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Abstract—We present a biologically-inspired computational 

model of the rodent hippocampus based on recent studies of the 
hippocampus showing that its longitudinal axis is involved in 
complex spatial navigation. While both poles of the hippocampus, 
i.e. septal (dorsal) and temporal (ventral), encode spatial 
information; the septal area has traditionally been attributed 
more to navigation and action selection; whereas the temporal 
pole has been more involved with learning and motivation. In this 
work we hypothesize that the septal-temporal organization of the 
hippocampus axis also provides a multi-scale spatial 
representation that may be exploited during complex rodent 
navigation. To test this hypothesis, we developed a multi-scale 
model of the hippocampus evaluated it with a simulated rat on a 
multi-goal task, initially in a simplified environment, and then on 
a more complex environment where multiple obstacles are 
introduced. In addition to the hippocampus providing a spatial 
representation of the environment, the model includes an actor-
critic framework for the motivated learning of the different tasks. 

Keywords—spatial cognition, computational neuroscience, 
neural networks, learning, navigation 

I. INTRODUCTION 
Spatial navigation in rodents has been studied for quite some 
time suggesting the existence of a cognitive map in the rat’s 
hippocampus [1-2]. The biological basis that supports the 
cognitive map has received a lot of attention. However, how 
this information is functionally used for navigational purposes 
is not fully clear. This paper extends our understanding of 
spatial navigation in rodents by developing new computational 
models based on some of the latest rodent studies of the 
hippocampus. 

Many spatially tuned cells are found in the hippocampal 
formation and related structures in rodents and other mammals. 
In particular, place cells firing in the hippocampus are highly 
correlated with the position of the animal in an allocentric frame 
of reference [3]. In the enthorinal cortex, grid cells fire when 
the animal is at the vertices of a grid laid out over the 
environment [4]. Additionally, head direction cells signal the 

orientation of the animal’s head, also in an allocentric frame of 
reference [5]. 

Classical studies have shown multi-scale activation field 
gradients along the dorso-ventral (septo-temporal) axis of both 
place cells and grid cells, with smaller place fields towards the 
septal portions and larger fields towards the temporal portions 
[6-7].  

While there are multiple examples of single scale 
computational models of spatial navigation inspired by rodent 
studies of the hippocampus (e.g. [8-16]), limited work has been 
devoted to exploring the navigational purpose of multi-scale 
spatial representations in the hippocampus. In our  previous 
work [17-18], we analyzed a simple circular open maze to show 
the theoretical advantages of larger scales of representation 
during the learning of a simple single goal oriented task. 

The goal of our new computational model is to evaluate the 
role of different place field sizes in relation to the spatial 
complexity of the environment. In particular, we extend our 
previous computational model and navigation task from single 
goal to multi-goal navigation based on our most recent 
experimental studies also involving the introduction of 
obstacles in the environment [19-20].  

II. TASK AND METHODS 
A rat is trained to learn a goal-oriented navigation task and then 
perform a recall session on in modified environment where 
obstacles are introduced [20-21]. Eight feeders or goals are laid 
over a circular open field maze, where a LED light is placed 
above each feeder as a cue used during leaning. Fig. 1a shows 
the layout of the maze during training, and Fig. 1b shows the 
introduction of obstacles during recall. 

During each experiment, a subset of three feeders, known 
as the set, are selected to give rewards, whereas the other ones 
do not have reward (sugar water). The set of 3 feeders is fixed 
throughout the experiment which consists of three different 
phases: 
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1. A non-delayed cue phase where each feeder from the set 
is randomly chosen and its associated light is flashed until 
the rat feeds from it. This was repeated 100 times.  

2. A delayed cue phase. The rat is allowed to go through the 
feeders freely and without flashing cues. If too much time 
passes without the rat feeding from one of the 3-feeder 
target, one of the correct feeder lights is flashed until the 
rat reaches it. This phase is executed until the rat 
consecutively reaches 15 feeders from the set, with no 
more than 2 cues and without making any mistake. 

