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Navigation Task inspired by Rodent Studies
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Abstract—We present a biologically-inspired computational
model of the rodent hippocampus based on recent studies of the
hippocampus showing that its longitudinal axis is involved in
complex spatial navigation. While both poles of the hippocampus,
i.e. septal (dorsal) and temporal (ventral), encode spatial
information; the septal area has traditionally been attributed
more to navigation and action selection; whereas the temporal
pole has been more involved with learning and motivation. In this
work we hypothesize that the septal-temporal organization of the
hippocampus axis also provides a multi-scale spatial
representation that may be exploited during complex rodent
navigation. To test this hypothesis, we developed a multi-scale
model of the hippocampus evaluated it with a simulated rat on a
multi-goal task, initially in a simplified environment, and then on
a more complex environment where multiple obstacles are
introduced. In addition to the hippocampus providing a spatial
representation of the environment, the model includes an actor-
critic framework for the motivated learning of the different tasks.

Keywords—spatial cognition, computational neuroscience,
neural networks, learning, navigation

I. INTRODUCTION

Spatial navigation in rodents has been studied for quite some
time suggesting the existence of a cognitive map in the rat’s
hippocampus [1-2]. The biological basis that supports the
cognitive map has received a lot of attention. However, how
this information is functionally used for navigational purposes
is not fully clear. This paper extends our understanding of
spatial navigation in rodents by developing new computational
models based on some of the latest rodent studies of the
hippocampus.

Many spatially tuned cells are found in the hippocampal
formation and related structures in rodents and other mammals.
In particular, place cells firing in the hippocampus are highly
correlated with the position of the animal in an allocentric frame
of reference [3]. In the enthorinal cortex, grid cells fire when
the animal is at the vertices of a grid laid out over the
environment [4]. Additionally, head direction cells signal the
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orientation of the animal’s head, also in an allocentric frame of
reference [5].

Classical studies have shown multi-scale activation field
gradients along the dorso-ventral (septo-temporal) axis of both
place cells and grid cells, with smaller place fields towards the
septal portions and larger fields towards the temporal portions
[6-7].

While there are multiple examples of single scale
computational models of spatial navigation inspired by rodent
studies of the hippocampus (e.g. [8-16]), limited work has been
devoted to exploring the navigational purpose of multi-scale
spatial representations in the hippocampus. In our previous
work [17-18], we analyzed a simple circular open maze to show
the theoretical advantages of larger scales of representation
during the learning of a simple single goal oriented task.

The goal of our new computational model is to evaluate the
role of different place field sizes in relation to the spatial
complexity of the environment. In particular, we extend our
previous computational model and navigation task from single
goal to multi-goal navigation based on our most recent
experimental studies also involving the introduction of
obstacles in the environment [19-20].

II. TASK AND METHODS

A rat is trained to learn a goal-oriented navigation task and then
perform a recall session on in modified environment where
obstacles are introduced [20-21]. Eight feeders or goals are laid
over a circular open field maze, where a LED light is placed
above each feeder as a cue used during leaning. Fig. 1a shows
the layout of the maze during training, and Fig. 1b shows the
introduction of obstacles during recall.

During each experiment, a subset of three feeders, known
as the set, are selected to give rewards, whereas the other ones
do not have reward (sugar water). The set of 3 feeders is fixed
throughout the experiment which consists of three different
phases:



1. A non-delayed cue phase where each feeder from the set
is randomly chosen and its associated light is flashed until
the rat feeds from it. This was repeated /00 times.

2. A delayed cue phase. The rat is allowed to go through the
feeders freely and without flashing cues. If too much time
passes without the rat feeding from one of the 3-feeder
target, one of the correct feeder lights is flashed until the
rat reaches it. This phase is executed until the rat
consecutively reaches 15 feeders from the set, with no
more than 2 cues and without making any mistake.

3. A delayed cue with obstacles phase that only differs from
the previous phase in that a set of obstacles is placed in the
environment. Obstacles consist on 12.5 cm wide barriers.
Some of them are put against the maze wall, whereas the
rest are placed towards the middle of the maze. Some of
the barriers near the wall are placed together to form a
bigger (25 cm) barrier.

