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Abstract— Precharge half buffer (PCHB) is one of the major
quasi-delay insensitive (QDI) asynchronous design paradigms,
which has been utilized in several commercial applications due to
its low power and inherent robustness. In industry, QDI circuits
are often synthesized from a synchronous specification using
custom synthesis tools. Design validation of the implemented QDI
circuits mostly relies on extensive simulation, which may fail to
detect corner-case bugs, especially in complex designs. Hence,
a formal verification scheme for PCHB circuits is much needed.
In this article, we present a formal verification methodology for
PCHB circuits synthesized from a Boolean/synchronous specifica-
tion, which is based on equivalence checking and can guarantee
both safety (full functional correctness) and liveness (absence of
deadlock). The approach is fast, scalable, and applicable to com-
binational as well as sequential PCHB circuits. We demonstrate
the method using several multipliers, multiply and accumulate
circuits (MACs), and IEEE International Symposium on Circuits
and Systems (ISCAS) benchmarks.

Index Terms— Asynchronous circuits, equivalence verification,
formal methods, precharge half buffer (PCHB), quasi-delay
insensitive (QDI).

I. INTRODUCTION

THE synchronous design paradigm dominates today’s
semiconductor industry. However, this clocked approach

is facing major challenges with today’s high-speed, low-power
design expectations, using processes with ever-increasing
physical level variability. Operating frequencies in the GHz
range complicate the existing clock management system,
resulting in numerous timing-related issues, such as clock
skew, clock jitter, etc. Furthermore, decreasing feature size
results in higher power dissipation per unit area as well
as more timing variability between dies due to increased
process variations. Over the past few years, asynchronous,
clockless quasi-delay insensitive (QDI) designs have been
proven to be effective in circumventing the challenges faced
by synchronous digital designs [1], due to their distributed
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switching (i.e., switching is not triggered simultaneously at
the clock edge) and robustness against process, voltage, and
timing (PVT) variations. The most recent 2013 international
technology roadmap for semiconductors (ITRS) predicts
asynchronous logic to account for more than 50% of IC
global signaling in the multibillion-dollar semiconductor
industry by 2027 [2], and the more recent 2018 IEEE
International Roadmap for Devices and Systems (IRDS) lists
asynchronous computing as a potential solution to reduce
power consumption [3], but does not include a comparison
of asynchronous versus synchronous signaling.

In industry, QDI circuits are often synthesized from
their synchronous counterparts utilizing computer automated
design (CAD) tools that cause the specification to undergo
numerous transformations and optimizations, resulting in an
implementation that is structurally very different from its
specification. Any error in the synthesis tools will eventually
result in an implementation error. Hence, validation is a
critical step in the QDI design flow. Current QDI validation
methods are mostly simulation-based, where the simulated
behavior of the QDI implementation is compared to that of
the specification. However, simulation alone cannot guarantee
complete functional correctness (e.g., the FDIV bug in Intel’s
Pentium processor floating-point unit that went undetected
during extensive simulation). Presently, formal verification
methods are widely utilized in industry to complement tradi-
tional simulation methods in order to detect corner-case bugs.

Precharge half buffer (PCHB) [4] is one such com-
mercially successful QDI design paradigm that has been
utilized by major semiconductor companies, such as Intel
and Achronix [1]. Although PCHB circuits are implemented
commercially, there exist very few formal verification methods
for such circuits, and the existing methods have several lim-
iting factors. In [5], we discussed an equivalence verification
methodology applicable only to combinational PCHB circuits.
In this article, we extend our work to the verification of
sequential PCHB circuits, based on equivalence checking.
We further introduce additional changes to our previous
combinational PCHB verification method [5], such that the
verification method presented herein is applicable to both
combinational and sequential PCHB circuits. Additionally,
we present an analysis of all possible faults that may arise
during synthesis and discuss how our approach detects all of
those possible errors, ensuring complete correctness. Hence,
the equivalence verification methodology illustrated in this
article is a unified, fast, and highly scalable approach that
can guarantee the safety and liveness of any combinational or
sequential PCHB circuit.
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Fig. 1. PCHB NAND2 gate [7].

This article is divided into eight main sections. A brief
overview of PCHB circuits and a review of related verification
works are presented in Section II. All possible faults that could
occur during PCHB synthesis are discussed in Section III.
Section IV details our verification methodology for combi-
national PCHB circuits, which is then extended to sequential
PCHB circuits in Section V. Section VI shows how our pro-
posed verification method detects all possible faults, previously
discussed in Section III. Verification results for several mul-
tipliers, multiply and accumulate circuits (MACs), and IEEE
International Symposium on Circuits and Systems (ISCAS)
benchmarks are presented in Sections IV-C and VII, followed
by conclusions and directions for future work in Section VIII.

II. PCHB BACKGROUND

A. PCHB Functionality

PCHB gates incorporate both registration and handshaking
control [4]. In addition to performing specific logic functions,
they also behave as memory elements. Therefore, an arrange-
ment of multiple gates in a combinational PCHB circuit
operates similarly to a synchronous pipeline (i.e., PCHB
circuits themselves are not combinational; they include internal
feedback, as shown in Fig. 1). The control consists of request
and acknowledge signals from individual gates, Rack and Lack,
respectively, and a combination of C-elements [6] to establish
a well-defined handshaking scheme for synchronization. These
unique features add to the complexity of the design, making
formal verification of such circuits very challenging.

QDI circuits, such as PCHB, utilize multirail logic signals,
such as dual-rail logic, where a signal consists of two
wires, D0 and D1, which represent three states: DATA0
(D0 = 1, D1 = 0), DATA1 (D0 = 0, D1 = 1), and NULL
(D0 = 0, D1 = 0). DATA0 and DATA1 are equivalent to
Boolean logic 0 and 1, respectively. Unavailability of DATA

is represented by NULL. (D0 = 1, D1 = 1) is an illegal state,
as two rails cannot be asserted simultaneously. A PCHB gate
has dual-rail inputs and outputs, X and Y , and F , respectively,
for the NAND2 example in Fig. 1.

The set functions, F0 and F1, are implemented to achieve
the particular gate functionality. The two-input NOR gates
connected to both inputs’ rails and the outputs’ rails detect
when a dual-rail signal is either DATA or NULL, and the
C-element connects these completion detection signals to gen-
erate the gate’s acknowledge signal, Lack. The weak inverter
arrangement is used to hold the output DATA until precharged
back to NULL to attain delay insensitivity. When Lack is logic
1, request-for-data (rfd), the inputs will eventually become
DATA, and when Lack is logic 0, request-for-NULL (rfn),
the inputs will eventually become NULL. The function eval-
uates and the output becomes DATA whenever both Lack and
Rack are rfd and the X and Y inputs are DATA. If Rack is
rfd and Lack is rfn, or vice versa, the state is held by the
weak inverters. When Lack and Rack are both rfn, the output
is precharged back to NULL. Whenever the inputs and outputs
are all DATA, Lack changes to rfn; and when the inputs and
output are all NULL, Lack changes to rfd. PCHB gates also
include a reset input to initialize the gate’s data output to
NULL. This is done by initializing every gate’s Lack output to
logic 0, as shown in Fig. 1. Since a gate’s Rack input comprises
subsequent gates’ Lack outputs that are combined through a
C-element structure, all PCHB gates’ Lack and Rack signals
will both be logic 0, while reset is asserted, causing their data
outputs to precharge to NULL.