3. A delayed cue with obstacles phase that only differs from 
the previous phase in that a set of obstacles is placed in the 
environment. Obstacles consist on 12.5 cm wide barriers. 
Some of them are put against the maze wall, whereas the 
rest are placed towards the middle of the maze. Some of 
the barriers near the wall are placed together to form a 
bigger (25 cm) barrier. 

 
Fig. 1. (left) The maze layout. Circles represent the feeders, with the 
learning set represented in red. Black lines show the walls in the 
environment. (right) A sample disposition of obstacles for the recall phase. 
The interior black lines represent the obstacles. 

III. MODEL 
The computational model is shown in Fig. 2. The model is 
based on a reinforcement learning architecture that uses 
information provided by different brain regions in rodents: 
hippocampus (HPC), subiculum (SUB) and prefrontal cortex 
(PFC). The output of these regions is fed to a learning module 
comprised by: ventral tegmental area (VTA), dorso-medial 
striatum and ventral striatum (Nucleus Accumbens - NA).  

 

Fig. 2. The figure shows the multi-scale computational model architecture 
for spatial navigation.  

Hippocampal place cells are modeled by having different 
size activation fields along the longitudinal axis. The different 
scales project output to a value estimating network, where 

information is input to the nucleus accumbens (Nacc) and 
relayed to the dopaminergic ventral tegmental area (VTA), and 
to action selection structures, composed by the dorsomedial 
striatum. The striatum also receives input from the PFC 
indicating the current state of the task and from subicular head 
direction cells. Dopaminergic error signals are projected to the 
dorsomedial striatum, where they are used to learn the 
associations between situations (stimulus) and actions 
(response). Additionally, visual information drives a taxic 
behavior module (dorsolateral striatum), and a still exploration 
module. All action selection information converges to a 
common structure for final action selection (Globus Pallidus), 
made in a winner take all fashion. Red arrows indicate 
connectivity, the thicker the arrow the stronger the connectivity. 
The level of red indicates current activation for all units 
(circles).  

A. Place Cells  
Place cells are modelled using a Gaussian kernel function 
which, set to 0 outside the given radius, as illustrated by Fig. 3.  

 
Fig. 3. Illustration of a Gaussian kernel function modeling the place cell 
activation field. 

Equation (1) shows the kernel function. 

𝐾(𝑑) = &0																				if					𝑑 > 1	
𝑒./⋅123	(4)				otherwise

 (1) 

where: 
• 𝐾(𝑑) is the place field kernel function. 
• 𝛼  is a parameter smaller than 1 representing the 

activation of a cell at its border. 
 

To calculate the activation of a place cell, we first compute 
the distance of the rat to the place cell’s center, and then we 
apply the kernel to the calculated distance normalized by the 
place cell’s radius of activation as shown in (2) and (3). 

𝑑= = >|𝑥 − 𝑥=|> (2) 

𝑃𝐶=(𝑑=) = 𝐾(
𝑑=
𝑟=
)	 (3) 

where: 
• 𝑥 is the rat position 
• 𝑥= is the center of place cell 𝑖. 
• 𝑑= is the distance from the rat’s position to the center 

of place cell 𝑖. 
• 𝑟= is the radius of activation of place cell 𝑖 

a) b)



• 𝑃𝐶=(𝑑=) is the activation of place cell 𝑖 
 

Fig. 4 illustrates the place-field Gaussian kernel function 
for a place cell activation field. Notice that when the distance 
to the center of the place cell is equal to the radius of activation 
(𝑑= = 𝑟=) , then the activation of the cell is equal to 𝛼 , i.e. 
(𝑃𝐶(𝑑=) = 𝛼). Furthermore, when the activation is larger than 
the radius (𝑑= > 𝑟=), the activation becomes null, i.e. (𝑃𝐶(𝑑=) =
0). 

