U(ŝln), U̇(ŝln)).





CHAPTER 3

Lattice presentation of affine flag varieties
of type C

We present lattice models for the variety Yc of affine complete flags and a
variety X c

n,d of n-step flags in an F -vector space V of affine type C, for n even.

Then we classify the SpF (V )-orbits on X c
n,d ×X c

n,d, X c
n,d × Yc, and Yc × Yc.

3.1. Affine complete flag varieties of type C

Recall k is a finite field of odd q elements, F = k((ε)) is the field of formal
Laurent series over k, and o = k[[ε]] the ring of formal power series. Let d be a
positive integer. Let

J =

⎛⎜⎜⎝
0 0 · · · 0 1
0 0 · · · 1 0
. . · · · . .
1 0 · · · 0 0

⎞⎟⎟⎠
d×d

, M = M2d =

(
0 J
−J 0

)
.(3.1.1)

Let V = F 2d be a symplectic vector space over F with a symplectic form (, ) :
V × V −→ F specified by M . Let tg be the transpose of a matrix g. We define the
symplectic group with coefficients in F

SpF (2d) = {g ∈ GLF (2d)|g = M tg−1M−1}.(3.1.2)

We also define Spo(2d) and Spk(2d) similarly. By our choice of M , we see that
P ∩ SpF (2d) is parahoric if P is parahoric in GLF (2d). In particular, Ic = Ia ∩
SpF (2d) is Iwahori and it is the stabilizer of the standard lattice chain �L in SpF (V ).
Therefore, we have the bijection

SpF (2d)/I
c � SpF (2d).�L ≡ Ỹc.(3.1.3)

So the lattice presentation of affine flag variety of type C is reduced to a description
of Ỹc. For any lattice L of V , we set

L# = {v ∈ V |(v,L) ⊂ o}.
Then the o-module L# is again a lattice of V and (L#)# = L. We shall use freely
the following properties: for any two lattices L andM

(L+M)# = L# ∩M#, (L ∩M)# = L# +M#.

Following Sage [Sa99], we call a lattice alternating if L ⊆ L# or L ⊇ L#. An
alternating lattice L is called sympletic if L or L# is homothetic to a lattice Λ, i.e.,
L or L# is equal to εaΛ for some a ∈ Z, such that

εΛ ⊆ Λ# ⊆ Λ.(3.1.4)

Clearly �Lz are symplectic for z ∈ Z. The following proposition can be found
in [H99,Sa99,Lu03].

23
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Proposition 3.1.1. The set Ỹc is the set of all collections L = (Lz)z∈Z of
symplectic lattices in V subject to the following conditions:

Lz ⊂ Lz+1, dimk Lz+1/Lz = 1, Lz = εLz+2d, L#
z = L−z (∀z ∈ Z).

For our purpose later, we define a variant of the set Ỹc as follows. Let Yc be
the set of all chains L = (Lz|z ∈ Z) of symplectic lattices subject to the following
conditions:

dimk Lz+1/Lz =

{
0, if z ≡ −1, d mod 2d+ 2,

1, otherwise;

Lz ⊂ Lz+1, Lz = εLz+2d+2, L#
z = L−z−1 (∀z ∈ Z).

(3.1.5)

Clearly, we have a natural bijection: Ỹc � Yc.
Via the identification SpF (2d)/I

c ∼= Yc, there is a left action of SpF (2d) on Yc

which is transitive. Let SpF (2d) act on the product Yc × Yc diagonally. We shall
describe the SpF (2d)-orbits in Yc × Yc.

Recall a set Θn|n′,d was defined in (2.2.1) for any positive integers d, n, n′. Let
cΣd be the following subset of Θ2d+2|2d+2,2d of matrices with entries being 0 or 1:

cΣd =
{
A ∈ MatZ×Z({0, 1})

∣∣∣a−i,−j = aij = ai+2d+2,j+2d+2 (∀i, j ∈ Z),

the 0th and (d+ 1)st rows/columns are zero,

∃ exactly one nonzero entry per row/column i ∈ [0, 2d+ 1]\{0, d+ 1}
}
.

(3.1.6)

We define a map from the set of SpF (2d)-orbits in Yc × Yc to cΣd:

ϕ : SpF (2d)\Yc × Yc −→ cΣd(3.1.7)

by sending the orbit SpF (2d).(L,L
′) to A = (aij)i,j∈Z where

aij = dimk

Li−1 + Li ∩ L′
j

Li−1 + Li ∩ L′
j−1

.

By the definition of aij , we have

a−i,−j = dimk

L−i−1 + L−i ∩ L′
−j

L−i−1 + L−i ∩ L′
−j−1

= dimk

L#
i + L#

i−1 ∩ L′#
j−1

L#
i + L#

i−1 ∩ L′#
j

= dimk

(Li ∩ (Li−1 + L′
j−1))

#

(Li ∩ (Li−1 + L′
j))

#
= dimk

Li ∩ (Li−1 + L′
j)

Li ∩ (Li−1 + L′
j−1)

= dimk

Li−1 + Li ∩ L′
j

Li−1 + Li ∩ L′
j−1

= aij .

So the map ϕ is well defined. The following proposition can be found in [H99], see
also [Lu99].

Proposition 3.1.2. [H99, Proposition 2.6] Let A = (aij)i,j∈Z be the associated
matrix of (L,L′) under ϕ. Then we can decompose V into V = ⊕i,j∈ZVij as k-
vector spaces satisfying that dimk Vij = aij,

Li =
⊕

k,l∈Z:k≤i

Vkl, L′
j =

⊕
k,l∈Z:l≤j

Vkl, ∀i, j ∈ Z.(3.1.8)
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Moreover, there exists a basis {emij |1 ≤ m ≤ aij} of Vij such that

emi,j = εemi+2d+2,j+2d+2, ∀i, j ∈ Z, 1 ≤ m ≤ aij ,

(emij , e
m′

kl ) = −(em
′

kl , e
m
ij ), ∀i, j, k, l ∈ Z, 1 ≤ m ≤ aij , 1 ≤ m′ ≤ akl,

(emij , e
m′

kl ) = ε(emij , e
m′

k+(2d+2),l+(2d+2)), ∀i, j, k, l ∈ Z, 1 ≤ m ≤ aij , 1 ≤ m′ ≤ akl,

(emij , e
m′

kl ) = δm,1δm′,1ε
−2, ∀1 ≤ i < k ≤ 2d+ 2, i+ k = 2d+ 2, j + l = 2d+ 2.

(3.1.9)

From the above proposition, we have the Iwahori-Bruhat decomposition for the
group SpF (V ).

Proposition 3.1.3. The map ϕ : SpF (2d)\Yc × Yc −→ cΣd in ( 3.1.7) is a
bijection.

Proof. By Proposition 3.1.2, ϕ is clearly surjective. Assume now that the
associated matrix of two pairs (L,L′) and (L̃, L̃′) of symplectic lattice chains is
the same matrix, say A. By Proposition 3.1.2, we can find bases {emij } and {fm

ij }
for the pairs (L,L′) and (L̃, L̃′), respectively, subject to the conditions (3.1.8) and
(3.1.9). We define a map g : V → V by sending emij to fm

ij for all i, j ∈ Z and

1 ≤ m ≤ aij . Then we have g ∈ SpF (2d) and g(L,L′) = (L̃, L̃′). So ϕ is injective.
The proposition is proved. �

3.2. Affine partial flag varieties of type C

Now we fix an even positive integer

n = 2r + 2, for some r ∈ N.

Let X c
n,d be the set of all chains L = (Lz)z∈Z of symplectic lattices in V subject to

the following conditions:

Lz ⊂ Lz+1, Lz = εLz+n, L#
z = L−z−1 (∀z ∈ Z).(3.2.1)

Remark 3.2.1. The shift by −1 in the condition L#
z = L−z−1 in definition of

X c
n,d (see (3.2.1)) allows the valuation at L0 to vary. In contrast the valuation at

L0 is always zero in the case of Ỹc.

The group SpF (2d) acts transitively from the left on X c
n,d in a standard way.

Let SpF (2d) act diagonally on the products X c
n,d × X c

n,d and X c
n,d × Yc. Let Πn,d

be the subset of Θn|2d+2,2d (for Θn|n′,d see (2.2.1)), which consists of all matrices
A = (aij) ∈ MatZ×Z(N) such that

a−i,−j = aij = ai+n,j+2d+2 (∀i, j ∈ Z),
∑
l∈Z

alj=

{
0, ∀j ≡ 0, d+ 1 (mod 2d+ 2)

1, otherwise.

(3.2.2)

Similar to (3.1.7), we have a map

SpF (2d)\X c
n,d × Yc −→ Πn,d.(3.2.3)

More generally, let cΞn,d be the subset of Θn,2d given by
cΞn,d =

{
(aij) ∈MatZ×Z(N)

∣∣ a−i,−j = aij = ai+n,j+n, (∀i, j),∑
1≤i≤n

∑
j∈Z

aij = 2d, a00, ar+1,r+1 ∈ 2Z
}
.(3.2.4)
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Similar to (3.1.7) again, we have a map

SpF (2d)\X c
n,d ×X c

n,d −→ cΞn,d.(3.2.5)

Proposition 3.2.2. The maps in (3.2.3) and (3.2.5) are bijective.

Proof. Note that the first bijection (3.2.3) is a special case of the second
bijection (3.2.5). So we only need to prove the second bijection, and we shall
deduce it from Proposition 3.1.3 as follows. For a given matrix A ∈ cΞn,d, we can
delete all its zero rows and zero columns. Let us denote the resulting matrix by
dlt(A), which is essentially determined by the stripe [1, a] × Z of dlt(A) for some
a ≤ 2d. It is then possible to find a (nonunique) matrix w ∈ cΣd (see (3.1.6)) such
that A can be obtained from w by adding consecutive rows between [1, 2d + 2].
Now pick a representative, say (L,L′), in the orbit Ow. We can construct a pair of
partial flags by removing subspaces in L and L′ corresponding to the summations
of consecutive rows, whose associated matrix is dlt(A). This shows that the map
(3.2.5) is surjective.

Now if there are two pairs, say x, y, of flags whose associated matrix is A, we
fix a matrix w ∈ cΣ such that it can be merged to A, and use the above process
to find two pairs, x′, y′ of flags in Ow such that they can reach x, y, respectively,
by throwing away certain steps. Moreover, w can be chosen to be the one obtained
from A by blowing up the entries in A of value strictly greater than 1 to an identity
matrix locally. For example, if aij = 2 and x = (L,L′), we can find a vector
u ∈ Li ∩ L′

j − (Li−1 ∩ L′
j + Li ∩ L′

j−1) such that Li−1 + ou and L′
j−1 + ou are

symplectic lattices. We expand L by plugging the lattice Li+ou in between Li and
Li+1. Similarly, we can expand L′. Then the matrix of the resulting pair will be
the one by blowing up A at (i, j) to be a 2×2 identity matrix locally. By repeating
the above process, we have the desired pair x′ for x whose matrix is w. Since x′

and y′ are in the same orbit, there is a g ∈ SpF (2d) such that g.x′ = y′, which
induces that g.x = y. So x and y are in the same orbit. Therefore the map (3.2.5)
is injective, and hence a bijection. The proposition is proved. �

3.3. Local property at L0

Lemma 3.3.1. Let L = (Lz)z∈Z ∈ X c
n,d. We have

v(Lr) ∈ [−d, 0], v(Lr+1) ∈ [−2d,−d], and v(Lr) + v(Lr+1) = −2d.

Proof. Note that the valuation of L0 is non-positive because L−1 = L#
0 . So

the valuation v(Lr) ≤ 0.
By definition, for any lattice L, we have

v(L#) = −v(L), v(εL) = 2d+ v(L).
So we have

v(Lr+1) = v(ε−1L−(r+1)) = −2d+ v(L−(r+1)) = −2d+ v(L#
r ) = −2d− v(Lr).

Since v(Lr+1) ≤ v(Lr), we have v(Lr) ≥ −d, and −d ≥ v(Lr+1) ≥ −2d. �

More generally, we have v(Li) ∈ [−d, 0], v(Li)+v(Ln−1−i) = −2d, ∀i ∈ [0, r],
by the same type of argument above. But we do not need this general fact.
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Then, we can find a ‘maximal isotropic’ lattice Lr† isometric to

�Ld = [ed+1, . . . , e2d, ε
−1e1, . . . , ε

−1ed]o,

such that
Lr ⊆ Lr† ⊆ Lr+1.

Here the basis {ei|1 ≤ i ≤ 2d} is chosen such that the associated matrix of the
symplectic form on V is given by (3.1.1). The lattice �Ld satisfies the following
properties:

(�Ld, �Ld) = ε−1o, (�Ld, ε�Ld) = o, (ε�Ld, �Ld) = o.

So the map

(−,−)r† : Lr†/εLr† × Lr†/εLr† → k

(x̄, ȳ)r† = ev|ε=0 ε(x, y)

is a non-degenerate symplectic form on Lr†/εLr† � k2d.
Moreover, L−1/εLr† and L0/εLr† are orthogonal complements to each other

with respect to the above form (−,−)r† on Lr†/εLr† .

Lemma 3.3.2. We have the following bijection

{lattices L′ in V
∣∣ L−1 ⊆ (L′)# ⊆ L′ 1

⊂ L0} ∼−→

{k-subspaces W of L0/εLr†
∣∣ L−1/εLr† ⊆W

1
⊂ L0/εLr† ,W

⊥ ⊆W},
(3.3.1)

which sends L′ to L′/εLr† . (Here and below
1
⊂ denotes subspaces of codimension

1.)

Therefore, the computation at L0 is exactly the same as the computation at
Lr. In particular, we have the following lemma which we shall use freely.

Lemma 3.3.3. (1) Suppose that L is a lattice such that L−1 ⊂ L ⊂ L0

and dimk L0/L = 1, then the lattice L is symplectic and L# ⊂ L.
(2) If the pair (L−1, L0) is replaced by (Lr, Lr+1) such that dimk L/Lr = 1,

then L is symplectic and L ⊂ L#.





CHAPTER 4

Multiplication formulas for Chevalley generators

In this chapter, we study the convolution algebra Sc
n,d of pairs of n-step flags

of affine type C. We present multiplication formulas in Sc
n,d with (the divided

powers of) Chevalley generators. We then specify some general scenarios when
these multiplication formulas produce a leading term with coefficient 1.

4.1. Some dimension computation

Fix L ∈ X c
n,d. For A ∈ cΞn,d (which was defined in (3.2.4)), we define

(4.1.1) XL
A = {L′ ∈ X c

n,d|(L,L′) ∈ OA}.
This is an orbit of the stabilizer subgroup StabSp(V )(L) of Sp(V ), and one can
associate to it a structure of quasi-projective algebraic variety. We are interested
in computing its dimension dcA (in order to define the standard basis element [A]
later on). We have the following affine type C analogue of [Lu99, Lemma 4.3].

Lemma 4.1.1. Fix L ∈ X c
n,d. For A ∈ cΞn,d, the dimension of XL

A is given by

dcA =
1

2

( ∑
i≥k,j<l
i∈[1,n]

aijakl +
∑

i≥0>j

aij +
∑

i≥r+1>j

aij

)
.

Proof. The proof is similar to that of in [Lu99, Lemma 4.3]. Indeed, we can
fix a decomposition V = ⊕i,j∈ZVij as k-vector spaces such that dimk Vij = aij . We
can further assume that Vij admits a k-basis {emij |1 ≤ m ≤ aij} satisfying

εemij = emi−n,j−n, ∀i, j ∈ Z,m ∈ [1, aij ].

We define a symplectic F -form on V by, for any i, k ∈ [1, n], j, l ∈ Z,

(emij , e
m′

kl ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δm,m′ε−2, if i+ k = n, j + l = n, i < r + 1,

−δm,m′ε−2, if i+ k = n, j + l = n, i > r + 1,

δm,m′ε−2, if i+ k = n, j + l = n, i = r + 1, j < r + 1,

−δm,m′ε−2, if i+ k = n, j + l = n, i = r + 1, j > r + 1,

δm,ar+1,r+1+1−m′ε−2, if (i, j) = (k, l) = (r + 1, r + 1),

m ≤ ar+1,r+1/2,

−δm,ar+1,r+1+1−m′ε−2, if (i, j) = (k, l) = (r + 1, r + 1),

m ≥ ar+1,r+1/2 + 1,

ε(emij , e
m′

k−n,l−n).

Now set L = (Li)i∈Z and L′ = (L′
j)j∈Z, where

Li =
⊕

k,l∈Z:k≤i

Vkl, L′
j =

⊕
k,l∈Z:l≤j

Vkl, ∀i, j ∈ Z.

29
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We see that (L,L′) ∈ OA. Let

X = {x ∈ sp(V )|x(L) ⊆ L}, X ′ = {x ∈ sp(V )|x(L) ⊆ L, x(L′) ⊆ L′}.
We have

dimXL
A = dimk X/X ′.

Now x = (x(i,j),(k,l) : Vij → Vkl) ∈ sp(V ) if and only if the following conditions are
satisfied:

x(n+i,n+j),(n+k,n+l)(u) = ε−1x(i,j),(k,l)(εu), ∀u ∈ Vn−i,n−j ,

(x(u), u′) + (u, x(u′)) = 0, ∀u, u′ ∈ V.
(4.1.2)

The second condition in (4.1.2) is equivalent to

tx(i,j),(k,l)M +Mx(sn−k,sn−l),(sn−i,sn−j) = 0, ∀i, j, k, l, s ∈ Z,(4.1.3)

where M is a certain matrix associated to the symplectic form (·, ·).
In particular, if i+ k �= sn or j + l �= sn, ∀s ∈ Z, then the linear map x(i,j),(k,l)

completely determines x(sn−k,sn−l),(sn−i,sn−j) for all s ∈ Z. So the contribution for
these linear maps in dimX/X ′ is

1

2

∑
i≥k,j<l,i∈[0,n−1]
i+k �=sn or j+l �=sn

aijakl.(4.1.4)

If we have i+k = sn or j+l = sn for some s ∈ Z, then the equation (4.1.3) becomes
tx(i,j),(k,l)M +Mx(i,j),(k,l) = 0. By (4.1.2), the collection of linear maps x(i,j),(k,l)

such that i + k = sn and j + l = sn for some s ∈ Z determines the collection of
linear maps x(i,j),(k,l) such that i+ k = (s+ 2)n and j + l = (s+ 2)n. So they are
determined by the following two subsets:

{x(ij),(kl)|i+ k = 0, j + l = 0}, {x(ij),(kl)|i+ k = n, j + l = n}.
So the contribution of these kind of linear maps to dimX/X ′ is

1

2

∑
i≥k,j<l,i∈[0,n−1]
i+k=sn,j+l=sn

aijakl +
1

2

∑
i≥0>j

aij +
1

2

∑
i≥r+1>j

aij .(4.1.5)

The lemma follows by summing up (4.1.4) and (4.1.5). �

4.2. Standard and canonical bases of Schur algebras

It turns out a “type B” parametrization in place of the “type C” parametriza-
tion via cΞn,d is more natural, for the Sp(V )-orbits in X c

n,d × X c
n,d and then for

bases of the Schur algebras later on. (Such a phenomenon already occurred in the
finite type; cf. [BKLW14,FL15].) We introduce the “type B” parametrization
set

(4.2.1) Ξn,d = {A+ E00 + Er+1,r+1|A ∈ cΞn,d}.
That is, Ξn,d is the set of matrices A ∈ MatZ×Z(N) subject to the following condi-
tions:

aij = a−i,−j = ai−n,j−n (∀i, j ∈ Z), a00, ar+1,r+1 ∈ 2Z+ 1,

i0+n∑
i=i0+1

∑
j∈Z

aij = 2d+ 2, for one (or each) i0 ∈ Z.
(4.2.2)
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By definition we have a bijection

(4.2.3) cΞn,d ←→ Ξn,d, A �→ A+ E00 + Er+1,r+1.

From now on, we shall switch to the indexing set Ξn,d for the rest of the paper.
Hence by abuse of notations, an SpF (2d)-orbit on X c

n,d × X c
n,d is denoted by OA

and the set in (4.1.1) is denoted by XL
A, now for A ∈ Ξn,d.

Lemma 4.2.1. The dimension of XL
A for A ∈ Ξn,d is given by

dA =
1

2

( ∑
i≥k,j<l
i∈[0,n−1]

aijakl −
∑

i≥0>j

aij −
∑

i≥r+1>j

aij

)
.(4.2.4)

Proof. Let A = (aij) ∈ cΞn,d. We shall denote A′ = (a′ij) ∈ Ξn,d correspond-
ing to A via the bijection (4.2.3). Thus we have

(4.2.5) a′ij = aij + δij
∑
k∈Z

δ0,i+kn + δij
∑
k∈Z

δr+1,i+kn.

It follows from Lemma 4.1.1 that

dA′ = dcA =
1

2

( ∑
i≥k,j<l
i∈[1,n]

aijakl +
∑

i≥0>j

aij +
∑

i≥r+1>j

aij

)

=
1

2

( ∑
i≥k,j<l
i∈[1,n]

a′ija
′
kl −

∑
l>0≥k

a′kl −
∑

l>r+1≥k

a′kl −
∑

i,j,k:i≥kn>j
i∈[1,n]

a′ij

−
∑

i,j,k:i≥r+1+kn>j
i∈[1,n]

a′ij +
∑

i≥0>j

a′ij +
∑

i≥r+1>j

a′ij

)

=
1

2

( ∑
i≥k,j<l
i∈[1,n]

a′ija
′
kl −

∑
i≥0>j

a′ij −
∑

i≥r+1>j

a′ij

)
.

The lemma is proved. �
We also introduce

Σd =
{
A ∈ MatZ×Z({0, 1})

∣∣∣a−i,−j = aij = ai+2d+2,j+2d+2 (∀i, j ∈ Z),

∃ exactly one nonzero entry per row/column
}
.

(4.2.6)

Note the description of Σd is much cleaner than cΣd, cf. (3.1.6). Nevertheless, the
bijection (4.2.3) induces a natural bijection

(4.2.7) cΣd ←→ Σd, A �→ A+ E00 + Er+1,r+1.

The bijection ϕ : SpF (2d)\Yc×Yc −→ cΣd in Proposition 3.1.3 can be reformulated
using Σd in place of cΣd.

Recall the Schur algebra of affine type A, Sn,d;A, was defined in Section 2.2.
The A-algebra Sc

n,d;A is defined in the same way, now as the (generic) convolution

algebraASpF (2d)(X c
n,d×X c

n,d) attached to the variety X c
n,d introduced in the previous

chapter. We then set

(4.2.8) Sc
n,d = Q(v)⊗A Sc

n,d;A.
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The algebras Sc
n,d;A and Sc

n,d are called the Schur algebras (of affine type C).
Denote by eA the characteristic function of the orbit OA, for A ∈ Ξn,d. Then
{eA|A ∈ Ξn,d} forms a basis for Sc

n,d;A and Sc
n,d. Set

(4.2.9) [A] = v−dAeA, for A ∈ Ξn,d.

Remark 4.2.2. We have

dA − d tA

(4.2.10)

=
1

4

( ∑
1≤i≤n

(
ro(A)2i − co(A)2i

)
− (ro(A)0 − co(A)0)− (ro(A)r+1 − co(A)r+1)

)
.

Hence the assignment [A] �→ [ tA] defines an anti-involution Ψ : Sc
n,d → Sc

n,d. Note

from [Lu99, 1.6(a)] that∑
i≥−(r+1)>j

aij = dimk
L′
−r−2

L−r−2 ∩ L′
−r−2

,
∑

i≥r+1>j

aij = dimk
L′
r

Lr ∩ L′
r

,

for any (L,L′) ∈ OA.

Recall the partial orders ≤alg and ≤ on Θn,d from (2.2.8) and (2.2.9). These two
partial orders restrict to similar ones on Ξn,d, still denoted by the same notations.
Since any matrix A in Ξn,d satisfies that aij = a−i,−j for all i, j ∈ Z. The two
conditions in (2.2.8) are equivalent to each other. Hence, the partial order ≤alg on
Ξn,d can be simplified as follows. Given any A = (aij), A

′ = (a′ij) ∈ Ξn,d, one has

A ≤alg A′ ⇐⇒
∑

k≤i,l≥j

akl ≤
∑

k≤i,l≥j

a′kl, ∀i < j.(4.2.11)

Since the Bruhat order of affine type C is compatible with the Bruhat order of
affine type A, we see that the partial order “≤” is compatible with (though possibly
weaker than) the Bruhat order of affine type C.

Assume for now that the ground field is Fq. Let ICA be the intersection coho-

mology complex of the closure XL
A of XL

A, taken in certain ambient algebraic variety

over Fq, such that the restriction of the stratum ICA to XL
A is the constant sheaf

on XL
A. We refer to [BBD82] for the precise definition of intersection complexes.

The restriction of the i-th cohomology sheaf H i
XL

B
(ICA) of ICA to XL

B for B ≤ A

is a trivial local system, whose rank is denoted by nB,A,i. We set

(4.2.12) {A}d =
∑
B≤A

PB,A[B], where PB,A =
∑
i∈Z

nB,A,iv
i−dA+dB .

The polynomials PB,A satisfy

(4.2.13) PA,A = 1 and PB,A ∈ v−1Z[v−1] for any B < A.

Recall {[A]
∣∣A ∈ Ξn,d} forms an Q(v)-basis of Sc

n,d. In light of [BBD82,Lu97], we
have the following.

Proposition 4.2.3. The set {{A}d
∣∣A ∈ Ξn,d} forms an A-basis of Sc

n,d;A and

a Q(v)-basis of Sc
n,d (called the canonical basis). Moreover, the structure constants

of Sc
n,d with respect to the canonical basis are in N[v, v−1].
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4.3. Some multiplication formulas

Recalling Eij from (2.2.4), we set

(4.3.1) Eij
θ = Eij + E−i,−j .

Note that we have

E00
θ = 2E00, Er+1,r+1

θ = 2Er+1,r+1.

We have the following affine analogue of [BKLW14, Lemma 3.2], whose proof
also explains why the formula therein is the same as those in [BLM90].

Lemma 4.3.1. Assume that i ∈ Z and A,B,C ∈ Ξn,d.

(1) If ro(A) = co(B) and B − Ei,i+1
θ is diagonal, then we have

eB ∗ eA =
∑
p∈Z

ai+1,p≥(Ei+1,p
θ )i+1,p

v2
∑

j>p aij
v2(1+aip) − 1

v2 − 1
eA+Eip

θ −Ei+1,p
θ

.(4.3.2)

(2) If ro(A) = co(C) and C − Ei+1,i
θ is diagonal, then we have

eC ∗ eA =
∑
p∈Z

ai,p≥(Ei,p
θ )i,p

v2
∑

j<p ai+1,j
v2(1+ai+1,p) − 1

v2 − 1
eA−Eip

θ +Ei+1,p
θ

.(4.3.3)

Proof. The proof is essentially the same as that of [Lu99, Proposition 3.5].
Obtaining the structure constant in the first formula is reduced to computing the
orders of the following two sets:

{U symplectic lattice|Li−1 + (Li ∩ L′
p−1) ⊆ U ⊆ Li dimk Li/U = 1},

{U symplectic lattice|Li−1 + (Li ∩ L′
p) ⊆ U ⊆ Li, dimk Li/U = 1}.

Since the lattices U such that Li−1 ⊆ U
1
⊂ Li are automatically symplectic (and

U# ⊆ U) by Lemma 3.3.3, the computations in loc. cit. still work and we have the
first formula.

For the second formula, it is reduced to computing the difference of the orders
of the following two sets:

{U symplectic lattice|Li ⊆ U ⊆ Li + (Li+1 ∩ L′
p), dimk U/Li = 1},

{U symplectic lattice|Li ⊆ U ⊆ Li + (Li+1 ∩ L′
p−1), dimk U/Li = 1}.

And again in this case, the lattices involved are automatically symplectic and thus
the computations in loc. cit. work here again. The second formula is obtained. �

We now generalize Lemma 4.3.1 to a multiplication formula by “divided powers”
of Chevalley generators.

Lemma 4.3.2. Assume that A,B,C ∈ Ξn,d and R ∈ N.

(1) If ro(A) = co(B) and B−REi,i+1
θ is diagonal for some i ∈ [1, r], then we

have

eB ∗ eA =
∑
t

v2
∑

j>u aijtu
∏
u∈Z

[
aiu + tu

tu

]
eA+

∑
u∈Z

tu(Eiu
θ −Ei+1,u

θ ),

where the sum is over all sequences t = (tu|u ∈ Z) such that tu ∈ N and∑
u∈Z

tu = R.
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(2) If ro(A) = co(B) and B −RE0,1
θ is diagonal, then we have

eB∗eA =
∑
t

v2
∑

j>u a0jtu+2
∑

j<u<−j tjtu+
∑

u<0 tu(tu−1)

·
∏
u>0

[
a0u + tu + t−u

tu

] ∏
u<0

[
a0u + tu

tu

] t0−1∏
i=0

[a00 + 1 + 2i]

[i+ 1]
eA+

∑
u∈Z

tu(E0u
θ −E1u

θ ).

(3) If ro(A) = co(C) and C −REi+1,i
θ is diagonal for some i ∈ [0, r− 1], then

we have

eC ∗ eA =
∑
t

v2
∑

j<u ai+1,jtu
∏
u∈Z

[
ai+1,u + tu

tu

]
eA−

∑
u∈Z

tu(Eiu
θ −Ei+1,u

θ ).

(4) If ro(A) = co(C) and C −REr+1,r
θ is diagonal, then we have

eC∗eA =
∑
t

v2
∑

j<u ar+1,jtu+2
∑

n−j<u<j tutj+
∑

u>r+1 tu(tu−1)
∏

u<r+1

[
ar+1,u + tu

tu

]

·
∏

u>r+1

[
ar+1,u + tu + tn−u

tu

] tr+1−1∏
i=0

[ar+1,r+1 + 1 + 2i]

[i+ 1]
eA−

∑
u∈Z

tu(Eru
θ −Er+1,u

θ ),

where the sum is taken over t = (tu|u ∈ Z) such that tu ∈ N and∑
u∈Z

tu = R.

Proof. The proofs of (1), (3) and (4) are essentially the same as that
of [BKLW14, Proposition 3.3], while the proof of (2) is similar to the proof of
(4). Let us give a proof of (2) and skip (1), (3) and (4). We shall prove by induc-
tion on R. When R = 1, we have (2) by Lemma 4.3.1. Write BR for B in order
to keep track of the R, and At for the matrix A+

∑
u∈Z

tu(E
0u
θ − E1u

θ ) associated
with t. Let GA,t denote the coefficient of eAt

in (2). By Lemma 4.3.1, we have
eB1
∗ eBR

= [R + 1]eBR+1
. So

eBR+1
∗ eA =

1

[R+ 1]

∑
t,p

GA,tGAt,peAt+p
,

where p ∈ NZ is the sequence whose nonzero entry is 1 at the position p.
It suffices to show that

1

[R + 1]

∑
t,p:t+p=s

GA,tGAt,p = GA,s

for any sequence s ∈ NZ such that
∑

u∈Z
su = R + 1. By Lemma 4.3.1, the

coefficient GAt,p is equal to v2
∑

j>p a0j+2
∑

j>p(tj+t−j)[a0p + tp + t−p + 1]. The v-

power terms of GA,t and GAt,p together yield the v-power term of GA,s multiplying

with v2
∑

j>p tj . The v-binomial coefficients of GA,t and GAt,p yield the v-binomial

coefficient of GA,s multiplying with [sp]. So we have

1

[R+ 1]

∑
t+p=s

GA,tGAt,p = GA,s
1

[R + 1]

∑
p∈Z

v2
∑

j>p tj [rp] = GA,s.

By induction, we have proved (2). �
Lemma 4.3.2 can be rewritten in terms of the standard basis [A] as follows.

Recall that we have a bar involution¯: Q(v)→ Q(v) defined by v̄ = v−1.
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Proposition 4.3.3. Assume that A,B,C ∈ Ξn,d and R ∈ N.

(1) If ro(A) = co(B) and B−REi,i+1
θ is diagonal for some i ∈ [1, r], then we

have

[B] ∗ [A] =
∑
t

vβt

∏
u∈Z

[
aiu + tu

tu

]
[A+

∑
u∈Z

tu(E
iu
θ − Ei+1,u

θ )],

βt =
∑
j≥u

aijtu −
∑
j>u

ai+1,jtu +
∑
j<u

tjtu +
1

2
δi,r

⎛⎝ ∑
j+u<n

tjtu +
∑

j<r+1

tj

⎞⎠ ,

where the sum is over all sequences t = (tu|u ∈ Z) such that tu ∈ N and∑
u∈Z

tu = R.

(2) If ro(A) = co(B) and B −RE0,1
θ is diagonal, then we have

[B] ∗ [A] =
∑
t

vβ
′
t

∏
u>0

[
a0u + tu + t−u

tu

] ∏
u<0

[
a0u + tu

tu

]

·
t0−1∏
i=0

[a00 + 1 + 2i]

[i+ 1]

[
A+

∑
u∈Z

tu(E
0u
θ − E1u

θ )

]
,

where the sum is over all sequences t = (tu|u ∈ Z) such that tu ∈ N and∑
u∈Z

tu = R, and

β′
t =
∑
j≥u

a0jtu −
∑
j>u

a1jtu +
∑

j<u,j+u≤0

tjtu −
∑
j>0

t2j − tj

2
+

R2 −R

2
.