Handshaking logic between PCHB gates can be imple-
mented using either full-word or bit-wise completion [8],
or some combination of the two. Full-word completion
requires that the Lack signal of each PCHB gate in leveli
be conjoined by one or more C-elements to produce a single
Lack signal, whose output is connected to the Rack signal
of each PCHB gate in leveli−1, where a gate’s level is the
longest path (in terms of number of PCHB gates) from the
circuit’s primary inputs to that gate’s output. On the other
hand, bit-wise completion only sends the completion signal
from PCHB gate b back to each PCHB gate whose output is
an input to gate b.

Sequential PCHB circuits require at least 2N + 1 latches
in any feedback loop (FL) with N DATA tokens to avoid
deadlock, and DATA tokens are inserted into a pipeline via
a resettable latch (i.e., token buffer), whose data and Lack
outputs are NULL and logic 0, respectively, while reset is
asserted, to initialize the rest of the PCHB gates to NULL,
as explained previously, and whose data output then changes to
its initial DATA value when reset is deasserted [7]. However,
PCHB gates themselves behave as latches, hence additional
latches are not necessary if an FL already contains enough
PCHB gates. For example, if there are 2 or more additional
PCHB gates in an FL with 1 DATA token, then no additional
latches are required since this loop would contain at least three
latches. Note that nonresettable latches are designed and oper-
ate similar to that of regular PCHB gates, described previously,
where the set function is output = input. Additionally, two
resettable latches must be separated by a PCHB gate, which
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could be a nonresettable latch, in order to insert two DATA
tokens; two adjacent resettable latches cause the system to
deadlock immediately after reset. Also, an FL can never be all
NULL (N) or all DATA (D). For example, in an FL consisting
of three latches with one DATA token, (NNN) and (DDD) are
illegal states, whereas any other of the six combinations are
valid.

B. Related Verification Work

There have been several methodologies implemented to
verify different types of asynchronous circuits. A trace-theory
based method [9] was proposed to verify various asynchronous
circuits at the gate level, such as Huffman circuits and Muller
circuits, where the circuit behavior is represented as sets of
traces, and the correctness properties are modeled as Petri
nets. Methods based on refinement [10] and flow equivalence
[11] have been used to verify bounded delay asynchronous
paradigms, such as desynchronized circuits. A few formal
verification methods have been developed for QDI NULL
convention logic (NCL) circuits, including a method to verify
the delay-insensitive property of combinational NCL circuits
[12], and a method to check the functional equivalence of NCL
circuits against their synchronous counterparts [13], both using
the theory of well-founded equivalence bisimulation (WEB)
refinement [14]. However, all of these approaches have been
developed and tailored to a specific type of asynchronous
paradigm, and none can be directly applied to PCHB circuits
because of the major differences between paradigms.

There do exist some methods directly applicable to PCHB
circuits, as described in the following, but these also have
major limiting factors. In [15], a reverse synthesis-based
approach that creates a high-level specification from a PCHB
circuit is presented; however, in the case of a bug, the method-
ology does not address the issue of finding the error. For
example, if the QDI circuit is buggy (e.g., a completion signal
is missing in a completion network, such that under some
extreme timing scenarios, the QDI circuit will malfunction),
it is not clear if/how this will be preserved in the reverse
synthesized output. Also, [15] is applicable only to control
circuits, not to datapath circuits. Shih et al. [16] developed a
deadlock verification scheme for sequential PCHB circuits that
detect deadlocks by transforming the asynchronous pipeline
into a Time Marked Graph, removing all edges containing
initial tokens, and then detecting any remaining cycles (i.e.,
a deadlock-free circuit should be acyclic after removal of
all initial token edges). The method effectively identifies
deadlocks in any sequential PCHB circuit; however, it does not
address verification of the combinational logic (C/L), neither
functionality nor handshaking connections. Shih et al. [16]
assumed that their optimized synthesis method for generating
a combinational PCHB circuit from its Boolean specification,
presented in [17], is correct. For example, inversion in a
handshaking signal within the C/L would cause a deadlock,
and swapped rails of a dual-rail signal would produce incor-
rect results, but not deadlock the system, neither of which
would be detected by [16]. Saifhashemi et al. [18] presented
an equivalence checking method to verify an asynchronous
circuit implementation against its high-level asynchronous

specification (e.g., using communicating sequential processes
[19]), which is applicable to PCHB circuits. Our work herein
differs from [18] in that we verify a PCHB circuit implemen-
tation against its synchronous specification.

In [20], we proposed a formal verification methodology
for combinational PCHB circuits based on model checking,
where the circuit to be verified is modeled as a transition
system (TS), and correctness properties are specified using
computational tree logic (CTL) [21]. We also developed a set
of property templates for PCHB circuits, which can be used to
verify any PCHB circuit that corresponds to a combinational
Boolean circuit. Note that PCHB circuits themselves are
not combinational, as each gate incorporates registration and
control in addition to its logic function, as shown in Fig. 1. The
templates can be classified as a set of local templates and one
global template. The local templates are applicable locally to
each PCHB gate and check for liveness of the circuit, which
is the absence of deadlock. The global template checks for
safety, i.e., under all circumstances, the circuit output is always
correct. However, scalability is the major limiting factor of
our previous model checking based verification method. Since
each of the PCHB gates incorporates a hysteresis state holding
capability with a complex handshaking scheme, the corre-
sponding TS for a PCHB circuit is very complex, even for
relatively simple circuits. This causes state space explosion,
which in turn results in an infeasible verification time.

Therefore, in this article, we present an alternate approach
to circumvent having to deal with the TS. Our proposed
method is a unified verification approach based on equivalence
verification that guarantees safety as well as liveness for any
PCHB circuit, combinational or sequential; it is fast and highly
scalable.

III. ENUMERATION OF ALL POSSIBLE PCHB FAULTS

Our proposed verification method is applicable to a PCHB
circuit synthesized from a Boolean/synchronous specification
using the method presented in [17] and assumes that individual
PCHB gates and C-elements are fault-free, which is consistent
with standard gate-level verification methodologies. This type
of PCHB circuit is depicted in Fig. 2, whose interface consists
of a single Rack input, reset input, and Lack output, and
one or more dual-rail inputs, DI, and dual-rail outputs, DO.
The internal circuitry consists of a sea of PCHB gates, each
designed as described in Section II-A, and a sea of C-elements
[6] to implement the handshaking circuitry for communication
between PCHB gates and with the external circuit inter-
face. The developed method ensures that no interconnections
between gates are erroneous and that the implemented PCHB
function is equivalent to its Boolean/synchronous specification.
Below is an enumeration of all possible faults that could occur
in this type of PCHB circuit, referring to the signal names
in Fig. 2, to aid the reader in visualizing the 18 resultant cases.

Case 1. Faulty Data Connection: Each PCHB gate receives
its data inputs X from the circuit’s primary data inputs DI
and/or other PCHB gate data outputs F . A PCHB gate’s data
input X or primary circuit output DO could be the wrong
dual-rail signal. For example, the F output of PCHB gatei

should be connected to the X input of PCHB gate j ; however,
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Fig. 2. Depiction of the PCHB circuit described in [17].

X is instead connected to the output of PCHB gatek , which
would result in a logical error, such that the specification and
implementation circuits would not be functionally equivalent.

Case 2. Swapped Dual-Rail Connection: In PCHB circuits,
all data signals are dual-rail logic, where two wires together
represent one bit of data, as detailed in Section II-A. The
rails of the dual-rail data input X or primary circuit output
DO could be unintentionally swapped. For example, if the
PCHB gatei output F is supposed to connect to the PCHB
gate j input X , this implies that F0

i and F1
i should connect

to X0
j and X1

j , respectively. However, swapping the dual-rail
connections would result in F0

i and F1
i connected to X1

j and
X0

j , respectively, which would correspond to the inversion of
that signal, resulting in a logical error, such that the specifi-
cation and implementation circuits would not be functionally
equivalent.