The radius used for dorsal and ventral place cells is 0.068m 
and 0.14m, respectively. This is based on [32], and scaled by 
the ratio of the corresponding environment sizes. 

 
 

Fig. 4. Illustation of the place-field kernel function based on the rat 
position 𝑥⃗, its distance 𝑑=  from the center 𝑥⃗= of place cell i, where 𝑟= is the 
radius of activation for place cell i. 

B. “Obstacle” Place Cells (OPC) 
An important aspect of the new model is the addition of 
obstacles to the environment. It has been observed that 
obstacles impact place cell firing patterns in different ways, 
including place cells being “silenced” when obstacles are found 
within the cell’s field [22]. Placing obstacles also results in the 
activation of “obstacle” cells (also referred to as “wall”, 
“boundary”, or “barrier” cells), that fire only when an obstacle 
is present [23-24].  Additionally, these types of cell have been 
shown to affect place cell firing depending on which side of the 
obstacle they fire.  

 
Fig. 5. Interaction between place fields and obstacles. Top row shows a 
normal place cell (NPC) field before and after introducing an obstacle. 
Bottom row shows an obstacle place cell (OPC) field before and after 
introducing an obstacle.  

Based on these findings, we take into consideration 
“obstacle” place cells (OPC), when having obstacles in the 
environment. In our model, “normal” place cells (NPC) are 

considered cells whose activation is negatively modulated 
when nearby obstacles are introduced. On the other hand, OPCs 
are considered cells that activate only under the presence of 
nearby obstacles. The interactions of these two types of cells 
with an obstacle are illustrated in Fig. 5. 

 
 

Fig. 6. Illustation of the kernel function modified by the presence of an 
obsacle or wall, where 𝑑G  is the shortest (orthogoal) distance from the 
current rat position to the obstacle. 

To model OPCs, the original equation for PCs is modified, 
as shown in (4), by multiplying it with a modulator function, 
described further on. The function takes as input the distance 
from the rat to the nearest obstacle or wall, as well as the 
distance between the rat and the place cell’s center (both 
normalized by the PC radius). Fig. 6 illustrates the new 
function. 

 

𝑂𝑃𝐶=(𝑑=, 𝑑2) = 𝑚= K
𝑑2 − 𝑑=
𝑟=

,
𝑑2
𝑟=
L ∙ 𝑃𝐶=(𝑑=) (4) 

 
where 

• 𝑂𝑃𝐶= is the function to calculate the firing rate of the 
obstacle interactive place cell 𝑖. 

• 𝑑2 is the distance from the rat to the closest obstacle. 
• 𝑚= is a function that modulates the activation of cell 𝑖 

according to the distance to the closest obstacle. 
 
The modulator function serves two objectives. First, it 

prevents place cells from firing when an obstacle is located 
between the rat and the place cell’s center. Second, it provides 
the behavior for NPCs and OPCs. To accomplish the first 
purpose, the function returns 0 when the distance to the PC’s 
center is bigger than the distance to the closest obstacle. To 
accomplish the second, the equation of the modulator differs for 
NPCs and OPCs. For NPCs, it returns a sigmoid function that 
decreases the closer the rat is to an obstacle, while for OPCs, 
the modulator returns the product of two sigmoidal functions S 
(one of them inverted) so that the cell only activates if close to 
an obstacle. Equations (5) and (6) describe the modulator 
function. 

 

𝑚=(𝑑=2, 𝑑2N 	) = O
0																																									if	𝑑=2 ≤ 0									
𝑆R(𝑑=2)																													if	cell	𝑖	is	NPC
𝑆X(𝑑=2) ∙ Y1 − 𝑆Z(𝑑2N )[		if	cell	𝑖	is	OPC

    (5) 

 

𝑥⃗ 

𝑑= 

𝑥⃗= 𝑟= 𝑥⃗

𝑑2  𝑑=  

𝑟= 



𝑆](𝑑) = R
R^_`ab⋅cdeb

             (6) 
 
where 

• 𝑚= is the modulator function for cell 𝑖 
• 𝑆] are linearly scaled sigmoid functions with different 

parameters. 
• 𝑎R, 𝑎X, 𝑎Z, 𝑏R, 𝑏X, 𝑏Z  are constant parameters that 

linearly scale the sigmoid functions. 
• 𝑑=2 and 𝑑2N  are the input parameters provided in Eq 4. 