(3) If ro(A) = co(C) and C −REi+1,i
θ is diagonal for some i ∈ [0, r− 1], then

we have

[C] ∗ [A] =
∑
t

vγt

∏
u∈Z

[
ai+1,u + tu

tu

] [
A−

∑
u∈Z

tu(E
iu
θ − Ei+1,u

θ )

]
,

where the sum is over all sequences t = (tu|u ∈ Z) such that tu ∈ N and∑
u∈Z

tu = R, and

γt =
∑
j≤u

ai+1,jtu −
∑
j<u

aijtu +
∑
j<u

tjtu +
1

2
δi,0

⎛⎝ ∑
j+u>0

tjtu +
∑
j>0

tj

⎞⎠ .

(4) If ro(A) = co(C) and C −REr+1,r
θ is diagonal, then we have

[C] ∗ [A] =
∑
t

vγ
′
t

∏
u<r+1

[
ar+1,u + tu

tu

] ∏
u>r+1

[
ar+1,u + tu + tn−u

tu

]
tr+1−1∏
i=0

[ar+1,r+1 + 1 + 2i]

[i+ 1]

[
A−

∑
u∈Z

tu(E
ru
θ − Er+1,u

θ )

]
,

where

γ′
t =
∑
j≤u

ar+1,jtu −
∑
j<u

arjtu +
∑

j<u,j+u≥n

tjtu −
∑

j<r+1

t2j − tj

2
+

R2 −R

2
,

and t = (tu|u ∈ Z) such that tu ∈ N and
∑

u∈Z
tu = R.
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Proof. Let us prove (1). By definition, we have dB = Rbii =
∑

j,u aijtu. Let

us denote (k, l)-th entry in A+
∑

u∈Z
tu(E

iu
θ −E

i+1,u
θ ) by iakl. A lengthy calculation

yields∑
iaij

iakl −
∑

aijakl = 2
∑
j<u

aijtu − 2
∑
j>u

ai+1,jtu + 2
∑
j<u

tjtu + δi,r
∑

j+u<n

tjtu,

where the sums on the left-hand side run over all (i, j, k, l) such that i ≥ k, j < l
and i ∈ [0, n− 1]. We also have∑

i≥0>j

iaij =
∑

i≥0>j

aij ,∑
i≥r+1>j

iaij =
∑

i≥r+1>j

aij − δir
∑

j<r+1

tj .

Putting the above computations together, we have

dAt
− dA =

∑
j<u

aijtu −
∑
j>u

ai+1,jtu +
∑
j<u

tjtu +
1

2
δi,r

⎛⎝ ∑
j+u<n

tjtu +
∑

j<r+1

tj

⎞⎠ ,

where At = A+
∑

u∈Z
tu(E

iu
θ − Ei+1,u

θ ). Now from Lemma 4.3.2(1), we have

βt = −dB + dAt
− dA + 2

∑
j>u

aijtu + 2
∑
u∈Z

aiutu.

The above calculations give rise to the formula for βt, and (1) follows.
We now prove (2). We set A0,t = A +

∑
u∈Z

tu(E
0u
θ − E1u

θ ) and write its

(i, j)-entry by 0aij . We have

β′
t = −dB − dA + dA0,t

+ 2
∑
j≥u

a0jtu + 2
∑

j<u,j+u≤0

tjtu +
∑
u≤0

tu(tu − 1).

By definition, we have dB =
∑

j,u a0jtu + R2−R
2 . Moreover, we have

dA0,t
− dA =

∑
j<u

a0jtu −
∑
j>u

a1jtu +
∑
j<u

tjtu +
1

2

⎛⎝ ∑
j+u>0

tjtu −
∑
j>0

tj

⎞⎠ .

Thus,

β′
t =
∑
j≥u

a0jtu −
∑
j>u

a1jtu −
R2 −R

2
+
∑
j<u

tjtu

+ 2
∑

j<u,j+u≤0

tjtu +
∑
u≤0

tu(tu − 1) +
1

2
(
∑

j+u>0

tjtu −
∑
j>0

tj)

=
∑
j≥u

a0jtu −
∑
j>u

a1jtu +
R2 −R

2
+

∑
j<u,j+u≤0

tjtu −
1

2

∑
j>0

t2j − tj .

So we have proved (2).
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For (3), we have dC =
∑

j,u ai+1,jtu, and

dA−
∑

u∈Z
tu(Eiu

θ −Ei+1,u
θ ) − dA =

∑
j>u

ai+1,jtu −
∑
j<u

aijtu

+
∑
j<u

tjtu +
1

2
δi,0

⎛⎝ ∑
j+u>0

tjtu +
∑
j>0

tj

⎞⎠ .

So we have the formula for γt in (3).

For (4), we have dC =
∑

j,u ar+1,jtu + R2−R
2 , and

dA−
∑

u∈Z
tu(Eru

θ −Er+1,u
θ ) − dA =

∑
j>u

ar+1,jtu −
∑
j<u

arjtu

+
∑
j<u

tjtu +
1

2

⎛⎝ ∑
j+u<n

tjtu −
∑

j<r+1

tj

⎞⎠ .

So we have the formula for γ′
t in (4). �

4.4. The leading term

We have the following affine generalization of [BKLW14, Lemma 3.9].

Lemma 4.4.1. Let A,B,C ∈ Ξn,d. Let R be a positive integer.

(1) Assume that B − REh,h+1
θ is diagonal for some h ∈ [0, r] and co(B) =

ro(A). Assume further that the matrix A satisfies one of the following
conditions:

a0j = 0, ∀j ≥ k; a1k = R, a1j = 0, ∀j > k, if h = 0, k ≥ 0; or

ahj = 0, ∀j ≥ k; ah+1,k = R, ah+1,j = 0, ∀j > k, if h ∈ [1, r − 1]; or

arj = 0, ∀j ≥ k; ar+1,k = R, ar+1,j = 0, ∀j > k, if h = r, k > r + 1; or

arj = 0, ∀j ≥ r + 1; ar+1,r+1 ≥ 2R, ar+1,j = 0, ∀j > r + 1, if h = r, k = r + 1.

Then we have [B] ∗ [A] = [A+R(Eh,k
θ − Eh+1,k

θ )] + lower terms.

(2) Assume that C − REh+1,h
θ is diagonal for some h ∈ [0, r] and co(C) =

ro(A). Assume further that A satisfies one of the following conditions:

a1j = 0, ∀j ≤ k; a0k = R, a0j = 0, ∀j < k, if h = 0, k < 0; or

a1j = 0, ∀j ≤ k; a0k ≥ 2R, a0j = 0, ∀j < k, if h = 0, k = 0; or

ahj = 0, ∀j < k; ahk = R; ah+1,j = 0, ∀j ≤ k, if h ∈ [1, r − 1]; or

arj = 0, ∀j < k; ark = R; ar+1,j = 0, ∀j ≤ k, if h = r, k ≤ r.

Then we have [C] ∗ [A] = [A−R(Eh,k
θ − Eh+1,k

θ )] + lower terms.

Proof. We prove (1). Set

M = A+R(Eh,k
θ − Eh+1,k

θ ), M ′ = A+
∑
u∈Z

tu(E
hu
θ − Eh+1,u

θ ),

with
∑

u∈Z
tu = R. By an argument similar to the proof of [BLM90, Lemma 3.8],

it is enough to show that M ′ ≤alg M . Assume that h ∈ [1, r − 1]. By definition,
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the (r, s)-th entry mrs of M is

mrs = ars +R
∑
l∈Z

δs,k+ln(δr,h+ln − δr,h+1+ln)

+R
∑
l∈Z

δs,n−k+ln(δr,n−h+ln − δr,n−1−h+ln).

Observe that∑
r≤i,s≥j

R
∑
l∈Z

δs,k+ln(δr,h+ln − δr,h+1+ln)(4.4.1)

=

{
R, if i = h+ l1n, j ≤ k + l1n, for some l1,

0, otherwise.∑
r≤i,s≥j

+R
∑
l∈Z

δs,n−k+ln(δr,n−h+ln − δr,n−1−h+ln)(4.4.2)

=

{
−R, if i = n− 1− h+ l1n, j ≤ n− k + l1n, for some l1,

0, otherwise.

On the other hand, the (r, s)-th entry m′
r,s of M ′ is equal to

m′
rs = ars +

∑
l∈Z

ts−ln(δr,h+ln − δr,h+1+ln) +
∑
l∈Z

tn−s+ln(δr,n−h+ln − δr,n−1−h+ln).

Notice that ∑
r≤i,s≥j

∑
l∈Z

ts−ln(δr,h+ln − δr,h+1+ln)(4.4.3)

=

{∑
s+l1n≥j ts, if i = h+ l1n, for some l1,

0, otherwise.∑
r≤i,s≥j

∑
l∈Z

tn−s+ln(δr,n−h+ln − δr,n−1−h+ln)(4.4.4)

=

{
−
∑

n−s+l1n≥j ts, if i = n− 1− h+ l1n,

0, otherwise.

To show that M ′ ≤alg M when A is subject to the second condition, it suffices
to show that (4.4.1) ≥ (4.4.3) and (4.4.2) ≥ (4.4.4) when i < j. Indeed, since
A satisfies the second condition, we have tu = 0 unless u ≤ k. If i < j and
i = h+ l1n for some l1, we have

∑
s+l1n≥j ts ≤

∑
s>h ts ≤ R. If, moreover, h ≥ k,

then
∑

s>h ts ≤
∑

s>k ts = 0. From these data, we see that (4.4.3) ≤ (4.4.1) when
i < j. When i < j, we see that (4.4.2) is equal to −R when j ≤ n − k + l1n, and
in this case (4.4.4) is also equal to −R. So we have (4.4.4) ≤ (4.4.2) when i < j.
Therefore we have (1) when A is subject to the second condition.

For A subject to either of the remaining conditions, the proof of (1) is entirely
similar and is left to the readers.

We now prove (2) for h ∈ [1, r − 1], i.e., when A is subject to the second

condition. Suppose that M = A−R(Ehk
θ −Eh+1,k

θ ) and M ′ = A−
∑

u∈Z
tu(E

hu
θ −

Eh+1,u
θ ) with

∑
u∈Z

tu = R. It suffices to show that M ′ ≤alg M . Similar to the
proof of (1), it is reduced to show that (4.4.1) ≤ (4.4.3) and (4.4.2) ≤ (4.4.4) when
i < j. By assumption, we see that tu = 0 unless u ≥ k. When (4.4.1) takes value
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R, then j ≤ k+ l1n, which implies that
∑

s+l1n≥j ts =
∑

s≥k ts = R. Hence (4.4.1)

≤ (4.4.3) in this case. When (4.4.2) takes value 0, we have either j > n − k + l1n
for some l1 or i �= n − 1 − h + l1n for any l1. For the latter case, (4.4.4) is always
zero. For the former, we have

∑
n−s+l1n

ts =
∑

s<k ts = 0. Thus we have (4.4.2) ≤
(4.4.4). Therefore we have proved (2) if A satisfies the second condition.

For the remaining cases, the proof of (2) is again similar and skipped. �

The following lemma is the counterpart of Lemma 2.2.2.

Lemma 4.4.2. Let A,B,C ∈ Ξn,d. Let R be a positive integer.

(1) Assume that B − REh,h+1
θ is diagonal for some h ∈ [0, r] and co(B) =

ro(A). Assume further that R = R0 + · · · + Rl and the matrix A satisfy
one of the following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

a0m = 0, a1,k+i = Ri, a1k ≥ R0, a1j = 0, if h = 0, k ≥ 1;

ahm = 0, ah+1,k+i = Ri, ah+1,k ≥ R0, ah+1,j = 0, if h ∈ [1, r − 1];

arm = 0, ar+1,k+i = Ri, ar+1,k ≥ R0, ar+1,j = 0, if h = r, k > r + 1;

arm = 0, ar+1,k+i = Ri, ar+1,k ≥ 2R0, ar+1,j = 0, if h = r, k = r + 1

for all m ≥ k, i ∈ [1, l] and j > k + l. Then we have

[B] ∗ [A] = [A+
l∑

i=0

Ri(E
h,k+i
θ − Eh+1,k+i

θ )] + lower terms.

(2) Assume that C − REh+1,h
θ is diagonal for some h ∈ [0, r] and co(C) =

ro(A). Assume further that R = R0 + · · · + Rl and A satisfy one of the
following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1m = 0, a0,k+i = Ri, a0,k+l ≥ Rl, a0j = 0, if h = 0, k + l < 0;

a1m = 0, a0,k+i = Ri, a00 ≥ 2Rl, a0j = 0, if h = 0, k + l = 0;

ah+1,m = 0, ah,k+i = Ri, ah,k+l ≥ Rl, ahj = 0, if h ∈ [1, r − 1];

ar+1,m = 0, ar,k+i = Ri, ar,k+l ≥ Rl, arj = 0, if h = r, k < r.

for all m ≤ k + l, i ∈ [0, l − 1] and j < k. Then we have

[C] ∗ [A] = [A−
l∑

i=0

Ri(E
h,k+i
θ − Eh+1,k+i

θ )] + lower terms.

Proof. We show (1). By a similar argument as that for Lemma 4.4.1, the

leading term is [A +
∑l

i=0 Ri(E
h,k+i
θ − Eh+1,k+i

θ )]. It remains to show that its
coefficient is 1. In this case, we have

tk+i = Ri, ∀i ∈ [0, l], and tj = 0, ∀j �∈ [k, k + l].

By Proposition 4.3.3, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏

u>0

[
a0u + tu + t−u

tu

]∏
u<0

[
a0u + tu

tu

]∏t0−1
i=0

[a00+1+2i]

[i+1]
= 1, if h = 0,

∏
u∈Z

[
ahu + tu

tu

]
= 1, if h �= 0.
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Moreover, we have

⎧⎪⎨⎪⎩
βt =

∑
j>u(tj − ah+1,j)tu + 1

2 (
∑

j+u<n+1 tjtu −
∑

j<r+1 tj) = 0, if h �= 0,

β′
t = −

∑
j>u a1jtu −

∑
j>0

t2j−tj
2 + R2−R

2

= 1
2 (R

2 −
∑

j t
2
j − 2

∑
j>u tjtu) = 0, if h = 0.

In each case, the leading coefficient is 1, and whence (1). A similar proof of (2) is
skipped. �



CHAPTER 5

Coideal algebra type structures of Schur algebras
and Lusztig algebras

In this chapter, we formulate a coideal algebra type structure which involves
Schur algebras of both affine type C and A, and its behavior on the Chevalley
generators. This leads to an imbedding jn,d from Sc

n,d to Sn,d (Schur algebra of

affine type A). We show the comultiplication and jn,d behave well when replacing
Schur algebras by Lusztig subalgebras. The canonical bases and monomial bases
are shown to be compatible under the inclusion Uc

n,d ⊂ Sc
n,d.

5.1. The Lusztig algebra Uc
n,d

We now set
n = 2r + 2, (r ∈ N).

Recall the Schur algebra Sc
n,d from (4.2.8). Let Uc

n,d be the subalgebra of Sc
n,d

generated by all elements [B] such that B, B − Eh,h+1
θ or B − Eh+1,h

θ is diagonal
for various h. Let Uc

n,d;A denote the A-subalgebra of Sc
n,d generated by all elements

[B] such that B, B−REh,h+1
θ or B−REh+1,h

θ is diagonal for various h and R ∈ N.
Following the affine type A setting, we make the following definition.

Definition 5.1.1. The algebra Uc
n,d is called the Lusztig algebra (of affine type

C).

For i ∈ [0, r] and a ∈ [−1, r + 1], we define the following functions (with the

notation
1
⊂,

1
⊃ denoting inclusions of codimension 1 and |W | for the dimension of a

k-vector space): for any L = (Li)i∈Z, L
′ = (L′

i)i∈Z ∈ X c
n,d

ei(L,L
′) =

{
v−|L′

i+1/L
′
i|−δi,r , if Li

1
⊂ L′

i, Lj = Lj′ , ∀j ∈ [0, r]\{i};
0, otherwise.

(5.1.1)

fi(L,L
′) =

{
v−|L′

i/L
′
i−1|−δi,0 , if Li

1
⊃ L′

i, Lj = L′
j , ∀j ∈ [0, r]\{i};

0, otherwise.
(5.1.2)

h±1
a (L,L′) = v±(|L′

a/L
′
a−1|+δa,0+δa,r+1)δL,L′ .(5.1.3)

ki = hi+1h
−1
i .(5.1.4)

It follows by the definition that for i ∈ [0, r] and a ∈ [0, r + 1],

ei =
∑

[A], fi =
∑

[A], ha =
∑

λ∈Λc
n,d

vλa1λ, ki =
∑

λ∈Λc
n,d

vλi+1−λi1λ,

where the first two sums run over all A ∈ Ξn,d such that A−Ei+1,i
θ and A−Ei,i+1

θ

are diagonal, respectively, 1λ stands for the standard basis element of a diagonal

41
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matrix whose diagonal is λ, and

Λc
n,d =

{
(ai)i∈Z

∣∣∣ai ∈ N, ai = a−i, ai = an−i,
∑

1≤i≤n

ai = 2d+ 2, a0, ar+1 odd
}
.

(5.1.5)

So we have ei, fi,k
±1
i ,h±1

a ∈ Uc
n,d.

By the local property of L0 in Section 3.3, one can obtain the following relations
(5.1.6) by using a similar argument in [BKLW14, Proposition 3.1] for the relations
related to the generators er, fr, hr and hr+1 for r ≥ 1. Note that the generators
e0, f0, h0 and h1 play the roles of the respective generators fr, er, hr+1 and hr in
the argument, by comparing items (1) and (2) in Lemma 3.3.3. For r ≥ 1, we have

h0f0 = v2f0h0, h0e0 = v−2e0h0,

e20f0 + f0e
2
0 = (v + v−1)

(
e0f0e0 − (vh−1

1 h0 + v−1h1h
−1
0 )e0

)
,

f20 e0 + e0f
2
0 = (v + v−1)

(
f0e0f0 − f0(vh

−1
1 h0 + v−1h1h

−1
0 )
)
.

(5.1.6)

For i, j ∈ [0, r], we denote the Cartan integers by

(5.1.7) cij = 2δij − δi,j+1 − δi,j−1.

Proposition 5.1.2. Let r ≥ 1. The elements ei, fi, and k±1
i for i ∈ [0, r]

satisfy the following relations in Uc
n,d, for all i, j ∈ [0, r]:

k0(k
2
1 · · ·k2

r−1)kr = 1,

kik
−1
i = 1, kikj = kjki,

kiejk
−1
i = vcij+δi,0δj,0+δi,rδj,rej ,

kifjk
−1
i = v−cij−δi,0δj,0−δi,rδj,r fj ,

eiej = ejei, fifj = fjfi, ∀|i− j| > 1,

e2i ej + eje
2
i = (v + v−1)eiejei, ∀|i− j| = 1,

f2i fj + fjf
2
i = (v + v−1)fifjfi, ∀|i− j| = 1,

eifj − fjei = δij
ki − k−1

i

v − v−1
, ∀(i, j) �= (0, 0), (r, r),

e20f0 + f0e
2
0 = (v + v−1)(e0f0e0 − (vk0 + v−1k−1

0 )e0),

e2rfr + fre
2
r = (v + v−1)(erfrer − er(vkr + v−1k−1

r )),

f20 e0 + e0f
2
0 = (v + v−1)(f0e0f0 − f0(vk0 + v−1k−1

0 )),

f2r er + erf
2
r = (v + v−1)(frerfr − (vkr + v−1k−1

r )fr).

Proof. In light of (5.1.6) the verification of the relations is essentially reduced
to the finite type computations, which is given in [BKLW14, Proposition 3.1]. We
skip the detail. �

The following lemma is an analogue of [BKLW14, Corollary 3.13] which follows
by a standard Vandermonde determinant type argument.

Lemma 5.1.3. The algebra Uc
n,d is generated by ei, fi and k±1

i for all i ∈ [0, r].

We will refer to the generators of the algebra Uc
n,d given by the above lemma

as Chevalley generators.
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5.2. A raw comultiplication

In this section, we shall give the definition of a raw comultiplication Δ̃c, which is
a key component in the construction of a refined comultiplication Δc in Section 5.3.

The raw comultiplication is originally defined by Lusztig in [Lu00] (though
this terminology was not used therein), which has geometric origin, while it is
incompatible with algebraic comultiplication in literature. To prove the positivity
of the algebraic comultiplication, in [FL15], the raw comultiplication is modified to
be the one, called refined comultiplication, which is compatible with its algebraic
definition. This construction is generalized to affine type C setting in Section 5.3.

We fix some notations to begin with. Let k = Fq, F = k((ε)), and o = k[[ε]]
where q is odd. Let V be a symplectic F -vector space of dimension 2d with the
form (−,−). Let V ′′ be an isotropic F -subspace of V of dimension d′′, and so
V ′ = V ′′⊥/V ′′ is a symplectic space of dimension 2d′ with its symplectic form
induced from V ; note that d′ = d− d′′.

Given a periodic chain L in X c
n,d, we can define a periodic chain L′′ := π′′(L) ∈

Xn,d′′ (of affine type A) by setting L′′
i = Li ∩ V ′′ for all i. We can also define a

periodic chain L′ = π�(L) ∈ X c
n,d′ by setting L′

i = (Li ∩ V ′′⊥ + V ′′)/V ′′ for all i.

Given any pair (L′, L′′) ∈ X c
n,d′ ×Xn,d′′ , we set

Zc
L′,L′′ = {L ∈ X c

n,d|π�(L) = L′, π′′(L) = L′′}.
We can define a map

Δ̃c : Sc
n,d −→ Sc

n,d′ ⊗ Sn,d′′ , ∀d′ + d′′ = d,(5.2.1)

such that, when specializing the parameter v at v =
√
q, it is given by

Δ̃c(f)(L′, L̃′, L′′, L̃′′) =
∑

L̃∈Zc

L̃′,L̃′′

f(L, L̃), ∀L′, L̃′ ∈ X c
n,d′ , L′′, L̃′′ ∈ Xn,d′′ ,

(5.2.2)

where L is a fixed element in Zc
L′,L′′ . Note the appearance of Sn,d′′ in (5.2.1), which

is an Schur algebra of affine type A defined in (2.2.3).
By applying Proposition 3.1.2, we have the following analogue of [Lu00, Lemma

1.3].

Lemma 5.2.1. Suppose that V ′′ is an isotropic subspace of the symplectic space
V and L = (Li)i∈Z ∈ X c

n,d. Then we can find a pair (T,W ) of subspaces in V such
that

(1) V = V ′′ ⊕ T ⊕W , (V ′′)⊥ = V ′′ ⊕ T ,
(2) W is isotropic, (T,W ) = 0,
(3) There exist bases {z1, . . . , zs} and {w1, . . . , ws} of V ′′ and W , respectively,

such that (zi, wj) = δij for any i, j ∈ [1, s],
(4) Li = (Li ∩ V ′′)⊕ (Li ∩ T )⊕ (Li ∩W ), for any i ∈ Z.

We can now show that the definition (5.2.2) is well defined (i.e., it is independent
of the choice of L), following the argument in [Lu00, 1.2]; see also [FL15, 3.2]. For

fixed L ∈ X c
n,d, let Z̃c

L be the set of all pairs (T,W ) satisfying the first three

conditions in Lemma 5.2.1. Note that given a pair (T,W ) in Z̃c
L, we have an

isomorphism π : T → V ′′⊥/V ′′. Now if L ∈ Zc
L′,L′′ , we define a map

ψ : Z̃c
L → Zc

L′,L′′ , (T,W ) �→ LT,W ,
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where

LT,W
i = L′′

i ⊕π−1(L′
i)⊕(L′′

−i−1)
#
W , (L′′

−i−1)
#
W ={w ∈W |(w,L′′

−i−1)∈o}, ∀i ∈ Z.

By Lemma 5.2.1, the map ψ is surjective.
Let PV ′′ be the stabilizer of the flag V ′′ ⊆ V ′′⊥ in SpF (V ). Let U = UV ′′ be its

unipotent radical, i.e., the set of all g ∈ SpF (V ) such that g(x) = x for all x ∈ V ′′

and g(y) − y ∈ V ′′ for all y ∈ V ′′⊥. The SpF (V )-actions on X c
n,d and V restrict

to the U-actions on Z̃c
L and Zc

L′,L′′ , respectively. Clearly, ψ is U-equivariant and U
acts transitively on Z̃c

L, and so U acts transitively on Zc
L′,L′′ . This means that if

L̂ ∈ Zc
L′,L′′ , there is g ∈ U such that gL̂ = L. From this, we have for all L̂ ∈ Zc

L′,L′′ ,∑
L̃∈Zc

L̃′,L̃′′

f(L̂, L̃) =
∑

L̃∈Zc

L̃′,L̃′′

f(L, g−1L̃) =
∑

L̃∈Zc

L̃′,L̃′′

f(L, L̃).(5.2.3)

Therefore the definition of (5.2.2) and hence Δ̃c is independent of the choice of L.
Following the argument of [Lu00, Proposition 1.5], which is formal and not

reproduced here, we have the following proposition.

Proposition 5.2.2. The map Δ̃c is an algebra homomorphism.

Now we determine how the map Δ̃c acts on the generators. Recall from Chap-
ter 2 the Chevalley generators Hi, Ei and Fi for Lusztig algebra Un,d of affine type
A (a subalgebra of the Schur algebra Sn,d of affine type A), and that Hn+i = Hi,
En+i = Ei and Fn+i = Fi.

Proposition 5.2.3. For any i ∈ [0, r], we have

Δ̃c(ei) = e′i ⊗H′′
i+1H

′′−1
n−1−i + h′−1

i+1 ⊗E′′
i H

′′−1
n−1−i + h′

i+1 ⊗ F′′
n−1−iH

′′
i+1.

Δ̃c(fi) = f ′i ⊗H′′−1
i H′′

n−i + h′
i ⊗ F′′

i H
′′
n−i + h′−1

i ⊗E′′
n−1−iH

′′−1
i .

Δ̃c(ki) = k′
i ⊗K′′

i K
′′−1
n−1−i.

Here the superscripts ′ and ′′ indicate that the underlying Chevalley generators lie
in Sc

n,d′ and Sn,d′′ , respectively.

Proof. For any L ∈ X c
n,d, we have

|Li+1/Li| = |L′
i+1/L

′
i|+ |L′′

i+1/L
′′
i |+ |L′′

n−1−i/L
′′
n−2−i|.

The proposition in the cases for i ∈ [1, r] follows directly from Proposition A.3.2 for
the finite type; also cf. [FL15]. The case for i = 0 follows from a similar argument
to that of the case for i = r. Note that when r = 0, one uses the non-degenerate

symplectic form on L1/L0 = ε−1L#
0 /L0, inherited from that of V (see [Lu03]). �

5.3. The comultiplication Δc

Recall Λn,d and Λc
n,d from (2.2.2) and (5.1.5), respectively. The set Xn,d can

be decomposed as follows:
(5.3.1)

Xn,d=
⊔

a=(ai)∈Λn,d

Xn,d(a), where Xn,d(a)={V ∈ Xn,d

∣∣ |Vi/Vi−1|=ai, ∀1 ≤ i ≤ n}.
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Similarly the set X c
n,d admits the following decomposition:

X c
n,d =

⊔
a=(ai)∈Λc

n,d

X c
n,d(a),

(5.3.2)

where X c
n,d(a) = {V ∈ X c

n,d

∣∣ |Vi/Vi−1| = ai − δi,r+1 − δi,n, ∀1 ≤ i ≤ n}.

Given a,b ∈ Λc
n,d, let Sc

n,d(b, a) be the subspace of Sc
n,d spanned by the

standard basis elements [A] such that ro(A) = b and co(A) = a. Similarly, for

a,b ∈ Λn,d, we define the affine type A counterpart Sn,d(b, a). Let Δ̃c
b′,a′,b′′,a′′

be the component of Δ̃c from Sc
n,d(b, a) to Sc

n,d′(b′, a′) ⊗ Sn,d′′(b′′, a′′) such that

bi = b′i + b′′i + b′′−i, ai = a′i + a′′i + a′′−i, for i ∈ Z. We set

s(b′, a′,b′′, a′′) =
∑

1≤k≤j≤n

b′kb
′′
j − a′ka

′′
j ,

and

u(b′′, a′′) =
1

2

( ∑
1≤k,j≤n−1

k+j≥n

b′′kb
′′
j − a′′ka

′′
j +

∑
n−1≥k≥r+1

a′′k − b′′k

)
,

for all b′, a′ ∈ Λc
n,d′ and b′′, a′′ ∈ Λn,d′′ . We renormalize the raw comultiplication

Δ̃c to be Δ̃c† by letting

Δc†
b′,a′,b′′,a′′ = vs(b

′,a′,b′′,a′′)+u(b′′,a′′)Δ̃c
b′,a′,b′′,a′′ ,

Δc† =
⊕

b′,a′,b′′,a′′

Δc†
b′,a′,b′′,a′′ : S

c
n,d → Sc

n,d′ ⊗ Sn,d′′ .(5.3.3)

Proposition 5.3.1. Let d = d′ + d′′. For all i ∈ [0, r], we have

Δc†(ei) = vδi,0d
′′
e′i ⊗K′′

i + 1⊗ v−δi,0(2d
′+2)E′′

i + k′
i ⊗ vδi,0(d

′′−1)+δi,0F′′
n−1−iK

′′
i .

Δc†(fi) = v−δi,0d
′′
f ′i ⊗K′′

n−1−i + k′−1
i ⊗ vδi,0(2d

′+2)−δi,0K′′
n−1−iF

′′
i

+ 1⊗ v−δi,0(d
′′−1)E′′

n−1−i.

Δc†(ki) = k′
i ⊗K′′

i K
′′−1
n−1−i.

Here the superscripts follow the same convention as in Proposition 5.2.3.

Proof. The third formula on Δc†(ki) is clear.
Suppose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions:

b′k = a′k − δk̄,̄i + δk̄,i+1 + δk̄,n−1−i − δk̄,n−i, b′′k = a′′k , ∀k, some i ∈ [0, r],

where k̄, ī’s are in Z/nZ. So we have

s(b′, a′,b′′, a′′) = −a′′i + a′′n−1−i + δi,0d
′′ and u(b′′, a′′) = 0.

Suppose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions:

b′k = a′k, b′′k = a′′k − δk̄,̄i + δk̄,i+1, ∀k, some i ∈ [0, r].

Then we have s(b′, a′,b′′, a′′) = a′i+1 − δi,0(2d
′ + 2), and u(b′′, a′′) = a′′n−1−i.

Suppose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions:

b′k = a′k, b′′k = a′′k + δk̄,n−1−i − δk̄,n−i, ∀k, some i ∈ [0, r].
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Then we have s(b′, a′,b′′, a′′) = −a′i, and u(b′′, a′′) = −a′′i + δi,0d
′′. The above

computations lead to the first formula on Δc†(ei).
The second formula on Δc†(fi) follows from the following computations. Sup-

pose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions:

b′k = a′k + δk̄,̄i − δk̄,i+1 − δk̄,n−1−i + δk̄,n−i, b′′k = a′′k , ∀k, some i ∈ [0, r].

Then we have s(b′, a′,b′′, a′′) = a′′i − a′′n−1−i − δi,0d
′′ and u(b′′, a′′) = 0.

Suppose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions:

b′k = a′k, b′′k = a′′k + δk̄,̄i − δk̄,i+1, ∀k, some i ∈ [0, r].

Then we have s(b′, a′,b′′, a′′) = −a′i+1 + δi,0(2d
′ + 2), and u(b′′, a′′) = −a′′n−1−i.

Suppose that the quadruple (b′, a′,b′′, a′′) satisfies the following conditions.

b′k = a′k, b′′k = a′′k − δk̄,n−1−i + δk̄,n−i, ∀k, some i ∈ [0, r].

Then we have s(b′, a′,b′′, a′′) = a′i, and u(b′′, a′′) = a′′i − δi,0(d
′′ − 1).

The proposition is proved. �

The above formulas are indeed compatible with the ones in the finite type case
for i ∈ [1, r]; cf. [FL15] and Proposition A.3.2. Recall ξd,i,c : Sn,d → Sn,d in affine
type A from [FL15]. We generalize it to the affine type C as

ξcd,i,c :S
c
n,d −→ Sc

n,d, for i ∈ [0, r], c ∈ Z,

ξcd,i,c([A]) = vcεi(A)[A], for A ∈ Ξn,d,
(5.3.4)

where

(5.3.5) εi(A) =
∑

r≤i<s

ars −
∑

r>i≥s

ars.

In particular, we have

ξcd,i,c(ej) = v−cδi,jej , ξcd,i,c(fj) = vcδi,j fj , ξcd,i,c(kj) = kj .

We define the algebra homomorphism (which is a refined comultiplication from the

raw multiplication Δ̃c)

Δc ≡ Δc
d′,d′′ = (ξcd′,0,d′′ ⊗ ξd′′,0,−(2d′+2)ξd′′,n−1,−(d′′−1))(5.3.6)

◦Δc† : Sc
n,d −→ Sc

n,d′ ⊗ Sn,d′′ .

Proposition 5.3.2. For all i ∈ [0, r] and A ∈ Ξn,d, we have ξcd,i,c({A}d) =

vcεi(A){A}d.