Case 3. Rails From Different Signals: A PCHB gate’s data
input X or primary circuit output DO could be incorrectly
composed of two different dual-rail signals’ rails. For example,
the X1 input of PCHB gatei is connected to the F1 output of
PCHB gate j and the X0 input of PCHB gatei is connected
to the F0 output of PCHB gatek . This will result in the
circuit deadlocking when Fj = DATA0 and Fk = DATA1,
since X will never transition to DATA, and will result in
X being an illegal value (i.e., X0 = 1 and X1 = 1) when
Fj = DATA1 and Fk = DATA0.

Case 4. Rail Duplication: A PCHB gate’s data input or
primary circuit output could be incorrectly composed of the
same rail of a dual-rail signal. For example, both rails of the
X input of PCHB gatei are connected to the F1 output of
PCHB gate j . This will result in the circuit deadlocking when
F = DATA0, since X will never transition to DATA, and will
result in X being an illegal value when F = DATA1.

Case 5. Handshaking Signal Connected to Data Signal: A
PCHB gate’s data input X or primary circuit output DO could
be either partially or fully composed of one or two hand-
shaking network signals (i.e., PCHB gate Rack/Lack signal
or C-element output Co), which would result in the affected
dual-rail signal being stuck at NULL for some cases, causing
circuit deadlock, and being an illegal value for other cases.

Case 6. Incorrect Logic Implementation: The functionality
of the PCHB circuit is not equivalent to its specification.
For example, the specification F = AB + C is implemented

as a PCHB circuit utilizing a two-input PCHB AND gate,
followed by a two-input PCHB XOR gate, instead of a correct
implementation that utilizes a two-input PCHB AND gate
followed by a two-input PCHB OR gate.

Case 7. Non-PCHB Gate in Datapath: The datapath of
PCHB circuits consists entirely of PCHB gates, all of which
have one or more data inputs X , one or more data outputs F , a
Rack input, a Lack output, and a reset input, as shown in Fig. 2.
Any type of gate other than a PCHB gate in the datapath is
an error, which may cause the circuit to deadlock or result in
a logical error, such that the specification and implementation
circuits would not be functionally equivalent.

Case 8. Incorrect Reset: Every PCHB gate includes a reset
input for initialization, as described in Section II-A, all of
which must be connected to the circuit’s external reset input,
which itself must not be connected to any other gate input.
A PCHB latch with an incorrect reset value will either result in
the circuit deadlocking or not being functionally equivalent to
its specification. Take for example, a MAC, where all outputs
should be reset to DATA0, according to its specification.
If instead one or more of the PCHB implementation’s outputs
are reset to DATA1, the result of the first MAC operation will
differ from its specification (i.e., A1 = A0 + X1 × Y1, where
A0 �= 0, versus the correct implementation: A1 = 0+X1×Y1).
Instead, if an output is reset to NULL by using a nonresettable
latch instead of the correct resettable one, this would result in
a feedback path with no DATA tokens, which would cause the
circuit to deadlock.

Case 9. Insufficient Latches in an FL: The four-phase QDI
handshaking protocol utilized for PCHB circuits requires at
least 2N + 1 PCHB latches in an FL that contains N DATA
tokens, in order to avoid deadlock [7]. For example, FLs with a
single DATA token, such as a MAC (i.e., Ai = Ai−1+Xi ×Yi ),
require at least three PCHB latches in every feedback path,
otherwise, the circuit will deadlock. Since every PCHB gate
includes an internal latch, at least two PCHB gates, in addition
to the resettable latch to insert the initial DATA token, are
sufficient for MAC FLs.

Case 10. Missing Handshaking Signal: Each PCHB gate j

( jε[1, N]) whose data input X is a data output F of PCHB
gatei , must acknowledge PCHB gatei , resulting in the Lack
output of each PCHB gate j being conjoined via an N-input C-
element structure, whose output Co is the Rack input of PCHB
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gatei . For example, if a data output F of PCHB gatek is a data
input X of PCHB gatey and the Lack output of PCHB gatey

is not an input Ci to the C-element structure that generates
the Rack input to PCHB gatek , the circuit will deadlock under
some timing scenarios.

Case 11. Additional Handshaking Signal: If the C-element
structure that generates the Rack input for PCHB gatei con-
tains a Lack input from PCHB gate j and a data output F of
PCHB gatei is not a data input X of PCHB gate j , the circuit
may deadlock or slowdown, but could also operate correctly.
This is not necessarily an error; however, the additional
handshaking signal requires further inspection.

Case 12. External Lack Error: The external Lack out-
put synchronizes all circuit primary data inputs DI. Hence,
the Lack outputs of all PCHB gates that have a circuit primary
data input DI as a data input X must be combined through a
C-element structure to produce the external Lack output. Like
Case 10, any missing Lack input to this C-element structure
will cause the circuit to deadlock under some timing scenarios.
Similar to, but different from Case 11, any additional Lack
input to this C-element structure is an error, which may cause
the circuit to slowdown or deadlock.

Case 13. External Rack Error: The external Rack input
synchronizes all circuit primary data outputs DO. Hence, for
each PCHB gate j whose data output F is a circuit primary
data output DO, the external Rack input must either be the
Rack input to gate j or an input Ci to the C-element structure
that generates the Rack input for gate j (as would be the case
when an external data output DO is fed back as an input X
to another PCHB gate). Like Case 10, if the external Rack
input is missing from the C-element structure that generates
the Rack input for a PCHB gate whose data output F is a
circuit primary data output DO, the circuit will deadlock
under some timing scenarios.

Case 14. Non-C-Element in Handshaking Circuitry: PCHB
handshaking circuitry is entirely composed of C-element struc-
tures, as depicted in Fig. 2, which consist of 0 or more
C-elements that combine N Lack signals into a single Rack
signal or the external Lack. Hence, any gate other than a
C-element in the PCHB handshaking circuitry is an error,
which will cause the circuit to deadlock under some timing
scenarios.

Case 15. Data Signal Input to C-Element: As mentioned in
Case 14, C-elements occur only in the handshaking circuitry
to combine Lack signals; they are not utilized in the datapath.
Hence, either rail of a data signal, X or F , being an input,
Ci, to a C-element is an error, which will cause the circuit to
deadlock under some timing scenarios.

Case 16. Data Signal Input to PCHB Gate Rack Input: As
mentioned in Cases 10 and 13, a PCHB gate’s Rack input may
only be the output, Co, of a C-element, another PCHB gate’s
Lack output, or the external Rack input. Hence, either rail of
a data signal, X or F , being a PCHB gate’s Rack input is an
error, which will cause the circuit to deadlock.

Case 17. C-Element Structure Feedback: As mentioned in
Cases 10 through 13, a C-element structure combines multiple
PCHB gate Lack outputs, and possibly the external Rack input,
to generate PCHB gate Rack inputs or the external Lack output;

hence, C-element structures are feedforward only, such that
any FL within a C-element structure is an error, which will
cause the circuit to deadlock.

Case 18. Shorted Output: An output, Co, of a C-element
or any output of a PCHB gate, F or Lack, cannot be directly
connected to any other PCHB gate output, F or Lack, or C-
element output Co or any external input, DI, Rack, or reset.
This would result in a wire short, causing the affected signal
to be undefined when the logical values of the shorted wires
differed.