C. Head Direction Cells (HD) 
Similarly to place cells, we model head direction cell (HD) 
firing using the same Gaussian kernel shown in (1). To 
calculate the activation of a HD cell, first we compute the 
angular difference between the cell’s preferred direction and the 
rat orientation as shown in (7). Then, this value is normalized 
by the cell’s angular activation radius and used as input for the 
kernel function as shown in (8). Fig. 7 illustrates the concept. 
 

Δ= = &2𝜋 − |𝜃 − 𝜃=| if	|𝜃 − 𝜃=| > 𝜋
|𝜃 − 𝜃=| otherwise   (7) 

 
𝐻𝐷=(∆=) = 𝐾 o ∆p

qrp
s    (8) 

 
where 

• 𝜃= is the preferred direction for HD cell i. 
• 𝜃 is the rat’s orientation. 
• Note that both 𝜃 and 𝜃= are assumed to be in the range 

[−π	, π]. 
• Δx  is the angular difference between the rat’s 

orientation and the cell’s preferred direction. 
• 𝑎𝑟= is the angular activation radius for HD cell 𝑖 
• 𝐻𝐷= is the activation function for HD cell 𝑖. 

 

 
Fig. 7. Three head direction cells centered at 135o, 90o and 45o respectively. 
The polar plots show the activation of each cell for all posible rat orientations. 

D. Task Cells (TC) 
Task Cells (TC), as referred to in this work, signal the currently 
pursued sub-goal (e.g. feeder). This information is needed 
given the multi-goal nature of the task. Namely, since there is 
more than one goal, the navigational decisions to be performed 
in a certain place depends on the currently pursued goal. This 
aspect relates to the multiple map hypothesis [25] proposing 
that some place cell activity depends not only on the location 
but also on the current sub-task being carried out. We model the 
tuning of place cells to the task using information coming from 
the Pre-Frontal Cortex (PFC) and spatial information from the 
striatum. This conforms with a multiple map hypothesis, but 

multiple maps would be first found in the striatum, upon the 
convergence of the place and state information. Equation (9) 
describes the modeling of task cells. 
 

𝑇𝐶=(𝑔) = &1 if	𝑔 = 𝑔=
0 if	𝑔 ≠ 𝑔=

   (9) 

 
where 

• TCi is the activation of the task cell i. 
• 𝑔 is the current goal of the rat. 
• 𝑔= is the goal (feeder) associated to task cell i. 

E.  Striatal Cells (SC) 
Striatal Cells (SC), both dorsal and ventral, receive inputs from 
place cells (HPC), head direction cells (SUB) and task cells in 
the Pre-Frontal Cortex (PFC). Each cell in the striatum is tuned 
to respond to one cell of each input source. The cell is tuned to 
the pursue of a particular goal, head direction and place. The 
resulting activation of each striatal cell is computed as the 
product of the corresponding place, head direction and task 
cells' activities as shown in (10). 

 
𝑆𝐶= = 𝑂𝑃𝐶|p ∙ 𝐻𝐷𝑘𝑖 ∙ 𝑇𝐶𝑙𝑖  (10) 

 
where 

• 𝑆𝐶= is striatal cell 𝑖. 
• 𝑂𝑃𝐶|p is the obstacle place cell associated to striatal 

cell 𝑖. 
• 𝐻𝐷]p  is the head direction cell associated to striatal 

cell 𝑖. 
• 𝑇𝐶1p is the task cell associated to striatal cell 𝑖. 