Proof. By the definition (5.3.5) and using ars = a−r,−s, we have

εi(A) =
( ∑

r≤i<s

−
∑

r<−i≤s

)
ars =

( ∑
−i≤r≤i

i<s

−
∑

−i≤s≤i
r<−i

)
ars

=
1

2

( ∑
−i≤r≤i

i<s

+
∑

−i≤r≤i
s<−i

−
∑

−i≤s≤i
r<−i

−
∑

−i≤s≤i
r>i

)
ars

=
1

2

( ∑
−i≤r≤i

−
∑

−i≤s≤i

)
ars =

1

2

∑
−i≤s≤i

ro(A)s − co(A)s.
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Now if the polynomial PA,B in (4.2.12) is not zero, then ro(B) = ro(A) and co(B) =
co(A), and hence εi(A) = εi(B). Therefore, we have

ξcd,i,c({A}d) = ξcd,i,c
( ∑
B≤A

PA,B[B]
)
=
∑
B≤A

PA,Bv
cεi(B)[B]

= vcεi(A)
∑
B≤A

PA,B [B] = vcεi(A){A}d.

The proposition is proved. �
Let a,b ∈ Λc

n,d. Fix L ∈ X c
n,d(b) (which was defined in (5.3.2)), and let

Pb = StabSpF (2d)(L). We have a natural embedding

ιb,a : X c
n,d(a) −→ X c

n,d(b)×X c
n,d(a), L′ �→ (L,L′).

It is well known that ιb,a induces the following isomorphism of A-modules:

ι∗b,a : ASpF (2d)(X c
n,d(b)×X c

n,d(a)) −→ APb
(X c

n,d(a)).

Let
X c

a,a′,a′′ = {L ∈ X c
n,d(a)

∣∣π�(L) ∈ X c
n,d′(a′), π′′(L) ∈ Xn,d′′(a′′)}.

Then we have the following diagram

X c
n,d(a) X c

a,a′,a′′
ι�� π �� X c

n,d′(a′)×Xn,d′′(a′′),

where ι is the imbedding and π(L) = (π�(L), π′′(L)). By identifying

APb′×Pb′′ (X c
n,d′(a′)×Xn,d′′(a′′)) = APb′ (X c

n,d′(a′))×APb′′ (Xn,d′′(a′′)),

we have the following linear map

π!ι
∗ : APb

(X c
n,d(a)) −→ APb′ (X c

n,d′(a′))×APb′′ (Xn,d′′(a′′)).

By a similar argument as for [FL15, Lemma 1.3.5], the following diagram com-
mutes:
(5.3.7)

ASpF (2d)(X c
n,d(b)×X c

n,d(a))
ι∗b,a ��

Δ̃c

b′,a′,b′′,a′′

��

APb
(X c

n,d(a))

π!ι
∗

��ASpF (2d′)(X
c

n,d′ (b
′)×Xc

n,d′ (a
′))

⊗
ASpF (2d′′)(Xn,d′′ (b

′′)×Xn,d′′ (a
′′))

ι∗
b′,a′⊗ι∗

b′′,a′′ �� APb′ (X c
n,d′(a

′))⊗APb′′ (Xn,d′′(a
′′)).

Recall Δc : Sc
n,d −→ Sc

n,d′ ⊗ Sn,d′′ from (5.3.6).

Proposition 5.3.3. For A ∈ Ξn,d, write

Δc({A}d) =
∑

A′∈Ξn,d′ ,A
′′∈Θn,d′′

hA′,A′′

A {A′}d′ ⊗ a{A′′}d′′ .

Then hA′,A′′

A ∈ N[v, v−1] for all A,A′ and A′′.

Proof. By Proposition 5.3.2, the proof is reduced to showing the same type

of positivity with respect to Δ̃c. By an argument similar to [FL15, Section 2.4]

and (5.3.7), the positivity for Δ̃c follows from [Br03, Theorem 8]. The proposition
is proved. �
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Now let us study the restriction of Δc to Uc
n,d′ .

Proposition 5.3.4. Let d = d′+d′′. We have a homomorphism Δc : Uc
n,d −→

Uc
n,d′ ⊗Un,d′′ . More precisely, for all i ∈ [0, r], we have

Δc(ei) = e′i ⊗K′′
i + 1⊗E′′

i + k′
i ⊗ vδi,0F′′

n−1−iK
′′
i ,

Δc(fi) = f ′i ⊗K′′
n−1−i + k′−1

i ⊗ v−δi,0K′′
n−1−iF

′′
i + 1⊗E′′

n−1−i,

Δc(ki) = k′
i ⊗K′′

i K
′′−1
n−1−i.

Recall the comultiplication Δ in the affine type A from [FL15] (see also [Lu00]
for a related construction). This is an algebra homomorphism

Δ : Sn,d −→ Sn,d′ ⊗ Sn,d′′

defined by

Δ(Ei) = E′
i ⊗K′′

i + 1⊗E′′
i ,

Δ(Fi) = F′
i ⊗ 1 +K′−1

i ⊗ F′′
i ,

Δ(Ki) = K′
i ⊗K′′

i , ∀0 ≤ i ≤ n− 1.

(5.3.8)

Here the superscripts follow the same convention in Proposition 5.2.3.

Proposition 5.3.5. The following coassociativity holds on Uc
n,d:

(1⊗Δ)Δc = (Δc ⊗ 1)Δc.

Proof. Beyond type A or finite type B/C we only need to check the desired
identity when acting on e0, f0 and k±

0 . This can be verified directly. �

Now setting d′ = 0, we have e′i = 0, f ′i = 0,k′
i = v−δi,0+δi,r in Sc

n,0, and Δc

becomes the following algebra homomorphism

jn,d : Sc
n,d −→ Sn,d

jn,d(ei) = Ei + v−δi,0KiFn−1−i,

jn,d(fi) = En−1−i + vδi,0FiKn−1−i,

jn,d(ki) = v−δi,0+δi,rKiK
−1
n−1−i, ∀i ∈ [0, r].

(5.3.9)

It follows by restriction that we have also a homomorphism jn,d : Uc
n,d → Un,d.

Thanks to Propositions 2.2.3 and 5.4.1, the same argument as in finite type B/C
[FL15] gives us the following.

Proposition 5.3.6. The homomorphism jn,d : Sc
n,d → Sn,d (and jn,d : Uc

n,d →
Un,d) is injective.

Proposition 5.3.3 in our setting of d′ = 0 gives us the following.

Proposition 5.3.7. The map jn,d sends a canonical basis element in Sc
n,d to

a sum of canonical basis elements of Sn,d with coefficients in N[v, v−1].
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5.4. Monomial and canonical bases of Uc
n,d

Recall Ξn,d from (4.2.1) and the notion of aperiodic matrices from (2.2.6). We
denote

(5.4.1) Ξap
n,d = {A ∈ Ξn,d|A is aperiodic}.

A product of standard basis elements [G1] ∗ [G2] ∗ · · · ∗ [Gm] in Sc
n,d is called an

aperiodic monomial if for each i, Gi − REj,j+1
θ is diagonal for some R ∈ N and

j ∈ Z. The following aperiodic monomial is an analogue of ζaA for Un,d (see Propo-
sition 2.2.3).

Proposition 5.4.1. For any A ∈ Ξap
n,d, there exists an aperiodic monomial

ζA ∈ Uc
n,d such that

ζA = [A] + lower terms.(5.4.2)

Proof. With the help of Lemma 4.4.2, the proof is the same as that for Propo-
sition 2.2.3. �

While the aperiodic monomial ζA with (5.4.2) is not unique, we shall fix one
for each A.

The following type C aperiodicity follows from two kinds of positivity properties
and the highly nontrivial affine type A aperiodicity in [Lu99, Proposition 6.5].

Proposition 5.4.2. Let M be an aperiodic monomial in Sc
n,d. Suppose that

M =
∑

cA{A}d where cA ∈ Z[v, v−1]. If cA �= 0, then A must be aperiodic.

Proof. Recall the canonical basis elements in Sn,d (and in Un,d) are denoted

by a{A}d, and note that Un,d is generated by Ei,Fi and K±1
i for all 1 ≤ i ≤ n.

By (5.3.9), we have jn,d(M) ∈ Un,d. By [Lu99, Proposition 6.5], we see that

jn,d(M) =
∑

B aperiodic

gB
a{B}d, where gB ∈ N[v, v−1].(5.4.3)

For A = (aij) ∈ Ξn,d, we set

Ξn,d(A) = {B = (bij) ∈ Θn,d|bij = 0, ∀i < j, bij = aij , ∀i > j, co(B) |= co(A)},
(5.4.4)

where the notation ‘b |= a’ stands for bi + b−i + δi,n + δi,r+1 = ai for all 1 ≤ i ≤ n.
In particular, if A is aperiodic, so is any matrix in Ξn,d(A). Since ζA = {A}d+
lower terms by Proposition 5.4.1, it implies that

jn,d({A}d) =
∑

A−∈Ξn,d(A)

a{A−}d

+
∑

A−∈Ξn,d(A)

∑
B<A−

hA−,B
a{B}d +RA, hA−,B ∈ N[v, v−1],

where RA is a linear combination of a{B}d over N[v, v−1] for those B not lower
triangular. Indeed, this can be proved by induction on the length of the monomial

ζA and utilizing the fact that the action of the Chevalley generators F
(a)
i on a stan-

dard basis element of a lower triangular matrix A gives rise to a linear combination
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of standard basis element of either lower triangular matrices A′ < A or non-lower-
triangular matrices. The latter is an observation from the multiplication formula

for the Chevalley generator F
(a)
i in (2.2.10). So

jn,d(M) = jn,d(
∑
A

cA{A}d)

=
∑
A

∑
A−∈Ξn,d(A)

cA
a{A−}d

+
∑
A

∑
A−∈Ξn,d(A)

∑
B<A−

cAhA−,B
a{B}d +

∑
A

cARA.

(5.4.5)

Observe also that cA ∈ N[v, v−1] due to the geometric interpretation of M. This
implies that the coefficient of a{A−}d in (5.4.5) is cA plus some terms in N[v, v−1]
since hA−,B ∈ N[v, v−1], hence nonzero. By comparing (5.4.3) and (5.4.5), we see
that A− are all aperiodic. Therefore A is aperiodic. The proposition is proved. �

Theorem 5.4.3. The set {{A}d|A ∈ Ξap
n,d} forms a basis (called the canonical

basis) of Uc
n,d. Also, the set {ζA|A ∈ Ξap

n,d} forms a basis (called a monomial basis)
of Uc

n,d.

Proof. For A ∈ Ξap
n,d, we have ζA = [A]+lower terms by Proposition 5.4.1, and

so ζA ∈ {A}d+
∑

A′<AA{A′}d; this sum can be additionally restricted to A′ ∈ Ξap
n,d

by Proposition 5.4.2. Hence by an induction on A by the partial ordering, we
conclude that {A}d ∈ Uc

n,d. Since {{A}d|A ∈ Ξap
n,d} is clearly linearly independent

and it forms a spanning set of Uc
n,d by Proposition 5.4.2, it is a basis of Uc

n,d.

Since the transition matrix from {ζA|A ∈ Ξap
n,d} to the canonical basis is uni-

triangular, {ζA|A ∈ Ξap
n,d} forms a basis as well. �

The next proposition follows from Propositions 5.3.3, 5.3.4 and Theorem 5.4.3.

Proposition 5.4.4. For B ∈ Ξap
n,d, write

Δc({B}d) =
∑

C∈Ξap

n,d′ ,A∈Θap

n,d′′

m̂C,A
B {C}d′ ⊗ a{A}d′′ .

Then we have m̂C,A
B ∈ N[v, v−1].

We also have the following corollary of Proposition 5.3.7 and Theorem 5.4.3.

Corollary 5.4.5. The image of jn,d of a canonical basis element in Uc
n,d is a

sum of canonical basis elements of Un,d with coefficients in N[v, v−1].



Part 2

Lusztig algebras and coideal
subalgebras of U(ŝln)





CHAPTER 6

Realization of the idempotented coideal
subalgebra U̇c

n of U(ŝln)

In this chapter we introduce the transfer maps φc
d,d−n on Schur algebras Sc

n,d

and Lusztig algebras Uc
n,d. We then construct algebras Uc

n (or U̇c
n) from the

projective system of algebras {(Uc
n,d, φ

c
d,d−n)}d≥0. We show that Uc

n (or U̇c
n) is

isomorphic to an (idempotented) coideal subalgebra of U(ŝln), and (U(ŝln),U
c
n)

forms an affine quantum symmetric pair. The canonical basis of U̇c
n is established

and shown to admit positivity with respect to multiplication, comultiplication, and
a bilinear pairing.

6.1. The coideal subalgebra Uc
n of Un

Recall [Lu00] there exists a homomorphism χn : Sn,n → Q(v) such that

χn(Ei) = χn(Fi) = 0, χn(Hi) = v.

Following Lusztig [Lu00], we introduce the transfer map of affine type C,

φc
d,d−n : Sc

n,d → Sc
n,d−n,

which is by definition the composition of the following homomorphisms (for d ≥ n)

(6.1.1) φc
d,d−n : Sc

n,d
Δ̃c

−→ Sc
n,d−n ⊗ Sn,n

1⊗χn−→ Sc
n,d−n.

The following can be proved similarly to [Lu00] in affine type A and [FL15] in
type B/C.

Proposition 6.1.1. For i ∈ [0, r], we have φc
d,d−n(ei) = e′i, φ

c
d,d−n(fi) = f ′i ,

φc
d,d−n(ki) = k′

i.

Now we consider the projective system {(Uc
n,d, φ

c
d,d−n)}d≥0 and its projective

limit:

Uc
n,∞ := lim←−

d

Uc
n,d =

{
x ≡ (xd)d∈N ∈

∏
d∈N

Uc
n,d

∣∣∣φc
d,d−n(xd) = xd−n ∀d

}
.

Denote by φc
d : Uc

n,∞ → Uc
n,d the natural projection. The bar involution on Uc

n,d

induces a bar involution ¯ : Uc
n,∞ → Uc

n,∞, since it commutes with the transfer
map (6.1.1). Similarly, we have an integral version: Uc

n,∞;A = lim←−
d

Uc
n,d;A. Since

Q(v)⊗A Uc
n,d;A = Uc

n,d for all d, we have Q(v)⊗A Uc
n,∞;A = Uc

n,∞.
Recall from Section 2.3 the counterparts of the above constructions in the affine

type A setting, where we drop the superscript c. We have the following commutative

53
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diagram

Uc
n,d

jn,d−−−−→ Un,d

φc
d,d−n

⏐⏐� ⏐⏐�φd,d−n

Uc
n,d−n

jn,d−n−−−−→ Un,d−n

That is, φd,d−n ◦ jn,d = jn,d−n ◦ φc
d,d−n. Thus by the universality of Un,∞, we have

a unique algebra homomorphism

jn : Uc
n,∞ −→ Un,∞,

such that φd ◦ jn = jn,d ◦ φc
d.

We define elements ei, fi and k±1
i for all 0 ≤ i ≤ r in Uc

n,∞ by

(ei)d = ei,d, (fi)d = fi,d, (k
±1
i )d = k±1

i,d , ∀d ∈ N,

where the d in the subscript of ei,d etc. indicates ei,d is a copy of the Chevalley
generator ei inUc

n,d. LetU
c
n be the subalgebra ofUc

n,∞ generated by (the Chevalley

generators) ei, fi and k±1
i for all 0 ≤ i ≤ r. Since jn,d is injective for all d, so is

jn : Uc
n,∞ → Un,∞. It follows by (5.3.9) that the image of Uc

n under jn lies in Un.
Summarizing, we have obtained the following.

Proposition 6.1.2. There is a unique algebra imbedding jn : Uc
n → Un such

that

jn(ei) = Ei + v−δi,0KiFn−1−i,

jn(fi) = En−1−i + vδi,0FiKn−1−i,

jn(ki) = v−δi,0+δi,rKiK
−1
n−1−i, ∀i ∈ [0, r].

(6.1.2)

Recall from Proposition 2.3.2 that Un
∼= U(ŝln). At the v = 1 limit, the images

of the generators under jn are in the fixed point subalgebra by an involution θjj of

ŝln (which switches E’s and F’s); for an illustration of θjj see Figure 1.
Recall Δc from (5.3.6). We have the following commutative diagram

Uc
n,d′+d′′

Δc

−−−−→ Uc
n,d′ ⊗Un,d′′

φc

d′+d′′,d′+d′′−(a+b)n

⏐⏐� ⏐⏐�φc

d′,d′−an
⊗φd′′,d′′−bn

Uc
n,d′+d′′−(a+b)n

Δc

−−−−→ Uc
n,d′−an ⊗Un,d′′−bn

for any a, b ∈ N. By universality, these Δc (for d′, d′′, n) induce an algebra homo-
morphism

Δc : Uc
n,∞ −→ Uc

n,∞ ⊗Un,∞.

Moreover, the image of Uc
n under Δc

n is contained in Uc
n⊗Un by Proposition 5.3.4.

Summarizing, we have the following.

Proposition 6.1.3. There is a unique algebra homomorphism Δc : Uc
n −→

Uc
n ⊗Un such that, for all i ∈ [0, r],

Δc(ei) = ei ⊗Ki + 1⊗Ei + ki ⊗ vδi,0Fn−1−iKi.(6.1.3)

Δc(fi) = fi ⊗Kn−1−i + k−1
i ⊗ v−δi,0Kn−1−iFi + 1⊗En−1−i.(6.1.4)

Δc(ki) = ki ⊗KiK
−1
n−1−i.(6.1.5)
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This algebra homomorphism is coassociative by Proposition 5.3.5 in the sense
that

(6.1.6) (1⊗Δ)Δc = (Δc ⊗ 1)Δc.

As a degenerate case for (6.1.6), we also have

Δ ◦ jn = (jn ⊗ 1) ◦Δc.

Summarizing the results from Propositions 6.1.2 and 6.1.3, we have proved the
following.

Theorem 6.1.4. The algebra Uc
n is a coideal subalgebra of Un, and (Un,U

c
n)

forms an affine quantum symmetric pair in the sense of Kolb-Letzter [Ko14]. (see
Figure 1 for the relevant involution.)

The following is a variant of [Ko14, Theorem 7.1] in our setting and our nota-
tion.

Proposition 6.1.5. For n = 2r + 2 with r ≥ 1, the Q(v)-algebra Uc
n has a

presentation with generators ei, fi, and k±1
i for i ∈ [0, r] and relations given in

Proposition 5.1.2.

Note that the first relation in Proposition 5.1.2 (which is not present in [Ko14])
simply reflects the fact that various quantum affine algebras arising from geometry
in this paper are always of level zero.

For n = 2 (i.e., r = 0), the imbedding j2 : Uc
2 → U2 = U(ŝl2) in (6.1.2) is

defined by

e0 �→ E0 + v−1K0F1, f0 �→ E1 + v−1K1F0, k0 �→ K0K
−1
1 .

We shall give a presentation for Uc
2, which was excluded from Proposition 6.1.5

above.

Proposition 6.1.6. The Q(v)-algebra Uc
2 has a presentation with generators

e0, f0, and k±1
0 and the following relations.

k0k
−1
0 = 1, k0e0 = v4e0k0, k0f0 = v−4f0k0,(6.1.7)

e30f0 − �3�e20f0e0 + �3�e0f0e
2
0 − f0e

3
0 = �3�!(v − v−1)e0(k0 − k−1

0 )e0,(6.1.8)

f30 e0 − �3�f20 e0f0 + �3�f0e0f
2
0 − e0f

3
0 = −�3�!(v − v−1)f0(k0 − k−1

0 )f0.(6.1.9)

Here �i� = vi−v−i

v−v−1 and �a�! =
∏

1≤i≤a�i�.

Proof. Note that U2 is of level zero, so we have K0K1 = 1. Thus jn(k0) =
K2

0. From this, we have the identity (6.1.7).
We now prove the identity (6.1.8). Since jn is injective, it suffices to show that

(6.1.8) holds after applying jn. In other words, it suffices to prove the identity in
U2. Let S(e0, f0) denote the left hand side in (6.1.8). We define S(e0,E1) and
S(e0, v

−1K1F0) in a similar fashion. By a lengthy calculation involving 4×24 = 64
terms, we have

S(e0,E1) = �3�!(v − v−1)e0k0e0.(6.1.10)

Similarly, we have

S(e0, v
−1K1F0) = −�3�!(v − v−1)e0k

−1
0 e0.(6.1.11)
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So the relation (6.1.8) follows by adding (6.1.10) and (6.1.11). Similarly, one can
show Eq. (6.1.9) and we leave the detail to the reader.

Now we invoke [Ko14, Theorem 7.1], which says no additional relations are
needed. This finishes the proof. �

6.2. The algebra U̇c
n and its monomial basis

Let

(6.2.1) Zc
n = {λ = (λi)i∈Z|λi ∈ Z, λi = λi+n, λi = λ−i, ∀i, λ0, λr+1 odd}.

Let |λ| = λ1 + . . .+ λn. Define an equivalence relation ≈ on Zc
n by letting λ ≈ μ if

and only if λ− μ = (. . . , p, p, p, . . . ), for some even integer p. Let Zc
n/ ≈ be the set

of equivalence classes with respect to the equivalence relation ≈; and let λ̂ be the
equivalence class of λ.

Fix λ̂ ∈ Zc
n/ ≈, we define the element 1λ̂ ∈ Uc

n,∞ as follows. (1λ̂)d = 0 if
d �≡ |λ| (mod 2n). If d = |λ| + pn for some even integer p, we have (1λ̂)d = 1λ+pI .
Here λ+ pI is understood as λ+ (. . . , p, p, p, . . .), and 1λ+pI ∈ Uc

n,d is understood
to be zero if there is a negative entry in λ+ pI.

Definition 6.2.1. Let U̇c
n be the Uc

n-bimodule in Uc
n,∞ generated by 1λ̂ for

all λ̂ ∈ Zc
n/ ≈.

It is clear that U̇c
n is a subalgebra of Uc

n,∞ generated by 1λ̂, ei1λ̂ and fi1λ̂
for all i ∈ [0, r] and λ̂ ∈ Zc

n/ ≈. Similarly, we define the A-subalgebra AU̇
c
n of

Uc
n,∞ generated by e

(a)
i 1λ̂ and f

(a)
i 1λ̂, for all i ∈ [0, r] and a ∈ N. So we have

Q(v)⊗A AU̇
c
n = U̇c

n. The bar involution on Uc
n,∞ induces a bar involution on U̇c

n,

which we denote by ¯ : U̇c
n −→ U̇c

n. Note that it leaves the elements e
(a)
i 1λ̂ and

f
(a)
i 1λ̂ fixed, and hence we have ¯ : AU̇

c
n −→ AU̇

c
n.

We denote

Ξ̃n =
{
A = (aij) ∈ MatZ×Z(Z)

∣∣ a0,0, ar+1,r+1 ∈ 2Z+ 1,

aij ≥ 0 (i �= j), aij = a−i,−j = ai+n,j+n(∀i, j)
}
,

Ξ̃ap
n = {A ∈ Ξ̃n

∣∣A is aperiodic}.

(6.2.2)

For A ∈ Ξ̃n, we shall denote by
|A| = d

if
∑i0+n

i=i0+1

∑
j∈Z

aij = 2d+ 2 for some (or each) i0 ∈ Z. We set, for d ∈ Z,

(6.2.3) Ξ̃n,d =
{
A ∈ Ξ̃n

∣∣ |A| = d
}
, Ξ̃n = �dΞ̃n,d.

Also clearly we have Ξn,d ⊂ Ξ̃n,d.

We define an equivalence relation ≈ on Ξ̃ap
n by

(6.2.4) A ≈ B iff A−B = pIn, for some even integer p,

where In =
∑

1≤i≤n E
ii, and let Â be the equivalence class of A. Whenever there

causes no ambiguity, we write I for In. We define ro(Â) = r̂o(A) and co(Â) =

ĉo(A), and they are elements in Zc
n/ ≈. We can then define the element ζÂ in

U̇c
n by (ζÂ)d = 0 unless d = |A| mod 2n, and if |A| = d + p/2n for some even
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integer p, (ζÂ)d = ζA+pI , where ζA+pI is the monomial basis attached to A+ pI in

Theorem 5.4.3. Since φc
d,d−n(ζA+pI) = ζA+(p−2)I , we see that ζÂ ∈ U̇c

n.
The following linear independence is reduced to the counterpart at the Schur

algebra level, by an argument similar to [LW15, Theorem 5.5].

Proposition 6.2.2. The set {ζÂ
∣∣Â ∈ Ξ̃ap

n / ≈} is linearly independent.

To show that ζÂ is indeed a basis for U̇c
n, let us take a closer look at the

behavior of the monomials at the Schur algebra level. For simplicity, we write
fn−(i+1) for ei for all i ∈ [0, r]. For λ ∈ Λc

n,d and a pair (i, a) where i = (i1, . . . , is)

and a = (a1, . . . , as) with 0 ≤ ij ≤ n and aj ∈ N for all j, we set

dMi,a,λ = f
(a1)
i1

f
(a2)
i2
· · · f (as)

is
1λ ∈ Uc

n,d,

where 1λ = [Dλ]d is the standard basis element of the diagonal matrix whose
diagonal is λ. Then dMi,a,λ exhaust all possible monomials in Uc

n,d. The following

proposition is crucial in showing that the various ξÂ forms a basis for U̇c
n. Recall

that I =
∑

1≤i≤n E
ii
θ .

Proposition 6.2.3. Fix a triple (i, a, λ) with |λ| = d. There is a finite subset

Ii,a,λ of {A ∈ Ξ̃ap
n

∣∣|A| = d} such that

d+pnMi,a,λ+2pI =
∑

A∈Ii,a,λ

cAζ2pA, ∀p, where cA ∈ A is independent of p.

Proof. By the multiplication formula for simple generators, we see that the
standard basis element [A], possibly periodic, appearing in d+pnMi,a,λ+2pI is stabi-

lized for p 0. In other words, there is a finite set Ji,a,λ in Ξ̃n consisting of certain
A subject to |A| = d and

d+pnMi,a,λ+2pI =
∑

A∈Ji,a,λ

gA,p[A+ 2pI], ∀p

where gA,p ∈ A depends on p in general.
Note that Ji,a,λ can be constructed in the following way. Fix a p large enough,

so that when we multiply out the monomial d+pnMi,a,λ+2pI in terms of standard
basis, we do not miss a term because that term has a negative entry in its diagonal.
Collect all the matrices, say A, parametrizing the standard basis element appearing
in d+pnMi,a,λ+2pI , and further throwing into this set all matrices B such that B <alg

A. This resulting set is again finite. Ji,a,λ is then defined to be the set of matrices
obtained by subtracting the matrices in the previous set by 2pI.

Let Ii,a,λ be the subset of Ji,a,λ consisting of aperiodic elements. It follows by
Theorem 5.4.3 that

d+pnMi,a,λ+2pI =
∑

A∈Ii,a,λ

cA,pζ2pA, ∀p,

where cA,p ∈ A depends on p in general.
By definition, we have

φc
d+pn,d+pn−n(d+pnMi,a,λ+2pI) = d+pn−nMi,a,λ+2pI−2I ,

φc
d+pn,d+pn−n(ζ2pA) = ζp−2A, ∀p.

This implies that

cA,p = cA,p−1, if ζ
2(p−1)A �= 0 ∈ Uc

n,d+(p−1)n.
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For large enough p, ζ
2(p−1)A is obviously nonzero, and so cA,p = cA is independent

of p 0. Recall that the set Ii,a,λ is finite. So we can find a p0 such that cA,p = cA
for all p ≥ p0 and for all A ∈ Ii,a,λ. The proposition is thus proved. �

Now we return from Lusztig algebras to the algebra U̇c
n.

Proposition 6.2.4. The set {ζÂ|Â ∈ Ξ̃ap
n / ≈} forms a basis for U̇c

n and an

A-basis for AU̇
c
n.

Proof. Similar to the element dMi,a,λ, we can define its limit version Mi,a,λ̂ in

U̇c
n. Moreover, these monomials exhaust all the possible monomials in U̇c

n. The
proposition now follows from Proposition 6.2.3. �

6.3. Bilinear form on U̇c
n

Recall that for i ∈ [0, r], ei =
∑

[A] where A − Ei+1,i
θ is diagonal, fi =

∑
[A]

where A− Ei,i+1
θ is diagonal, and ki =

∑
λ∈Λc

n,d
vλi+1−λi1λ.

Imitating McGerty [Mc12] in affine type A, we define a bilinear form 〈·, ·〉d on
Sc
n,d as follows:

〈[A], [A′]〉d = δA,A′v−2dAt#XL′

At ,

where L′ ∈ X c
n,d(ro(A

t)). With the help of the identity (4.2.10), the same argument

as in [Mc12, Proposition 3.2] gives us the following.

Proposition 6.3.1. We have 〈[A] ∗ [B], [C]〉d = 〈[B], vdA−dAt [At] ∗ [C]〉d.

Corollary 6.3.2. For all i ∈ [0, r], we have the following:

(1) 〈ei[A1], [A2]〉d = 〈[A1], vkifi[A2]〉d.
(2) 〈fi[A1], [A2]〉d = 〈[A1], v

−1eik
−1
i [A2]〉d.

(3) 〈ki[A1], [A2]〉d = 〈[A1],ki[A2]〉d.

Proof. We prove (1). If A− Ei+1,i
θ is diagonal for some i ∈ [0, r], then

dA = co(A)i+1 and dAt = ro(A)i = co(A)i − 1.

Hence dA − dAt = co(A)i+1 − co(A)i + 1. Thus, we have

vki(L,L
′) = δL,L′v1+co(A)i+1−co(A)i = δL,L′vdA−dAt , ∀L,L′ ∈ X c

n,d(co(A)),

which implies (1).

We now prove (2). If A− Ei,i+1
θ is diagonal for some i ∈ [0, r], then

dA = co(A)i and dAt = ro(A)i+1 = co(A)i+1 − 1− δi,0 − δi,n.

So dA − dAt = co(A)i − co(A)i+1 + 1 + δi,0 + δi,n. Hence, if (L,L′) subject to
L ∈ X c

n,d(co(A)), Li ⊆ L′
i, Lj = L′

j for all j ∈ [0, r]\{i}, then

vdA−dAtei(L,L
′) = v1+δi,0+δi,nk−1

i ei(L,L
′)

= v1+δi,0+δi,nv−2−δi,0−δi,neik
−1
i (L,L′) = v−1eik

−1
i (L,L′).

Part (2) follows.
Part (3) follows from the fact that dA = dAt = 0 if A is diagonal. �
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The same argument as in [Mc12] shows that there is a well-defined bilinear

form 〈·, ·〉 on U̇c
n given by

〈x, y〉 =
n∑

d=1

lim
p→∞

〈xd+pn, yd+pn〉d+pn, ∀x = (xd), y = (yd) ∈ U̇c
n.

Remark 6.3.3. The same adjointness property as in Proposition 6.3.1 holds
for the bilinear form 〈·, ·〉 on U̇c

n.

6.4. The canonical basis of U̇c
n and positivity

As we have set up all the preliminary preparation, the constructions and proper-
ties of the canonical basis for U̇c

n can be established without further difficulty. Actu-
ally as the technical proofs for the intermediate steps are literally the same as in the
affine type A setting [Mc12] and/or in the finite type B/C setting [LW15,FL15],
we will formulate the statements while referring to those papers for detailed proofs.

With the help of the bilinear form 〈·, ·〉 and Theorem 5.4.3, the same arguments
as in [Mc12], or [LW15] prove the following.

Proposition 6.4.1. For any A ∈ Ξap
n,d, we have

φc
d+pn,d+(p−1)n({2pA}d+pn) = {2p−2A}d+(p−1)n, ∀p 0.

Moreover, we have

{2pA}d+pn = ζ
2pA +

∑
B∈Ξ̃ap

n :B<A

cA,B,p ζ2pB

with cA,B,p ∈ A independent of p for p 0.

Recall Ξ̃n and Ξ̃ap
n from (6.2.2).

Definition 6.4.2. For any Â ∈ Ξ̃ap
n / ≈, an element bÂ ∈ U̇c

n is defined as
follows: (bÂ)d = 0 if d �= |A| mod 2n; If |A| = d+ sn for some integer s, we set

(bÂ)d+sn+pn = {2pA}d+sn+pn, ∀p ≥ p0, for some fixed p0,

and for general q < p0, we set (bÂ)d+sn+qn = φc
d+sn+p0n,d+rn+qn({2p0

A}d+sn+p0n).

The fact that bÂ as defined above lies in U̇c
n follows from Proposition 6.4.1.

Moreover, ζÂ = bÂ+ lower terms. The next theorem now follows from the existence

of the monomial basis {ζÂ} for U̇c
n; cf. Proposition 6.2.4.

Theorem 6.4.3. The set Ḃc
n := {bÂ

∣∣Â ∈ Ξ̃ap
n / ≈} forms a basis for U̇c

n.

The basis Ḃc
n is called the canonical basis of U̇c

n.
As a consequence, we deduce formally the following results by the same argu-

ments in [LW15] and [FL15].

Proposition 6.4.4. The signed canonical basis {±bÂ
∣∣Â ∈ Ξ̃ap

n / ≈} is charac-

terized by the bar-invariance, integrality (i.e. bÂ ∈ AU̇
c
n), and almost orthonormal-

ity (i.e., 〈bÂ, bÂ′〉 = δÂ,Â′ mod v−1Z[[v−1]]).

The canonical basis of U̇c
n enjoys several remarkable positivity properties as fol-

lows. The proofs use the same arguments as in [LW15] and [FL15]. In particular,
for the positivity with respect to comultiplication, the positivity of the canonical
basis in the Lusztig algebra Uc

n,d as in Proposition 5.4.4 is used.
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Theorem 6.4.5. The structure constants of the canonical basis Ḃc
n lie in

N[v, v−1] with respect to the multiplication and comultiplication, and in v−1N[[v−1]]
with respect to the bilinear pairing.