These 18 cases comprise all possible faults that could occur
in a PCHB circuit synthesized from a Boolean/synchronous
specification using the method presented in [17]. In order to
establish our claim that the abovementioned 18 cases comprise
all possible faults, we analyze an exhaustive conjunction of
PCHB gates, C-elements, and PCHB circuit external inputs
and outputs, from which only a small set of connections is
legal, and a large set of connections is illegal/faulty. We then
illustrate how every faulty connection can be categorized by
at least one of the above 18 fault case scenarios.

Let us consider a PCHB circuit with N ≥ 1 PCHB gates,
M ≥ 0 C-elements, Z ≥ 1 external data inputs, Y ≥ 1 external
data outputs, a single Rack input, a single Lack output, and a
single reset input, as depicted in Fig. 2. Considering all possi-
bilities, the dual-rail output F of PCHB gatek has the following
12 interconnection scenarios: it could be connected to: 1) dual-
rail input(s) X of other PCHB gates j , where j �= k; 2) external
data output DO; 3) dual-rail input(s) X of other PCHB gates,
including gatek ; 4) Rack input of a PCHB gate; 5) C-element
input Ci; 6) another PCHB gate data output F ; 7) a PCHB gate
Lack output; 8) a C-element output Co; 9) external data input
DI; 10) external Rack input; 11) external reset input; or 12)
external Lack output. Of these, only 1) and 2) are possibly cor-
rect, and will be expanded upon later; all other interconnection
scenarios, 3) through 12), are faulty. Note that 3) corresponds
to Case 9; 4) to Case 16; 5) to Case 7 or 15; 6) through 11) to
Case 18; and 12) to Case 12 or 18. For 1), the dual-rail output
F of PCHB gatek could be correctly connected to the data
inputs X of PCHB gates j , or could be incorrectly connected
via a swapped rail connection (Case 2), being an input X to a
wrong PCHB gate (Case 1 or 6), or only being a partial input X
to a PCHB gate (Cases 3 or 4). For 2), the dual-rail output F of
PCHB gatek could be correctly connected to an external data
output DO or could be incorrectly connected via a swapped
rail connection (Case 2), being connected to the wrong external
data output DO (Case 1), or only being partially connected to
the external data output DO (Case 3 or 4).

Considering all possibilities, the Lack output of PCHB gatek

has the following 12 interconnection scenarios: it could be
connected to: 1) Rack input of other PCHB gates j , where j �=
k; 2) input Ci of one or more C-elements; 3) external Lack
output; 4) Rack input of other PCHB gates, including gatek ;
5) dual-rail input X of a PCHB gate; 6) external data output
DO; 7) PCHB gate data output F ; 8) another PCHB gate Lack
output; 9) a C-element output Co; 10) external data input DI;
11) external Rack input; or 12) external reset input. Of these,
only 1), 2), and 3) are possibly correct, and will be expanded
upon later; all other interconnection scenarios, 4) through 12),
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are faulty. Note that 4) corresponds to Case 9; 5) and 6) to
Case 5, and 7) through 12) to Case 18. For 1), the Lack output
of PCHB gatek could be correctly connected to the Rack input
of other PCHB gates, or could be incorrectly connected by
being the Rack input to a PCHB gate whose data output F
was not an input X to gatek (Case 10). For 2), the Lack output
of PCHB gatek could be correctly connected to C-element
input(s) Ci or could be incorrectly connected by being an input
Ci to a C-element structure that outputs the Rack input for
a PCHB gate whose data output F was not an input X to
gatek (Case 11). For 3), the Lack output of PCHB gatek could
be correctly connected to the external Lack output or could
be incorrectly connected if the external data inputs DI are
connected to PCHB gates other than gatek (Case 12).

Considering all possibilities, the output of C-elementb Co
has the following 12 interconnection scenarios: it could be
connected to: 1) input(s) Ci of other C-elements j , where
j �= b; 2) external Lack output; 3) Rack input of a PCHB gate;
4) input(s) Ci of C-elements, including C-elementb; 5) dual-
rail input X of a PCHB gate; 6) external data output DO;
7) PCHB gate data output F ; 8) PCHB gate Lack output; 9)
another C-element output Co; 10) external data input DI; 11)
external Rack input; or 12) external reset input. Of these, only
1), 2), and 3) are possibly correct, and will be expanded upon
later; all other interconnection scenarios, 4) through 12), are
faulty. Note that 4) corresponds to Case 17; 5) to Case 5 or
14, 6) to Case 5, and 7) through 12) to Case 18. For 1),
the output Co of C-elementb could be correctly connected to
other C-element inputs Ci or could be incorrectly connected by
being part of the C-element structure that produces the Rack
input for PCHB gatek , where PCHB gatek’s data output F
was not an input X to all PCHB gates whose Lack outputs are
inputs Ci to the C-element structure containing C-elementb
(Case 11), or by being connected to a C-element input Ci
within the same C-element structure, forming an FL within
the C-element structure (Case 17). For 2), the output Co of
C-elementb could be correctly connected to the external Lack
output or could be incorrectly connected if the external data
inputs DI are connected to PCHB gates other than those whose
Lack outputs are the inputs Ci to the C-element structure
containing C-elementb (Case 12). For 3), the output Co of
C-elementb could be correctly connected to the Rack input of
a PCHB gate, or could be incorrectly connected by being the
Rack input to a PCHB gate whose data output F was not an
input X to all PCHB gates whose Lack outputs are inputs Ci
to the C-element structure containing C-elementb (Case 11).

Each external data input DI is treated similarly to a PCHB
gate data output F . Considering all possibilities, an external
data input DI has the following 11 interconnection scenarios:
it could be connected to: 1) the dual-rail input X of one or
more PCHB gates; 2) external data output DO; 3) Rack input
of a PCHB gate; 4) C-element input Ci; 5) another external
data input DI; 6) PCHB gate data output F ; 7) a PCHB gate
Lack output; 8) a C-element output Co; 9) external Rack input;
10) external reset input; or 11) external Lack output. Of these,
only 1) and 2) are possibly correct, and will be expanded upon
later; all other interconnection scenarios, 3) through 11), are
faulty. Note that 3) corresponds to Case 16, 4) to Case 7 or

15, 5) through 10) to Case 18, and 11) to Case 12 or 18. For
1), an external data input DI could be correctly connected to
the data inputs X of PCHB gates, or could be incorrectly con-
nected via a swapped rail connection (Case 2), being an input
X to a wrong PCHB gate (Case 1 or 6), or only being a partial
input X to a PCHB gate (Case 3 or 4). For 2), an external
data input DI could be correctly connected to an external data
output DO or could be incorrectly connected via a swapped
rail connection (Case 2), being connected to the wrong external
data output DO (Case 1), or only being partially connected to
an external data output DO (Case 3 or 4).