 
There are 400k striatal neurons in the model, each receiving 

input from an individual place cell, an individual head direction 
cell, and an individual task cell. From those cells, 200k receive 
input exclusively from dorsal hippocampus place cells, 
contributing only to action selection (dorsal striatum); 120k 
receive input from both dorsal and ventral hippocampus place 
cells and are split into action selection and value estimation 
(mid striatum); and 80k receive input exclusively from ventral 
hippocampus place cells,  contributing to value estimation only 
(ventral striatum – NAcc). 

F. Locale Action Learning 
Our model includes a locale learning module that learns a 
function from where the rat performs the appropriate egocentric 
actions, i.e. turn left/right, go forward, or eat. Since our locale 
decisions are modulated by the task choice (the pursued goal), 
we extend the concept of location to include non-spatial 
aspects. A location is described by place xÄ⃗ , heading θ, and goal 
g, as shown in (11).  
 

𝑙 = (𝑥, 𝜃, g) (11) 
 

Dopamine release has been related to reinforcement 
learning and to a potential “error signal” [26]. However, this is 
normally done in the context of a stimulus-response 



conditioning task. In our model, we apply this idea but take the 
striatal unit population code as our input, instead of a simple 
stimulus. Then, the value of each combination of place, head 
direction, and task state is slowly modified to reflect the 
expected reward that the rat is going to obtain after departing 
from that location.  

We use the Actor Critic [27] architecture because it keeps 
a separate representation for the value estimation module and 
the action selection module. This accommodates our distributed 
VTA-NA system for value estimation and dopamine release 
modulation, and the dorso-medial striatum for locale action 
selection. 

Actor Critic methods also present a subtle advantage for 
our task, as they learn from negative outcomes faster than other 
off-policy reinforcement learning algorithms, such as Q-
Learning [28].  This is important because the task involves not 
only learning how to arrive at the proper feeders, but also how 
to avoid wasting time navigating towards incorrect ones. Since 
our algorithm has to learn a population code, a modification of 
the traditional Actor Critic algorithm was implemented, and 
could be interpreted as RL over soft-states [29].  

Equation (12) shows how the state value function is 
computed for a given location. 
 

𝑉Ñ(𝑙) =
1

∑ 𝑆𝐶=(𝑙)=
⋅Ü𝑆𝐶=(𝑙) ∗ 𝑉=Ñ

=

 (12) 

 
where 

• 𝑉Ñ  is the value function at time 𝑡. 
• 𝑙 is a given location as defined in Eq 11. 
• 𝑆𝐶= is the activation function for striatal cell 𝑖. 
• 𝑉=Ñ  is the value associated to striatal cell 𝑖 at time 𝑡 

 
Equation (13) shows the calculation of the error signal. 

 
𝑒Ñ = 𝑟Ñ^R + 𝛾 ⋅ 𝑉Ñ(𝑙Ñ^R) − 𝑉Ñ(𝑙Ñ) (13) 

 
where 

• 𝑒Ñ is the error signal at time 𝑡. 
• 𝑙Ñ  and 𝑙Ñ^R  are the locations at times 𝑡  and 𝑡 + 1 

respectively. 
• 𝑟Ñ^R is the reward received at time 𝑡 + 1. 
• 𝛾 is the discount factor. 

 
Equations (14) and (15) describe how to update the state 

and action values associated to each cell, respectively. 
 

𝑉=Ñ^R = 𝑉=Ñ + 𝛼 ⋅ 𝑆𝐶=(𝑙Ñ) ⋅ 𝑒Ñ (14) 
 

𝑄=|Ñ^R = 	𝑄=|Ñ + 𝛼 ⋅ 𝑆𝐶=(𝑙Ñ) ⋅ 𝑒Ñ (15) 
 
where 

• 𝑉=Ñ  and 𝑉=Ñ^R are the state values associated to striatal 
cell 𝑖 at times 𝑡 and t + 1, respectively. 