Fig. 1. (left) The maze layout. Circles represent the feeders, with the
learning set represented in red. Black lines show the walls in the
environment. (right) A sample disposition of obstacles for the recall phase.
The interior black lines represent the obstacles.

III. MODEL

The computational model is shown in Fig. 2. The model is
based on a reinforcement learning architecture that uses
information provided by different brain regions in rodents:
hippocampus (HPC), subiculum (SUB) and prefrontal cortex
(PFC). The output of these regions is fed to a learning module
comprised by: ventral tegmental area (VTA), dorso-medial
striatum and ventral striatum (Nucleus Accumbens - NA).

PFC
Task Cells
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Agctor Critic

Hippocampus
Place Fields
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Final Action
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Head Direction Fields

Dorsolateral Striatum
Taxic Actions

Fig. 2. The figure shows the multi-scale computational model architecture
for spatial navigation.

Hippocampal place cells are modeled by having different
size activation fields along the longitudinal axis. The different
scales project output to a value estimating network, where

information is input to the nucleus accumbens (Nacc) and
relayed to the dopaminergic ventral tegmental area (VTA), and
to action selection structures, composed by the dorsomedial
striatum. The striatum also receives input from the PFC
indicating the current state of the task and from subicular head
direction cells. Dopaminergic error signals are projected to the
dorsomedial striatum, where they are used to learn the
associations between situations (stimulus) and actions
(response). Additionally, visual information drives a taxic
behavior module (dorsolateral striatum), and a still exploration
module. All action selection information converges to a
common structure for final action selection (Globus Pallidus),
made in a winner take all fashion. Red arrows indicate
connectivity, the thicker the arrow the stronger the connectivity.
The level of red indicates current activation for all units
(circles).

A. Place Cells

Place cells are modelled using a Gaussian kernel function
which, set to 0 outside the given radius, as illustrated by Fig. 3.
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Fig. 3. Illustration of a Gaussian kernel function modeling the place cell
activation field.

Equation (1) shows the kernel function.

0 if d>1 (1)
K@ =|
@ ed109 (@ otherwise
where:
e K(d) is the place field kernel function.
e  is a parameter smaller than 1 representing the
activation of a cell at its border.

To calculate the activation of a place cell, we first compute
the distance of the rat to the place cell’s center, and then we
apply the kernel to the calculated distance normalized by the
place cell’s radius of activation as shown in (2) and (3).

d; = |17 — %] @

d.
Pad) = K ©

where:
e X is the rat position
e X; is the center of place cell i.
e d; is the distance from the rat’s position to the center
of place cell i.
e 1; is the radius of activation of place cell i



e PC(;(d;) is the activation of place cell i

Fig. 4 illustrates the place-field Gaussian kernel function
for a place cell activation field. Notice that when the distance
to the center of the place cell is equal to the radius of activation
(d; =1;), then the activation of the cell is equal to «, i.e.
(PC(d;) = a). Furthermore, when the activation is larger than
the radius (d; > r;), the activation becomes null, i.e. (PC(d;) =
0).

The radius used for dorsal and ventral place cells is 0.068m
and 0.14m, respectively. This is based on [32], and scaled by
the ratio of the corresponding environment sizes.
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Fig. 4. Illustation of the place-field kernel function based on the rat
position ¥, its distance d; from the center ¥; of place cell i, where 7; is the
radius of activation for place cell i.

B. “Obstacle” Place Cells (OPC)

An important aspect of the new model is the addition of
obstacles to the environment. It has been observed that
obstacles impact place cell firing patterns in different ways,
including place cells being “silenced” when obstacles are found
within the cell’s field [22]. Placing obstacles also results in the
activation of “obstacle” cells (also referred to as “wall”,
“boundary”, or “barrier” cells), that fire only when an obstacle
is present [23-24]. Additionally, these types of cell have been
shown to affect place cell firing depending on which side of the
obstacle they fire.
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Fig. 5. Interaction between place fields and obstacles. Top row shows a
normal place cell (NPC) field before and after introducing an obstacle.
Bottom row shows an obstacle place cell (OPC) field before and after
introducing an obstacle.