6.5. Another presentation of the algebra U̇c
n

We shall give a more familiar description of the algebra U̇c
n. We start with

introducing the limit version of the imbeddings jn,d.
Recall Zn from (2.3.1) and Zc

n from (6.2.1), and there is an inclusion Zc
n ⊂ Zn.

Recall the notation |= from (5.4.4), and we extend it further to Zc
n×Zn as follows.

Given a pair (λ, λ′) ∈ Zc
n × Zn, we write λ′ |= λ if

λi = λ′
i + λ′

n−i + δi,n + δi,r+1, ∀1 ≤ i ≤ n.

We write λ̄′ |= λ̂ if λ′ |= λ̃ for some λ̃ in the equivalence class λ̂ and the notation λ̄
is defined in Section 2.3. (In this case, we shall assume that λ′ |= λ.)

Recall μ̄(U̇n)λ̄ from Section 2.3. We set μ̂(U̇
c
n)λ̂ = 1μ̂U̇

c
n1λ̂. For a quadruple

(λ̂, μ̂, λ̄′, μ̄′) such that λ̄′ |= λ̂ and μ̄′ |= μ̂, we define a linear map

jλ̄′,μ̄′,λ̂,μ̂ : μ̂(U̇
c
n)λ̂ −→ μ̄′(U̇n)λ̄′ ,

to be the composition

μ̂(U̇
c
n)λ̂ ↪→ U̇c

n
jn−→ Un,∞ � μ̄′(U̇n)λ̄′ ,

where the first map is a natural inclusion and the third one is the projection. Set

jλ̂,μ̂ =
∏

λ̄′|=λ̂, μ̄′|=μ̂

jλ̄′,μ̄′,λ̂,μ̂ : μ̂(U̇
c
n)λ̂ −→

∏
λ̄′|=λ̂, μ̄′|=μ̂

μ̄′(U̇n)λ̄′ .

Recall the imbedding jn : Uc
n,∞ → Un,∞ from Section 6.1. We have

jn( μ̂(U̇
c
n)λ̂) ⊆

∏
λ̄′|=λ̂, μ̄′|=μ̂

μ̄′(U̇n)λ̄′ .

The injectivity of jn implies that the homomorphism jλ̂,μ̂ is injective.

Now a modified form of Uc
n, denoted by U̇c

n,alg, can be defined algebraically in
a standard way as

U̇c
n,alg = ⊕μ̂,λ̂∈Zc

n/≈ μ̂(U
c
n,alg)λ̂,

where

μ̂(U̇
c
n,alg)λ̂ = Uc

n

/( ∑
0≤i≤r

(ki − v−μi+μi+1)Uc
n +

∑
0≤i≤r

Uc
n(ki − v−λi+λi+1)

)
.

The algebra homomorphism jn : Uc
n → Un then induces a linear map

j̃λ̄′,μ̄′,λ̂,μ̂ : μ̂(U̇
c
n,alg)λ̂ −→ μ̄′(U̇n)λ̄′

such that the following diagram commutes:

Uc
n

jn−−−−→ Un⏐⏐� ⏐⏐�
μ̂(U̇

c
n,alg)λ̂

j̃
λ̄′,μ̄′,λ̂,μ̂−−−−−−→ μ̄′(U̇n)λ̄′
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Set
j̃λ̂,μ̂ =

∏
λ̄′|=λ̂
μ̄′|=μ̂

j̃λ̄′,μ̄′,λ̂,μ̂ : μ̂(U̇
c
n,alg)λ̂ −→

∏
λ̄′|=λ̂
μ̄′|=μ̂

μ̄′(U̇n)λ̄′ .

Since jn is injective, j̃λ̂,μ̂ is injective.

By definition, there exists a unique linear map

φd,alg,μ̂,λ̂ : μ̂(U̇
c
n,alg)λ̂ −→ ⊕b∈μ̂,a∈λ̂U

c
n,d(b, a),

where Uc
n,d(b, a) = 1b(U

c
n,d)1a, such that the following diagram commutes:

Uc
n −−−−→ μ̂(U̇

c
n,alg)λ̂

φd

⏐⏐� ⏐⏐�φ
d,alg,μ̂,λ̂

Uc
n,d −−−−→ ⊕b∈μ̂,a∈λ̂U

c
n,d(b, a)

From this we have constructed an algebra homomorphism

φd,alg := ⊕μ̂,λ̂∈Zc
n/≈

φd,alg,μ̂,λ̂ : U̇c
n,alg −→ Uc

n,d.

Since φd,alg commutes with the transfer maps, i.e., φd−n,alg = φd,d−nφd,alg. we

obtain an algebra homomorphism ψ : U̇c
n,alg → Uc

n,∞. Observe that the image

of this homomorphism is exactly U̇c
n by considering the image of the idempotents

1λ̂. Therefore, we have a surjective algebra homomorphism: ψ : U̇c
n,alg −→ U̇c

n.

By restriction, we have ψμ̂,λ̂ : μ̂(U̇
c
n,alg)λ̂ → μ̂(U̇

c
n)λ̂, for various μ̂, λ̂. Since jλ̂,μ̂

and j̃λ̂,μ̂ are injective, and j̃λ̂,μ̂ = jλ̂,μ̂ ◦ψμ̂,λ̂, we conclude that ψμ̂,λ̂ and hence ψ is

injective. Summarizing, we have established the following.

Proposition 6.5.1. The map ψ : U̇c
n,alg → U̇c

n is an algebra isomorphism.

Therefore, a presentation of U̇c
n is reduced to finding a presentation of U̇c

n,alg,

and the latter can be obtained by modifying the definition/presentation of Uc
n as

given in Propositions 6.1.5 and 6.1.6, in a way similar to Lusztig’s presentation for
modified quantum groups [Lu93]. The finite type counterpart of a presentation of

U̇c
n,alg can be found in [BKLW14].





CHAPTER 7

A second coideal subalgebra of quantum affine sln

In this chapter, setting n = n− 1 we consider a subvariety of X c
n,d, and study

its corresponding convolution algebra Sjı
n,d which is a subalgebra of Sc

n,d. We in-

troduce Lusztig subalgebra Ujı
n,d of the jı-Schur algebra Sjı

n,d. We study the prop-

erties of a comultiplication on Ujı
n,d, which allow us to form a projective system

{(Ujı
n,d, φ

jı
d,d−n

)}d≥0 and then two distinguished algebras Ujı
n and U̇jı

n . We show

that (U(ŝln),U
jı
n ) forms an affine quantum symmetric pair. The canonical basis

of U̇jı
n is established and shown to admit positivity with respect to multiplication,

comultiplication, and a bilinear pairing.
Recall n = 2r + 2, and we now set

n = n− 1 = 2r + 1 (r ≥ 1).

7.1. The Schur algebras of type jı

We shall construct Schur algebras Sjı
n,d and Lusztig algebras Ujı

n,d. These alge-

bras are defined as the affine counterpart of [BKLW14], and many basic properties
of these algebras are established following [FL15, Section 5].

Recall the set Ξn,d from (4.2.1). We introduce a subset Ξjı
n,d which consists of

matrices A ∈ Ξn,d whose (r + 1)st row and (r + 1)st column entries are all zero
except ar+1,r+1 = 1, i.e.,

(7.1.1) Ξjı
n,d = {A ∈ Ξn,d

∣∣ar+1,j = δr+1,j , ai,r+1 = δi,r+1, ∀i, j ∈ Z}.

Introduce the following idempotent in the algebra Sc
n,d:

(7.1.2) jr =
∑

A∈Ξjı
n,d:A diagonal

[A],

and form the following subalgebra of Sc
n,d:

Sjı
n,d = jrS

c
n,djr.(7.1.3)

Then jr becomes the identity of Sjı
n,d, which will sometimes be denoted by 1 when

there is no ambiguity. Note that the algebra Sjı
n,d is the generic version of the

convolution algebra on pairs of lattice chains in the set X jı
n,d := {L ∈ X c

n,d|Lr =

Lr+1}. The set {[A]|A ∈ Ξjı
n,d} forms a basis of Sjı

n,d.

63
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Introduce the following elements in Sjı
n,d:

ěi = jreijr, f̌i = jrfijr,

ǩ±1
i = jrk

±1
i jr, ∀i ∈ [0, r − 1],

ȟ±1
a = jrh

±1
a jr, ∀a ∈ [0, r],

ťr = jr

(
frer +

kr − k−1
r

v − v−1

)
jr.

(7.1.4)

We note that

jrerjr = 0, jrfrjr = 0, jrerfrjr = 0.

Lusztig algebra (of type jı) Ujı
n,d is defined to be the subalgebra of Sjı

n,d generated

by the Chevalley generators ěi, f̌i, ǩ
±1
i , for all i ∈ [0, r − 1], and ťr.

Now let us present the type A analogue of the above construction. Recall from
Section 2.2 in Chapter 2 that Θn,d parametrizes a basis of Sn,d. We set

Θjı
n,d = {A ∈ Θn,d|ai,r+1 = 0, ar+1,j = 0, ∀i, j ∈ Z}.

Similar to jr, we define the following idempotent in Sn,d:

Jr =
∑

A∈Θjı
n,d:A diagonal

[A].

As the algebra JrSn,dJr is canonically isomorphic to Sn,d (recall n = n − 1), we
shall simply identify Sn,d ≡ JrSn,dJr below. Let

Ěi =

⎧⎪⎨⎪⎩
JrEiJr, if i ∈ [0, r − 1],

JrEr+1ErJr, if i = r,

JrEi+1Jr, if i ∈ [r + 1, n− 1].

F̌i =

⎧⎪⎨⎪⎩
JrFiJr, if i ∈ [0, r − 1],

JrFrFr+1Jr, if i = r,

JrFi+1Jr, if i ∈ [r + 1, n− 1].

Ǩ±1
i =

⎧⎪⎨⎪⎩
JrK

±1
i Jr, if i ∈ [0, r − 1],

JrK
±1
r K±1

r+1Jr, if i = r,

JrK
±1
i+1Jr, if i ∈ [r + 1, n− 1].

Ȟ±1
a =

{
JrH

±1
a Jr, if a ∈ [0, r],

JrH
±1
a+1Jr, if a ∈ [r + 1, n].

For convenience, one can extend the range of index i from the interval [0, n−1] to Z
by setting Ěi = Ěi+n for all i ∈ Z, etc. We shall identify Un,d with the subalgebra

of Sn,d generated by Ěi, F̌i and Ǩ±1
i for all i ∈ [0, n− 1].

7.2. The comultiplication

Recall the algebra homomorphism Δ̃c : Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ from (5.2.1), for

d′, d′′ such that d = d′ + d′′. We shall show its restriction to the subalgebra Ujı
n,d

(denoted by the same notation) relates to the constructions above in Section 7.1.
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Lemma 7.2.1. We have an algebra homomorphism Δ̃c : Ujı
n,d −→ Ujı

n,d′⊗Un,d′′ .

More explicitly, for i ∈ [0, r − 1], we have

Δ̃c(ěi) = ě′i ⊗ Ȟ′′
i+1Ȟ

′′−1
n−1−i + ȟ′−1

i+1 ⊗ Ě′′
i Ȟ

′′−1
n−1−i + ȟ′

i+1 ⊗ F̌′′
n−1−iȞ

′′
i+1.

Δ̃c(f̌i) = f̌ ′i ⊗ Ȟ′′−1
i Ȟ′′

n−i + ȟ′
i ⊗ F̌′′

i Ȟ
′′
n−1−i + ȟ′−1

i ⊗ Ě′′
n−1−iȞ

′′−1
i .

Δ̃c(ǩi) = ǩ′
i ⊗ Ǩ′′

i Ǩ
′′−1
n−1−i.

Δ̃c(ťr) = ť′r ⊗ Ǩ′′
r + v2ǩ′−1

r ⊗ Ȟ′′
r+1F̌

′′
r + v−2ǩ′

r ⊗ Ȟ′′−1
r Ě′′

r .

Proof. The fact Δ̃c(Ujı
n,d) ⊆ Ujı

n,d′ ⊗ Un,d′′ follows once we establish these
explicit formulas.

We observe that Δ̃c(jr) = j′r ⊗ J′′
r . So, by Proposition 5.2.3,

Δ̃c(ěi) = j′r ⊗ J′′
r

(
e′i ⊗H′′

i+1H
′′−1
n−1−i + h′−1

i+1 ⊗E′′
i H

′′−1
n−1−i

+h′
i+1 ⊗ F′′

n−1−iH
′′
i+1

)
j′r ⊗ J′′

r

= ě′i ⊗ Ȟ′′
i+1Ȟ

′′−1
n−1−i + ȟ′−1

i+1 ⊗ Ě′′
i Ȟ

′′−1
n−1−i + ȟ′

i+1 ⊗ F̌′′
n−1−iȞ

′′
i+1.

The formulas for Δ̃c(f̌i) and Δ̃c(ǩi) are similarly proved. The last formula can be
proved in exactly the same manner as that of [FL15, Lemma 5.1.1]. �

Following the definition of φc
d,d−n in (6.1.1), we define the transfer map

φjı
d,d−n

: Sjı
n,d −→ Sjı

n,d−n

to be the composition

φjı
d,d−n

: Sjı
n,d

Δ̃c

−−−−→ Sjı
n,d−n

⊗ Sn,n
1⊗χn−−−−→ Sjı

n,d−n

where the homomorphism χn : Sn,n −→ Q(v) is the generalized signed representa-

tion of Sn,n. We have χn(Ěi) = χn(F̌i) = 0 and χn(Ȟa) = v for all i ∈ [0, n − 1],
a ∈ [0, n]. Thus by Lemma 7.2.1, we have for all i ∈ [0, r − 1],

(7.2.1) φjı
d,d−n

(ěi) = ě′i, φjı
d,d−n

(f̌i) = f̌ ′i , φjı
d,d−n

(ǩi) = ǩ′
i, φjı

d,d−n
(ťr) = ť′r.

Recall Δc : Sc
n,d −→ Sc

n,d′ ⊗ Sn,d′′ from (5.3.6). Let us consider the restriction

Δc|Sjı
n,d

, which will be denoted by Δjı.

Proposition 7.2.2. We have an algebra homomorphism Δjı : Sjı
n,d −→ Sjı

n,d′ ⊗
Sn,d′′ , and by restriction, a homomorphism Δjı : Ujı

n,d −→ Ujı
n,d′ ⊗ Un,d′′ . More

explicitly, for all i ∈ [0, r − 1], we have

Δjı(ěi) = ě′i ⊗ Ǩ′′
i + 1⊗ Ě′′

i + ǩ′
i ⊗ vδi,0 F̌′′

n−1−iǨ
′′
i ,

Δjı(f̌i) = f̌ ′i ⊗ Ǩ′′
n−1−i + ǩ′−1

i ⊗ v−δi,0Ǩ′′
n−1−iF̌

′′
i + 1⊗ Ě′′

n−1−i,

Δjı(ǩi) = ǩ′
i ⊗ Ǩ′′

i Ǩ
′′−1
n−1−i,

Δjı(ťr) = ť′r ⊗ Ǩ′′
r + 1⊗ Ě′′

r + 1⊗ vǨ′′
r F̌

′′
r .

(7.2.2)

Proof. Since Δjı(jr) = j′r ⊗ J′′
r , we see that Δjı(Sjı

n,d) ⊆ Sjı
n,d′ ⊗ Sn,d′′ .

So it remains to establish the formulas. The first three follow by Δjı(jr) = j′r⊗
J′′
r and Proposition 5.3.4. We now prove the last one on Δjı(ťr). The superscripts

′ and ′′ are dropped for simplicity for the rest of the proof.
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By applying Proposition 5.3.4 and using that jrerjr = 0 and jrfrjr = 0, we
have

Δjı(jrfrerjr) = jrfrerjr ⊗ JrKr+1KrJr + jrk
−1
r jr ⊗ JrKr+1FrErJr

+ 1⊗ JrEr+1ErJr + 1⊗ JrKr+1FrFr+1KrJr + jrkrjr ⊗ JrEr+1Fr+1KrJr.

(7.2.3)

By using the fact that

JrKrJr = Ȟ−1
r ,JrKr+1Jr = Ȟr+1,JrErFrJr = 0,JrFr+1Er+1Jr = 0,

we have

JrKr+1FrErJr = Ȟr+1Jr(ErFr −
Kr −K−1

r

v − v−1
)Jr = Ȟr+1

Ȟr − Ȟ−1
r

v − v−1
,

JrKr+1FrFr+1KrJr = Ȟr+1F̌rȞ
−1
r = vǨrF̌r,

JrEr+1Fr+1KrJr = Jr(Fr+1Er+1 +
Kr+1 −K−1

r+1

v − v−1
)JrȞ

−1
r

=
Ȟr+1 − Ȟ−1

r+1

v − v−1
Ȟ−1

r .

So we can rewrite (7.2.3) as follows:

Δjı(jrfrerjr) = jrfrerjr ⊗ Ǩr + 1⊗ Ěr + 1⊗ vǨrF̌r

+ jrk
−1
r jr ⊗ Ȟr+1

Ȟr − Ȟ−1
r

v − v−1
+ jrkrjr ⊗

Ȟr+1 − Ȟ−1
r+1

v − v−1
Ȟ−1

r

= ťr ⊗ Ǩr + 1⊗ Ěr + 1⊗ vǨrF̌r + jrk
−1
r jr ⊗

ȞrȞr+1

v − v−1
− jrkrjr ⊗

Ȟ−1
r Ȟ−1

r+1

v − v−1
.

Finally, we have

Δjı(jr
kr − k−1

r

v − v−1
jr) = jrkrjr ⊗

Ȟ−1
r Ȟ−1

r+1

v − v−1
− jrk

−1
r jr ⊗

ȞrȞr+1

v − v−1
.

The formula for Δjı(ťr) follows by adding the above two equations. �

Now set d′ = 0. Since Sjı
n,0 = Q(v), we obtain an algebra homomorphism

jın,d := Δjı|d′=0 : Sjı
n,d −→ Sn,d,(7.2.4)

which is injective by Proposition 5.3.6. Moreover,

ěi = f̌i = 0, ǩi = v−δi,0 , ťr = 1 ∈ Sjı
n,0, ∀i ∈ [0, r − 1].

The following can now be read off from Proposition 7.2.2, while the injectivity of
jın,d follows from a similar argument in [FL15].

Proposition 7.2.3. We have an imbedding of algebras

jın,d : Sjı
n,d −→ Sn,d.

Moreover, for all i ∈ [0, r − 1], we have

jın,d(ěi) = Ěi + v−δi,0ǨiF̌n−1−i, jın,d(f̌i) = Ěn−1−i + vδi,0F̌iǨn−1−i,

jın,d(ǩi) = v−δi,0ǨiǨ
−1
n−1−i, jın,d(ťr) = Ěr + vǨrF̌r + Ǩr.

(7.2.5)

In particular, we have an imbedding of algebras jın,d : Ujı
n,d → Un,d.
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7.3. The monomial basis of Ujı
n,d

Next, we shall construct a jı-monomial basis of Ujı
n,d, which is bar invariant

and preserved by φjı
d,d−n

. The compatibility of a monomial basis with φjı
d,d−n

re-

quires additional work in the current jı setting than the previous c-case (compare
Theorem 5.4.3), and this will be carried out by a similar procedure as in finite type
ı-version in [LW15].

Let A be a matrix in Ξjı
n,d. Let dlti(A) be the Z × Z matrix obtained from A

by deleting the kth rows and columns for all k ≡ i mod n. Note that dltr+1(A) and
A share the same [−r, r] × [−r, r]-minors. The resulting matrix dltr+1(A) = (bij)
satisfies

b−i,−j = bij = bi+n,j+n,
∑

i∈[1,n],j∈Z

bij = 2d+ 1, b00 ∈ 2Z+ 1.(7.3.1)

We shall denote by

(7.3.2) Ξ̌jı
n,d = {B = (bij) ∈ MatZ×Z(N)

∣∣B satisfies (7.3.1)}.

In particular, we have a bijection

(7.3.3) dltr+1 : Ξjı
n,d −→ Ξ̌jı

n,d, A �→ dltr+1(A).

Definition 7.3.1. A matrix A in Ξjı
n,d is called jı-aperiodic if dltr+1(A) is

aperiodic.

Toward the construction of a suitable monomial basis, it is convenient for us
to freely use parametrization of standard basis for Sjı

n,d by matrices in Ξ̌jı
n,d or Ξjı

n,d

under such a bijection, and thus it makes sense to say things like “[A] ∈ Sjı
n,d

for A ∈ Ξ̌jı
n,d”. We shall add the index n to the old notation to denote Eh,h+1

n ,

Eh,h+1
θ,n = Eh,h+1

n +E
−h,−(h+1)
n corresponding to Eh,h+1, Eh,h+1

θ , and so on, under

the bijection. (Note that the former has period n, while the latter has period n.)

Lemma 7.3.2. Let A,B,C ∈ Ξ̌jı
n,d. Let R be a positive integer.

(1) Assume that B − REh,h+1
θ,n is diagonal for some h ∈ [0, r] and co(B) =

ro(A). Assume further that R = R0 + · · · + Rl and the matrix A satisfy
one of the following conditions:⎧⎪⎨⎪⎩

a0m = 0, a1,k+i = Ri, a1k ≥ R0, a1j = 0, if h = 0, k ≥ 1;

ahm = 0, ah+1,k+i = Ri, ah+1,k ≥ R0, ah+1,j = 0, if h ∈ [1, r − 1];

arm = 0, ar+1,k+i = Ri, ar+1,k ≥ 2R0, ar+1,j = 0, if h = r, k ≥ r + 1;

for all m ≥ k, i ∈ [1, l] and j > k + l. Then we have

[B] ∗ [A] = [A+

l∑
i=0

Ri(E
h,k+i
θ,n − Eh+1,k+i

θ,n )] + lower terms.

(2) Assume that C−REh+1,h
θ,n is diagonal for some h ∈ [0, r− 1] and co(C) =

ro(A). Assume further that R = R0 + · · · + Rl and A satisfy one of the
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following conditions:⎧⎪⎨⎪⎩
a1m = 0, a0,k+i = Ri, a0,k+l ≥ Rl, a0j = 0, if h = 0, k + l < 0;

a1m = 0, a0,k+i = Ri, a00 ≥ 2Rl, a0j = 0, if h = 0, k + l = 0;

ah+1,m = 0, ah,k+i = Ri, ah,k+l ≥ Rl, ahj = 0, if h ∈ [1, r − 1];

for all m ≤ k + l, i ∈ [0, l − 1] and j < k. Then we have

[C] ∗ [A] = [A−
l∑

i=0

Ri(E
h,k+i
θ,n − Eh+1,k+i

θ,n )] + lower terms.

Note the above multiplication formula for h = r corresponds to multiplication
with the new generator ťr in Sjı

n,d.

Proof. All cases are directly taken from Lemma 4.4.2, except the third case in
(1), which can be obtained by applying Lemma 4.4.2(1), Cases 3-4, and
Lemma 4.4.2(2), Case 3. �

A jı-aperiodic monomial is by definition of the form [X1] ∗ · · · ∗ [Xm] in Sjı
n,d

where Xi ∈ Ξ̌jı
n,d satisfies the conditions that either Xi − REh,h+1

θ,n for h ∈ [0, r] or

Xi − REh+1,h
θ,n for h ∈ [0, r − 1] is diagonal for each i. The same argument as for

Proposition 2.2.3 (or Theorem 5.4.3) gives us the following.

Proposition 7.3.3. For each aperiodic matrix A in Ξ̌jı
n,d, there exists a jı-

aperiodic monomial yA in Sjı
n,d such that yA = [A] + lower terms.

We freely switch the index set for {yA} back to A ∈ Ξjı
n,d under the bijection

(7.3.3). By Proposition 7.2.3, jın,d : Ujı
n,d → Un,d is an imbedding, and we shall

regard Ujı
n,d ⊆ Un,d by identifying Ujı

n,d with its image under jın,d. Recall that Un,d

admits a canonical basis {{A}d
∣∣A ∈ Ξn,d jı-aperiodic}.

We have the following analogue of Theorem 5.4.3.

Proposition 7.3.4. The set {{A}d
∣∣A ∈ Ξjı

n,d jı-aperiodic} forms a (canonical)

basis for Ujı
n,d. Also, {yA

∣∣A ∈ Ξjı
n,d jı-aperiodic} forms a monomial basis for Ujı

n,d.

Proof. We have an imbedding jın,d : Ujı
n,d → Un,d by Proposition 7.2.3. A

counterpart of Proposition 5.4.2 makes sense in our setting. We also have Propo-
sition 7.3.3. Therefore we have all the three key ingredients available to rerun the
argument for Theorem 5.4.3. The proposition is proved. �

Note that yA is not bar invariant in general. As in the finite ı-setting [LW15],
this monomial basis {yA} is not preserved by the transfer map φjı

n,n−d, and thus this

basis is not directly applicable for studying the limiting algebra Ujı
n in the following

Section 7.4. To overcome this obstacle, we introduce the hybrid monomial hA

obtained from yA by replacing every factor [Xi] in the monomial yA by its associated

canonical basis element {Xi}d if Xi is of the form Xi = X(D,R) := D + REr,r+1
θ,n

for some diagonal matrix D and for some R. We still have {Xi}d ∈ Sjı
n,d thanks to

the fact that {Xi}d ∈ [Xi] +
∑

0≤k<RAX(Dk, k) for some diagonal matrices Dk;

see [LW15]. Hence we have hA = yA + lower terms ∈ Sjı
n,d. Thus we have obtained

the following.
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Proposition 7.3.5. For each aperiodic matrix A in Ξ̌jı
n,d, there exists a jı-

aperiodic hybrid monomial hA in Sjı
n,d such that hA = [A] + lower terms, hA = hA,

and φjı
d,d−n

(hA) = hA−2In , with In =
∑

1≤i≤n
Eii

n . Moreover,

{hA

∣∣A ∈ Ξ̌jı
n,d jı-aperiodic}

forms a (hybrid) monomial basis for Ujı
n,d.

(It is understood above that hA−2In = 0 if A− 2In contains some negative
entry.)

Example 7.3.6. Set r = 2 and so n = 5. Consider the jı-aperiodic matrix
A ∈ Ξ̌jı

5,d:

A =

c-3 c-2 c-1 c0 c1 c2 c3 c4 c5 c6 c7

r0 3 1 * 1 3
r1 0 6 * 0 4
r2 8 7 * 2 5
r3 5 2 * 7 8
r4 4 0 * 6 0
r5 3 1 * 1 3

where ‘ri’ and ‘cj’ in the table indicate the i-th row and j-th column of the matrix
A, respectively. We have

yA = ě
(8)
1 ∗ ť

[5]
2 ∗ f̌

(4)
1 ∗ f̌ (4)0 ∗ ě(14)0 ∗ ě(12)1 ∗ ť[6]2 ∗ f̌

(3)
0 ∗ 1co(A) = [A] + lower terms,

hA = ě
(8)
1 ∗ ť

{5}
2 ∗ f̌ (4)1 ∗ f̌ (4)0 ∗ ě(14)0 ∗ ě(12)1 ∗ ť{6}2 ∗ f̌ (3)0 ∗ 1co(A) = [A] + lower terms,

where ť
[R]
2 and ť

{R}
2 denote

∑
X [X] and

∑
X{X}d, respectively, with the sum taken

over X such that X −REr,r+1
θ,n is diagonal.

7.4. The coideal subalgebra of type jı

Now that the results at the jı-Schur algebra level are established (which is the
counterpart of Chapter 5), we will formulate the jı-analogue of Chapter 6. As most
of these are straightforward, we will skip some of the details.

Starting with the projective system {(Ujı
n,d, φ

jı
d,d−n

)}d∈N, we construct two dis-

tinguished algebrasUjı
n and U̇jı

n out of the associated projective limit algebra Ujı
n,∞;

the Chevalley generators of Ujı
n will be denoted again by ěi, f̌i, ǩ

±1
i (i ∈ [0, r− 1]),

and ťr. The family of imbeddings {jın,d : Ujı
n,d → Un,d}d≥0 induces an algebra

imbedding jın : Ujı
n → Un. The family of Δjı (for various d′ + d′′ = d) induce

an algebra homomorphism (which is coassociative in a suitable sense) Δjı : Ujı
n →

Ujı
n ⊗ Un, whose action on the Chevalley generators can be presented explicitly.

Recall the algebra isomorphism Un
∼= U(ŝln). Summarizing we have established

the following.

Theorem 7.4.1. The pair (U(ŝln),U
jı
n ) forms an affine quantum symmetric

pair. (see Figure 2 for the relevant involution.)
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Recall the Cartan integers cij from (5.1.7). We give a presentation for the
algebra Ujı

n , which is a counterpart of Proposition 6.1.5 for Uc
n. This presentation

is a variant of [Ko14, Theorem 7.1] in our setting and our notation. Recall we
always assume r ≥ 1 so n ≥ 3.

Proposition 7.4.2. The Q(v)-algebra Ujı
n has a presentation with generators

ěi, f̌i, and ǩ±1
i (i ∈ [0, r − 1]) and ťr, and the following relations: for all i, j ∈

[0, r − 1],

ǩ0(ǩ
2
1 · · · ǩ2

r−1) = v−1,

ǩiǩ
−1
i = 1, ǩiǩj = ǩj ǩi, ǩťr = ťǩr,

ǩiějǩ
−1
i = vcij+δi,0δj,0 ěj ,

ǩif̌j ǩ
−1
i = v−cij−δi,0δj,0 f̌j ,

ěiěj = ěj ěi, f̌i f̌j = f̌j f̌i, ∀|i− j| > 1,

ěiťr = ťrěi, f̌iťr = ťr f̌i, ∀i ≤ r − 2,

ě2i ěj + ěj ě
2
i = (v + v−1)ěiěj ěi, ∀|i− j| = 1,

f̌2i f̌j + f̌j f̌
2
i = (v + v−1)f̌i f̌j f̌i, ∀|i− j| = 1,

ě2r−1ťr + ťrě
2
r−1 = (v + v−1)ěr−1ťrěr−1,

f̌2r−1ťr + ťr f̌
2
r−1 = (v + v−1)f̌r−1ťr f̌r−1,

ť2r ěr−1 + ěr−1ť
2
r = (v + v−1)ěr−1ťrěr−1 + ěr−1,

ť2r f̌r−1 + f̌r−1ť
2
r = (v + v−1)f̌r−1ťr f̌r−1 + f̌r−1,

ěif̌j − f̌j ěi = δij
ǩi − ǩ−1

i

v − v−1
, ∀(i, j) �= (0, 0),

ě20f̌0 + f̌0ě
2
0 = (v + v−1)

(
ě0f̌0ě0 − (vǩ0 + v−1ǩ−1

0 )ě0
)
,

f̌20 ě0 + ě0f̌
2
0 = (v + v−1)

(
f̌0ě0f̌0 − f̌0(vǩ0 + v−1ǩ−1

0 )
)
.

Proof. We verify directly the above relations for Lusztig algebras Ujı
n,d, and it

follows that the relations hold for Ujı
n by construction. Then we use Theorem 7.4.1

and [Ko14, Theorem 7.1] to conclude that we do not need additional relations. �

Now the construction of canonical basis with positivity for the coideal algebra

in Section 6.4 can be repeated. Recalling Ξ̃n from (6.2.2), we introduce the following

subsets of Ξ̃n:

Ξ̃jı
n =

{
A = (aij) ∈ Ξ̃n

∣∣ ar+1,j = δr+1,j , ai,r+1 = δi,r+1

}
,

Ξ̃jı,ap
n = {A ∈ Ξ̃jı

n

∣∣A is jı-aperiodic}.
(7.4.1)

Recalling Ξ̃n,d from (6.2.3), we further introduce, for d ∈ Z,

Ξ̃jı
n,d = {A ∈ Ξ̃jı

n

∣∣|A| = d}, Ξ̃jı
n =

⋃
d

Ξ̃jı
n,d.(7.4.2)

We define an equivalence relation ≈ on Ξ̃jı,ap
n as in (6.2.4) and let Â be the equiv-

alence class of A. The hybrid monomial basis {hA} for Sjı
n,d (cf. Proposition 7.3.5)
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gives rise to a monomial basis {hÂ

∣∣Â ∈ Ξ̃jı,ap
n / ≈} for the algebra U̇jı

n . A bilin-

ear form 〈·, ·〉 on U̇jı
n can be defined similarly as in Section 6.4 and shown to be

non-degenerate. The following is a jı-analogue of Theorems 6.4.3 and 6.4.5.

Theorem 7.4.3. There exists a canonical basis Ḃjı
n = {bÂ

∣∣Â ∈ Ξ̃jı,ap
n / ≈} for

U̇jı
n , whose transition matrix with respect to the monomial basis {hÂ

∣∣Â ∈ Ξ̃jı,ap
n /≈}

is uni-triangular. Moreover, the structure constants of the canonical basis Ḃjı
n lie in

N[v, v−1] with respect to the multiplication and comultiplication, and in v−1N[[v−1]]
with respect to the bilinear pairing.





CHAPTER 8

More variants of coideal subalgebras of quantum
affine sln

This chapter offers two more variants of geometric origin (denoted by types ıj
and ıı) of the constructions in Chapters 6 and 7. Set

η = n− 1 = n− 2 = 2r (r ≥ 1).

Schur algebras Sıj
n,d and Lusztig algebras Uıj

n,d are introduced, and the family of

Lusztig algebras gives rise to algebras Uıj
n and U̇ıj

n . We show that (U(ŝln),U
ıj
n )

forms an affine quantum symmetric pair. In addition, a family of algebras Uıı
η,d ⊂

Sıı
η,d is introduced and gives rise to algebras Uıı

η and U̇ıı
η . Then (U(ŝlη),U

ıı
η ) forms

an affine quantum symmetric pair. The canonical bases of both algebras U̇ıj
n and

U̇ıı
η admit positivity with respect to multiplication, comultiplication, and a bilinear

pairing.