• 𝑄=|Ñ  and 𝑄=|Ñ^R are the action values associated to 
striatal cell 𝑖, action 𝑗 at time 𝑡 and t + 1, 
respectively. 

• 𝑙Ñ  is the location at time 𝑡. 
• 𝑒Ñ is the error signal at time 𝑡. 
• 𝑆𝐶= is the activation function for striatal cell 𝑖. 
• 𝛼 is a constant learning rate. 

 
Equation (16) describes how these action values are used 

in the action selection process by computing a set of votes for 
each action 𝑗. 

 

𝑟𝑙_𝑣𝑜𝑡𝑒𝑠Ñ(𝑗) =
∑ ëíp(1ì)∗îpï

ì
p

∑ ëíp(1ì)p
   (16) 

 
where 

• 𝑟𝑙_𝑣𝑜𝑡𝑒𝑠Ñ(𝑗) are the votes at time 𝑡 for action 𝑗 
computed from the action values. 

• 𝑆𝐶=(𝑙Ñ) is the value of striatal cell 𝑖 at location 𝑙Ñ	. 
• 𝑄=|Ñ 	is the action value associated to striatal cell 

𝑖	action 𝑗 at time 𝑡  
 
Additionally, the Actor Critic algorithm was enhanced 

with eligibility traces to improve the learning rate. Eligibility 
traces maintain a notion of the past activity of each cell. Then, 
upon unexpected changes in value estimation, not only the last 
active cells are updated, but all cells that were active in the 
recent past. Equations (17) and (18) show the update rule for 
the eligibility traces, while (19) and (20) show the modified 
update rule using the traces instead of the activation.  

 
𝜆𝑖𝑡+1 = max(𝑆𝐶𝑖(𝑙𝑡), β ⋅ λit) (17) 

  

𝜆=|Ñ^R = õ
𝛽 ⋅ 𝜆=|Ñ 	if		𝑎Ñ ≠ 𝑎|

𝑚𝑎𝑥(𝑆𝐶=(𝑙Ñ), 𝛽 ⋅ 𝜆=|Ñ )	
 (18) 

 

  
𝑉=Ñ^R = 𝑉=Ñ + 𝛼 ⋅ 𝜆=Ñ ⋅ 𝑒Ñ (19) 

 
𝑄=|Ñ^R = 	𝑄=|Ñ + 𝛼 ⋅ 𝜆=|Ñ ⋅ 𝑒Ñ (20) 

where 
• 𝜆𝑖𝑡 is the eligibility trace associated to striatal cell 𝑖	at 

time 𝑡. 
• 𝜆=|Ñ  is the eligibility trace associated to striatal cell 𝑖, 

action 𝑗 at time 𝑡. 
• 𝛽 is a constant that regulates the exponential rate of 

decay of the traces. 

G. HPC Layers and Connectivity 
In the model, place cells are organized into layers, where each 
layer contains cells with different activation place fields along 
the longitudinal axis. Three layers are included in the model, 
corresponding to septal, middle and temporal HPC, each 
representing a different activation field size.  



A distinction between dorsal and ventral striatum has been 
suggested in the framework of reinforcement learning and the 
actor critic implementation, where dorsal is associated with 
stimulus-response learning (actor) and ventral to value learning 
(critic) [30]. 

As previously shown in Fig. 2, septal cells are connected 
only to the action selection module and temporal cells are 
connected to the value estimation module, corresponding to the 
dorsal and ventral striatum respectively. Each cell in the 
intermediate layer is connected with each module with 
probability 0.5. 

H. Taxic Modules 
Reinforcement learning algorithms usually devote a lot of time 
to random exploration of the state-action space. In a 
navigational task, this would correspond to a rat that moves 
randomly with no directionality at all, until it learns a 
reasonable policy. Rats, in general, show great directionality in 
their movements while performing initial exploration. In the 
model, we have incorporated three taxic modules to guide the 
rat to visual stimuli:  

• The first taxic module guides the rat towards flashing 
feeders. This module reflects prior knowledge that the 
rat has about flashing feeders. 