Based on these findings, we take into consideration
“obstacle” place cells (OPC), when having obstacles in the
environment. In our model, “normal” place cells (NPC) are

considered cells whose activation is negatively modulated
when nearby obstacles are introduced. On the other hand, OPCs
are considered cells that activate only under the presence of
nearby obstacles. The interactions of these two types of cells
with an obstacle are illustrated in Fig. 5.

Fig. 6. Illustation of the kernel function modified by the presence of an
obsacle or wall, where d; is the shortest (orthogoal) distance from the
current rat position to the obstacle.

To model OPCs, the original equation for PCs is modified,
as shown in (4), by multiplying it with a modulator function,
described further on. The function takes as input the distance
from the rat to the nearest obstacle or wall, as well as the
distance between the rat and the place cell’s center (both
normalized by the PC radius). Fig. 6 illustrates the new
function.

d,—d; d
0PC(dy, dg) =my (<—,52) - P @

L

where
e OPC; is the function to calculate the firing rate of the
obstacle interactive place cell i.
e d, is the distance from the rat to the closest obstacle.
e m; is a function that modulates the activation of cell i
according to the distance to the closest obstacle.

The modulator function serves two objectives. First, it
prevents place cells from firing when an obstacle is located
between the rat and the place cell’s center. Second, it provides
the behavior for NPCs and OPCs. To accomplish the first
purpose, the function returns 0 when the distance to the PC’s
center is bigger than the distance to the closest obstacle. To
accomplish the second, the equation of the modulator differs for
NPCs and OPCs. For NPCs, it returns a sigmoid function that
decreases the closer the rat is to an obstacle, while for OPCs,
the modulator returns the product of two sigmoidal functions S
(one of them inverted) so that the cell only activates if close to
an obstacle. Equations (5) and (6) describe the modulator
function.

0 ifd;,, <0
St(d;,) if celli is NPC  (5)
S%(dy,) - (1 —53(d))) if cell i is OPC

m;(d,, dpy ) =
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where
e m; is the modulator function for cell i
e S¥ are linearly scaled sigmoid functions with different
parameters.
e a,a,asb,,b, by are constant parameters that
linearly scale the sigmoid functions.
e d;, and d; are the input parameters provided in Eq 4.

C. Head Direction Cells (HD)

Similarly to place cells, we model head direction cell (HD)
firing using the same Gaussian kernel shown in (1). To
calculate the activation of a HD cell, first we compute the
angular difference between the cell’s preferred direction and the
rat orientation as shown in (7). Then, this value is normalized
by the cell’s angular activation radius and used as input for the
kernel function as shown in (8). Fig. 7 illustrates the concept.

A= { |6 — 6] otherwise )
A
HD;(8) = K (5%) (8)

3

where

e 0, is the preferred direction for HD cell i.

e 0 is the rat’s orientation.

e Note that both 6 and 0; are assumed to be in the range
[—,m].

e A; is the angular difference between the rat’s
orientation and the cell’s preferred direction.

e  ar; is the angular activation radius for HD cell i

e  HD,; is the activation function for HD cell i.
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Fig. 7. Three head direction cells centered at 135°, 90° and 45° respectively.
The polar plots show the activation of each cell for all posible rat orientations.

D. Task Cells (TC)

Task Cells (TC), as referred to in this work, signal the currently
pursued sub-goal (e.g. feeder). This information is needed
given the multi-goal nature of the task. Namely, since there is
more than one goal, the navigational decisions to be performed
in a certain place depends on the currently pursued goal. This
aspect relates to the multiple map hypothesis [25] proposing
that some place cell activity depends not only on the location
but also on the current sub-task being carried out. We model the
tuning of place cells to the task using information coming from
the Pre-Frontal Cortex (PFC) and spatial information from the
striatum. This conforms with a multiple map hypothesis, but

multiple maps would be first found in the striatum, upon the
convergence of the place and state information. Equation (9)
describes the modeling of task cells.

(1 ifg=g;
6@ =y o, ©)

where
e TC:is the activation of the task cell i.
e g isthe current goal of the rat.
gi 1s the goal (feeder) associated to task cell i.