The external Rack input is treated similarly to a PCHB
gate Lack output. Considering all possibilities, the external
Rack input has the following ten interconnection scenarios: it
could be connected to: 1) Rack input of one or more PCHB
gates; 2) input Ci of one or more C-elements; 3) external
Lack output; 4) dual-rail input X of a PCHB gate; 5) external
data output DO; 6) PCHB gate data output F ; 7) PCHB gate
Lack output; 8) a C-element output Co; 9) external data input
DI; or 10) external reset input. Of these, only 1) and 2) are
possibly correct, and they will be expanded upon later; all
other interconnection scenarios, 3) through 10), are faulty.
Note that 3) corresponds to Case 12 or 18; 4) and 5) to Case 5,
and 6) through 10) to Case 18. For 1), the external Rack input
could be correctly connected to the Rack input of PCHB gates
or could be incorrectly connected by being the Rack input
to a PCHB gate whose data output F was not an external
data output DO (Case 11), or by not being connected to the
Rack input of a PCHB gate whose output F is an external
data output DO (Case 13). For 2), the external Rack input
could be correctly connected to one or more C-element inputs
Ci, or could be incorrectly connected by being an input Ci
to a C-element structure that outputs the Rack input for a
PCHB gate whose data output F is not an external output DO
(Case 11), or by not being connected to a C-element input Ci
that is part of a C-element structure that generates the Rack
input of a PCHB gate whose output F is an external data
output DO (Case 13).

Considering all possibilities, the external reset input has the
following 11 interconnection scenarios: it could be connected
to: 1) the reset input of one or more PCHB gates; 2) the data
input X of a PCHB gate; 3) external data output DO; 4) Rack
input of a PCHB gate; 5) C-element input Ci; 6) external data
input DO; 7) PCHB gate data output F ; 8) PCHB gate Lack
output; 9) C-element output Co; 10) external Rack input; or
11) external Lack output. Of these, only 1) is possibly correct,
and will be expanded upon later; all other interconnection
scenarios, 2) through 11), are faulty. Note that 2) through
5) correspond to Case 8 and 6) through 11) to Case 18.
For 1), the external reset input is correctly connected only
if connected to every PCHB gate’s reset input. Additionally,
the external reset input is used to initialize the PCHB circuit,
which must be reset to a live state and match the reset state
of its corresponding Boolean/synchronous specification circuit,
both covered by Case 8.

In summary, the above exhaustive enumeration of all possi-
ble interconnection combinations of PCHB gates, C-elements,
and circuit primary inputs and outputs, proves that every
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Fig. 3. PCHB 2 × 2 multiplier.

possible faulty connection maps to at least one of the 18 cases
presented in this section, thereby proving that these 18 cases
do indeed comprise all possible faults that could occur in a
PCHB circuit.

IV. EQUIVALENCE VERIFICATION OF COMBINATIONAL

PCHB CIRCUITS

The developed methodology includes an equivalence verifi-
cation scheme that verifies the functionality of a combinational
PCHB circuit against its respective Boolean specification to
ensure safety and a graph-based approach to ensure liveness
and handshaking correctness, and both are described as fol-
lows. The ability of the proposed methodology to detect all
possible faults is addressed in Section VI.

A. Safety Check of Combinational PCHB Circuits

The safety check requires two steps. First, a conver-
sion algorithm takes the netlist of a combinational PCHB
circuit as input and transforms that into a corresponding
Boolean netlist. The generated Boolean circuit is then checked
against the Boolean specification using an equivalence checker.
To describe the methodology, the 2 × 2 PCHB multiplier,
shown in Fig. 3, is used as an example. Note that although
the PCHB multiplier is similar to a Boolean multiplier at the
gate level, PCHB gate structures are far more complex. For
example, a two-input Boolean NAND gate requires only four
transistors, whereas the two-input PCHB NAND gate, shown
in Fig. 1, requires 44 transistors to account for dual-rail signal-
ing, registration, and handshaking control. In general, PCHB
circuits require approximately 4–13 times more transistors
than the corresponding Boolean circuits due to their complex
features, as can be seen in Table I.

Fig. 4 shows the netlist format of the 2×2 PCHB multiplier.
The first two lines correspond to all primary data inputs and
outputs of the circuit, respectively. A dual-rail signal a0 is
represented as “a0_1a0_0,” where a0_1 and a0_0 are rail1 and
rail0 of a0, respectively. Lines 3–10 represent the individual
PCHB gates used in the circuit. The first column of each
line represents the type of gate, where the right-hand number
implies the number of gate inputs; e.g., and2 represents
a two-input AND gate. The second column indicates the
level of the gate, which is the longest path (in terms of
number of PCHB gates) from the circuit’s primary inputs

Fig. 4. Netlist of the PCHB 2 × 2 multiplier.

Fig. 5. (a) Converted Boolean netlist. (b) Fan_out and comp_fanin structure.

to that gate’s output. The remaining columns list the gate’s
data input(s), reset input, Rack input, Lack output, and data
output(s), respectively. Type Cn in lines 11–13 represents an n-
input C-element used to connect the PCHB handshake signals.
Following Cn are its n inputs, and then its output.

The PCHB netlist is automatically converted into its corre-
sponding Boolean netlist, shown in Fig. 5(a), using a devel-
oped algorithm. Each dual-rail signal, including the primary
inputs/outputs, are replaced with a corresponding Boolean
signal. A PCHB gate structure containing all information
related to individual gates is created by traversing the netlist.
A Boolean gate structure is created by replacing each PCHB
gate with its corresponding Boolean gate. Swapped rails of
a dual-rail signal result in the introduction of an inverter. For
example, if line 3 of Fig. 4 was instead “and2 1 a0_0a0_1 …,”
this would result in the following additional line in Fig. 5(a):
“not 1 a0 a0_bar;” and line 3 of Fig. 5(a) would be changed to
“and2 2 a0_bar,b0 p0.” Therefore, any bug causing unintended
rail swap in the implementation will be detected, as the added
inverter will result in functional inequivalence between the
specification and PCHB implementation. If a PCHB gate
input’s rail1 and rail0 are not part of the same dual-rail
signal, an error message is generated noting the misconnection
between rails, and where this occurs. Similarly, an error
message is generated if any gate’s data rails contain any
handshaking signal(s). A further check flags any bug that
causes only one rail of a dual-rail signal to be connected to
both rails of another dual-rail signal. Another check ensures
that the circuit’s external reset input is connected to all PCHB
gates’ reset input, and not connected to anything else, flagging
any gate or connection that violates this.

The converted Boolean netlist is then automatically encoded
in the Satisfiability Modulo Theory Library (SMT_LIB)
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TABLE I

VERIFICATION RESULTS FOR VARIOUS COMBINATIONAL PCHB CIRCUITS

language, using Python, and is then input to an SMT solver
to check for functional equivalence between the transformed
Boolean version of the original PCHB circuit and its corre-
sponding Boolean specification. For the 2×2 multiplier exam-
ple, the SMT solver checks for the following safety property:
FPCHB_Bool_Equivalent (a0, a1, b0, b1) = MUL (a, b), where
(a1, a0) and (b1, b0) are the (most significant bit, least
significant bit) of a and b, respectively. We use the Z3 SMT
solver [22] to check for equivalence verification, but any
combinational equivalence checker could be used.

B. Liveness and Handshaking Correctness Check

Liveness means the absence of deadlock in a circuit. For
combinational PCHB circuits, proper connections between
handshaking signals ensure liveness and proper synchroniza-
tion. The same PCHB netlist shown in Fig. 4, used as input
for the safety check method, is also utilized as input for
the liveness check, to trace back the handshaking paths and
C-element connections to verify proper handshaking, ensuring
that every output generated by a particular input acknowledges
that input. Procedure 1 illustrates the algorithm that checks the
handshaking connections. A C-element structure and a PCHB
gate structure containing all information related to C-elements
(i.e., C-element type, inputs, and outputs) and individual gates
(i.e., gate type, level, data inputs, rack, lack, and outputs),
respectively, are created by traversing the netlist (lines 1 and 2
in Procedure 1). For each PCHB gate, i , its output is compared
with every other PCHB gate j ’s inputs, i �= j , to generate a
fanout list, fanout (i), for PCHB gate i (line 3 in Procedure 1).