• The second taxic module guides the rat to non-flashing 
feeders.  

• The third module guides the rat to obstacle endpoints, 
providing a way to navigate through a maze of 
obstacles when no feeders are visible. 

All three modules vote on each possible movement action 
depending on the expected reward of getting to the given visual 
stimulus. In addition, the votes are inversely proportional to the 
number of steps it would take the rat to reach the feeder or 
obstacle. Equation (21) summarizes the above:  

 
𝑡𝑎𝑥𝑖𝑐_𝑣𝑜𝑡𝑒𝑠Ñ]	(𝑗) = 𝑣𝑟] + 𝑠𝑟] ∗ 𝑠𝑛Ñ] (21) 

 
where: 

• 𝑡𝑎𝑥𝑖𝑐_𝑣𝑜𝑡𝑒𝑠Ñ](𝑗)  are the votes for action 𝑗  for taxic 
module 𝑘 at time 𝑡 

• 𝑣𝑟]  is a system parameter representing the expected 
reward associated with the visual stimulus for taxic 
module 𝑘. 

• 𝑠𝑟]  is a small negative reward given after each step to 
account for the motion effort. The value differs for the 
different taxic modules. 

• 𝑠𝑛Ñ] represents the number of steps needed to reach the 
stimulus associated to taxic module 𝑘, computed from 
the angular and linear distance. 

 
In addition to voting on each action, the feeder-related 

taxic modules contribute to value estimation of a given place or 
situation by modifying the error signal, as described in and (22) 
and (23).  

 

𝑉üÑ = max
],|

		𝑡𝑎𝑥𝑖𝑐_	𝑣𝑜𝑡𝑒𝑠Ñ](𝑗)		 (22) 
 

𝑒Ñ = 𝑒Ñr1	 + (𝛾ü ⋅ 𝑉üÑ^R − 𝑉üÑ)	 (23) 

where 
• 𝑒Ñr1 is the reinforcement learning error. 
• 𝛾ü  is a discount factor for the taxic value. 

• 𝑉üÑ  is a state value estimation computed from the 
taxic modules. 

If the rat is seeing a flashing feeder, the value of that 
location will be increased by the expected value of going to the 
flashing feeder. Value is also estimated using a constant 
expectancy, while also considering the number of steps it would 
take to reach the interest point. This allows the rat to learn the 
positive outcome of an action that takes it to a “promising 
place” where a feeder is first observed, before receiving the 
actual reward. In addition, this allows for detecting the negative 
outcome of trying to eat from a feeder without success. It is the 
contrast between the high value estimated by the taxic module 
and the zero outcome what produces a high error signal (or 
decay in dopamine release) upon failure.  

I. Exploration 
In contrast to what is usually done with RL algorithms, there is 
no continuous exploration drive built into the model; the rat 
learns the proper actions by navigating using the taxic strategies 
and observing their outcomes. 

However, some situations arise in which the system as a 
whole cannot propose any action. This may happen due to the 
lack of visual stimulus, or due to a negative value estimation of 
all action outcomes by the actor critic or by a combination of 
both (the system only chooses positive valued actions). 

In these cases, after the rat has been still for a certain 
number of simulation steps, an exploratory module takes over 
for a fixed and small number of steps, where the rat executes 
random actions. 

J. Action Selection 
Action selection is performed in a collaborative fashion through 
a voting mechanism, which instantiates the action selection 
mechanism of the Globus Pallidus. Then, all votes are tallied 
and the action with the most votes wins, in a winner take all 
fashion. 

The step size for forward actions was 0.05 meters in the 
model, and the turn angle was π/16 for rotations. Note that all 
actions are egocentric. 