E. Striatal Cells (SC)

Striatal Cells (SC), both dorsal and ventral, receive inputs from
place cells (HPC), head direction cells (SUB) and task cells in
the Pre-Frontal Cortex (PFC). Each cell in the striatum is tuned
to respond to one cell of each input source. The cell is tuned to
the pursue of a particular goal, head direction and place. The
resulting activation of each striatal cell is computed as the
product of the corresponding place, head direction and task
cells' activities as shown in (10).

SC; = OPC;, - HDy, - TC,, (10)

where
e SC; is striatal cell i.
e OPCj, is the obstacle place cell associated to striatal

cell i.
* HDy, is the head direction cell associated to striatal

cell i.
e T( is the task cell associated to striatal cell i.

There are 400k striatal neurons in the model, each receiving
input from an individual place cell, an individual head direction
cell, and an individual task cell. From those cells, 200k receive
input exclusively from dorsal hippocampus place cells,
contributing only to action selection (dorsal striatum); 120k
receive input from both dorsal and ventral hippocampus place
cells and are split into action selection and value estimation
(mid striatum); and 80k receive input exclusively from ventral
hippocampus place cells, contributing to value estimation only
(ventral striatum — NAcc).

F. Locale Action Learning

Our model includes a locale learning module that learns a
function from where the rat performs the appropriate egocentric
actions, i.e. turn left/right, go forward, or eat. Since our locale
decisions are modulated by the task choice (the pursued goal),
we extend the concept of location to include non-spatial
aspects. A location is described by place X, heading 6, and goal
g, as shown in (11).

l=(%0,g8) (11)

Dopamine release has been related to reinforcement
learning and to a potential “error signal” [26]. However, this is
normally done in the context of a stimulus-response



conditioning task. In our model, we apply this idea but take the
striatal unit population code as our input, instead of a simple
stimulus. Then, the value of each combination of place, head
direction, and task state is slowly modified to reflect the
expected reward that the rat is going to obtain after departing
from that location.

We use the Actor Critic [27] architecture because it keeps
a separate representation for the value estimation module and
the action selection module. This accommodates our distributed
VTA-NA system for value estimation and dopamine release
modulation, and the dorso-medial striatum for locale action
selection.

Actor Critic methods also present a subtle advantage for
our task, as they learn from negative outcomes faster than other
off-policy reinforcement learning algorithms, such as Q-
Learning [28]. This is important because the task involves not
only learning how to arrive at the proper feeders, but also how
to avoid wasting time navigating towards incorrect ones. Since
our algorithm has to learn a population code, a modification of
the traditional Actor Critic algorithm was implemented, and
could be interpreted as RL over soft-states [29].

Equation (12) shows how the state value function is
computed for a given location.

om0 - (12)
VO =5 Zsa(l) v,

where
e V% isthe value function at time t.
l is a given location as defined in Eq 11.
SC; is the activation function for striatal cell i.
V¢ is the value associated to striatal cell i at time ¢

Equation (13) shows the calculation of the error signal.
e =Tpp1 TV Ville) = VI (13)

where
e ¢, is the error signal at time ¢t.
e [, and l,,, are the locations at times ¢t and t+ 1
respectively.
e T1;,, is the reward received at time t + 1.
e v is the discount factor.

Equations (14) and (15) describe how to update the state
and action values associated to each cell, respectively.

VIt =V 4+ a-SC(l,) - e, (14)
{Jflz ij‘i‘aSCl(lt)et (15)
where

e V! and V" are the state values associated to striatal
cell i at times t and ¢ + 1, respectively.

o  Qfjand Qf" are the action values associated to
striatal cell i, action j at time t and ¢ + 1,
respectively.

l; is the location at time t.

e, is the error signal at time ¢.

SC; is the activation function for striatal cell i.

a is a constant learning rate.

Equation (16) describes how these action values are used
in the action selection process by computing a set of votes for
each action j.

2iSCil)*Qf;

rivotes.() = =5 0

(16)
where
e 1l votes,(j) are the votes at time t for action j
computed from the action values.
e SC;(l,) is the value of striatal cell i at location [, .

e  Qf; is the action value associated to striatal cell
i action j at time t

Additionally, the Actor Critic algorithm was enhanced
with eligibility traces to improve the learning rate. Eligibility
traces maintain a notion of the past activity of each cell. Then,
upon unexpected changes in value estimation, not only the last
active cells are updated, but all cells that were active in the
recent past. Equations (17) and (18) show the update rule for
the eligibility traces, while (19) and (20) show the modified
update rule using the traces instead of the activation.