For example, referring to Fig. 4, fanout for the and2 gate on
line 4 would contain the xor2 gate on line 7 and the and2 gate
on line 8. For each PCHB gate, i , its Rack input is compared
with every other PCHB gate j ’s Lack output, i �= j , and
every C-element’s output, to generate a completion fanin list,
comp_fanin (i), for PCHB gate i (line 4 in Procedure 1). For
example, referring to Fig. 4, comp_fanin for the and2 gate on
line 4 would contain the xor2 gate on line 7 and the and2 gate

on line 8, since both of their Lack outputs are inputs to the
C-element on line 11, whose output is the Rack input of the
and2 gate on line 4. Similarly, a fanout and comp_fanin list
is generated for each external data input.

After fanout and comp_fanin for each PCHB gate and
external data input are calculated, as shown in Fig. 5(b) for
the 2 × 2 multiplier example, fanout(k) is checked to ensure
that it is a subset of comp_fanin(k), for all PCHB gates and
external data inputs (lines 5–19 in Procedure 1). Bit-wise
completion results in fanout(k) being equal to comp_fanin(k),
while full-word completion results in fanout(k) being a proper
subset of comp_fanin(k), with the restriction that each gate
that is in comp_fanin(k) and not in fanout(k) must be from
the immediate subsequent level of gate/input k. fanout(k) not
being a subset of comp_fanin(k) could result in deadlock,
while fanout(k) being a proper subset of comp_fanin(k), but
violating the level restriction described, could either result in
deadlock or may just decrease the circuit performance. Hence,
if fanout(k) is a proper subset of comp_fanin(k), then each
gate that is in comp_fanin(k) and not in fanout(k) is automat-
ically inspected to ensure that it meets this level restriction.
Even if the level restriction is met, a warning message is still
generated to note the extra gate in the particular PCHB gate’s
comp_fanin list, to allow for easy manual inspection.

Additional checks ensure correct connection of the external
Rack input and proper generation of the external Lack output.
The external Rack signal should be connected to the rack
inputs of all gates that produce the circuit’s external data
outputs. Similarly, the lack outputs of all gates that take
primary data inputs as their inputs should be conjoined via a
C-element structure to generate the external Lack output. The
developed algorithm generates an appropriate descriptive error
message, in case the PCHB circuit fails to satisfy any of these
checks. Furthermore, it checks to ensure that no data signal is
part of the handshaking connections and that no handshaking
signal is part of a data signal. All these checks are performed
during the process of creating the PCHB gate and C-element
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Procedure 1 Procedure to Check Handshaking Connections

structures (lines 1 and 2 in Procedure 1). Note that fanout
0 indicates an external output, while comp_fanin 0 denotes an
external Rack input. The running time for this liveness check
algorithm is O(I + P) ∗ (P + C), where I , P , and C are the
number of external inputs, PCHB gates, and C-elements in the
circuit, respectively.

C. Results

This equivalence verification methodology for combina-
tional PCHB circuits has been demonstrated on several multi-
pliers and ISCAS-85 [23] combinational circuit benchmarks,
and the verification times are compared with the previous
model checking based PCHB formal verification methodol-
ogy [20]. As shown in Table I, the equivalence verification
methodology presented herein is significantly faster than the
model checking based approach for every circuit. Furthermore,
this methodology was able to verify complex circuits with
hundreds of gates, such as a 12 × 12 multiplier, whereas
the model checking approach Timed Out for much smaller
circuits, demonstrating the scalability of this approach. Since
the model checking approach Timed Out for a 4 × 4 multi-
plier, we can safely assume that it would time out for more
complex circuits, such as ISCAS c432 and other higher order
multipliers. 10 × 10Mul-B1, 10 × 10Mul-B2, 10 × 10Mul-
B3, and 10 × 10Mul-B4 are some of the tried buggy circuits.
In 10 × 10Mul-B1, a bug was introduced in the data signals
by incorrectly connecting one gate’s dual-rail input to another
dual-rail signal. 10×10Mul-B2 represents a logic element bug,
where a PCHB AND gate was replaced with a PCHB NAND

gate. 10×10Mul-B3 represents a handshaking connection bug,
where the Lack output from PCHB gate i was not included
in the C-element structure that generated the Rack input to
PCHB gate j , even though PCHB gate j ’s data output was an
input to PCHB gate i . 10 × 10Mul-B4 swaps the rails of one
PCHB gate’s input. In these, and every other buggy case tried,
the proposed methodology detected and identified each bug
very quickly. Verification was performed using the Z3 SMT
solver [22] on an Intel Core i7-4790 CPU with 32 GB of RAM,
running at 3.60 GHz. The verification times in Table I include

only the Z3 runtime, as the netlist conversion times and time
required to verify the handshaking signals were negligible in
comparison.

V. EQUIVALENCE VERIFICATION OF

SEQUENTIAL PCHB CIRCUITS

As described in the previous section, our equivalence ver-
ification methodology proved to be a much faster and more
scalable approach for combinational PCHB circuits, compared
to the previous model checking method. Hence, in this section,
we extend that approach to the verification of sequential PCHB
circuits, which is far more complex due to datapath feedback.

The verification procedure requires three steps. In the
first step, we take a sequential PCHB circuit and convert
it to an equivalent synchronous circuit. We utilize the the-
ory of WEB-refinement [14] to compare the synchronous
netlist generated from the PCHB circuit with the original
synchronous specification as the notion of correctness. The
major advantage of applying WEB-refinement to the gen-
erated equivalent synchronous circuit instead of the actual
PCHB circuit is that synchronous circuit signal transitions are
much more deterministic compared to PCHB, where inputs
can start propagating through the circuit any time and in
any order, instead of at a predetermined clock edge, which
makes the verification time much faster. The generated syn-
chronous circuit, the specification synchronous circuit, and
the WEB-refinement property are automatically encoded in
the SMT-LIB language. The resulting equivalence property
is then checked using an SMT solver. In the second step,
we check the handshaking connections between components,
which is similar to the combinational PCHB handshaking
check discussed in Section IV-B. The third step consists of
applying the method developed by Shih et al. [16] for deadlock
verification of sequential PCHB circuits. Since this third step is
fully detailed in [16], it is not discussed further herein, besides
its brief overview in Section II-B.

To describe our methodology, we will use a MAC unit
as an example circuit. Fig. 6(a) shows a synchronous MAC,
where A′ = A + X × Y ; Fig. 6(b) shows the equivalent
PCHB version. Two latches are shown in the PCHB version
such that all FLs contain at least three latches to avoid
deadlock since PCHB gates themselves act as latches and
the PCHB C/L contains at least one gate in every feedback
path. However, some of the feedback paths only require the
single resettable latch, as shown in Fig. 7(a), since they
already contain at least two other PCHB gates. Although
the synchronous and PCHB MACs seem similar, they are
structurally very different. Synchronous registers are clocked,
whereas alternating DATA/NULL transitions in PCHB are
maintained via C-elements and a well-defined handshaking
scheme.