8.1. The Schur algebras of type ıj

Recall the set Ξn,d from (4.2.1). We set

(8.1.1) Ξıj
n,d = {A ∈ Ξn,d|a0,j = δ0,j , ai,0 = δi,0, ∀i, j ∈ Z}.

Introduce the idempotent j0 in the algebra Sc
n,d given by j0 =

∑
A∈Ξıj

n,d diagonal[A],

and form the following subalgebra of Sc
n,d (called Schur algebra of type ıj):

(8.1.2) Sıj
n,d = j0S

c
n,dj0.

We further introduce the following elements in Sıj
n,d:

êi = j0eij0, f̂i = j0fij0,

k̂±1
i = j0k

±1
i j0, ∀i ∈ [1, r],

ĥ±1
a = j0h

±1
a j0, ∀a ∈ [0, r],

t̂0 = j0

(
e0f0 +

k−1
0 − k0

v − v−1

)
j0.

(8.1.3)

We also have the following vanishing results in Sıj
n,d, which will be used freely:

j0e0j0 = 0, j0f0j0 = 0, j0f0e0j0 = 0.

The Lusztig algebra Uıj
n,d is defined to be the subalgebra of Sıj

n,d generated by the

Chevalley generators êi, f̂i, k̂
±1
i , for i ∈ [1, r], and t̂0.

Let us also formulate a type A version which is compatible with the above
construction. Let

(8.1.4) Θıj
n,d = {A ∈ Θn,d|a0,j = 0, ai,0 = 0, ∀i, j ∈ Z}.

73
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Using the idempotent J0 in Sn,d given by J0 =
∑

A∈Θıj
n,d diagonal[A], we form the

subalgebra J0Sn,dJ0 of Sn,d, which is isomorphic to the algebra Sn,d defined ear-
lier. We shall always identify Sn,d ≡ J0Sn,dJ0 below. We introduce the following
elements in Sn,d:

Êi =

{
J0E0E−1J0, if i = 0,

J0EiJ0, if i ∈ [1, n− 1].

F̂i =

{
J0F−1F0J0, if i = 0,

J0FiJ0, if i ∈ [1, n− 1].

K̂±1
i =

{
J0K

±1
0 K±1

−1J0, if i = 0,

J0K
±1
i J0, if i ∈ [1, n− 1].

Ĥ±1
a =

{
J0H

±1
−1J0, if a = 0,

J0H
±1
i J0, if a ∈ [1, n].

(8.1.5)

We can extend the interval i ∈ [0, n − 1] to i ∈ Z by setting Êi = Êi+n, etc. We
observe

J0E−1J0 = 0, J0F−1J0 = 0, J0E−1F−1J0 = 0, J0F0E0J0 = 0.

We identify Un,d with the subalgebra generated by the Chevalley generators Êi, F̂i

and K̂±1
i for all i ∈ [0, n− 1].

8.2. Comultiplication and transfer map of type ıj

We shall study the restriction to Lusztig algebra Uıj
n,d (denoted by the same

notation) of Δ̃c : Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ from (5.2.1), for arbitrary d′, d′′ such that

d = d′ + d′′.

Proposition 8.2.1. We have an algebra homomorphism

Δ̃c : Uıj
n,d −→ Uıj

n,d′ ⊗Un,d′′ .

More explicitly, for all i ∈ [1, r], we have

Δ̃c(êi) = ê′i ⊗ Ĥ′′
i+1Ĥ

′′−1
n−1−i + ĥ′−1

i+1 ⊗ Ê′′
i Ĥ

′′−1
n−1−i + ĥ′

i+1 ⊗ F̂′′
n−1−iĤ

′′
i+1,

Δ̃c(f̂i) = f̂ ′i ⊗ Ĥ′′−1
i Ĥ′′

n−i + ĥ′
i ⊗ F̂′′

i Ĥ
′′
n−i + ĥ′−1

i ⊗ Ê′′
n−1−iĤ

′′−1
i ,

Δ̃c(k̂i) = k̂′
i ⊗ K̂′′

i K̂
′′−1
n−1−i,

Δ̃c(t̂0) = t̂′0 ⊗ K̂′′
0 + v2k̂′

0 ⊗ Ĥ′′
1 F̂

′′
0 + v−2k̂′−1

0 ⊗ Ĥ′′−1
0 Ê′′

0 .

Proof. The inclusion Δ̃c(Uıj
n,d) ⊆ Uıj

n,d′ ⊗Un,d′′ follows once the formulas are

established. The superscripts ′ and ′′ will be dropped throughout the proof for the
sake of simplicity. The first three formulas follow from Proposition 5.2.3. To prove
the last one, we proceed similarly as in the jı-version. By using j0e0j0 = 0 and
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j0f0j0 = 0, we have

Δ̃c(j0e0f0j0) = j0 ⊗ J0Δ̃
c(e0)Δ̃

c(f0)j0 ⊗ J0

= j0e0f0j0 ⊗ J0H1H
−1
−1J0 + j0h

−1
1 h0j0 ⊗ J0E0H

−1
−1F0H0J0

+ j0h1h0j0 ⊗ J0F−1H1F0H0J0 + j0h
−1
1 h−1

0 j0 ⊗ J0E0H
−1
−1E−1H

−1
0 J0

+ j0h1h
−1
0 j0 ⊗ J0F−1H1E−1H

−1
0 J0.

By using J0H0J0 = 1, J0K0J0 = Ĥ1, and J0F0E0J0 = 0, we have

J0E0H
−1
−1F0H0J0 = J0E0H

−1
−1F0J0 = J0H

−1E0F0J0

= Ĥ−1
0 J0E0F0J0 = Ĥ−1

0 J0
K0 −K−1

0

v − v−1
J0 = Ĥ−1

0

Ĥ1 − Ĥ−1
1

v − v−1
.

We also have

J0F−1H1F0H0J0 = J0F−1H1F0J0 = Ĥ1F̂0,

J0E0H
−1
−1E−1H

−1
0 J0 = Ĥ−1

0 Ê0,

J0F−1H1E−1H
−1
0 J0 = J0H1J0J0F−1E−1J0 = Ĥ1

Ĥ0 − Ĥ−1
0

v − v−1
.

Observe that j0h1h0j0 = v2k̂0. By the above analysis, we have

Δ̃c(j0e0f0j0) = j0e0f0j0 ⊗ K̂0 + k̂−1
0 ⊗ Ĥ−1

0

Ĥ1 − Ĥ−1
1

v − v−1

+ v2k̂0 ⊗ Ĥ1F̂0 + v−2k̂−1
0 ⊗ Ĥ−1

0 Ê0 + k̂0 ⊗ Ĥ1
Ĥ0 − Ĥ−1

0

v − v−1
.

By definition, we also have

Δ̃c(j0
k−1
0 − k0

v − v−1
j0) = −k̂0 ⊗

Ĥ1Ĥ0

v − v−1
+ k̂−1

0 ⊗
Ĥ−1

1 Ĥ−1
0

v − v−1
.

By adding the last two equalities, we have established the formula for Δ̃c(t̂0). �

We define the transfer map φıj
d,d−n

: Sıj
n,d −→ Sıj

n,d−n
to be the composition

φıj
d,d−n

: Sıj
n,d

Δ̃c

−−−−→ Sıj
n,d−n

⊗ Sn,n
1⊗χn−−−−→ Sıj

n,d−n
.

Recall that the “signed” homomorphism χn : Sn,n → Q(v) satisfies that χn(Êi) = 0,

χn(F̂i) = 0 and χn(Ĥi) = v. It follows by Proposition 8.2.1 that, for all i ∈ [1, r],

(8.2.1) φıj
d,d−n

(êi) = ê′i, φıj
d,d−n

(f̂i) = f̂ ′i , φıj
d,d−n

(k̂±1
i ) = k̂′±1

i , φıj
d,d−n

(t̂0) = t̂′0.

Hence we have constructed projective systems {(Sıj
n,d, φ

ıj
d,d−n

)}d≥0 and

{(Uıj
n,d, φ

ıj
d,d−n

)}d≥0.

We now describe the restriction of Δc : Sc
n,d −→ Sc

n,d′⊗Sn,d′′ defined in (5.3.6)

to the subalgebra Sıj
n,d, which shall be denoted by Δıj.
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Proposition 8.2.2. We have a homomorphism Δıj : Sıj
n,d −→ Sıj

n,d′ ⊗ Sn,d′′

and by restriction Δıj : Uıj
n,d −→ Uıj

n,d′ ⊗Un,d′′ . More precisely, for all i ∈ [1, r],
we have

Δıj(êi) = ê′i ⊗ K̂′′
i + 1⊗ Ê′′

i + k̂′
i ⊗ F̂′′

n−1−iK̂
′′
i ,

Δıj(f̂i) = f̂ ′i ⊗ K̂′′
n−1−i + k̂′−1

i ⊗ K̂′′
n−1−iF̂

′′
i + 1⊗ Ê′′

n−1−i,

Δıj(k̂i) = k̂′
i ⊗ K̂′′

i K̂
′′−1
n−1−i,

Δıj(t̂0) = t̂′0 ⊗ K̂′′
0 + 1⊗ vK̂′′

0 F̂
′′
0 + 1⊗ Ê′′

0 .

(8.2.2)

Proof. The first three formulas follow by Δıj(j0) = j′0 ⊗ J′′
0 and Proposi-

tion 5.3.4. The last one can be obtained as that of Proposition 8.2.1, and we skip
the detail. �

Since êi = f̂i = 0, t̂0 = 1, k̂i = vδi,r ∈ Sıj
n,0 for all i ∈ [1, r], we have the following

degenerate version of Proposition 8.2.2.

Proposition 8.2.3. We have an imbedding of algebras

ıjn,d = Δıj|d′=0 : Sıj
n,d −→ Sn,d

such that, for all i ∈ [1, r],

ıjn,d(êi) = Êi + vδi,r F̂n−1−iK̂i, ıjn,d(f̂i) = Ên−1−i + v−δi,rK̂n−1−iF̂i,

ıjn,d(k̂i) = vδi,rK̂iK̂
−1
n−1−i, ıjn,d(t̂0) = Ê0 + vK̂0F̂0 + K̂0.

(8.2.3)

In particular, we have by restriction an imbedding of algebras ıjn,d : Uıj
n,d −→ Un,d.

Following Definition 7.3.1, a notation of a ıj-aperiodic matrix in Ξıj
n,d is self-

explanatory. The following is a counterpart of Proposition 7.3.4, whose proof will
be skipped.

Proposition 8.2.4. The algebra Uıj
n,d has a canonical basis

{{A}d
∣∣A ∈ Ξıj

n,d ıj-aperiodic}.

8.3. Quantum symmetric pair (U(ŝln),U
ıj
n ) and canonical basis on U̇ıj

n

The results in Chapter 7, in particular those in Sections 7.3–7.4, admit ıj-
counterparts with basically identical proofs; we shall outline these below.

Starting with the projective system {(Uıj
n,d, φ

ıj
d,d−n

)}d∈N, we construct two dis-

tinguished algebras Uıj
n and U̇ıj

n out of its associated projective limit algebra Uıj
n,∞;

the Chevalley generators ofUıj
n are denoted again by êi, f̂i, k̂

±1
i , for i ∈ [1, r], and t̂0.

The family of imbeddings {ıjn,d : Uıj
n,d → Un,d}d≥1 induces an algebra imbedding

ıjn : Uıj
n → Un. The family of Δıj (for various d′, d′′) induces an algebra homo-

morphism Δıj : Uıj
n → Uıj

n ⊗Un, whose action on the Chevalley generators can be

presented explicitly. Recall the algebra isomorphism Un
∼= U(ŝln). Summarizing

we have established the following.

Theorem 8.3.1. The pair (U(ŝln),U
ıj
n ) forms a quantum symmetric pair of

affine type. (see Figure 3 for the relevant involution.)
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Recalling Ξ̃n from (6.2.2), we introduce the following subsets of Ξ̃n:

Ξ̃ıj
n =

{
A = (aij) ∈ Ξ̃n

∣∣ a0,j = δ0,j , ai,0 = δi,0
}
,

Ξ̃ıj,ap
n = {A ∈ Ξ̃ıj

n

∣∣A is ıj-aperiodic}.
(8.3.1)

We define an equivalence relation ≈ on Ξ̃ıj,ap
n as in (6.2.4) and let Â be the equiv-

alence class of A. A hybrid monomial basis {hA} for Sıj
n,d can be constructed

(similar to Proposition 7.3.5 in jı type), and it gives rise to a monomial basis

{hÂ

∣∣Â ∈ Ξ̃ıj,ap
n /≈} for the algebra U̇ıj

n . A bilinear form 〈·, ·〉 on U̇ıj
n can be defined

similarly as in Section 6.3 and shown to be non-degenerate. We have the following
analogue of Theorem 7.4.3 (and also of Theorems 6.4.3 and 6.4.5).

Theorem 8.3.2. There exists a canonical basis Ḃıj
n = {bÂ

∣∣Â ∈ Ξ̃ıj,ap
n / ≈} for

U̇ıj
n , whose transition matrix with respect to the monomial basis is uni-triangular.

Moreover, the structure constants of the canonical basis Ḃıj
n are positive integral,

i.e., they all lie in N[v, v−1] with respect to the multiplication and comultiplication,
and lie in v−1N[[v−1]] with respect to the bilinear pairing .

8.4. The Schur algebras of type ıı

Recall η = n− 2, and so η = n− 1 = 2r for r ≥ 1. We set

(8.4.1) Ξıı
η,d = Ξjı

n,d ∩ Ξıj
n,d, jr,0 = jrj0.

The idempotent jr,0 gives rise to the subalgebra Sıı
η,d:

(8.4.2) Sıı
η,d = jr,0S

c
n,djr,0 = Sjı

n,d ∩ Sıj
n,d.

Let Uıı
η,d be the subalgebra of Sıı

η,d generated by the following Chevalley generators:

ẽi = jr,0ěijr,0, f̃i = jr,0 f̌ijr,0,

k̃±1
i = jr,0ǩ

±1
i jr,0, ∀i ∈ [1, r − 1],

h̃±1
a = jr,0ȟ

±1
a jr,0, ∀a ∈ [0, r],

t̃0 = jr,0
(
ě0f̌0 +

ǩ−1
0 − ǩ0

v − v−1

)
jr,0 = jr,0t̂0jr,0,

t̃r = jr,0ťrjr,0.

(8.4.3)

Note that ẽi = jr,0eijr,0 = jr,0êijr,0, etc.
We shall also need a type A counterpart of the above construction as follows.

We set

Θıı
η,d = Θjı

n,d ∩Θıj
n,d, Jr,0 = JrJ0, Sη,d = Jr,0Sn,dJr,0.
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Let Uη,d be the subalgebra of Sη,d generated by the following Chevalley generators:

Ẽi =

{
Jr,0Ě0Ě−1Jr,0, if i = 0,

Jr,0ĚiJr,0, if i ∈ [1, η − 1].

F̃i =

{
Jr,0F̌−1F̌0Jr,0, if i = 0,

Jr,0F̌iJr,0, if i ∈ [1, η − 1].

K̃±1
i =

{
Jr,0Ǩ

±1
0 Ǩ±1

−1Jr,0, if i = 0,

Jr,0Ǩ
±1
i Jr,0, if i ∈ [1, η − 1].

H̃±1
a =

{
Jr,0Ȟ

±1
−1Jr,0, if a = 0,

Jr,0Ȟ
±1
a Jr,0, if a ∈ [1, η].

(8.4.4)

We can make the indices periodic by setting Ẽi = Ẽi+η, etc, i.e., i ∈ Z/ηZ.
Let us describe the restriction to the subalgebra Uıı

η,d (denoted by the same

notation) of Δ̃c : Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ from (5.2.1), for arbitrary d′, d′′ such that

d = d′ + d′′. The proof is similar to that for Proposition 8.2.1 and will be skipped.

Proposition 8.4.1. We have an algebra homomorphism Δ̃c : Uıı
η,d → Uıı

η,d′ ⊗
Uη,d′′ . More precisely, for all i ∈ [1, r − 1], we have

Δ̃c(ẽi) = ẽ′i ⊗ H̃′′
i+1H̃

′′−1
n−1−i + h̃′−1

i+1 ⊗ Ẽ′′
i Ĥ

′′−1
n−1−i + h̃′

i+1 ⊗ F̃′′
n−1−iH̃

′′
i+1,

Δ̃c(f̃i) = f̃ ′i ⊗ H̃′′−1
i H̃′′

n−i + h̃′
i ⊗ F̃′′

i H̃
′′
n−i + h̃′−1

i ⊗ Ẽ′′
n−1−iH̃

′′−1
i ,

Δ̃c(k̃i) = k̃′
i ⊗ K̃′′

i K̃
′′−1
n−1−i,

Δ̃c(t̃0) = t̃′0 ⊗ K̃′′
0 + v2k̃′

0 ⊗ H̃′′
1 F̃

′′
0 + v−2k̃′−1

0 ⊗ H̃′′−1
0 Ẽ′′

0 ,

Δ̃c(t̃r) = t̃′r ⊗ K̃′′
r + v2k̃′−1

r ⊗ H̃′′
r+1F̃

′′
r + v−2k̃′

r ⊗ H̃′′−1
r Ẽ′′

r .

We define the transfer map φıı
d,d−η : Sıı

η,d −→ Sıı
η,d−η to be the composition of

the following homomorphisms

φıı
d,d−η : Sıı

η,d
Δ̃c

−−−−→ Sıı
η,d−η ⊗ Sη,η

1⊗χη−−−−→ Sıı
η,d−η.

Noting that χη(Ẽi) = 0, χη(F̃i) = 0 and χη(H̃i) = v, we have, for all i ∈ [1, r − 1],

φıı
d,d−η(ẽi) = ẽ′i, φıı

d,d−η(f̃i) = f̃ ′i , φıı
d,d−η(k̃

±1
i ) = k̃′±1

i ,

φıı
d,d−η(t̃0) = t̃′0, φıı

d,d−η(t̃r) = t̃′r.
(8.4.5)

We now describe the restriction of Δc (5.3.6) to the subalgebra Sıı
η,d, which

shall be denoted by Δıı. We shall skip the proof, as it is similar to earlier cases.

Proposition 8.4.2. We have a homomorphism Δıı : Sıı
η,d → Sıı

η,d′⊗Sη,d′′ , and
by restriction, a homomorphism Δıı : Uıı

η,d → Uıı
η,d′ ⊗Uη,d′′ . More precisely, for

all i ∈ [1, r − 1], we have

Δıı(ẽi) = ẽ′i ⊗ K̃′′
i + 1⊗ Ẽ′′

i + k̃′
i ⊗ F̃′′

n−1−iK̃
′′
i ,

Δıı(f̃i) = f̃ ′i ⊗ K̃′′
n−1−i + k̃′−1

i ⊗ K̃′′
n−1−iF̃

′′
i + 1⊗ Ẽ′′

n−1−i,

Δıı(k̃i) = k̃′
i ⊗ K̃′′

i K̃
′′−1
n−1−i,

Δıı(t̃0) = t̃′0 ⊗ K̃′′
0 + 1⊗ vK̃′′

0 F̃
′′
0 + 1⊗ Ẽ′′

0 ,

Δıı(t̃r) = t̃′r ⊗ K̃′′
r + 1⊗ vK̃′′

r F̃
′′
r + 1⊗ Ẽ′′

r .

(8.4.6)
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A degenerate version of Proposition 8.4.2 gives us the following description for
the homomorphism ııη,d = Δıı|d′=0 : Sıı

η,d −→ Sη,d.

Proposition 8.4.3. We have imbeddings of algebras

ııη,d : Sıı
η,d −→ Sη,d, ııη,d : Uıı

η,d −→ Uη,d.

Moreover, for all i ∈ [1, r − 1], we have

ııη,d(ẽi) = Ẽi + F̃n−1−iK̃i = Ẽi + F̃−iK̃i,

ııη,d(f̃i) = Ẽn−1−i + K̃n−1−iF̃i = Ẽ−i + K̃−iF̃i,

ııη,d(k̃i) = K̃iK̃
−1
n−1−i = K̃iK̃

−1
−i ,

ııη,d(t̃0) = Ẽ0 + vK̃0F̃0 + K̃0,

ııη,d(t̃r) = Ẽr + vK̃rF̃r + K̃r.

8.5. Realization of a new coideal subalgebra Uıı
η

We first formulate quickly results on monomial and canonical bases for Uıı
η,d

analogous to Lusztig algebras of types jj, jı, ıj treated earlier. Recall Ξıı
η,d from

(8.4.1). Following Definition 7.3.1, a notation of a ıı-aperiodic matrix A in Ξıı
η,d

is self-explanatory. Similar to Proposition 7.3.4 (also see Proposition 8.2.4) we
can establish the canonical basis for Uıı

η,d. This is again based on the existence

of a monomial basis {yA} for Uıı
η,d, which can be established in a way similar to

Proposition 7.3.3. A hybrid monomial basis {hA} for Uıı
η,d can also be established

in a way similar to Proposition 7.3.5. We summarize these as follows.

Proposition 8.5.1. The algebra Uıı
η,d admits a monomial basis {yA

∣∣A ∈ Ξıı
η,d

ıı-aperiodic} as well as a hybrid monomial basis {hA

∣∣A ∈ Ξıı
η,d ıı-aperiodic}. Also,

the set {{A}d
∣∣A ∈ Ξıı

η,d ıı-aperiodic} forms a canonical basis for Uıı
η,d.

Example 8.5.2. Let r = 1, hence η = 2. Consider the following matrix A in
Ξıı
d after deleting zero and second row and columns.

c-3 c-2 c-1 c0 c1 c2 c3 c4 c5 c6

r0 0 0 2 * 0 3 4
r1 4 3 0 * 2 0 0
r2 0 0 2 * 0 3 4
r3 4 3 0 * 2 0 0

Then we have

t̃
〈7〉
0 ∗ t̃

〈9〉
1 ∗ t̃

〈4〉
0 ∗ 1co(A) = [A] + lower terms,

where

t̃
〈R〉
0 =

∑
X:X−RE0,1

θ,η diagonal

[X], t̃
〈R〉
1 =

∑
X:X−RE2,1

θ,η diagonal

[X].

This is a typical monomial appearing in a monomial basis of Sıı
2,d.
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Now we shall formulate the ıı-counterparts of the results on coideal algebras
arising from families of Lusztig algebras in Sections 7.4 and 8.3. Again we skip the
proofs as they are analogous to the earlier cases.

Starting with the projective system {(Uıı
η,d, φ

ıı
d,d−η)}d∈N, we construct two dis-

tinguished algebrasUıı
η and U̇ıı

η out of its associated limit algebraUıı
η,∞; the Cheval-

ley generators of Uıı
η are denoted again by t̃0, t̃r, ẽi, f̃i, k̃

±1
i , for i ∈ [1, r − 1].

The family of imbeddings {ııη,d : Uıı
η,d → Uη,d}d≥1 induces an algebra imbedding

ııη : Uıı
η → Uη. The family of Δıı (for various d′, d′′) induces an algebra homo-

morphism Δıı : Uıı
η → Uıı

η ⊗Uη, whose action on the Chevalley generators can be

presented explicitly. Recall the algebra isomorphism Uη
∼= U(ŝlη). Summarizing

we have established the following.

Theorem 8.5.3. The pair (U(ŝlη),U
ıı
η ) forms a quantum symmetric pair of

affine type. (see Figure 4 for the relevant involution.)

Recalling Ξ̃jı
n from (7.4.1) and Ξ̃ıj

n from (8.3.1), we introduce the following

subsets of Ξ̃n:

Ξ̃ıı
η = Ξ̃jı

n ∩ Ξ̃ıj
n , Ξ̃ıı,ap

η = {A ∈ Ξ̃ıı
η

∣∣A is ıı-aperiodic}.(8.5.1)

We have the following ıı-analogue of Theorem 7.4.3 and Theorems 8.3.2.

Theorem 8.5.4. There exists a canonical basis Ḃıı
η = {bÂ

∣∣Â ∈ Ξ̃ıı,ap
η / ≈} for

U̇ıı
η , whose transition matrix with respect to the monomial basis is uni-triangular.

Moreover, the structure constants of the canonical basis Ḃıı
η all lie in N[v, v−1] with

respect to the multiplication and comultiplication, and in v−1N[[v−1]] with respect
to the bilinear pairing .

Recall the Cartan integers cij from (5.1.7). We now give a presentation for the
algebra Uıı

η , which is a counterpart of Propositions 6.1.5 and 7.4.2. This presenta-
tion is again a variant of [Ko14, Theorem 7.1] in our setting and our notation.

Proposition 8.5.5. Let r ≥ 2 and so η = 2r ≥ 4. The Q(v)-algebra Uıı
η has a

presentation with generators ẽi, f̃i, k̃
±1
i for i ∈ [1, r− 1] and ťk for k = 0, r and the

following relations for all i, j ∈ [1, r − 1], k ∈ {0, r}:

k̃2
1 · · · k̃2

r−1 = 1,

k̃ik̃
−1
i = 1, k̃ik̃j = k̃j k̃i,

k̃iẽj k̃
−1
i = vcij ẽj , k̃if̃j k̃

−1
i = v−cij f̃j ,

k̃it̃k = t̃kk̃i, t̃0t̃r = t̃r t̃0,

ẽiẽj = ẽj ẽi, f̃i f̃j = f̃j f̃i, ∀|i− j| > 1,

ẽit̃k = t̃kẽi, f̃it̃k = t̃k f̃i, ∀|i− k| > 1,
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ẽ2i ẽj + ẽj ẽ
2
i = (v + v−1)ẽiẽj ẽi, ∀|i− j| = 1,

f̃2i f̃j + f̃j f̃
2
i = (v + v−1)f̃if̃j f̃i, ∀|i− j| = 1,

ẽ2i t̃k + t̃kẽ
2
i = (v + v−1)ẽit̃kẽi, ∀|i− k| = 1,

f̃2i t̃k + t̃k f̃
2
i = (v + v−1)f̃it̃k f̃i, ∀|i− k| = 1,

t̃2kẽj + ẽj t̃
2
k = (v + v−1)ẽj t̃kẽj + ẽj , ∀|k − j| = 1,

t̃2k f̃j + f̃j t̃
2
k = (v + v−1)f̃j t̃k f̃j + f̃j , ∀|k − j| = 1,

ẽif̃j − f̃j ẽi = δij
k̃i − k̃−1

i

v − v−1
.

The case for η = 2 is excluded from Proposition 8.5.5 above. The algebra Uıı
2

is generated by t̃0 and t̃1, and we have an imbedding ııd : Uıı
2 → U(ŝl2) defined by

t̃0 �→ Ẽ0 + vK̃0F̃0 + K̃0, t̃1 �→ Ẽ1 + vK̃1F̃1 + K̃1.

Proposition 8.5.6. The Q(v)-algebra Uıı
2 has a presentation with generators

t̃0 and t̃1, and the following relations:

t̃30t̃1 − �3�t̃20t̃1t̃0 + �3�t̃0t̃1t̃
2
0 − t̃1t̃

3
0 = �2�2(t̃0t̃1 − t̃1t̃0),(8.5.2)

t̃31t̃0 − �3�t̃21t̃0t̃1 + �3�t̃1t̃0t̃
2
1 − t̃0t̃

3
1 = �2�2(t̃1t̃0 − t̃0t̃1).(8.5.3)

Here �n� = vn−v−n

v−v−1 .

Proof. We first prove (8.5.2). Since ıı2 is injective, it suffices to show that

(8.5.2) holds in U(ŝl2) after applying ıı2. So we can assume that we are working in

U(ŝl2). Let S(t̃0, t̃1) denote the term on the left-hand side of (8.5.2). Similarly, we

can define S(t̃0, Ẽ1), etc., so that we have

S(t̃0, t̃1) = S(t̃0, Ẽ1) + S(t̃0, vK̃1F̃1) + S(t̃0, K̃1).

By expanding out S(t̃0, Ẽ1), which has 4× 34 = 324 terms in total, and using the

defining relations of U(ŝl2), we have

S(t̃0, Ẽ1) = �2�2(Ẽ0Ẽ1 − Ẽ1Ẽ0 − (v2 − 1)K̃0Ẽ1 − (v3 − v)K̃0F̃0Ẽ1).(8.5.4)

More precisely, the term Ẽ0Ẽ1 − Ẽ1Ẽ0 comes from simplifying the sum of the
terms in S(t̃0, Ẽ1) involving K̃0F̃0Ẽ

2
0Ẽ1 or its variants such as K̃0Ẽ0F̃0Ẽ0Ẽ1. The

term K̃0Ẽ1 comes from simplifying the sums of K̃2
0F̃0Ẽ0Ẽ1, K̃

2
0F̃0Ẽ1Ẽ0 and theirs

variants. The term K̃0F̃0Ẽ1 is a result of simplifying the sums of K̃2
0F̃

2
0Ẽ0Ẽ1,

K̃2
0F̃

2
0Ẽ1Ẽ0 and their variants. The rest of the terms in S(t̃0, Ẽ1) sums to zero.
Similarly, with a very lengthy calculation as above, we obtain

S(t̃0, vK̃1F̃1) = �2�2((v3 − v)K̃1Ẽ0F̃1 + K̃0K̃1(F̃0F̃1 − F̃1F̃0)(8.5.5)

+ (v − v−1)K̃0K̃1F̃1),

S(t̃0, K̃1) = �2�2((v2 − 1)K̃1Ẽ0 − (v − v−1)K̃0K̃1F̃0).(8.5.6)

From (8.5.4)-(8.5.6), it is straightforward to observe that S(t̃0, t̃1) is equal to the
right-hand side of (8.5.2).

The equality (8.5.3) can be proved similarly. By Theorem 8.5.3 and [Ko14,
Theorem 7.1], we do not need more relations for the coideal subalgebra Uıı

2 of

U(ŝl2). �
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Remark 8.5.7. The algebra Uıı
2 is the so-called q-Onsager algebra in the lit-

erature, see [Ko14, Example 7.6] and the references therein.



Part 3

Schur algebras and coideal
subalgebras of U(ĝln)





CHAPTER 9

The stabilization algebra K̇c
n arising

from Schur algebras

In this chapter we study the stabilization of the family of Schur algebras Sc
n,d

(as d varies), which leads to the formulation of the stabilization algebra K̇c
n as

well as its monomial and stably canonical bases. One difficulty of working with
the Schur algebra Sc

n,d directly is that it does not have a good generating set. We
overcome the difficulty by embedding Sc

n,d into a Lusztig algebra of higher rank.
This allows us to understand monomial bases, multiplication, comultiplication and
bar operators of the Schur algebras and their stabilization properties in a conceptual
way and lift these structures to K̇c

n. We show that the pair (K̇n, K̇
c
n) forms a

quantum symmetric pair in an idempotented form, where K̇n is isomorphic to the
idempotented quantum affine gln.

9.1. Monomial bases for Schur algebras

Recall n = 2r + 2 for r ≥ 0. We set

r̆ = r + 1, n̆ = 2r̆ + 2.

We consider the subset Ξjj
n̆,d which consists of all matrices A ∈ Ξn̆,d such that

a1,j = ai,1 = 0 for all i, j ∈ Z. Then the deleting operator dlt1 of the row and
column ±1 mod n̆ defines a bijective map Ξjj

n̆,d → Ξn,d. We denote by¨: Ξn,d → Ξn̆,d

the inverse map to dlt1. More generally, we may regard¨as an imbedding

(9.1.1) ¨: Ξn,d −→ Ξn̆,d, A �→ Ä,

by adding suitable rows and columns of zeros.
As we will study the behavior of the various bases in Sc

n,d and Sn̆,d under
stabilization, we shall put a subscript d to emphasize the dependence of d, e.g.,
[A]d.

Just like our study of ıj, jı and ıı versions, we consider the following idempotent
in Sc

n̆,d and its associated subalgebra:

S̈c
n,d = j̆1S

c
n̆,d j̆1, where j̆1 =

∑
A∈Ξn,d:A diagonal

[Ä]d.(9.1.2)

Proposition 9.1.1. There is an algebra imbedding ρ : Sc
n,d → Sc

n̆,d, [A]d �→
[Ä]d, for A ∈ Ξn,d, and an induced algebra isomorphism ρ : Sc

n,d
�−→ S̈c

n,d, which
are compatible with the canonical bases.

85
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Proof. We define an imbedding X c
n,d → X c

n̆,d, L �→ L̆ by adding to L an extra

copy of L1 and L−2 mod n. Specifically, the lattice chains from 0 to n̆ in L̆ are

(L0, L0, L1, · · · , Ln−1, Ln−1, Ln).

This imbedding clearly induces an injective algebra homomorphism Sc
n,d → Sc

n̆,d,

with image being S̈c
n,d. �

By Proposition 9.1.1, we can study Schur algebra Sc
n,d through S̈c

n,d, which has
an advantage that it admits an inclusion

(9.1.3) S̈c
n,d ⊆ Uc

n̆,d,

since S̈c
n,d is spanned by canonical basis elements parametrized by matrices whose

second columns are zero; such matrices are automatically aperiodic. Hence we have

ρ : Sc
n,d −→ Uc

n̆,d.