A = max(SC;(1,), B - A (17)

AL+ = ﬁ-lfjifat;taj (18)
Y max(SC; (L), B - A%;

l/'i”1=l/'f+a-/1§-et (19)

Fl=Qf+a- -2 e (20)
where

o A!is the eligibility trace associated to striatal cell i at
time t.

. Afj is the eligibility trace associated to striatal cell i,
action j at time t.

e [3is a constant that regulates the exponential rate of
decay of the traces.

G. HPC Layers and Connectivity

In the model, place cells are organized into layers, where each
layer contains cells with different activation place fields along
the longitudinal axis. Three layers are included in the model,
corresponding to septal, middle and temporal HPC, each
representing a different activation field size.



A distinction between dorsal and ventral striatum has been
suggested in the framework of reinforcement learning and the
actor critic implementation, where dorsal is associated with
stimulus-response learning (actor) and ventral to value learning
(critic) [30].

As previously shown in Fig. 2, septal cells are connected
only to the action selection module and temporal cells are
connected to the value estimation module, corresponding to the
dorsal and ventral striatum respectively. Each cell in the
intermediate layer is connected with each module with
probability 0.5.

H. Taxic Modules

Reinforcement learning algorithms usually devote a lot of time
to random exploration of the state-action space. In a
navigational task, this would correspond to a rat that moves
randomly with no directionality at all, until it learns a
reasonable policy. Rats, in general, show great directionality in
their movements while performing initial exploration. In the
model, we have incorporated three taxic modules to guide the
rat to visual stimuli:

e  The first taxic module guides the rat towards flashing
feeders. This module reflects prior knowledge that the
rat has about flashing feeders.

e The second taxic module guides the rat to non-flashing
feeders.

e The third module guides the rat to obstacle endpoints,
providing a way to navigate through a maze of
obstacles when no feeders are visible.

All three modules vote on each possible movement action
depending on the expected reward of getting to the given visual
stimulus. In addition, the votes are inversely proportional to the
number of steps it would take the rat to reach the feeder or
obstacle. Equation (21) summarizes the above:

taxic_votesk (j) = vry, + sry, * snf 21

where:

e taxic_votesf(j) are the votes for action j for taxic
module k at time ¢

e vr is a system parameter representing the expected
reward associated with the visual stimulus for taxic
module k.

e  s1y is a small negative reward given after each step to
account for the motion effort. The value differs for the
different taxic modules.

e snf represents the number of steps needed to reach the
stimulus associated to taxic module k, computed from
the angular and linear distance.

In addition to voting on each action, the feeder-related
taxic modules contribute to value estimation of a given place or
situation by modifying the error signal, as described in and (22)
and (23).

Vi = max taxic_ votesk (j) (22)
J

er =ef' + (yr-VEH —Vf) (23)
where

e ]! is the reinforcement learning error.
ey is adiscount factor for the taxic value.

e It is a state value estimation computed from the
taxic modules.

If the rat is seeing a flashing feeder, the value of that
location will be increased by the expected value of going to the
flashing feeder. Value is also estimated using a constant
expectancy, while also considering the number of steps it would
take to reach the interest point. This allows the rat to learn the
positive outcome of an action that takes it to a “promising
place” where a feeder is first observed, before receiving the
actual reward. In addition, this allows for detecting the negative
outcome of trying to eat from a feeder without success. It is the
contrast between the high value estimated by the taxic module
and the zero outcome what produces a high error signal (or
decay in dopamine release) upon failure.

1. Exploration

In contrast to what is usually done with RL algorithms, there is
no continuous exploration drive built into the model; the rat
learns the proper actions by navigating using the taxic strategies
and observing their outcomes.

However, some situations arise in which the system as a
whole cannot propose any action. This may happen due to the
lack of visual stimulus, or due to a negative value estimation of
all action outcomes by the actor critic or by a combination of
both (the system only chooses positive valued actions).