A. Safety Check of Sequential PCHB Circuits

Fig. 7(a) shows the datapath connection diagram of a
4 + 2 × 2 PCHB MAC. (X1, X0) and (Y1, Y0) are the
two bits of inputs X and Y , respectively. The product of X
and Y is added with the 4-bit accumulator output A, where
A3 and A0 are the MSB and the LSB, respectively. Each
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Fig. 6. (a) Synchronous MAC. (b) PCHB MAC.

signal is dual-rail. HA and FA are optimized PCHB half-adder
and full-adder components [24], respectively, whereas PCHB
half-adders and full-adders were implemented using PCHB
XOR2 and NAND2 gates for the previous multiplier circuits.
The highlighted components, labeled as Lat_D0, are reset-to-
DATA0 latches, while nonresettable latches are labeled as Lat.
There are four FLs in Fig. 7(a), where FL1 and FL4 require an
additional nonresettable latch to meet the required three latch
minimum, while FL2 and FL3 do not, since these both already
have two additional PCHB gates in their respective FL.

Fig. 8(a) shows the netlist of the PCHB 4 + 2 × 2 MAC,
following the same structure described in Section IV-A. The
first 2 lines are the circuit inputs and outputs, respectively;
lines 3–13 are the PCHB C/L gates; lines 14–19 are the
PCHB latches; and lines 20–29 are C-elements used in the
handshaking network. Note that each of the HA and FA
components contains two outputs, sum followed by carry. FAs
is a modified FA component with only sum output.

This sequential PCHB netlist is then automatically con-
verted into its equivalent synchronous netlist, depicted in
Fig. 8(b), similar to the conversion process described in
Section IV-A for combinational PCHB circuits. Each dual-
rail signal is replaced with a corresponding Boolean signal
and all handshaking signals and C-elements are eliminated.
Procedure 2 illustrates the conversion algorithm for PCHB
components (i.e., gates and latches). A PCHB component
structure, PCHB_comp, containing all information related to
individual components (i.e., gate type, data inputs, reset input,
rack, lack, and data outputs) is created for each compo-
nent by traversing the netlist (line 1 in Procedure 2). Each
PCHB gate/component (e.g., AND gate or FA component),
excluding latches, is replaced with its corresponding Boolean
gate/component, which does not include a reset input. Every
nonresettable latch, Lat, is eliminated by setting its output
equal to its input, as those are added in FLs to avoid deadlock
or to increase throughput via slack matching [25] and have no
corresponding functionality in the equivalent synchronous cir-
cuit. Each resettable latch, Lat_D0 or Lat_D1, is replaced with

Fig. 7. 4 + 2 × 2 MAC. (a) PCHB datapath connections. (b) PCHB
handshaking connections. (c) Equivalent synchronous circuit after conversion.

its corresponding resettable synchronous register. Note that
two adjacent resettable latches cause deadlock, as explained in
Section II-A, hence Procedure 2 generates an error message
if this occurs.
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Fig. 8. (a) PCHB 4 + 2 × 2 MAC netlist. (b) Equivalent converted synchronous netlist.

Procedure 2 Procedure to Generate Synchronous Circuit From
PCHB Circuit

Referring to Procedure 2, lines 2–11 delete nonresettable
PCHB latches, which include lines 4–6 to check for adjacent
resettable latches, such that after exiting that for loop, any
remaining PCHB latch component directly corresponds to a
synchronous register. Lines 12–14 then replace each PCHB
component with its corresponding synchronous/Boolean com-
ponent. For example, referring to Fig. 7(a), one can find
that the two Lat components, one each in FL1 and FL4, are
deleted, while all other components are replaced with their cor-
responding Boolean/synchronous component, resulting in the
equivalent converted synchronous circuit depicted in Fig. 7(c),
whose netlist is given in Fig. 8(b).

Functional equivalence checking of sequential PCHB cir-
cuits is more complicated than for combinational PCHB
circuits described in Section IV-A. Sequential circuits require
states and transitions between the states, such that both
specification and implementation can be modeled as a TS.
These TSs are then checked for equivalence using the theory
of WEB refinement [14], whose detailed description can be
found in [26]. Here, we provide a brief overview of the three
key concepts of WEB refinement. The first is the refinement
map, which is a function that maps implementation states

Fig. 9. Formulation of proof obligation to check the equivalence of
PCHB_SEQ and SPEC_SEQ.

to specification states and is used to bridge the abstraction
gap between implementation and specification. The second
concept is stuttering, which is a phenomenon where mul-
tiple but finite steps of the implementation can match a
single transition of the specification. The third concept is
that of a rank function, which is a function from imple-
mentation states to natural numbers, whose values decrease
every time the implementation stutters. Rank functions are
used to distinguish stutter from deadlock (which essentially
amounts to infinite stutter). However, since the registers of
the specification sequential circuit, SPEC_SEQ, and those of
the equivalent synchronous circuit, PCHB_SEQ, automatically
generated from the PCHB circuit as described, have a one-
to-one mapping, there is no stuttering. Also, because of this
one-to-one register mapping, the refinement map function is
just a projection of each implementation register onto its
corresponding specification register. Hence, the correctness
proof obligation can be reduced to Proof Obligation 1.

Fig. 9 is used to explain the proof obligation. S is a state of
PCHB_SEQ and U is a SPEC_SEQ state, which includes a

Proof Obligation1 : {∀s : s ∈ SPCHB_SEQ :: [u = Reg_Proj(s) ∧
w = StepPCHB_SEQ(s) ∧ v = StepSPEC_SEQ(u)] ⇒ w = v}
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projection of register values of state S. StepPC H B_S E Q and
StepS P EC_S E Q are two functions that step PCHB_SEQ and
SPEC_SEQ once, respectively. W and V are the next states
of S and U , respectively. The proof obligation states that
PCHB_SEQ and SPEC_SEQ are equivalent if the projection
values of all registers in state W are equal to the values of their
corresponding registers in state V . The proof obligation is
encoded in SMT-LIB, and checked using an SMT solver. Note
that such equivalence verification problems could be encoded
as model checking problems; however, the model checking
algorithms do not scale well due to state-space explosion,
which is a well-known issue with model checking when used
in the context of equivalence verification.

Additionally, since PCHB_SEQ and SPEC_SEQ have a one-
to-one register mapping, the register reset values are compared
to ensure that the two circuits have the same initial reset state.
If a one-to-one register mapping does not exist, this is an error,
since the method presented in [17] for PCHB circuit synthesis
from a synchronous specification guarantees a one-to-one reg-
ister mapping with the synchronous specification. For example,
accidentally using a nonresettable PCHB latch instead of a
resettable latch, as was supposed to be used, would result in
one fewer register in PCHB_SEQ. Note that this error would
not necessarily cause the PCHB circuit to deadlock (e.g.,
a loop that was supposed to contain more than 1 DATA token).

B. Liveness and Handshaking Correctness Check

Fig. 7(b) shows the handshaking connections between com-
ponents for the 4+2×2 PCHB MAC, where RACK and LACK
are the external request and acknowledge signals, respec-
tively. The same handshaking check algorithm detailed in
Section IV-B is utilized to check the handshaking connections,
with the only difference being the level restriction check for
full-word completion (i.e., each gate that is in comp_fanin(k)
and not in fanout(k) must be from the immediate subsequent
level of gate/input k), since this level restriction no longer
holds due to datapath feedback. Therefore, we do not require
level for PCHB latch components and level for other PCHB
gates is ignored for sequential circuits. To demonstrate this,
we have utilized partial full-word completion in Fig. 7(b),
by combining the request generation of the two LSB latches.
The comp_fanin list of the 2 LSB Reg_D0 components will
contain one additional signal each, lack7 for the LSB latch in
FL1 and lack5 for the next LSB latch in FL2. This is not an
error but may slow down the circuit. The handshaking algo-
rithm generates a warning under such a scenario, highlighting
the additional signal for further inspection. Following the
handshaking check, the method developed by Shih et al. [16]
for deadlock verification [16] is applied, as mentioned at the
beginning of Section V. This method, along with our hand-
shaking correctness check, guarantees liveness for sequential
PCHB circuits.