The pair (Sc
n,d,U

c
n̆,d) for Sc

n,d plays a similar role as what the pairs (Sjı
n,d,S

c
n,d),

(Sıj
n,d,S

c
n,d) and (Sıı

η,d,S
c
n,d) do for Sjı

n,d, S
ıj
n,d, and Sıı

η,d, respectively.
We shall put a superscript ˘ on the Chevalley generators of Sc

n̆,d. For conve-

nience, let f̆i = ĕn̆−(i+1) if r + 1 ≤ i ≤ n̆ − 1 and f̆i = f̆n̆+i for all i ∈ Z. To each

tridiagonal matrix A ∈ Ξn,d such that A −
∑

1≤i≤n αiE
i,i+1
θ,n is diagonal, we set

α0 = αn and

f̈A;d = f̆
(α0)
0 ∗ f̆ (αn−1)

n ∗ f̆ (αn−1)
n+1 ∗

(
f̆
(αn−2)
n−1 ∗ f̆ (αn−3)

n−2 ∗ · · · ∗ f̆ (α0)
1

)
∗ 1co(Ä),(9.1.4)

where the idempotent 1co(Ä) is the standard basis element attached to the diagonal

matrix in Ξn̆,d with diagonal co(Ä). Note that the product is taken in Sc
n̆,d. Since

it lies in the component Sc
n̆,d(ro(Ä), co(Ä)) and hence lies in the image of ρ, we can

define an element fA;d in Sc
n,d to be its preimage under ρ, i.e.,

(9.1.5) fA;d = ρ−1(f̈A;d).

Lemma 9.1.2. For each tridiagonal matrix A in Ξn,d, we have [A]d = fA;d +
lower terms.

Proof. It is reduced to showing a similar statement for f̈A;d in Sc
n̆,d via ρ. We

first observe that the monomial f̆
(αn−1)
n+1 ∗

(
f̆
(αn−2)
n−1 ∗ f̆ (αn−3)

n−2 ∗ · · · ∗ f̆ (α0)
1

)
∗ 1co(Ä) (a

part of (9.1.4)) has a leading term [A′]d of a certain tridiagonal matrix A′ such

that A′−
∑

1≤i≤n−1 αi−1E
i,i+1
θ,n̆ −αn−1E

n+1,n+2
θ,n̆ is diagonal. In particular, the off-

diagonal upper triangular entries of A′ are the same as those of Ä except at (0, 2),

(1, 2), (n, n+2), (n+1, n+2) mod n̆. After composing with f̆
(α0)
0 ∗ f̆ (αn−1)

n and using

Lemma 4.4.1, we see that the leading term of f̈A;d is exactly [Ä]d. Transporting
back via ρ−1, the lemma is thus proved. �

As a product of bar-invariant Chevalley generators in Sc
n̆,d, f̈A;d is bar invariant

in Sc
n̆,d. Since the imbedding ρ is compatible with the bar operators in Sc

n,d and

Sc
n̆,d, the preimage ρ−1(fA;d) must be bar invariant in Sc

n,d. Thus we have the
following.

Lemma 9.1.3. One has fA;d = fA;d for all tridiagonal A ∈ Ξn,d.
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To a matrix, we define the depth of A by

(9.1.6) dep(A) = max{l ∈ N|ai,i+l �= 0 for some i}.

The following description of leading terms leads to the determination of a set
of multiplicative generators for the Schur algebra Sc

n,d.

Proposition 9.1.4. Let A,B ∈ Ξn,d such that ro(A) = co(B) and dep(A) ≤ m

for some positive integer m. Assume further that B −
∑

1≤i≤n βiE
i,i+1
θ is diagonal

for some β ∈ Zn and ai+1,i+m ≥ βi ≥ 0 for all i. Then we have

[B]d ∗ [A]d =
[
A+

∑
1≤i≤n

βi(E
i,i+m
θ − Ei+1,i+m

θ )
]
d
+ lower terms.

Proof. It is enough to show a similar statement with [B]d replaced by fB;d

by Lemma 9.1.2. We then transport this problem to the setting of Sc
n̆,d and use

Lemma 4.4.2. Now the order in (9.1.4) allows us to push β0 and βn−1 across rows
1 and n + 1 respectively to the desired positions. The statement then follows by
pulling back to Sc

n,d via ρ. �

Let us present an example explaining the proof of Proposition 9.1.4.

Example 9.1.5. Let A be the following matrix in Ξ4,d with n = 4 and n̆ = 6.

c-3 c-2 c-1 c0 c1 c2 c3 c4 c5 c6 c7

r0 7 * d0 * 7
r1 6 * d1 * 5
r2 4 * d2 * 4
r3 5 * d3 * 6
r4 7 * d0 * 7

where di is the diagonal entries of A and ∗ are some nonnegative integers irrelevant
to the discussion. Now let (βi)1≤i≤4 = (2, 4, 5, 3) such that B −

∑
1≤i≤4 βiE

i,i+1
θ is

diagonal and ro(A) = co(B). We want to determine the leading term of fB;d ∗ [A]d.
By definition, we have

f̈B;d = f̆
(3)
0 ∗ f̆ (5)4 ∗ f̆ (5)5 ∗ f̆ (4)3 ∗ f̆ (2)2 ∗ f̆ (3)1 ∗ 1co(B̈)

Now we expand A at row/column ±1 to get the matrix Ä in Ξ6,d, which is com-
pletely determined by its upper triangular part as follows.

c-1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

r0 d0 0 * 7
r1 0 0 0 0 0
r2 d1 * 5 0
r3 d2 * 0 4
r4 d3 0 * 0 6
r5 0 0 0 0
r6 d0 0 * 7



88 9. THE STABILIZATION ALGEBRA K̇c
n ARISING FROM SCHUR ALGEBRAS

Then we apply f̈B;d to [Ä]d to get the following leading term.

c-1 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

r0 d0 0 2 3
r1 0 0 0 0
r2 d1 * 2 0 2
r3 d2 * 0 2 0 4
r4 d3 0 * 0 2 5
r5 0 0 0 0 0
r6 d0 0 * 2 3

This leading term is corresponding to the expected matrix in Ξ4,d whose upper
triangular part is as follows.

c-1 c0 c1 c2 c3 c4 c5 c6 c7

r0 d0 * 2 3
r1 d1 * 2 2
r2 d2 * 2 4
r3 d3 * 2 5
r4 d0 * 2 3

The following theorem is obtained by applying Proposition 9.1.4 repeatedly.

Theorem 9.1.6. For any matrix A = (aij) ∈ Ξn,d of depth m, there exist
unique tridiagonal matrices A1, A2, . . . , Am ∈ Ξn,d satisfying ro(Am) = ro(A),
co(A1) = co(A), ro(Ai) = co(Ai+1) for 1 ≤ i ≤ m− 1 and

Ai −
∑

1≤j≤n

(
∑

k≤j−i+1

ak,j+1)E
j,j+1
θ

is diagonal for all 1 ≤ i ≤ m such that the following formulas hold in Sc
n,d:

[Am]d ∗ [Am−1]d ∗ · · · ∗ [A1]d = [A]d + lower terms,(9.1.7)

fA;d := fAm;d ∗ fAm−1;d ∗ · · · ∗ fA1;d = [A]d + lower terms.(9.1.8)

Proof. We prove (9.1.7) by induction with respect to the depth of A. If
dep(A) = 0, the matrix A is diagonal, and the statement is clearly true. Now
assume that dep(A) = m > 0 and the statement holds for all matrices of depth
< m. Set

A′ = A−
∑

1≤i≤n

ai,i+m(Ei,i+m
θ − Ei+1,i+m

θ ).

Let B be the unique tridiagonal matrix in Ξn,d such that B−
∑

1≤i≤n ai,i+mEi,i+1
θ

is diagonal and co(B) = ro(A′). By Proposition 9.1.4, we have [B]d ∗ [A′]d =
[A]d + lower terms. Now observing that dep(A′) < m, we complete the proof of
(9.1.7) by induction.

The second formula (9.1.8) for fA;d follows from (9.1.7) and Lemma 9.1.2. �

Corollary 9.1.7. The set {fA;d|A ∈ Ξn,d} forms a basis for Sc
n,d (called a

monomial basis).
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Corollary 9.1.8. The set {fA;d|A ∈ Ξn,d tridiagonal} (respectively, {[A]d|A ∈
Ξn,d tridiagonal}) forms a generating set for the algebra Sc

n,d.

9.2. Stabilization of the Schur algebras

In this section, we study the stabilization of the multiplication and bar operator
of the Schur algebras Sc

n,d.

Recall that In =
∑

1≤i≤n E
ii
n . Recall the operation¨from (9.1.1) so that Ïn =

In̆ − E1,1
θ,n̆. We set

p̈A = A+ pÏn, ∀A ∈ Ξ̃n̆.

Introduce the algebra R = Q(v)[v′, v′−1] with a bar involution such that v =
v−1 and v′ = v′−1. For a ∈ Z and b ∈ N, we define the following polynomials in R:[

a
b

]
v,v′

=
∏

1≤i≤b

v2(a−i+1)v′−2 − 1

v2i − 1
, and [a]v,v′ =

[
a
1

]
v,v′

.

For 0 ≤ i ≤ n̆− 1, A ∈ Ξ̃n̆,d with a1,j = 0 for all j ∈ Z and t = (tu)u∈Z ∈ NZ such
that

∑
j∈Z

tu = R, we define a polynomial Qt
i,R;A(v, v

′) in R as follows. For any

i ∈ [0, n̆− 1]\{0, r̆ + 1, 1, n+ 1}, we define

Qt
i,R;A(v, v

′) = vβt

∏
u∈Z,u �=i

[
aiu + tu

tu

]
· v′(δi,1+δi,n̆−1)

∑
i+1≥u tu

[
aii + ti

ti

]
v,v′

,(9.2.1)

where

βt =
∑
j≥u

aijtu−
∑
j>u

ai+1,jtu+
∑
j<u

tjtu+
1

2
(δi,r̆+δi,n̆−1)

⎛⎝ ∑
j+u<2(i+1)

tjtu +
∑

j<i+1

tj

⎞⎠ .

For i = 1 or n+ 1, we define

Qt
i,R;A(v, v

′) = vβt

∏
u∈Z,u �=i

[
aiu + tu

tu

]
· v′−

∑
i≥u tu .(9.2.2)

For i = 0 or r̆ + 1, we define

Qt
i,R;A(v, v

′) = vβ
′
t

∏
u>i

[
aiu + tu + t2i−u

tu

]∏
u<i

[
aiu + tu

tu

]
·
ti−1∏
u=0

[aii + 1 + 2u]v,v′

[u+ 1]
,

(9.2.3)

where

β′
t =
∑
j≥u

aijtu −
∑
j>u

ai+1,jtu +
∑

j<u,j+u≤2i

tjtu −
∑
j>i

t2j − tj

2
+

R2 −R

2
.

The following lemma follows directly from the definition.

Lemma 9.2.1. We have Qt
i,R; p̈A

(v, 1) = Qt
i,R;A(v, v

−p), for all p ∈ 2Z and all

admissible i, t, R,A.
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Given the same data (i, A, t) as above, we define

(9.2.4) Ai,R,t = A+
∑
u∈Z

tu(E
i,u
θ,n̆ − Ei+1,u

θ,n̆ ).

It is convenient to introduce the following notations for later use.

fA;d = [A]d = 0, ∀A �∈ Ξn,d.(9.2.5)

The following lemma describes the stabilization behavior of the multiplication for-
mulas in Sc

n̆,d after adding pÏn.

Lemma 9.2.2. Assume A,B ∈ Ξ̃n̆,d and R ∈ N satisfy the following properties:

ro(A) = co(B), B − REi,i+1
θ,n̆ is diagonal for some 1 ≤ i ≤ n̆ and a1,j = 0 for all

j ∈ Z. Then we have

[p̈B]d+ p
2n
∗ [p̈A]d+ p

2n
=
∑
t

Qt
i,R;A(v, v

−p)[p̈Ai,R,t]d+ p
2n

, ∀p ∈ 2Z.

where the sum runs over all sequences t = (tu) ∈ NZ such that
∑

u∈Z
tu = R and

Ai,R,t ∈ Ξ̃n̆,d, independent of p.

Proof. We observe that the specialization Qt
i,R;A(v, 1) of Q

t
i,R;A(v, v

′) at v′ =
1 is exactly the structure constant of [Ai,R,t]d in the multiplication formulas in
Proposition 4.3.3, modulo some changes of indexes for r̆ + 1 ≤ i ≤ n̆ − 1. The
lemma follows then from Lemma 9.2.1 and the convention (9.2.5). �

We shall need a stronger version of Lemma 9.2.2. Given tuples i = (i1, . . . , is)
and a = (a1, . . . , as) ∈ Ns, we introduce the notation

i≥l = (il, il+1, . . . , is), a≥l = (al, al+1, . . . , as), ∀1 ≤ l ≤ s.

Given a tuple t = (t1, . . . , ts) of sequences such that
(9.2.6)

the l-th component tl = (tl,j)j∈Z ∈ NZ satisfies
∑
j∈Z

tl,j = al for all 1 ≤ l ≤ s

and a matrix A ∈ Ξ̃n̆,d such that a1,j = 0 for all j ∈ Z, we define inductively the
matrix Ai,a,t and the polynomial Qt

i,a;A(v, v
′) in R via (9.2.4) as follows:

Ai,a,t = (Ai≥2,a≥2,t≥2
)i1,a1,t1 ,

Qt
i,a;A(v, v

′) = Qt1
i1,a1;Ai≥2,a≥2,t≥2

(v, v′) ·Qt≥2

i≥2,a≥2;A
(v, v′).

(9.2.7)

By Lemma 9.2.1 and by induction on the length of i, we have

Qt
i,a;A(v, v

−p) = Qt
i,a;p̈A(v, 1).(9.2.8)

Given a pair (i, a) and A ∈ Ξ̃n̆,d such that a1,j = 0 for all j ∈ Z, we define
the set Ti,a,A to be the set of all tuples t = (t1, . . . , ts) of sequences in NZ such
that the l-th component tl = (tl,j)j∈Z satisfies

∑
j∈Z

tl,j = aj for all 1 ≤ j ≤ s,

Ai≥l,a≥l,t≥l
∈ Ξ̃n̆,d for all 1 ≤ l ≤ s. Clearly, we have Ti,a,A = Ti,a,p̈A for all p.

Proposition 9.2.3. Assume A,Bj ∈ Ξ̃n̆,d, for all 1 ≤ j ≤ s and pairs of tuples
(i, a) satisfy the following properties: ro(A) = co(Bs), ro(Bu) = co(Bu−1), ∀1 <
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u ≤ s, Bu− auE
iu,iu+1
θ,n̆ is diagonal for 1 ≤ u ≤ s, and a1,u = 0 for all j ∈ Z. Then

we have

[p̈B1]d+ p
2n
∗· · ·∗[p̈Bs]d+ p

2n
∗[p̈A]d+ p

2n
=
∑

t∈Ti,a,A

Qt
i,a;A(v, v

−p)[p̈Ai,a,t]d+ p
2n

, ∀p ∈ 2Z.

Proof. Let Ti,a,A;d be the subset of Ti,a,A consisting of all t such that
Ai≥l,a≥l,t≥l

∈ Ξn̆,d for all 1 ≤ l ≤ s, where s is the length of i. In view of
Lemma 9.2.2, the left-hand side of the equality in the lemma is equal to∑

t∈Ti,a,A;d+pn

Qt
i,a;A(v, v

−p)[p̈Ai,a,t]d+ p
2n

.

It is reduced to showing that if p̈Ai,a,t ∈ Ξn̆,d+ p
2n

and p̈Ai≥l,a≥l,t≥l
�∈ Ξn̆,d+ p

2n
for

some l, then the structure constant of [p̈Ai,a,t]d+ p
2n

is zero. In such a case, there
is an l0 such that p̈Ai≥l0

,a≥l0
,t≥l0

�∈ Ξn̆,d+ p
2n

and p̈Ai≥l0+1,a≥l0+1,t≥l0+1
∈ Ξn̆,d+ p

2n
;

this implies that the il0+1-th diagonal entry of p̈Ai≥l0
,a≥l0

,t≥l0
is negative, while

nonnegative after adding the il0+1-th entry of the tuple tl0+1. The latter condition

further yields that the factor Q
tl0+1

il0+1,al0+1;p̈Ai≥l0
,a≥l0

,t≥l0

(v, 1) of Qt
i,a;p̈A

(v, 1), and

hence itself, is zero (see [BLW14, Lemma A.20]). Now the proposition follows by
applying (9.2.8). �

Now we discuss the stabilization of Sc
n,d. We set pA = A+ pIn. The following

proposition describes the relationship between the standard basis elements [A]d and
the elements fA;d under the stabilization with respect to pIn. Note that the partial

orders ≤alg and ≤ on Ξn,d can be defined on Ξ̃n,d as well in exactly the same way.

Proposition 9.2.4. Let A ∈ Ξ̃n,d. There exist Zi ∈ Ξ̃n,d, for 1 ≤ i ≤ m, with
Zi < A, Qi(v, v

′) ∈ R and p0 ∈ N such that

[pA]d+ p
2n

= f
pA;d+ p

2n
+

m∑
i=1

Qi(v, v
−p)[pZi]d+ p

2n
, ∀p ≥ p0, p ∈ 2N.(9.2.9)

Proof. We transport the statement via ρ to a similar one for f̈
pA;d+ p

2n
in

Sc
n̆,d+ p

2n
. The existence of p0, Zi and Qi(v, v

′) follows by Proposition 9.2.3. The

claim on the leading term follows from Theorem 9.1.6. �

Now we can formulate the stabilization of the multiplication of Sc
n,d.

Proposition 9.2.5. Assume that A1, . . . , Al ∈ Ξ̃n,d satisfy co(Ai) = ro(Ai+1)

for all 1 ≤ i ≤ l − 1. There exist Z1, . . . , Zm ∈ Ξ̃n,d, G1(v, v
′), . . . , Gm(v, v′) ∈ R,

and p0 ∈ N such that

[pA1]d+ p
2n
∗ [pA2]d+ p

2n
∗ · · · ∗ [pAl]d+ p

2n
=

m∑
i=1

Gi(v, v
−p)[pZi]d+ p

2n
,(9.2.10)

∀p ≥ p0, p ∈ 2N.

Proof. By Proposition 9.2.3, we have a formula similar to (9.2.10) with pAi

replaced by f
pAi;d+

p
2n

. The proposition now follows by using Proposition 9.2.4 and
an induction with respect to the partial order ≤ on the Ai’s. �

We have the following corollary to Theorem 9.1.6 and Proposition 9.2.5.



92 9. THE STABILIZATION ALGEBRA K̇c
n ARISING FROM SCHUR ALGEBRAS

Corollary 9.2.6. For any matrix A ∈ Ξ̃n,d of depth m, there exist tridiago-

nal matrices A1, A2, . . . , Am in Ξ̃n,d satisfying ro(Am) = ro(A), co(A1) = co(A),

ro(Ai) = co(Ai+1) for 1 ≤ i ≤ m− 1 and Ai −
∑

1≤j≤n(
∑

k≤j−i+1 ak,j+1)E
j,j+1
θ is

diagonal for all 1 ≤ i ≤ m such that

[pAm]d+ p
2n
∗ [pAm−1]d+ p

2n
∗ · · · ∗ [pA1]d+ p

2n

= [pA]d+ p
2n

+
l∑

i=1

Gi(v, v
−p)[pZi]d+ p

2n
, ∀p ∈ 2N, p ≥ p0,

where p0, Gi(v, v
′) ∈ R and Z1, . . . , Zl ∈ Ξ̃n,d are as in Proposition 9.2.5 such that

Zi < A.

The following stabilization of the bar operator on Sc
n,d is a counterpart of

[BLM90, Proposition 4.3]. It can be proved in the same way by induction with
respect to the partial order ≤ on A, with the help of (9.2.9) and Corollary 9.2.6;
we skip the detail.

Proposition 9.2.7. Assume that A ∈ Ξ̃n,d. Then there exist Yi ∈ Ξ̃n,d with
Yi < A, Hi(v, v

′) ∈ R for all 1 ≤ i ≤ s and p0 ∈ N such that

[pA]d+ p
2n

= [pA]d+ p
2n

+

s∑
i=1

Hi(v, v
−p)[pYi]d+ p

2n
, ∀p ≥ p0, p ∈ 2N.(9.2.11)

9.3. Comultiplication and stabilization

In the section, we take advantage of the embedding ρ : Sc
n,d → Uc

n̆,d to study
the coassociativity and stability behavior of the comultiplication Δc : Sc

n,d −→
Sc
n,d′ ⊗ Sn,d′′ (recall Δc was defined in (5.3.6)).

To avoid any ambiguity, we put a subscript n to the comultiplication Δc of Sc
n,d,

and use Δc
n̆ for that on Sc

n̆,d. We apply the same convention to the imbedding ρ
too. Note that exactly the same definition gives rise to an imbedding Sn,d → Sn̆,d,
which we shall again denote by ρd. The following lemma shows the compatibility
of the comultiplications and the imbedding ρ.

Lemma 9.3.1. The following diagram is commutative:

Sc
n,d

Δc
n−−−−→ Sc

n,d′ ⊗ Sn,d′′

ρd

⏐⏐� ⏐⏐�ρd′⊗ρd′′

Uc
n̆,d

Δc
n̆−−−−→ Uc

n̆,d′ ⊗Un̆,d′′

Proof. By definitions, we have a similar commutative diagram with the Δc’s

replaced by the raw ones Δ̃c; cf. (5.2.1). Now the twists s(b′, a′,b′′, a′′) and
u(b′′, a′′) remain unchanged under the obvious imbeddings Λn,d → Λn̆,d and Λc

n,d →
Λc
n̆,d. This immediately shows that the commutative diagram for Δ̃c’s can be

extended to the one in the lemma. �

Proposition 9.3.2. The comultiplication Δc on Sc
n,d is coassociative, that is,

(1⊗Δ)Δc = (Δc ⊗ 1)Δc.
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Proof. By Lemma 9.3.1, this is a consequence of the fact that the restriction
of Δc

n̆ to Uc
n̆,d is coassociative in Proposition 5.3.5. �

Remark 9.3.3. Recall the comultiplication Δ on Sn,d of affine type A from
(5.3.8). It follows by the same argument as above that the comultiplication Δ on
Sn,d is coassociative, that is, (1⊗Δ)Δ = (Δ⊗ 1)Δ.

Now, we study the stabilization behavior of the comultiplication Δc
n (cf. (5.3.6))

as d varies. Recall the notation |= from Section 6.5. We generalize it as follows.
For any λ′, λ in Zc

n and λ′′ ∈ Zn, we say that (λ′, λ′′) |= λ if λi = λ′
i + λ′′

i + λ′′
−i for

all i. Let

Δc
b′,a′,b′′,a′′ : Sc

n,d(b, a) −→ Sc
n,d

Δc

−→ Sc
n,d′ ⊗ Sn,d′′ −→ Sc

n,d(b
′, a′)⊗ Sn,d′′(b′′, a′′)

be a component of Δc with (b′,b′′) |= b, (a′, a′′) |= a, where the first and third
maps are the natural inclusion and projection, respectively. Recall the notation

pa = a+ (. . . , p, p, p, . . .). We put

pΔ
c
b′,a′,b′′,a′′ = Δc

pb′,pa′,pb′′,pa′′ .

Proposition 9.3.4. Assume that d′ + d′′ = d and let b′, a′ ∈ Zc
n and b′′, a′′ ∈

Zn be so that pΔ
c
b′,a′,b′′,a′′ is defined. Fix A ∈ Ξ̃n,d. There exist matrices A′

i ∈ Ξ̃n,d′

where 1 ≤ i ≤ l for some l, matrices A′′
j in Θ̃n,d′′ where 1 ≤ j ≤ m for some m,

Ci,j(v, v
′) ∈ R for 1 ≤ i ≤ l, 1 ≤ j ≤ m, and p0 ∈ N such that

pΔ
c
b′,a′,b′′,a′′([2pA]d+pn) =

∑
1≤i≤l,1≤j≤m

Ci,j(v, v
−p)[pA

′
i]d′+ p

2n
⊗ a[pA

′′
j ]d′′+pn,

∀p ≥ p0, p ∈ 2N.

Proof. We prove this by induction with respect to the partial order on A. By
Proposition 9.2.4, we have

[2pA]d+pn = f2pA;d+pn +

m∑
i=1

Qi(v, v
−2p)[2pZi]d+pn, ∀p ≥ p0, p ∈ 2N.

If we define Q̃i(v, v
′) = Qi(v, v

′2) for all i, then we can rewrite the above equality
as

[2pA]d+pn = f2pA;d+pn +

m∑
i=1

Q̃i(v, v
−p)[2pZi]d+pn, ∀p ≥ p0, p ∈ 2N.

With this equality and by induction, it is reduced to proving a similar statement
with [A]d replaced by fA;d. By Lemma 9.3.1, this is in turn reduced to proving

a similar result for f̈A;d, which is then a consequence of Proposition 9.2.3 and
Proposition 5.3.4. The proposition follows. �

9.4. The algebra K̇c
n and its stably canonical basis

Let K̇c
n be the vector space over Q(v) spanned by the formal symbols [A] where

A ∈ Ξ̃n. By Proposition 9.2.5 and applying a standard argument, the space K̇c
n

becomes an associative algebra without unit with the product

[A1] · [A2] =

m∑
i=1

Gi(v, 1)[Zi], ∀A1, A2 ∈ Ξ̃n,(9.4.1)
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where Gi(v, v
′) and Zi for all 1 ≤ i ≤ m are as in Proposition 9.2.5. Corollary 9.2.6

implies the following.

Proposition 9.4.1. For any matrix A in Ξ̃n of depth m, there exist tridiag-

onal matrices A1, A2, . . . , Am ∈ Ξ̃n satisfying ro(Am) = ro(A), co(A1) = co(A),

ro(Ai) = co(Ai+1) for 1 ≤ i ≤ m− 1 and Ai −
∑

1≤j≤n(
∑

k≤j−i+1 ak,j+1)E
j,j+1
θ is

diagonal for all 1 ≤ i ≤ m such that

m′
A := [Am] · [Am−1] · ... · [A1] = [A] + lower terms.

Thus {m′
A|A ∈ Ξ̃n} forms a basis for K̇c

n (called a semi-monomial basis). Notice
that the element m′

A is not necessarily bar-invariant.

For each matrix A ∈ Ξ̃n, we define the element fA ∈ K̇c
n to be

fA = [A] +
m∑
i=1

Qi(v, 1)[Zi],

where Qi(v, v
′) and Zi are in (9.2.9). In particular, we have

fA = [A] + lower terms.

Moreover, we can give a more precise description of Qi(v, v
′) and Zi. By the

definition of fA in (9.1.8) (also see (9.1.5)) and Proposition 9.2.3, we have the
following.

Proposition 9.4.2. For any matrix A ∈ Ξ̃n,d, there exists a pair of tuples
(i, a) such that

fA =
∑

t∈Ti,a,D
co(Ä)

Qt
i,a;Dco(Ä)

(v, 1)
[
dlt1(Dco(Ä))i,a,t

]
,(9.4.2)

where Dco(Ä) is the diagonal matrix in Ξ̃n̆,d with diagonal co(Ä) and dlt1 is the

deleting operation inverse to the operation ¨.

Assume that B ∈ Ξ̃n,d and B −
∑

1≤i≤n βiE
i,i+1
θ is diagonal. Let i0 and b0

denote the sequences of subscripts and superscripts in the left hand side of (9.1.4)
(with A replaced by B), respectively, that is,

i0 = (0, n, n+ 1, n− 1, n, n− 2, · · · , 1), b0 = (β0, βn−1, βn−1, βn−2, · · · , β0),

where β0 = βn The following multiplication formula in K̇c
n follows by Proposi-

tion 9.2.3.

Proposition 9.4.3. Let A,B ∈ Ξ̃n be such that co(B) = ro(A) and B −∑
1≤i≤n βiE

i,i+1
θ is diagonal. Then the following multiplication formula holds in

K̇c
n:

fB · [A] =
∑

t∈Ti0,b0,Ä

Qt
i0,b0;Ä

(v, 1)
[
dlt1(Ä)i0,b0,t

]
.(9.4.3)

Now we show that the element fA ∈ K̇c
n can be expressed as a monomial in fAi

for various tridiagonal matrices Ai (similar to the Schur algebra case).

Proposition 9.4.4. Let A ∈ Ξ̃n, and we retain the notations of tridiagonal
matrices Ai from Proposition 9.4.1. Then we have

fA = fAm
· fAm−1

· ... · fA1
.
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Moreover, we have fA = fA.

Proof. Let K̇c
n,R be the free R-module spanned by the matrices in Ξ̃n. Sim-

ilar to (9.4.1), we can define an associative algebra over R by

A1 ·′ A2 =

m∑
i=1

Gi(v, v
′) Zi, ∀A1, A2 ∈ Ξ̃n.

Similar to (9.4.2), we can define

f ′A =
∑

t∈Ti,a,D
co(Ä)

Qt
i,a;Dco(Ä)

(v, v′) dlt1(Dco(Ä))i,a,t.(9.4.4)

Then by Proposition 9.2.3, we have

f ′A = f ′Am
·′ f ′Am−1

·′ ... ·′ f ′A1
.

By specializing v′ at v′ = 1, we obtain the product formula for fA.
The bar invariance of fA follows from the same fact on the Schur algebra level

and the formal stabilization procedure as above. We skip the detail. �

By Proposition 9.2.7, we can define a bar involution on K̇c
n by v̄ = v−1 and

letting

[A] = [A] +
s∑

i=1

Hi(v, 1)[Yi], ∀A ∈ Ξ̃n,

whereHi(v, v
′) and Yi < A are as in Proposition 9.2.7. The next proposition follows

by a standard argument.

Proposition 9.4.5. For any A ∈ Ξ̃n, there exists a unique element {A} in K̇c
n

such that

{A} = {A}, {A} = [A] +
∑
A′<A

πA,A′ [A′], πA,A′ ∈ v−1Z[v−1].

Moreover, {{A}|A ∈ Ξ̃n} forms a basis for K̇c
n (called the stably canonical basis).

Let us summarize the main results of this section.

Theorem 9.4.6. The algebra K̇c
n admits a standard basis {[A]|A ∈ Ξ̃n}, a

semi-monomial basis {m′
A|A ∈ Ξ̃n}, a monomial basis {fA|A ∈ Ξ̃n}, and a stably

canonical basis {{A}|A ∈ Ξ̃n}.

9.5. The algebra K̇n of affine type A and its comultiplication

In this section, we revisit the Schur algebras of affine type A and study its
stabilization algebra K̇n. The constructions in this section will serve as a prerequi-
sites for the constructions of the comultiplication of the algebra K̇c

n in the following
section.

Recall the comultiplication Δ from (5.3.8) of affine type A. The following
stabilization for the comultiplication Δ at the Schur algebra level is the counterpart
of Proposition 9.3.4 which can be proved in the same way.
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Proposition 9.5.1. Assume that d′ + d′′ = d, and let b′, a′,b′′, a′′ ∈ Zn be

so that pΔb′,a′,b′′,a′′ is defined. For each A ∈ Θ̃n,d, there exist A′
i ∈ Θ̃n,d′ where

1 ≤ i ≤ l for some l, A′′
j ∈ Θ̃n,d′′ where 1 ≤ j ≤ m for some m, aCi,j(v, v

′) ∈ R
for 1 ≤ i ≤ l, 1 ≤ j ≤ m, and p0 ∈ N such that

pΔb′,a′,b′′,a′′(a[2pA]d+2pn) =
∑

1≤i≤l,1≤j≤m

aCi,j(v, v
−p) a[pA

′
i]d′+pn ⊗ a[pA

′′
j ]d′′+pn,

∀p ≥ p0.

Let

Θ̃n = {A = (aij)i,j∈Z|aij ∈ N, ∀i �= j, aii ∈ Z, ∀i ∈ Z}.

Let K̇n be the vector space over Q(v) spanned by the symbols a[A] for all A ∈ Θ̃n.
Replacing Sc

n,d by the Schur algebra Sn,d from Chapter 2 and repeating the con-

structions in the preceding sections, we can endow K̇n with an associative algebra

structure, a bar involution, a canonical basis {a{A}|A ∈ Θ̃n}. Indeed the treatment
is much simpler in the current type A setting since the analogous basis elements
afA and a[A] coincides when A is tridiagonal.

Remark 9.5.2. The associative algebra structure on K̇n and its stably canon-
ical basis were first introduced in [DF13] by a completely different and Hecke al-

gebraic approach, (also see [LL15]). Moreover, they showed that K̇n is isomorphic

to the idempotented quantum affine gln, U̇(ĝln).

Moreover, by Proposition 9.5.1, we can define a comultiplication for K̇n as
follows. Let bK̇a, for any b, a ∈ Zn, be the subspace of K̇n spanned by the standard
basis elements a[A] such that ro(A) = b and co(A) = a. For any b, a,b′, a′,b′′, a′′ ∈
Zn such that b′ + b′′ = b and a′ + a′′ = a, we define a linear map

Δb′,a′,b′′,a′′ : bK̇a −→ b′K̇a′ ⊗ b′′K̇a′′ ,

Δb′,a′,b′′,a′′(a[A]) =
∑

1≤i≤l,1≤j≤m

aCi,j(v, 1)
a[A′

i]⊗ a[A′′
j ],

where A′
i, A

′′
j ,

aCij(v, v
′) are from Proposition 9.5.1. We shall call the collection

Δ̇ = (Δb′,a′,b′′,a′′)b′,a′,b′′,a′′∈Zn

the comultiplication of K̇n. Let agCA,B and ahB,C
A denote the structure constants

with respect to the multiplication and comultiplication in K̇n, respectively, i.e.,

a[A] · a[B] =
∑

C∈Θ̃n

agCA,B
a[C],

Δb′,a′,b′′,a′′(a[A]) =
∑

B,C∈Θ̃n

ahB,C
A

a[B]⊗ a[C].