In these cases, after the rat has been still for a certain
number of simulation steps, an exploratory module takes over
for a fixed and small number of steps, where the rat executes
random actions.

J. Action Selection

Action selection is performed in a collaborative fashion through
a voting mechanism, which instantiates the action selection
mechanism of the Globus Pallidus. Then, all votes are tallied
and the action with the most votes wins, in a winner take all
fashion.

The step size for forward actions was 0.05 meters in the
model, and the turn angle was 1/16 for rotations. Note that all
actions are egocentric.

IV. RESULTS

Figs. 8 and 9 show the paths traveled by the simulated rat during
learning and recall, respectively. The recall session includes
obstacles in the environment.



(a (b)
Fig. 8. Paths followed by the simulated rat during training for different rat
groups. The green dots signal a successful eat attempt, whereas the red ones
signal an unsuccessful one. Panels show: (a) a typical non-delayed cue training
session; (b) a typical delayed cue training session.

(b)

Fig. 9. Paths followed by the simulated rat during recall for different rat
groups. The green dots signal a successful eat attempt, whereas the red ones
signal an unsuccessful one. Panels show: (a) a delayed cue with obstacle session
for the control group; (b) a delayed cue with obstacle session for the septal
group; and (c) a delayed cue with obstacle session for the temporal group.
Delayed cue paths were chosen from the individual with the performance
closest to its group median.

Fig. 10 shows a boxplot [31] with the completion times in
seconds for the delayed cued phase with small obstacles. The
“Temporal” and “Septal” groups represent partial deactivation
of the temporal and septal groups, respectively.

A Kruskal-Wallis test was performed over the data and
significant differences were found (p < 0.0001). A Dunn test
post-hoc pairwise comparison was made. Significant difference
was found between groups Control and Septal (p < 0.05) and
Control and Temporal (p < 0.001). No significant difference
was found between Septal and Temporal completion times.
Group
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9000 - Temporal
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Fig. 10. Completion times for the delayed cue with small obstacles for all three
groups over 64 individuals. The septal portion of the HPC was inactivated in
the Septal group and the temporal portion in the Temporal. The plot shows
boxplots using the 1.5 1Q outlier criteria.

We note how deactivation of either the septal or temporal
groups results in a lower performance than the control group
(no inactivation). Additionally, inactivation of the temporal
group results in a lower performance than the inactivation of
the septal group.

Fig. 11 shows the evolution of completion times for
different values of the eligibility traces decay system parameter
A. Each panel shows the resulting completion times for a given
value of the parameter. As eligibility traces decay faster (lower
values), performance decreases for all groups. In addition, as
the traces decay faster, the difference between groups becomes
more apparent. The ventral group is notably more impaired
under fast decaying traces conditions.
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Fig. 11. Completion times in seconds for the delayed cue phase with obstacles
while varying the eligibility traces decay parameter (top x axis).

V. DISCUSSION AND CONCLUSIONS

We presented a model of rat spatial navigation using
reinforcement learning to find and memorize a subset of correct
feeders. The model is able to reproduce data from experiments
with rodents involving multiple goals and obstacles. Results are
consistent with rat experimental data based on similar protocols
where both septal and temporal inactivation impair the animal’s
performance, with the latter group showing the most
impairments [19-20]. The model also shows how a
differentiation of functions along the longitudinal axis of the
hippocampus could explain the differences in performance
observed, where the septal portion of the hippocampus is
attributed the function of action selection and the temporal
portion is involved in mapping locations to value.

Additionally, it can be observed that obstacle based place
field inhibition provides two navigational advantages. In the first
place, the disappearance of previous place cells and the
appearance of new obstacle cells disrupt the learned policy. This
prevents the rat from trying to execute a policy that is no longer
consistent with the environment, because of an obstacle.
Secondly, by allowing cells to fire only on one side of the
obstacle, previously learned values do not propagate to regions
that are no longer close to the place cell center. The introduction
of the obstacle changes the distance the rat must travel from one
point to the other, and it is useful that the value mapping changes
as well.



In the future we plan to evaluate the model with varying
obstacles configurations, environment sizes, and navigation
learning tasks. We also plan to evaluate these tasks in physical
robotic platforms to analyze the effect of real-time aspects of
the environment.
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