VI. DETECTION OF ALL POSSIBLE FAULTS

Section III enumerates the faults that could occur in a PCHB
circuit synthesized using the method presented in [17] and
proves that the 18 faults listed comprise all possible faults. In
the following, we show how the proposed methodology detects

all 18 of these faults. Cases 1–8 correspond to datapath faults,
which are detected in our safety check; Cases 9–17 correspond
to handshaking faults, which are detected in our liveness
check; and Case 18 corresponds to electrical faults, which can
occur either in the datapath or in handshaking circuitry, and
are detected in our safety or liveness check, respectively.

Case 1: Faulty data connection, Case 2: Swapped dual-
rail connection, and Case 6: Incorrect logic implementation
would all result in functional inequivalence between imple-
mentation and specification and would be detected by the
SMT solver. Case 3: Rails from different signals, Case 4: Rail
Duplication, Case 5: Handshaking signal connected to a data
signal, and Case 7: Non-PCHB gate in datapath would all be
detected in the PCHB-to-Boolean netlist conversion algorithm,
described in Sections IV-A and V-A. For Case 8: Incorrect
reset, the external reset input not being connected to all PCHB
gates’ reset input would be detected in the PCHB-to-Boolean
netlist conversion algorithm, while an incorrect reset value
would be detected in the register reset value comparison check
described at the end of Section V-A.

Case 9: Insufficient latches in an FL would be detected by
the verification procedure proposed by Shih et al. [16], which
follows our handshaking check, as described in Section V-B.
Cases 10–13: Missing handshaking signal, Additional hand-
shaking signal, External Lack error, and External Rack
error would all be detected in the handshaking correctness
check, described in Sections IV-B and V-B. Cases 14–17:
Non-C-element in handshaking circuitry, Data signal input to
C-element, Data signal input to PCHB gate Rack input, and
C-element structure feedback would all be detected by the
algorithm that generates the fanout and comp_fanin for each
PCHB gate and external data input, described in Section IV-B.

Case 18: Shorted output would be detected by the PCHB-to-
Boolean netlist conversion algorithm for shorted PCHB gate
data outputs and by the fanout/comp_fanin generation algo-
rithm for shorted PCHB Lack or C-element outputs. Hence,
our proposed methodology will detect all 18 fault cases, which
in Section III were proved to comprise all possible PCHB
circuit faults; therefore, our proposed methodology guarantees
full functional correctness for any PCHB circuit synthesized
using the method presented in [17].

VII. RESULTS

We have demonstrated the proposed methodology by verify-
ing several different sized MACs and ISCAS sequential circuit
benchmarks [27], as shown in Table II, which lists the verifi-
cation time for each circuit. MAC circuits could be considered
a special case since they only contain noninteracting FLs;
however, the ISCAS benchmarks are more general and con-
tain various interacting feedback paths. PCHB MAC circuits
are complex sequential pipeline structures, with each PCHB
component acting as a state holding element. For example,
an optimized 20 + 10 × 10 PCHB MAC requires 18 162 tran-
sistors, whereas its synchronous counterpart only requires
4710 transistors, demonstrating the substantially increased
complexity of PCHB circuits versus their synchronous equiv-
alent. The PCHB-to-Boolean netlist conversion time and the
time to generate fanout and comp_fanin for each PCHB gate
were negligible compared to the time required to perform
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TABLE II

VERIFICATION RESULTS FOR VARIOUS SEQUENTIAL PCHB CIRCUITS

the safety check by the Z3 SMT solver [22]; additionally,
the handshaking check was also negligible, as seen in Table II.
Note that Table II does not include the deadlock verification
times, as this algorithm was developed by Shih et al. [16].

To check our methodology, we injected bugs into the 20 +
10 × 10 MAC, corresponding to all 18 fault cases, except
for Case 9: Insufficient latches in an FL, as the method to
detect this fault was already developed by Shih et al. [16].
The –Bn multipliers in Table II are the buggy circuits, where n
corresponds to a Case n bug and (B) in either the safety check
or handshaking check column denotes the check that detected
the bug. -B8i corresponds to a latch reset to an incorrect value,
while B8ii corresponds to a signal other than the external reset
that is connected to a PCHB gate’s reset input.

In every case, the proposed methodology detected the bug
and produced a counterexample and/or descriptive error mes-
sage, in order to assist in identifying where the error occurred.
Verification was performed using the same computer described
in Section IV-C.

VIII. CONCLUSION

Formal verification methodologies for various QDI para-
digms have long been desired in the industry. Equivalence
checking is one of the popular formal verification approaches
that is highly scalable and efficient. This article proposes the
first-ever equivalence checking based methodology to formally
verify a QDI PCHB circuit against its synchronous specifica-
tion. Our approach is scalable, fast, and applicable to any com-
binational or sequential PCHB circuit synthesized using the
method presented in [17]. Additionally, our proposed method
is also applicable to the optimized hybrid PCHB-WCHB cir-
cuits proposed in [17], since PCHB and weak-conditioned half
buffer (WCHB) gates have the same interface and compatible
handshaking mechanisms, such that it makes no difference to
our verification approach if the transistor level gate structure
is implemented in PCHB or WCHB fashion. Note that WCHB
gates need to be designed properly to ensure weak condition-
ing [7] of their inputs (i.e., all gate outputs cannot become

DATA/NULL until all gate inputs are DATA/NULL), which
is required for delay-insensitivity. However, our verification
methodology does not check this; as noted at the beginning of
Section III, we assume that the transistor-level implementation
of every PCHB/WCHB gate is correct, which is a typical
assumption for gate-level verification methods. Verifying the
transistor-level implementation of each gate, including correct
weak-conditioning of WCHB gates, is a different problem.
Since each PCHB/WCHB gate is small enough, this can be
easily done via exhaustive simulation, which is a common
method for verifying circuit primitives.

Also note that the proposed methodology can be used to
check the equivalence of two PCHB circuits by applying
the conversion technique to both PCHB circuits to obtain
two corresponding synchronous circuits, verifying these two
synchronous circuits against each other and performing the
liveness and handshaking correctness checks on both PCHB
circuits. Additionally, the proposed method can be utilized
for PCHB circuits with more than one external Lack and/or
Rack; but for this, the handshaking check tool requires addi-
tional information to specify for each external Lack output,
which external data input(s) it acknowledges, and for each
external Rack input, which external data output(s) it requests.
Furthermore, our proposed approach is also applicable to
cases where there is no one-to-one register mapping between
the synchronous specification and the PCHB implementation.
In this case, equivalence between the synchronous specifi-
cation, SPEC_SEQ, and the synchronous circuit automati-
cally generated from the PCHB circuit using our method,
PCHB_SEQ, must be verified using a sequential equivalence
checker, such as Cadence’s JasperGold [28].

We have demonstrated that the proposed approach detects
all possible faults, thereby guaranteeing correctness, and
have proved that the 18 fault cases presented herein com-
prise all faults that could possibly occur in a QDI circuit
comprised entirely of PCHB/WCHB gates and C-elements.
Future work includes extending the proposed methodology to
PCHB/WCHB circuits that include conditional communica-
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tion, where DATA does not necessarily flow through every
path and every loop every cycle [7] (e.g., flowing DATA only
through a single ALU path to perform the selected operation,
rather than through all ALU paths, as in a Boolean circuit,
which can yield substantial power savings and improve the
average performance).
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