Proposition 9.5.3. The comultiplication Δ̇ is an algebra homomorphism in

the following sense: for all matrices A,B,C ′, C ′′ ∈ Θ̃n, one has∑
C∈Θ̃n

agCA,B
ahC′,C′′

C =
∑

A′,A′′,B′,B′′∈Θ̃n

ahA′,A′′

A
ahB′,B′′

B
agC

′

A′,B′
agC

′′

A′′,B′′ .(9.5.1)
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Proof. We first show that the sums in the two sides of the equation (9.5.1)

are finite. For two fixed matrices A,B in Θ̃n, there are only finitely many C ∈ Θ̃n

such that gCA,B �= 0 by definition. So the sum on the left-hand side is finite. To see

that the sum on the righthand side of (9.5.1) is finite, we first observe that for each

A ∈ Θ̃n, if the structure constant ahA′,A′′

A is nonzero, then A′, A′′ ≤alg A. Next we

observe that for c′, c′′ ∈ Zn, the set {(A′, A′′)|ahA′,A′′

A �= 0, ro(A′) = c′, co(A′′) =
c′′} is finite. This is because if A′, A′′ ≤alg A, then the number of the choices for
the entry (i, j) for i �= j of A′ and A′′ is finite. Now the row and column vectors
of A′ and A′′ are fixed respectively, forcing the choice of the diagonal entries of A′

and A′′ to be finite. In the sum of the right-hand side of (9.5.1), we must have that
ro(A′) = ro(C ′), co(B′) = co(C ′), ro(A′′) = ro(C ′′) and co(B′′) = co(C ′′), which
are fixed. So the sum on the righthand side of (9.5.1) is indeed finite.

Once we observe that both sums in (9.5.1) are finite, the proof of the equation
is reduced to showing a similar equation on the level of the Schur algebra Sn,d for
very large d, which is in turn equivalent to the fact that the comultiplication Δ on
Sn,d is an algebra homomorphism in [FL15]. The proposition is thus proved. �

Proposition 9.5.3 can be equivalently reformulated as the following commuta-
tive diagram: for all tuples a, a′, a′′,b,b′,b′′, c ∈ Zn such that b′ + b′′ = b and
a′ + a′′ = a, we have

bK̇a

Δb′,a′,b′′,a′′

�����
����

����
����

��

bK̇c ⊗ cK̇a

m

�������������������

∏
Δ⊗Δ

��

b′K̇a′ ⊗ b′′K̇a′′

∏
b′K̇c′ ⊗ b′′K̇c′′ ⊗ c′K̇a′ ⊗ c′′K̇a′′

P23 �� ∏
b′K̇c′ ⊗ c′K̇a′ ⊗ b′′K̇c′′ ⊗ c′′K̇a′′

m⊗m

		

(9.5.2)

wherem represents the multiplication of K̇n, all products run over all tuples (c′, c′′)
such that c′ + c′′ = c,

∏
Δ⊗Δ stands for the product of Δb′,c′,b′′,c′′ ⊗Δc′,a′,c′′,a′′

and P23 permutes the second and third entries.

Proposition 9.5.4. The comultiplication Δ̇ is coassociative in the following

sense: for any matrices A,A′, A′′, A′′′ ∈ Θ̃n, we have

∑
B∈Θ̃n

ahB,A′′′

A
ahA′,A′′

B =
∑

B∈Θ̃n

ahA′,B
A

ahA′′,A′′′

B .(9.5.3)

Proof. By arguing in a similar way as in the proof of Proposition 9.5.3, we see
that both sums in (9.5.3) are finite. The equality can then be reduced to proving
a similar equation on the Schur algebra level as in the proof of Proposition 9.5.3,
which in turn follows by the coassociativity in Remark 9.3.3. �
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Proposition 9.5.4 can be equivalently reformulated as the following commuta-
tive diagram: for all sequences a, a′, a′′, a′′′,b,b′,b′′,b′′′ ∈ Zn, we have

bK̇a

Δb′+b′′,a′+a′′,b′′′,a′′′−−−−−−−−−−−−−−→ b′+b′′K̇a′+a′′ ⊗ b′′′K̇a′′′

Δb′,a′,b′′+b′′′,a′′+a′′′

⏐⏐� ⏐⏐�Δb′,a′,b′′,a′′⊗1

b′K̇a′ ⊗ b′′+b′′′K̇a′′+a′′′ −−−−−−−−−−−→
1⊗Δb′′,a′′,b′′′,a′′′

b′K̇a′ ⊗ b′′K̇a′′ ⊗ b′′′K̇a′′′

9.6. The comultiplication on K̇c
n

Recall K̇c
n from Section 9.4. For any a,b ∈ Zc

n, let bK̇
c
a denote the subspace of

K̇c
n spanned by the standard basis element [A] such that ro(A) = b and co(A) = a.

For any b, a,b′, a′ ∈ Zc
n and b′′, a′′ ∈ Zn such that (b′,b′′) |= b and (b′′, a′′) |= a,

we define a linear map

Δc
b′,a′,b′′,a′′ : bK̇

c
a −→ b′K̇c

a′ ⊗ b′′K̇a′′ ,

Δc
b′,a′,b′′,a′′([A]) =

∑
i,j

Ci,j(v, 1)[A
′
i]⊗ a[A′′

j ],

where Ci,j(v, v
′), A′

i and A′′
j are as in Proposition 9.3.4. We shall call the collection

Δ̇c = (Δc
b′,a′,b′′,a′′)b′,a′∈Zc

n,b
′′,a′′∈Zn

the comultiplication of K̇c
n. Let gCA,B and hB,C

A be the structure constants of the

multiplication and comultiplication of K̇c
n, respectively, with respect to the standard

bases.

Proposition 9.6.1. The comultiplication Δ̇c on K̇c
n is an algebra homomor-

phism in the following sense: for all matrices A,B,C ′ ∈ Ξ̃n, C
′′ ∈ Θ̃n one has∑

C∈Ξ̃n

gCA,Bh
C′,C′′

C =
∑

A′,B′∈Ξ̃n,A′′,B′′∈Θ̃n

hA′,A′′

A hB′,B′′

B gC
′

A′,B′
agC

′′

A′′,B′′ .(9.6.1)

Proof. The proof is the same as that of Proposition 9.6.1, and shall not be
repeated. �

Proposition 9.6.2 can be equivalently presented in terms of the following com-
mutative diagram: for all sequences a, a′,b,b′, c ∈ Zc

n and a′′,b′′ ∈ Zn such that
a′ + a′′ |= a and b′ + b′′ |= b, we have

bK̇
c
a

Δc

b′,a′,b′′,a′′

�����
����

����
����

��

bK̇
c
c ⊗ cK̇

c
a

mc

�������������������

∏
Δc⊗Δc

��

b′K̇c
a′ ⊗ b′′K̇a′′

∏
b′K̇c

c′ ⊗ b′′K̇c′′ ⊗ c′K̇c
a′ ⊗ c′′K̇a′′

ω23 �� ∏
b′K̇c

c′ ⊗ c′K̇c
a′ ⊗ b′′K̇c′′ ⊗ c′′K̇a′′

mc⊗m

		

(9.6.2)

Here mc stands for the multiplication in K̇c
n, all products run over all sequences

c′ ∈ Zc
n and c′′ ∈ Zn such that c′ + c′′ |= c, and

∏
Δc ⊗Δc stands for the product

of Δc
b′,c′,b′′,c′′ ⊗Δc

c′,a′,c′′,a′′ .
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Proposition 9.6.2. The comultiplication Δ̇c is coassociative in the following

sense: for any matrices A,A′ ∈ Ξ̃n, A
′′, A′′′ ∈ Θ̃n, we have∑

C∈Ξ̃n

hC,A′′′

A hA′,A′′

C =
∑

B∈Θ̃n

hA′,B
A

ahA′′,A′′′

B .(9.6.3)

Proof. The proof is similar to that of Proposition 9.5.4, where we use Propo-
sition 9.3.2 instead of Remark 9.3.3. �

Proposition 9.6.2 can be equivalently formulated as the following commutative
diagram: for ã, a, a′, b̃,b,b′ ∈ Zc

n, a′′, a′′′,b′′,b′′′ ∈ Zn such that (a′, a′′) |= a,

(b′,b′′) |= b, (a, a′′′) |= ã and (b,b′′′) |= b̃, we have

b̃K̇
c
ã

Δc

b,a,b′′′,a′′′−−−−−−−−→ bK̇
c
a ⊗ b′′′K̇a′′′

Δc

b′,a′,b′′+b′′′,a′′+a′′′

⏐⏐� ⏐⏐�Δc

b′,a′,b′′,a′′⊗1

b′K̇c
a′ ⊗ b′′+b′′′K̇a′′+a′′′ −−−−−−−−−−−→

1⊗Δb′′,a′′,b′′′,a′′′
b′K̇c

a′ ⊗ b′′K̇a′′ ⊗ b′′′K̇a′′′ .

Remark 9.6.3. In light of Propositions 9.6.1 and 9.6.2, we say that the pair
(K̇n, K̇

c
n) forms an idempotented quantum symmetric pair. Recall from

Remark 9.5.2 that K̇n is isomorphic to the idempotented quantum affine gln,

U̇(ĝln).

9.7. A homomorphism from K̇c
n to Sc

n,d

Recall that we set [A]d = 0 and fA;d = 0 in Sc
n,d if A �∈ Ξn,d. We define a linear

map

Ψn,d : K̇c
n −→ Sc

n,d,

[A] �→ [A]d, for A ∈ Ξ̃n.

Lemma 9.7.1. For all A ∈ Ξ̃n, we have Ψn,d(fA) = fA;d. In particular, the map
Ψn,d commutes with the bar involutions.

Proof. By Proposition 9.2.3, we have

fA;d =
∑

t∈Ti,a,D
c(Ä)

Qt
i,a;Dc(Ä)

(v, 1)
[
dlt1(Dco(Ä))i,a,t

]
d
.(9.7.1)

The equality Ψn,d(fA) = fA;d follows readily by comparing (9.7.1) and (9.4.2).
Since fA and fA;d are bar-invariant, it follows that Ψn,d commutes with the bar

maps. �

Proposition 9.7.2. The map Ψn,d is a surjective algebra homomorphism.

Proof. By Theorem 9.4.6 and Lemma 9.7.1, it suffices to show that

Ψn,d(fA1
· fA2

) = fA1;d ∗ fA2;d, ∀A1, A2 ∈ Ξ̃n.

Let (i1, a1) and (i2, a2) be the pairs of tuples associated to fA1
and fA2

, respectively,
in (9.4.2). The product fA1

· fA2
can then be written in a similar form as (9.4.2)

with (i, a) replaced by (i1i2, a1a2), by Proposition 9.4.4. Similarly, the product
fA1;d ∗ fA2;d admits a similar form of (9.7.1) with (i, a) replaced by (i1i2, a1a2). By
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arguing in a similar fashion as the proof of Lemma 9.7.1, we see that Ψn,d sends
the product fA1

· fA2
to fA1;d ∗ fA2;d. �

By a standard argument such as the proof of [BKLW14, Theorem A.21], we
reach at the following result.

Theorem 9.7.3. We have Ψn,d({A}) = {A}d if A ∈ Ξn,d, and zero otherwise.

9.8. The algebra K̇c
n as a subquotient of K̇c

n̆

Let K̇c
n̆,1,0 be the subalgebra of K̇c

n̆ spanned by the elements [A] such that

ro(A)1 = co(A)1 = 0. Let I be the subspace of K̇c
n̆,1,0 spanned by those elements

[A] such that a1,1 < 0. Then a similar argument for Lemma 9.7.1 (see also [BLW14,
A.3]) gives us the following.

Lemma 9.8.1. The subspace I is a two-sided ideal of K̇c
n̆,1,0 and I ∩ {{A}|A ∈

Ξ̃n̆} forms a basis of I.

Let K̇c
n̆,1,0/I be the quotient algebra of K̇c

n̆,1,0 by I. By Lemma 9.8.1, the set

{{A}+ I|A ∈ Ξ̃n̆, a1,i = ai,1 = 0, ∀i ∈ Z}
is a stably canonical basis of K̇c

n̆,1,0/I. We shall identify the subquotient K̇c
n̆,1,0/I

with the stabilization algebra K̇c
n.

Proposition 9.8.2. The assignment ρ̃ : [A] �→ [Ä] + I, for all A ∈ Ξ̃n, de-

fines an isomorphism from the algebra K̇c
n to the subquotient K̇c

n̆,1,0/I of K̇c
n̆ with

compatible stably canonical bases.

Proof. By a similar argument as in the proof of Lemma 9.7.1, we have

ρ̃(fA) = fÄ + I, ∀A ∈ Ξ̃n.

A similar argument as in the proof of Proposition 9.7.2 shows that ρ̃ is an algebra

homomorphism by showing that ρ(fA1
· fA2

) = fÄ1
· fÄ2

+ I for all A1, A2 ∈ Ξ̃n.
By Lemma 9.8.1 we know that ρ̃ is an algebra isomorphism. A standard argument
shows the compatibility with the canonical bases. The proposition is thus proved.

�
Clearly, the projection Ψn̆,d : K̇c

n̆ → Sc
n̆,d induces a projection Ψn̆,d : K̇c

n̆,1,0/I →
Sc
n̆,d. We have the following commutative diagram:

K̇c
n

ρ̃−−−−→ K̇c
n̆,1,0/I

Ψn,d

⏐⏐� ⏐⏐�Ψn̆,d

Sc
n,d

ρ−−−−→ Sc
n̆,d

Remark 9.8.3. The construction of K̇c
n as a subquotient of K̇c

n̆ here is modeled

on the construction in [BLW14] (see also [FL14]), where an algebra U̇ı is realized

as a subquotient of an algebra U̇j with compatible stably canonical bases.



CHAPTER 10

Stabilization algebras arising from other Schur
algebras

In this chapter, the approach to the stabilization of the family of Schur algebras
Sc
n,d (as d varies) in the preceding Chapter 9 will be adapted with modifications

to study the remaining 3 families of Schur algebras of types jı, ıj and ıı. We will
present more details for the type jı while merely formulating the main statements
for types ıj and ıı.

10.1. A monomial basis for Schur algebra Sjı
n,d

Recall that n = n − 1 = 2r + 1. Recall the set Ξjı
n,d from (7.1.1), the set Ξ̌jı

n,d

from (7.3.2), and the bijection from (7.3.3)

dltr+1 : Ξjı
n,d −→ Ξ̌jı

n,d.

We also set Ä = dlt−1
r+1(A) for all A ∈ Ξ̌jı

n,d.

Recall the subalgebra Sjı
n,d of Sc

n,d from (7.1.3). Since the comultiplication Δc

on Sc
n,d is coassociative, so is the comultiplication Δjı on Sjı

n,d.

For each tridiagonal matrix A ∈ Ξ̌jı
n,d such that dltr+1(A)−

∑
1≤i≤n

αiE
i,i+1
θ,n is

diagonal, we define

f jıA;d = f (αr)
r ∗ f (αr−1)

r−1 ∗ · · · ∗ f (α−(r+1))

−(r+1) ∗ 1co(A) ∈ Sjı
n,d.(10.1.1)

We call a matrix A ∈ Ξjı
n,d jı-tridiagonal, if the associated matrix dltr+1(A) is

tridiagonal. Given any matrix A = (aij) in Ξjı
n,d of depth m ≥ 1 and dltr+1(A) =

(a′ij), we define jı-tridiagonal matrices A1, A2, . . . , Am ∈ Ξjı
n,d by the conditions

that ro(Am) = ro(A), co(A1) = co(A), ro(Ai) = co(Ai+1) for 1 ≤ i ≤ m − 1 and

dltr+1(Ai)−
∑

1≤j≤n(
∑

k≤j−i+1 a
′
k,j+1)E

j,j+1
θ,n is diagonal for all 1 ≤ i ≤ m. Then

we set

f jıA;d = f jıAm;d ∗ f
jı
Am−1;d

∗ · · · ∗ f jıA1;d
.(10.1.2)

By definition, the element f jıA;d is bar-invariant.
By an argument similar to Theorem 9.1.6, we have the following.

Proposition 10.1.1. (1) We have f jıA;d = [A]d+ lower terms, for all A ∈
Ξjı
n,d.

(2) The set {f jıA;d|A ∈ Ξjı
n,d} forms a bar-invariant basis of Sjı

n,d (called a mono-

mial basis).

101
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10.2. Stabilization of Schur algebras of type jı

Now we shall formulate the stabilization of the family of Schur algebras
{Sjı

n,d}d≥1, analogous to the family of Schur algebras {Sc
n,d}d≥1 treated in Sec-

tion 9.2.
Recall Ξ̃jı

n,d in (7.4.2) is a variant of Ξjı
n,d which does not require the diagonal

entries to be nonnegative.

Recall the set Ξ̃n,d from (6.2.3). For 0 ≤ i ≤ n − 1, A ∈ Ξ̃n,d for all j ∈ Z,

t = (tu)u∈Z ∈ NZ such that
∑

j∈Z
tu = R, we define the polynomials Qjı,t

i,R;A ∈ R as

follows. For any i ∈ [1, n− 1]\{r, r + 1}, we define

Qjı,t
i,R;A(v, v

′) = vβt

∏
u∈Z,u �=i

[
aiu + tu

tu

]
· v′(δi,1+δi,n−1)

∑
i+1≥u tu

[
aii + ti

ti

]
v,v′

,

(10.2.1)

where

βt =
∑
j≥u

aijtu−
∑
j>u

ai+1,jtu+
∑
j<u

tjtu+
1

2
(δi,r+δi,n−1)

⎛⎝ ∑
j+u<2(i+1)

tjtu +
∑

j<i+1

tj

⎞⎠ .

We further define

Qjı,t
r,R;A(v, v

′) = vβt

∏
u∈Z,u �=i

[
aiu + tu

tu

]
· v′−

∑
i≥u tu , for i = r,(10.2.2)

Qjı,t
r+1,R;A(v, v

′) = vβ
′
t

∏
u>i

[
aiu + tu + t2i−u

tu

]∏
u<i

[
aiu + tu

tu

]
· v′

∑
i+1≥u tu ,

(10.2.3)

for i=r + 1,

where

β′
t =
∑
j≥u

aijtu −
∑
j>u

ai+1,jtu +
∑

j<u,j+u≤2i

tjtu −
∑
j>i

t2j − tj

2
+

R2 −R

2
.

Given tuples i = (i1, . . . , is) and a = (a1, . . . , as) ∈ Ns and a tuple t =
(t1, . . . , ts) satisfying (9.2.6), we defined the polynomials Qt

i,a;A in (9.2.7). We

can similarly define the polynomials Qjı,t
i,a;A(v, v

′) in R, inductively on s starting

with (10.2.1)-(10.2.3), for A ∈ Ξ̃jı
n,d.

Propositions 10.2.1–10.2.5 are the jı-counterparts of Propositions 9.2.3–9.2.7.
We skip the similar proofs. The notations are understood in this section that
Ïn = In − Er+1,r+1

n , and p̈A = A+ pÏn.

Proposition 10.2.1. Assume A,Bj ∈ Ξ̃n,d, for 1 ≤ j ≤ s, and a pair of tuples
(i, a) satisfy the following properties: ro(A) = co(Bs), ro(Bj) = co(Bi−1), ∀1 < i ≤
s, Bj − ajE

ij ,ij+1
θ,n is diagonal and ar+1,j = δj,r+1 for all j ∈ Z. Then we have

[p̈B1]d+ p
2 n
∗· · ·∗[p̈Bs]d+ p

2 n
∗[p̈A]d+ p

2 n
=

∑
t∈Ti,a,A

Qjı,t
i,a;A(v, v

−p)[p̈Ai,a,t]d+ p
2 n
, ∀p ∈ 2Z.
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Proposition 10.2.2. Let A ∈ Ξ̃jı
n,d. There exist Zi ∈ Ξ̃jı

n,d, for 1 ≤ i ≤ m, with

Zi < A, Qi(v, v
′) ∈ R and p0 ∈ N such that

[p̈A]d+ p
2 n

= f jı
p̈A;d+ p

2 n
+

m∑
i=1

Qi(v, v
−p)[p̈Zi]d+ p

2 n
, ∀p ≥ p0, p ∈ 2N.(10.2.4)

Proposition 10.2.3. Assume that A1, . . . , Al ∈ Ξ̃jı
n,d satisfy co(Ai) = ro(Ai+1)

for all 1 ≤ i ≤ l − 1. There exist Z1, . . . , Zm ∈ Ξ̃jı
n,d, G1(v, v

′), . . . , Gm(v, v′) ∈ R,
and p0 ∈ N such that

[p̈A1]d+ p
2 n
∗ [p̈A2]d+ p

2 n
∗ · · · ∗ [p̈Al]d+ p

2 n
=

m∑
i=1

Gi(v, v
−p)[p̈Zi]d+ p

2 n
,

(10.2.5)

∀p ≥ p0, p ∈ 2N.

Corollary 10.2.4. For any matrix A ∈ Ξ̃jı
n,d of depth m and dltr+1(A) =

(a′ij), there exist unique jı-tridiagonal matrices A1, A2, . . . , Am ∈ Ξ̃jı
n,d satisfying

ro(Am) = ro(A), co(A1) = co(A), ro(Ai) = co(Ai+1) for 1 ≤ i ≤ m − 1 and

dltr+1(Ai) −
∑

1≤j≤n(
∑

k≤j−i+1 a
′
k,j+1)E

j,j+1
θ,n is diagonal for all 1 ≤ i ≤ m such

that

[p̈Am]d+ p
2 n
∗ [p̈Am−1]d+ p

2 n
∗ · · · ∗ [p̈A1]d+ p

2 n
= [p̈A]d+ p

2 n
+

l∑
i=1

Gi(v,v
−p)[p̈Zi]d+ p

2 n
,

∀p ∈ 2N, p ≥ p0,

where p0, Gi(v, v
′) ∈ R and Z1, . . . , Zl ∈ Ξ̃jı

n,d are given in Proposition 10.2.3 such
that Zi < A.

Proposition 10.2.5. Assume that A ∈ Ξ̃jı
n,d. Then there exist Yi ∈ Ξ̃jı

n,d with

Yi < A, Hi(v, v
′) ∈ R for all 1 ≤ i ≤ s and p0 ∈ N such that

[p̈A]d+ p
2 n

= [p̈A]d+ p
2 n

+
s∑

i=1

Hi(v, v
−p)[p̈Yi]d+ p

2 n
, ∀p ≥ p0, p ∈ 2N.(10.2.6)

The following is a counterpart of Proposition 9.3.4.

Proposition 10.2.6. Assume that d′+d′′ = d and that b′, a′ ∈ Zc
n and b′′, a′′ ∈

Zn so that pΔ
jı
b′,a′,b′′,a′′ is defined. Let A ∈ Ξ̃jı

n,d. There exist A′
i ∈ Ξ̃jı

n,d′ where

1 ≤ i ≤ l for some l, A′′
j ∈ Θ̃jı

n,d′′ where 1 ≤ j ≤ m for some m, Ci,j(v, v
′) ∈ R for

1 ≤ i ≤ l, 1 ≤ j ≤ m, and p0 ∈ N such that

p̈Δ
jı
b′,a′,b′′,a′′([2̈pA]d+pn) =

∑
1≤i≤l,1≤j≤m

Ci,j(v, v
−p)[p̈A

′
i]d′+ p

2 n
⊗ a[p̈A

′′
j ]d′′+pn,

∀p ≥ p0, p ∈ 2N.

10.3. The stabilization algebra K̇jı
n

Recall the set Ξ̃jı
n and Ξ̃jı

n,d from (7.4.2). Consider the Q(v)-space K̇jı
n spanned

by the formal symbols [A] for all A ∈ Ξ̃jı
n . We define an associative algebra structure
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on K̇jı
n by

[A1] · [A2] =

m∑
i=1

Gi(v, 1)[Zi], ∀A1, A2 ∈ Ξ̃jı
n ,(10.3.1)

where Gi(v, v
′) ∈ R and Zi are from Proposition 10.2.3.

For each A ∈ Ξ̃jı
n , we define

f jıA = [A] +
m∑
i1

Gi(v, 1)[Zi],(10.3.2)

where Gi(v, v
′) ∈ R and Zi are from Corollary 10.2.4. It follows by definition that

{f jıA |A ∈ Ξ̃jı
n } forms a basis of K̇jı

n (called a monomial basis).
By Proposition 10.2.1, we can establish the following.

Proposition 10.3.1. (1) For any A ∈ Ξ̃jı
n , there exists a pair (i, a) of

tuples such that

f jıA =
∑

t∈Ti,a,Dco(A)

Qjı,t
i,a;Dco(A)

(v, 1)
[
(Dco(A))i,a,t

]
,(10.3.3)

where Dco(A) is the diagonal matrix in Ξ̃jı
n with diagonal co(A).

(2) The element f jıA can be written in a product form as

(10.3.4) f jıA = f jıAm
· f jıAm−1

· . . . · f jıA1
,

where Ai are jı-tridiagonal matrices defined similarly as in ( 9.4.4).

(3) We have f jıA = f jıA , for A ∈ Ξ̃jı
n .

Similarly, for A ∈ Ξ̃jı
n , we set

mjı
A = [Am] · [Am−1] · · · [A1],

where Ai’s are the same as in (10.3.4). One also has mjı
A = f jıA + lower terms. Thus

{mjı
A|A ∈ Ξ̃jı

n } forms a basis for K̇jı
n (called a semi-monomial basis). Just like its

jj-sibling, the monomial mjı
A is not necessarily bar-invariant.

The following multiplication formula on K̇jı
n follows from Proposition 10.2.1.

Proposition 10.3.2. Assume the matrices A,B ∈ Ξ̃jı
n satisfy that co(B) =

ro(A) and dltr+1(B)−
∑

1≤i≤n βiE
i,i+1
θ,n is diagonal. Then we have a multiplication

formula of the form

f jıB · [A] =
∑

t∈Ti
jı
0 ,b

jı
0 ,A

Qjı,t
ijı0 ,bjı

0 ;A
(v, 1)

[
Aijı0 ,bjı

0 ,t

]
,(10.3.5)

where ijı0 = (r, r − 1, . . . , 1− r) and bjı
0 = (βr, βr−1, . . . , β−r).

We define a bar involution on K̇jı
n by

[A] = [A] +
s∑

i=1

Hi(v, 1)[Yi], ∀A ∈ Ξ̃jı
n ,(10.3.6)

where Hi(v, v
′) and Yi < A are from Proposition 10.2.5. By a standard argument,

we can now establish the existence of the stably canonical basis for K̇jı
n .
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Proposition 10.3.3. (1) For any A ∈ Ξ̃jı
n , there exists a unique element

{A} in K̇jı
n such that

{A} = {A}, {A} = [A] +
∑
A′<A

πjı
A,A′ [A

′], πjı
A,A′ ∈ v−1Z[v−1].

(2) The set {{A}|A ∈ Ξ̃jı
n } forms a basis for K̇jı

n (called the stably canonical
basis).

Let us summarize the main results of this section as follows.

Theorem 10.3.4. The algebra K̇jı
n admits a standard basis {[A]|A ∈ Ξ̃jı

n },
a semi-monomial basis {mjı

A|A ∈ Ξ̃jı
n }, a monomial basis {f jıA |A ∈ Ξ̃jı

n }, and a

canonical basis {{A}|A ∈ Ξ̃jı
n }.

Recall our convention that [A]d = 0 in Sjı
n,d, for all A ∈ Ξ̃jı

n \Ξjı
n,d. The following

is a counterpart of Theorem 9.7.3.

Theorem 10.3.5. The assignment [A] �→ [A]d, for all A ∈ Ξ̃jı
n , defines a sur-

jective algebra homomorphism Ψjı
n,d : K̇jı

n → Sjı
n,d. Moreover, we have Ψjı

n,d({A}) =
{A}d if A ∈ Ξjı

n,d and zero otherwise.

We have developed the current Chapter 10 on the stabilization algebra K̇jı
n

which is based on the imbeddings Sjı
n,d → Sc

n,d, in analogy to the stabilization

algebra K̇c
n in Chapter 9 which was based on the imbeddings Sc

n,d → Sc
n̆,d. Just

as the imbeddings Sc
n,d → Sc

n̆,d lead to a realization of K̇c
n as a subquotient of K̇c

n̆

(see Proposition 9.8.2), the imbeddings Sjı
n,d → Sc

n,d lead to a realization of K̇jı
n as

a subquotient of K̇c
n.

We shall simply formulate the statement below and skip the detail (compare

with [BLW14]). Let J jı
< be the Q(v)-subspace of K̇c

n spanned by [A] for A =

(aij) ∈ Ξ̃jı
n with ar+1,r+1 < 0. Then one shows that J jı

< is a two-sided ideal of K̇c
n

with a stably canonical basis

{{A}
∣∣A = (aij) ∈ Ξ̃jı

n , ar+1,r+1 < 0}.
Moreover, the natural linear map

K̇jı
n −→ K̇c

n/J
jı
< , [A] �→ [A] + J jı

<

is an algebra isomorphism, and it preserves the stably canonical bases. We sum-
marize these as follows.

Theorem 10.3.6. The algebra K̇jı
n is a subquotient of the algebra K̇c

n with
compatible stably canonical bases.

We finally discuss the comultiplication on K̇jı
n . Let

Zjı
n = {λ = (λi)i∈Z ∈ Zc

n|λr+1 = 1}, Zjı,a
n = {λ ∈ Zn|λr+1 = 0}.

Note that there is a canonical bijection Zjı
n � Zn, which we shall identify. For

any a,b ∈ Zjı
n , let bK̇

jı
a denote the subspace of K̇jı

n spanned by the standard basis
element [A] such that ro(A) = b and co(A) = a. For any b, a,b′, a′ ∈ Zjı

n and
b′′, a′′ ∈ Zjı,a

n such that (b′,b′′) |= b and (a′, a′′) |= a, we define a linear map

Δjı
b′,a′,b′′,a′′ : bK̇

jı
a −→ b′K̇jı

a′ ⊗ b′′K̇a′′ ,(10.3.7)



106 10. STABILIZATION ALGEBRAS ARISING FROM OTHER SCHUR ALGEBRAS

by

Δjı
b′,a′,b′′,a′′([A]) =

∑
i,j

Ci,j(v, 1)[A
′
i]⊗ a[A′′

j ],

where b′′K̇a′′ is a component of K̇n, Ci,j(v, v
′), A′

i and A′′
j are given in Proposi-

tion 10.2.6. We shall call the collection

Δ̇jı = (Δjı
b′,a′,b′′,a′′)b′,a′∈Z

jı
n ,b′′,a′′∈Zn

the comultiplication of K̇jı
n . Let g

C
A,B and hC′,C′′

C be the structure constants of K̇jı
n

of the multiplication and comultiplication, respectively, with respect to the standard
bases. We have the following jı-counterparts of the commutative diagrams (9.6.2)

and (9.6) for the comultiplication Δ̇c.

Proposition 10.3.7. (1) The Δ̇jı is an algebra homomorphism in the

following sense: for all A,B,C ′ ∈ Ξ̃jı
n , C

′′ ∈ Θ̃n one has∑
C∈Ξ̃jı

n

gCA,Bh
C′,C′′

C =
∑

A′,B′∈Ξ̃jı
n ,A′′,B′′∈Θ̃n

hA′,A′′

A hB′,B′′

B gC
′

A′,B′
agC

′′

A′′,B′′ .(10.3.8)

(2) The Δ̇jı is coassociative in the following sense: for all A,A′ ∈ Ξ̃jı
n , A

′′,

A′′′ ∈ Θ̃n, one has∑
C∈Ξ̃jı

n

hC,A′′′

A hA′,A′′

C =
∑

B∈Θ̃n

hA′,B
A

ahA′′,A′′′

B .(10.3.9)

Recall from Remark 9.5.2 that K̇n is isomorphic to an idempotented quantum

ĝln.

Proposition 10.3.8. The pair (K̇n, K̇
jı
n ) forms a quantum symmetric pair.

10.4. Stabilization algebra of type ıj

Recall the subalgebra Sıj
n,d of Sc

n,d from (8.1.2). In analogue with the operator

dltr+1, we can define the operator dlt0. For each ıj-tridiagonal matrix A ∈ Ξıj
n,d (cf.

(8.1.1)) such that dlt0(A)−
∑

1≤i≤n
αiE

i,i+1
θ,n is diagonal, we introduce the following

element in Sıj
n,d:

f̈ ıjA;d = f
(αn)
n ∗ f (αn−1)

n−1 ∗ · · · ∗ f (α1)
1 ∗ f (αn)

0 1co(A) ∈ Sıj
n,d.(10.4.1)

Now repeat the process of the jı-version. We obtain an associative algebra K̇ıj
n

with a basis [A] parametrized by the matrices A in Ξ̃ıj
n, (which is defined exactly

the same as Ξ̃jı
n, with the roles of r + 1 and 0 switched). Moreover, to each matrix

A in Ξ̃ıj
n,d, we can define elements f ıjA , mıj

A and {A} in K̇ıj
n , similar to those elements

indexed by jı in K̇jı
n , now starting with (10.4.1). Then all the main results for K̇jı

n

admit counterparts for the algebra K̇ıj
n .