IV. RESULTS 
Figs. 8 and 9 show the paths traveled by the simulated rat during 
learning and recall, respectively. The recall session includes 
obstacles in the environment. 



 
Fig. 8. Paths followed by the simulated rat during training for different rat 
groups. The green dots signal a successful eat attempt, whereas the red ones 
signal an unsuccessful one. Panels show: (a) a typical non-delayed cue training 
session; (b) a typical delayed cue training session. 

 
Fig. 9. Paths followed by the simulated rat during recall for different rat 
groups. The green dots signal a successful eat attempt, whereas the red ones 
signal an unsuccessful one. Panels show: (a) a delayed cue with obstacle session 
for the control group; (b) a delayed cue with obstacle session for the septal 
group; and (c) a delayed cue with obstacle session for the temporal group. 
Delayed cue paths were chosen from the individual with the performance 
closest to its group median. 

Fig. 10 shows a boxplot [31] with the completion times in 
seconds for the delayed cued phase with small obstacles. The 
“Temporal” and “Septal” groups represent partial deactivation 
of the temporal and septal groups, respectively.  

A Kruskal-Wallis test was performed over the data and 
significant differences were found (p < 0.0001). A Dunn test 
post-hoc pairwise comparison was made. Significant difference 
was found between groups Control and Septal (p < 0.05) and 
Control and Temporal (p < 0.001). No significant difference 
was found between Septal and Temporal completion times. 

 
Fig. 10. Completion times for the delayed cue with small obstacles for all three 
groups over 64 individuals. The septal portion of the HPC was inactivated in 
the Septal group and the temporal portion in the Temporal. The plot shows 
boxplots using the 1.5 IQ outlier criteria. 

We note how deactivation of either the septal or temporal 
groups results in a lower performance than the control group 
(no inactivation). Additionally, inactivation of the temporal 
group results in a lower performance than the inactivation of 
the septal group. 

Fig. 11 shows the evolution of completion times for 
different values of the eligibility traces decay system parameter 
𝜆. Each panel shows the resulting completion times for a given 
value of the parameter. As eligibility traces decay faster (lower 
values), performance decreases for all groups. In addition, as 
the traces decay faster, the difference between groups becomes 
more apparent. The ventral group is notably more impaired 
under fast decaying traces conditions. 

 

 
Fig. 11. Completion times in seconds for the delayed cue phase with obstacles 
while varying the eligibility traces decay parameter (top x axis). 

V. DISCUSSION AND CONCLUSIONS 

We presented a model of rat spatial navigation using 
reinforcement learning to find and memorize a subset of correct 
feeders. The model is able to reproduce data from experiments 
with rodents involving multiple goals and obstacles. Results are 
consistent with rat experimental data based on similar protocols 
where both septal and temporal inactivation impair the animal’s 
performance, with the latter group showing the most 
impairments [19-20]. The model also shows how a 
differentiation of functions along the longitudinal axis of the 
hippocampus could explain the differences in performance 
observed, where the septal portion of the hippocampus is 
attributed the function of action selection and the temporal 
portion is involved in mapping locations to value. 

 Additionally, it can be observed that obstacle based place 
field inhibition provides two navigational advantages. In the first 
place, the disappearance of previous place cells and the 
appearance of new obstacle cells disrupt the learned policy. This 
prevents the rat from trying to execute a policy that is no longer 
consistent with the environment, because of an obstacle. 
Secondly, by allowing cells to fire only on one side of the 
obstacle, previously learned values do not propagate to regions 
that are no longer close to the place cell center. The introduction 
of the obstacle changes the distance the rat must travel from one 
point to the other, and it is useful that the value mapping changes 
as well. 
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In the future we plan to evaluate the model with varying 
obstacles configurations, environment sizes, and navigation 
learning tasks. We also plan to evaluate these tasks in physical 
robotic platforms to analyze the effect of real-time aspects of 
the environment.  
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