Theorem 10.4.1. (1) The algebra K̇ıj
n admits a standard basis {[A]|A ∈

Ξ̃ıj
n }, a semi-monomial basis {mıj

A|A ∈ Ξ̃ıj
n }, a monomial basis {f ıjA |A ∈

Ξ̃ıj
n }, and a canonical basis {{A}|A ∈ Ξ̃ıj

n }.
(2) The assignment [A] �→ [A]d, for all A ∈ Ξ̃ıj

n , defines a surjective algebra

homomorphism Ψıj
n,d : K̇ıj

n → Sıj
n,d such that Ψıj

n,d({A}) = {A}d if A ∈ Ξıj
n,d

and zero otherwise.
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(3) K̇ıj
n is a subquotient of K̇c

n with compatible stably canonical bases.

(4) The pair (K̇n, K̇
ıj
n ) forms an idempotented quantum symmetric pair.

10.5. Stabilization algebra of type ıı

Recall the subalgebra Sıı
η,d of Sc

n,d from (8.4.2). For each ıı-tridiagonal matrix

A ∈ Ξıı
η,d (cf. (8.1.1)) such that the matrix dlt0,r(A)−

∑
1≤i≤η αiE

i,i+1
θ,η is diagonal,

we introduce the following element f ııA;d in Sıı
η,d:

f ııA;d = f
(αη)
η+1 ∗ f (αr−1)

r ∗
(
f (αη−1)
η ∗ · · · ∗ f (αr)

r+1

)
(10.5.1)

∗
(
f
(αr−1)
r−1 ∗ · · · ∗ f (α0)

0

)
∗ 1co(A) ∈ Sıı

η,d.

We collect the main results of K̇ıı
η in the following. The proofs are very similar

to the previous cases, and so we shall skip them to avoid redundancy.

Theorem 10.5.1.

(1) The algebra K̇ıı
η admits a standard basis {[A]|A ∈ Ξ̃ıı

η }, a semi-monomial

basis {mıı
A|A ∈ Ξ̃ıı

η }, a monomial basis {f ııA |A ∈ Ξ̃ıı
η }, and a canonical basis

{{A}|A ∈ Ξ̃ıı
η }.

(2) The assignment [A] �→ [A]d, for all A ∈ Ξ̃ıı
η , defines a surjective algebra

homomorphism Ψıı
η,d : K̇ıı

η → Sıı
η,d such that Ψıı

η,d({A}) = {A}d if A ∈ Ξıı
η,d

and zero otherwise.
(3) K̇ıı

η is a subquotient of K̇jı
n and K̇ıj

n , with compatible stably canonical bases.

(4) The pair (K̇η, K̇
ıı
η ) is an idempotented quantum symmetric pair.

Let us summarize the interrelations among different family of Schur algebras,
as well as the interrelations among different family of stabilization algebras of types
jj, jı, ıj, ıı.

Recall n̆ = n + 2, n = n + 1, and n = η + 1, where n is even. On the Schur
algebra level, we have the following commutative diagram for natural inclusions of
Schur algebras:

(10.5.2) Sjı
n,d � �



�
��

��
��

�

Sıı
η,d

� �

����������
� �



�
��

��
��

�
Sc
n,d

� � �� Sc
n̆,d

Sıj
n,d

� �

����������
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On the stabilization algebra level, we have the following diagram of subquo-
tients:

(10.5.3) K̇jı
n

sq

������
��
��
��

K̇ıı
η K̇c

n

sq

������������

sq������
��
��
��

K̇c
n̆sq

����

K̇ıj
n

sq

�����������

where the notation K1

sq

� K2 stands for the statement that K2 is a subquotient
of K1. Remarkably, all the subquotients between various pairs of algebras preserve
the stably canonical bases.

Remark 10.5.2. One can show that the Schur algebras Sjı
n,d and Sıj

n,d are iso-
morphic with compatible standard and canonical bases. This isomorphism can be
further lifted to the stabilization level. The proofs of these isomorphisms is given
in [FL17].



APPENDIX A

Constructions in finite type C

We shall present more details on results in finite type C which was only sketched
in [BKLW14]. In addition, we will present details on comultiplications and transfer
maps in finite type C, adapting the finite type B formulation in [FL15]. This will
serve as a helpful preparation for formulation and computations in affine type C
which are presented in the main text.

A.1. Multiplication formulas

Recall that n = 2r + 1. We fix a non-degenerate skew-symmetric bilinear form
Q : F2d

q × F2d
q → Fq. Let Sp(2d) be the symplectic subgroup of GL(2d) which

consists of all elements g such that Q(gu, gu′) = Q(u, u′), ∀u, u′ ∈ F2d
q . Consider

the following sets

Xc = {0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln = F2d
q |Ln−i = L⊥

i },

Yc = {0 = L0

1
⊂ L1

1
⊂ . . .

1
⊂ L2d = F2d

q

∣∣L2d−i = L⊥
i },

cΞ =
{
A = (aij) ∈ Matn×n(N)

∣∣∣ ∑
i,j∈[1,n]

aij = 2d, aij = an+1−i,n+1−j , ∀i, j ∈ [1, n]
}
,

cΠ =
{
B = (bij) ∈ Matn×2d(N)

∣∣∣ ∑
i∈[1,n]

bij = 1,

bij = bn+1−i,2d+1−j , ∀i ∈ [1, n], j ∈ [1, 2d]
}
,

cΣ =
{
σ = (σij) ∈Mat2d×2d(N)

∣∣∣ ∑
i∈[1,2d]

σij = 1 =
∑

j∈[1,2d]

σij ,

σij = σ2d+1−i,2d+1−j , ∀i, j ∈ [1, 2d]
}
.

The notation
1
⊂ above denotes inclusion of codimension 1 as before. The action of

Sp(2d) on F2d
q induces a well-defined action of Sp(2d) on Xc and Yc. Let Sp(2d) act

diagonally on Xc ×Xc and Yc × Yc.
Lemma A.1.1. [BKLW14, Lemma 6.5] There are natural bijections

Sp(2d)\Xc ×Xc ←→ cΞ,

Sp(2d)\Xc × Yc ←→ cΠ,

and
Sp(2d)\Yc × Yc ←→ cΣ.

Let cSj
d = ASp(2d)(Xc ×Xc) be the algebra of Sp(2d)-invariant A-valued func-

tions on Xc ×Xc, where A = Z[v, v−1] and the multiplication is given by a convo-
lution product.
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The most typical phenomenon of type C already shows up when n = 5, and
so let us consider this case in detail. Let Vk be a 2d-dimensional vector space over
k = Fq equipped with a non-degenerate symplectic form. Let (Li|0 ≤ i ≤ 5) be a
flag of vector subspaces in Vk such that L⊥

i = L5−i for i ∈ [0, 5]. Consider the set

Zi = {U ⊆ Vk| dimk U = 1, U ⊆ Li, U �⊆ Li−1}, ∀i ∈ [1, 4].

The following lemma is an analogue of [FL14, Lemma 3.1.3] with an easier proof.

Lemma A.1.2. For n = 5, we have #Z3 = qdimL2 qdim L3/L2−1
q−1 and #Z4 =

qdimL3 qdim L4/L3−1
q−1 .

Proof. Because all lines in Vk are isotropic, we have

#Z3 =
qdimL3 − 1

q − 1
− qdimL2 − 1

q − 1
= qdimL2

qdimL3/L2 − 1

q − 1
.

The counting for Z4 is the same. �

We have the following multiplication formula in finite type C. Let Ei,j for
all 1 ≤ i, j ≤ n, the standard basis of the space of n by n matrices. We set
Eθ

i,j = Ei,j + En−i,n−j for all 1 ≤ i, j ≤ n.

Proposition A.1.3. Suppose that h ∈ [1, r] and R ∈ N.

(1) For A,B ∈ cΞ such that ro(A) = co(B) and B −REθ
h,h+1 is diagonal, we

have

eB ∗ eA =
∑
t

v2
∑

j>u ahjtu

n∏
u=1

[
ahu + tu

tu

]
eA+

∑
n
u=1 tu(Eθ

hu−Eθ
h+1,u)

,(A.1.1)

where t = (tu) ∈ Nn such that

n∑
u=1

tu = R and

{
tu ≤ ah+1,u, if h < r

tu + tn+1−u ≤ ah+1,u, if h = r.

(2) For A,C ∈ cΞ such that ro(A) = co(C) and C −REθ
h+1,h is diagonal, we

have

eC ∗ eA =
∑
t

v2
∑

j<u ah+1,jtu

n∏
u=1

[
ah+1,u + tu

tu

]
eA−

∑
n
u=1 tu(Eθ

hu−Eθ
h+1,u)

, if h < r;

eC ∗ eA =
∑
t

v2
∑

j<u ar+1,jtu+2
∑

n+1−j<u<j tutj+
∑

u>r+1 tu(tu+1)
∏

u<r+1

[
ar+1,u + tu

tu

]

·
∏

u>r+1

[
ar+1,u + tu + tn+1−u

tu

] tr+1∏
i=1

[ar+1,r+1 + 2i]

[i]
eA−

∑
n
u=1 tu(Eθ

ru+Eθ
r+1,u)

(A.1.2)

if h = r, where t = (tu) ∈ Nn such that
∑n

u=1 tu = R and tu ≤ ahu.

Proof. We only give a sketch as it is similar to [BKLW14,FL14]. First
the proposition is proved for R = 1 with the help of Lemma A.1.2 (which takes
care of a genuine type C counting). Then a similar argument using induction as in
[BKLW14, Proposition 3.3] or [FL14, Corollary 4.3.4] proves the general case. �
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For A = (aij) ∈ cΞ, we set

d(A) = dimOA and dA = d(A)− d(B),

where B = (bij) is the diagonal matrix such that bii =
∑

k aik.

Lemma A.1.4. For any A = (aij) ∈ cΞ, we have

dA =
1

2

⎛⎝ ∑
i≥k,j<l

aijakl +
∑

i≥r+1>j

aij

⎞⎠ .(A.1.3)

Proof. The proof is similar to the proof of [BKLW14, Lemma 3.5] or [FL14,
Lemma 4.5.1]. See also the proof of Lemma 4.1.1. �

We set

(A.1.4) [A] = v−dAeA. ∀A ∈ cΞ.

It is clear that {[A]|A ∈ cΞ} form an A-basis of cSj
d, which is called a standard

basis.
By a direct calculation using (A.1.4), we have the following reformulation of

Proposition A.1.3 in terms of [A].

Proposition A.1.5. Suppose that A,B,C ∈ cΞ, h ∈ [1, r] and R ∈ N.

(1) If ro(A) = co(B) and B −REθ
h,h+1 is diagonal, then we have

[B] ∗ [A] =
∑
t

vβ(t)
n∏

u=1

[
ahu + tu

tu

]
[A+

n∑
u=1

tu(E
θ
hu − Eθ

h+1,u)],(A.1.5)

where the sum over t is as in Proposition A.1.3(1) and

β(t) =
∑
u≤j

ahjtu −
∑
u<j

ah+1,jtu +
∑
u<j

tutj + δhn

( ∑
u<j

u+j<n+1

tutj +
∑

u<r+1

tu(tu − 1)

2

)
.

(2) Assume that ro(A) = co(C) and C−REθ
h+1,h is diagonal. Then for h < r

we have

[C] ∗ [A] =
∑
t

vβ
′(t)

n∏
u=1

[
ah+1,u + tu

tu

]
[A−

n∑
u=1

tu(E
θ
hu − Eθ

h+1,u)],(A.1.6)

where the sum over t is as in Proposition A.1.3(2) and

β′(t) =
∑
u≥j

ah+1,jtu −
∑
u>j

ahjtu +
∑
u>j

tutj ;

For h = r, we have

[C] ∗ [A] =
∑
t

vγ(t)
∏

u>r+1

[
ar+1,u + tu

tu

] ∏
u<r+1

[
ar+1,u + tu + tn+1−u

tu

]

·
tr+1∏
i=1

[ar+1,r+1 + 2i]

[i]
[A−

n∑
u=1

tu(E
θ
ru + Eθ

r+1,u)],

(A.1.7)

where

γ(t) =
∑
u≤j

ar+1,jtu −
∑
u>j

ahjtu +
∑

n+1−j≤u<j

tutj −
∑

u<r+1

t2u
2

+
R2

2
+
∑

u≥r+1

tu
2
.
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Let

Ξ̃c = {A = (aij) ∈Matn×n(Z)
∣∣aij ≥ 0 if i �= j,

aij = an+1−i,n+1−j , ∀i, j, and ar+1,r+1 ∈ 2Z}.
(A.1.8)

Denoted by cKj the free A-module spanned by {[A]|A ∈ Ξ̃c}. For any matrix A,
we set

2pA = A+ 2pI.

Here I =
∑

1≤i≤n
Eii. By a similar argument as that for Proposition 4.2 in

[BLM90], we have the following proposition.

Proposition A.1.6. Suppose that A1, . . . , As ∈ Ξ̃c (s ≥ 2) satisfy that co(Ai) =

ro(Ai+1) for all i. Then there exist Z1, . . . , Zm ∈ Ξ̃c,
cGi(v, v

′) ∈ Q(v)[v′] such that

[2pA1] ∗ [2pA2] ∗ · · · ∗ [2pAs] =

m∑
i=1

cGi(v, v
−2p)[2pZi], for p 0.

By specialization at v′ = 1, we have the following corollary.

Corollary A.1.7. Retain the assumption in Proposition A.1.6. There is a
unique associative A-algebra structure on cKj given by

[A1] ∗ [A2] ∗ · · · ∗ [As] =
m∑
i=1

cGi(v, 1)[Zi].

A.2. Isomorphisms between type C and type B

Recall that Sj = Sj
d is the convolution algebra on n-step type B flags defined

in [BKLW14], and it admits a standard basis {[A]|A ∈ bΞ}, where (bΞ is denoted
by Ξd in loc. cit.)

bΞ =
{
A = (aij) ∈ Matn×n(N)

∣∣∣ ∑
i,j∈[1,n]

aij = 2d+ 1,

aij = an+1−i,n+1−j , ∀i, j ∈ [1, n]
}
.

Clearly sending A �→ A−Er+1,r+1 defines a bijection bΞ
∼−→ cΞ. Let ψ : Sj

d → cSj
d

be the A-linear map sending [A] �→ [A − Er+1,r+1] for all A ∈ cΞ. It is clear that
ψ is an A-linear isomorphism.

Proposition A.2.1. The map ψ : Sj
d −→ cSj

d is an A-algebra isomorphism.

Proof. Since the structure of the two algebras are completely determined by
the multiplication formulas in Proposition A.1.5 and [BKLW14, Proposition 3.7],
we only need to see if they match under the correspondence [A] �→ [A−Er+1,r+1],
which can be checked directly. �

Let ψ̃ : Kj → cKj be the A-linear map sending [A] �→ [A − Er+1,r+1] for all

A ∈ Ξ̃c, where Kj is the algebra defined in [BKLW14, Section 4], a finite type B
counterpart of cKj. The algebra isomorphisms ψ : Sj

d −→ cSj
d (for varies d) and

the stabilization procedure (Proposition A.1.6 and Corollary A.1.7) which defines
the algebra cKj (and similar for Kj) lead readily to the following identification.

Proposition A.2.2. The map ψ̃ : Kj −→ cKj is an A-algebra isomorphism.
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A.3. The comultiplication

We define ei, fi, h
±1
a ∈ cSj

d, for i ∈ [1, r] and a ∈ [1, r + 1], as follows: for all
L,L′ ∈ Xc,

ei(L,L
′) =

{
v−|L′

i+1/L
′
i|−δi,r , if Li

1
⊂ L′

i, Lj = L′
j , ∀j ∈ [1, r]\{i};

0, otherwise.
(A.3.1)

fi(L,L
′) =

{
v−|L′

i/L
′
i−1|, if Li

1
⊃ L′

i, Lj = L′
j , ∀j ∈ [1, r]\{i};

0, otherwise.
(A.3.2)

h±1
a (L,L′) = v±(|L′

a/L
′
a−1|+δa,r+1)δL,L′ .(A.3.3)

Also set ki = hi+1h
−1
i in Sj

d. Note that our ha corresponds to d−1
a in [BKLW14,

(3.3)], and the definitions of ei, fi, ha above for finite type C formally coincide with
those for finite type B [BKLW14, (3.1)-(3.3)] (except er, fr, hr+1).

Proposition A.3.1. The isomorphism ψ : Sj
d −→ cSj

d sends ei, fi, ha := d−1
a

for i ∈ [1, r] and a ∈ [1, r + 1] in Sj
d to the elements in cSj

d in the same notations,
respectively.

Proof. The element ei on both sides is a sum of all standard matrices A such
that A−Eθ

i+1,i is diagonal. Hence we have the result for ei by the definition of ψ.
Similarly, one can prove the results for fi and ha. �

We shall denote by Sd the Schur algebra of finite type A arising from n-step
flags in an d-dimensional space. For any i ∈ [1, n − 1], a ∈ [1, n], we define the
following elements in Sd:

Ei(V, V
′) =

{
v−|V ′

i+1/V
′
i |, if Vi

1
⊂ V ′

i , Vj = Vj′ , ∀j �= i;

0, otherwise.

Fi(V, V
′) =

{
v−|V ′

i /V
′
i−1|, if Vi

1
⊃ V ′

i , Vj = Vj′ , ∀j �= i;

0, otherwise,

H±1
a (V, V ′) = v±|Va/Va−1|δV,V ′ , ∀V, V ′ ∈ Xd.

K±1
i = H±1

i+1H
∓1
i .

(A.3.4)

In a completely analogous way to the definition Δ̃j in [FL15, §3.2], for a com-
position d = d′ + d′′, we have a comultiplication

Δ̃c : Sc
d −→ Sc

d′ ⊗ Sd′′ .

Then we have the following proposition, similar to [FL15, Proposition 3.2.4].

Proposition A.3.2. For any i ∈ [1, r], we have

Δ̃c(ei) = e′i ⊗H′′
i+1H

′′−1
n−i + h′−1

i+1 ⊗E′′
i H

′′−1
n−i + h′

i+1 ⊗ F′′
n−iH

′′
i+1.

Δ̃c(fi) = f ′i ⊗H′′−1
i H′′

n+1−i + h′
i ⊗ F′′

i H
′′
n+1−i + h′−1

i ⊗E′′
n−iH

′′−1
i .

Δ̃c(ki) = k′
i ⊗K′′

i K
′′−1
n−i .

Proof. With the help of Lemma A.1.2, the proof of [FL15, Proposition 3.2.4]
can be essentially repeated here. �
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By checking the image of algebra generators of Sj
d, we have the following propo-

sition.

Proposition A.3.3. The following diagram is commutative:

Sj
d

Δ̃j
��

ψ

��

Sj
d ⊗ Sd

ψ⊗1

��
cSj

d
Δ̃c

�� cSj
d ⊗ Sd

Following [FL15], we introduce the following notation

Λj
n,d =

{
a = (ai) ∈ Nn

∣∣∑ ai = 2d+ 1, ai = an+1−i

}
.

An isotropic flag L of type C defines a unique element α(L) ∈ Λj
n,d by

α(L)i = dimLi/Li−1 + δi,r+1, ∀i.
Then we have the following partition:

Xc =
⊔

a∈Λj
n,d

Xc(a), Xc(a) = {L|α(L) = a}.

For any a,b ∈ Λj
n,d, let

cSj
d(b, a) be the subspace of

cSj
d spanned by all functions

supported on Xc(b)×Xc(a). Then we have

cSj
d = ⊕b,a∈Λj

n,d

cSj
d(b, a).

We shall denote ιb,a and pb,a the embedding of cSj
d(b, a) into

cSj
d and the projection

of cSj
d to cSj

d(b, a), respectively. By abuse of notations, the projection from Sd to
Sd(b, a) is still denoted by pb,a. For any b, a,b′, a′,b′′ and a′′ satisfying that

bi = b′i + b′′i + b′′n+1−i, and ai = a′i + a′′i + a′′n+1−i, ∀i ∈ [1, n],

we set Δ̃c
b′,a′,b′′,a′′ = (pb′,a′ ⊗ pb′′,a′′) ◦ Δ̃c ◦ ιb,a. Let

Δc =
⊕

b,a,b′,a′,b′′,a′′

Δc
b′,a′,b′′,a′′ ,

where Δc
b′,a′,b′′,a′′ = v

∑
1≤i≤j≤n

b′ib
′′
j −a′

ia
′′
j vu(b

′′,a′′)Δ̃c
b′,a′,b′′,a′′ , and u(b, a) is the

function defined in [FL15, (44)] in finite type B setting. The definition of Δc

is completely analogous to the definition of Δj
v in [FL15, (45)]. The following

proposition follows by comparing the definitions.

Proposition A.3.4. Given d = d′ + d′′, we have the following commutative
diagram:

(A.3.5) Sj
d

Δj
v ��

ψ

��

Sj
d′ ⊗ Sd′′

ψ⊗1

��
cSj

d
Δc

�� cSj
d′ ⊗ Sd′′ .

The transfer map

φc
d,d−n : cSd −→ cSd−n
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is defined to be the composition cSd
Δ̃c

�� cSd ⊗ Sn

1⊗χ �� cSd−n ⊗A = cSd−n ,

where χ(ηA) = det(A) for any A ∈ cΞ and ηA is the characteristic function on the
orbit corresponding the matrix A. This is analogous to the transfer map φj

d,d−n
:

Sj
d → Sj

d−n
defined in [FL15, §3.6] in the finite type B setting. By Proposition

A.3.3, we have the following proposition.

Proposition A.3.5. The following diagram is commutative:

Sj
d

φj
d,d−n ��

ψ

��

Sj
d−n

ψ

��
cSj

d

φc
d,d−n �� cSj

d−n

Finally, we address the ı-version. Recall that η = n− 1 = 2r. Let

Xı
c = {0 = V0 ⊆ V1 ⊆ . . . ⊆ Vη = F2d

q

∣∣Vη−i = V ⊥
i }.

The convolution algebra on Xı
c ×Xı

c is denoted by cSı
d. We shall naturally embed

Xı
c into Xc by sending a η-step flag in Xı

c as above to an n-step flag

0 = V0 ⊆ V1 ⊆ . . . ⊆ Vr ⊆ Vr ⊆ . . . ⊆ Vη = F2d
q

(where the maximal isotropic subspace Vr in the middle is repeated). Therefore,
cSı

d is naturally a subalgebra of cSd. Consider the following set

Ξı
c = {A = (aij ∈ cΞ

∣∣ar+1,j = 0 = ai,r+1, ∀i, j}.

By [BKLW14, Lemma 6.1], we have a natural bijection Sp(2d)\Xı
c × Xı

c ↔ cΞı,
and moreover, {[A]|A ∈ Ξı

c} forms a basis of cSı
d. Recall a completely analogous

subalgebra Sı
d of Sj

d was defined in [BKLW14, §5]. The standard basis of Sı
d

is parametrized by a subset Ξı ⊂ Ξ, and there is a natural bijection Ξı −→ Ξı
c,

A �→ A− Er+1,r+1. The following proposition follows by the definition of ψ.

Proposition A.3.6. The restriction of ψ : Sj
d −→ cSj

d induces an algebra
isomorphism cSı

d � Sı
d.

Remark A.3.7. It should be clear for the reader that the various canonical
bases from finite type B/C geometries are compatible under the isomorphism ψ.





Nomenclature

a{A}d Canonical basis element of Sn,d §2.2, page 17
a{A} Canonical basis element of K̇n §9.5, page 96
{A}d Canonical basis element of Sc

n,d §4.2, page 32

{A} Stably canonical basis element of K̇c
n §9.4, page 95

a[A] Standard basis element of K̇n §9.5, page 96
[A] Standard basis element of Sc

n,d §4.2, page 32

[A] Standard basis element of Sn,d §2.2, page 17

[A] Standard basis element of K̇c
n §9.4, page 93

A Ring of Laurent polynomials Z[v, v−1] §2.2, page 17[
a
b

]
Quantum v-binomial coefficient §2.2, page 18[

a
b

]
v,v′ Quantum (v, v′)-binomial coefficient §9.2, page 89

Ai,R,t Matrix obtained from A by shifting entries up
by one row §9.2, page 90

Ḃc
n Canonical basis of U̇c

n §6.4, page 59
co(A) Column sum vector of matrix A §2.2, page 16
¨ Bijection Ξn,d → Ξn̆,d whose inverse is dlt1 §9.1, page 85
Δc Comultiplication Sc

n,d → Sc
n,d′ ⊗ Sn,d′′ §5.3, page 46

Δc
b′,a′,b′′,a′′ Component of Δc sending

Sc
n,d(b, a) to Sc

n,d(b
′, a′)⊗ Sn,d′′(b′′, a′′) §9.3, page 93

Δc† Renormalized raw comultiplication
Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ §5.3, page 45
Δc Comultiplication Uc

n,∞ −→ Uc
n,∞ ⊗Un,∞ §6.1, page 54

Δ̇c Comultiplication of K̇c
n §9.6, page 98

Δ̇ Comultiplication of K̇n §9.5, page 96

Δ̃c Raw comultiplication Sc
n,d → Sc

n,d′ ⊗ Sn,d′′ §5.2, page 43

dep(A) Depth of matrix A §9.1, page 87
dlti Operation of deleting kth rows/columns

for k ≡ i mod n §7.3, page 67
Eij

θ n-periodic centrosymmetric elementary matrix §4.3, page 33
Eij n-periodic elementary matrix §2.2, page 17
fA;d Monomial basis element of Sc

n,d §9.1, page 86

fA Monomial basis element of K̇c
n §9.4, page 94

F Field of formal Laurent series k((ε)) §2.1, page 15
J0 Idempotent of type ıj in Sn,d §8.1, page 74
j0 Idempotent of type ıj in Sc

n,d §8.1, page 73
jn,d Monomorphism Sc

n,d → Sn,d §5.3, page 48
jn Monomorphism Uc

n → Un §6.1, page 54

117



118 Nomenclature

Jr,0 Idempotent of type ıı in Sn,d §8.4, page 78
jr,0 Idempotent of type ıı in Sc

n,d §8.4, page 77
Jr Idempotent of type jı in Sn,d §7.1, page 64
jr Idempotent of type jı in Sc

n,d §7.1, page 63

K̇c
n Stabilization algebra of affine type C §9.4, page 93

K̇ıı
η Stabilization algebra of type ıı §10.5, page 107

K̇ıj
n Stabilization algebra of type ıj §10.4, page 106

K̇jı
n Stabilization algebra of type jı §10.3, page 104

K̇n Stabilization algebra of affine type A §9.5, page 96
k Finite field of q elements §2.1, page 15
Λc
n,d Set of n-periodic symmetric tuples in NZ of size d §5.1, page 42

Λn,d Set of n-periodic tuples in NZ of size d §2.2, page 16
≤alg An algebraic partial order on Θn,d §2.2, page 18

m′
A Semi-monomial basis element of K̇c

n §9.4, page 94
(c,b) |= a ai = ci + bi + b−i for all i §9.3, page 93
b |= a ai = bi + b−i + δi,n + δi,r+1 for all 1 ≤ i ≤ n §5.4, page 49
n̆ = 2r̆ + 2 = n+ 2 §9.1, page 85
η = n− 1 = n− 2 = 2r §8.0, page 73
n = n− 1 = 2r + 1 §7.0, page 63
o Ring of formal power series k[[ε]] §2.1, page 15

pA Matrix A+ pIn §9.2, page 91

p̈A Matrix A+ p(In̆ − E1,1
θ,n̆) §9.2, page 89

φc
d,d−n Transfer map between Schur algebras of affine type C §6.1, page 53

φd,d−n Transfer map between Lusztig algebras of
affine type A §2.3, page 20

Πn,d Set of certain (0,1)-matrices of affine type C §3.2, page 25

Ψıı
η,d Surjection K̇ıı

η → Sıı
η,d §10.5, page 107

Ψıj
n,d Surjection K̇ıj

n → Sıj
n,d §10.4, page 107

Ψjı
n,d Surjection K̇jı

n → Sjı
n,d §10.3, page 105

Ψn,d Surjection K̇c
n → Sc

n,d §9.7, page 99
r̆ = r + 1 §9.1, page 85
R Algebra Q(v)[v′, v′−1] with bar involution §9.2, page 89
ρ Algebra imbedding Sc

n,d → Sc
n̆,d §9.1, page 85

ro(A) Row sum vector of matrix A §2.2, page 16
Sc
n,d(b, a) Subspace of Sc

n,d of shape (b, a) §5.3, page 45
Sc
n,d Schur algebra of affine type C §4.2, page 32

S̈c
n,d Subalgebra of Sc

n̆,d isomorphic to Sc
n,d §9.1, page 85

Sıı
η,d Schur algebra of type ıı §8.4, page 77

Sıj
n,d Schur algebra of type ıj §8.1, page 73

Sjı
n,d Schur algebra of type jı §7.1, page 63

Sn,d(b, a) Subspace of Sn,d of shape (b, a) §5.3, page 45
Sn,d Schur algebra of affine type A §2.2, page 17
cΣd Set of permutation matrices of affine type C §3.1, page 24
Σd Set of permutation matrices of affine type B §4.2, page 31
1
⊂,

1
⊃ Inclusions of codimension 1 §5.1, page 41

Θap
n,d Set of all aperiodic matrices in Θn,d §2.2, page 17
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Θıı
η,d Set of matrices in Θn,d whose

0th/r + 1th rows/columns are zero §8.4, page 78
Θıj

n,d Set of matrices in Θn,d whose 0th row/column
are zero §8.1, page 74

Θjı
n,d Set of matrices in Θn,d

whose r + 1st row/column are zero §7.1, page 64
Θn,d Set of n-periodic Z× Z N-matrices of size d §2.2, page 16

Θ̃n Enlarged matrix set from Θn by allowing
negative diagonal §9.5, page 96

U̇c
n Idempotented form of Uc

n §6.2, page 56
Uc

n,d Lusztig algebra of affine type C §5.1, page 41
Uc

n,∞ Projective limit of Lusztig algebras of affine type C §6.1, page 53
Uc

n Subalgebra of Uc
n,∞ generated by

the Chevalley generators §6.1, page 54
U̇n Idempotented form of Un §2.3, page 21

U̇(ŝln) Idempotented quantum affine sln §2.3, page 21
Uıı

η,d Lusztig algebra of type ıı §8.4, page 77

Uıj
n,∞ Projective limit of Lusztig algebras of type ıj §8.3, page 76

Uıj
n Subalgebra of Uıj

n,∞ generated by
the Chevalley generators §8.3, page 76

Ujı
n,d Lusztig algebra of type jı §7.1, page 64

Ujı
n,∞ Projective limit of Lusztig algebras of type jı §7.4, page 69

Ujı
n Subalgebra of Ujı

n,∞ generated by
the Chevalley generators §7.4, page 69

Un,d Lusztig algebra of affine type A §2.2, page 17
Un,∞ Projective limit of Lusztig algebras of affine type A §2.3, page 20
Un Subalgebra of Un,∞ generated by

the Chevalley generators §2.3, page 20

U(ŝln) Quantum affine sln §2.3, page 21
X c

n,d(a) Affine type C n-step partial flags of shape a §5.3, page 45
X c

n,d Lattice model of n-step partial flags of affine type C §3.2, page 25

Xn,d(a) Affine type A n-step partial flags of shape a §5.3, page 45
Xn,d Lattice model of n-step partial flags of affine type A §2.2, page 16
Ξap
n,d Set of aperiodic matrices in Ξn,d §5.4, page 49

Ξn,d Set of n-periodic centrosymmetric N-matrices
of size d of type B §4.2, page 30

cΞn,d Set of n-periodic centrosymmetric N-matrices
of size d of type C §3.2, page 26

Ξıı
η,d Set of matrices in Ξn,d whose

0th/r + 1th rows/columns are zero §8.4, page 77
Ξıj
n,d Set of matrices in Ξn,d

whose 0th row/column are zero §8.1, page 73
Ξjı
n,d Set of matrices in Ξn,d

whose r + 1st row/column are zero §7.1, page 63
Ξn,d(A) Set of matrices B in Θn,d such that co(B) |= co(A) §5.4, page 49

Ξ̃ap
n Set of aperiodic matrices in Ξ̃n §6.2, page 56

Ξ̃n,d Set of matrices of size d in Ξ̃n §6.2, page 56
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Ξ̃n Enlarged matrix set from Ξn by allowing
negative diagonal §6.2, page 56

Ya Lattice model of complete flags of affine type A §2.1, page 15
Yc Lattice model of complete flags of affine type C §3.1, page 24
ζaA Aperiodic monomial in Un,d associated to a matrix A §2.2, page 19
ζA Aperiodic monomial in Uc

n,d associated to a matrix A §5.4, page 49

Zn Set of n-periodic tuples in ZZ §2.3, page 21
Zc
n Set of n-periodic symmetric tuples in ZZ §6.2, page 56
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[GV93] V. Ginzburg and É. Vasserot, Langlands reciprocity for affine quantum groups of type
An, Internat. Math. Res. Notices 3 (1993), 67–85, DOI 10.1155/S1073792893000078.
MR1208827
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1268 Mircea Mustaţă and Mihnea Popa, Hodge Ideals, 2019

1267 Carles Broto, Jesper M. Møller, and Bob Oliver, Automorphisms of Fusion
Systems of Finite Simple Groups of Lie Type, 2019

1266 Christopher L. Douglas, Robert Lipshitz, and Ciprian Manolescu, Cornered
Heegaard Floer Homology, 2019

1265 Ethan Akin and Eli Glasner, WAP Systems and Labeled Subshifts, 2019

1264 Ines Kath and Martin Olbrich, Compact Quotients of Cahen-Wallach Spaces, 2019

1263 Chen Wan, A Local Relative Trace Formula for the Ginzburg-Rallis Model: The
Geometric Side, 2019
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