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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LM) by having the LM fill in
the blanks of prompts such as “Obama is a
__ by profession”. These prompts are usually
manually created, and quite possibly sub-
optimal; another prompt such as “Obama
worked as a _ may result in more accurately
predicting the correct profession. Because
of this, given an inappropriate prompt, we
might fail to retrieve facts that the LM does
know, and thus any given prompt only pro-
vides a lower bound estimate of the knowl-
edge contained in an LM. In this paper,
we attempt to more accurately estimate the
knowledge contained in LMs by automati-
cally discovering better prompts to use in this
querying process. Specifically, we propose
mining-based and paraphrasing-based meth-
ods to automatically generate high-quality
and diverse prompts, as well as ensemble
methods to combine answers from differ-
ent prompts. Extensive experiments on the
LAMA benchmark for extracting relational
knowledge from LMs demonstrate that our
methods can improve accuracy from 31.1%
to 39.6%, providing a tighter lower bound on
what LMs know. We have released the code
and the resulting LM Prompt And Query
Archive (LPAQA) at https://github.
com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-
guage models (LM) transition from generating or
evaluating the fluency of natural text (Mikolov and
Zweig, 2012; Merity et al., 2018; Melis et al., 2018;
Gamon et al., 2005) to being a powerful tool for
text understanding. This understanding has mainly
been achieved through the use of language mod-
eling as a pre-training task for feature extractors,

*The first two authors contributed equally.

2

jun.araki@us.bosch.com

Prompts
DirectXis developed by Yman

manual
Ymine released the DirectX
DirectXis created by Ypara

mined
paraphrased

Top 5 predictions and log probabilities

Yman Ymine Ypara
1 Intel -1.06 Microsoft -1.77 Microsoft -2.23
2 Microsoft -2.21 They -2.43 Intel -2.30
3 IBM -2.76 It -2.80 default -2.96
4 Google -3.40 Sega -3.01 Apple -3.44
5 Nokia -3.58 Sony -3.19 Google -3.45

Figure 1: Top-5 predictions and their log probabili-
ties using different prompts (manual, mined, and para-
phrased) to query BERT. Correct answer is underlined.

where the hidden vectors learned through a lan-
guage modeling objective are then used in down-
stream language understanding systems (Dai and
Le, 2015; Melamud et al., 2016; Peters et al., 2018;
Devlin et al., 2019).

Interestingly, it is also becoming apparent that
LMs! themselves can be used as a tool for text
understanding by formulating queries in natural
language and either generating textual answers di-
rectly (McCann et al., 2018; Radford et al., 2019),
or assessing multiple choices and picking the most
likely one (Zweig and Burges, 2011; Rajani et al.,
2019). For example, LMs have been used to answer
factoid questions (Radford et al., 2019), answer
common sense queries (Trinh and Le, 2018; Sap
et al., 2019), or extract factual knowledge about
relations between entities (Petroni et al., 2019; Bal-
dini Soares et al., 2019). Regardless of the end
task, the knowledge contained in LMs is probed
by providing a prompt, and letting the LM either
generate the continuation of a prefix (e.g. “Barack
Obama was born in _”), or predict missing words
in a cloze-style template (e.g., “Barack Obama is a
__ by profession”).

'Some models we use in this paper, e.g. BERT (Devlin
et al., 2019), are bi-directional, and do not directly define prob-

ability distribution over text, which is the underlying definition
of an LM. Nonetheless, we call them LMs for simplicity.
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However, while this paradigm has been used to
achieve a number of intriguing results regarding
the knowledge expressed by LMs, they usually rely
on prompts that were manually created based on
the intuition of the experimenter. These manually
created prompts (e.g. “Barack Obama was born
in _’) might be sub-optimal because LMs might
have learned target knowledge from substantially
different contexts (e.g. “The birth place of Barack
Obama is Honolulu, Hawaii.”) during their train-
ing. Thus it is quite possible that a fact that the LM
does know cannot be retrieved due to the prompts
not being effective queries for the fact. Thus, exist-
ing results are simply a lower bound on the extent
of knowledge contained in LMs, and in fact, LMs
may be even more knowledgeable than these initial
results indicate. In this paper we ask the question:
“How can we tighten this lower bound and get a
more accurate estimate of the knowledge contained
in state-of-the-art LMs?”” This is interesting both
scientifically, as a probe of the knowledge that LMs
contain, and from an engineering perspective, as it
will result in higher recall when using LMs as part
of a knowledge extraction system.

In particular, we focus on the setting of Petroni
et al. (2019) who examine extracting knowledge
regarding the relations between entities (definitions
in § 2). We propose two automatic methods to sys-
tematically improve the breadth and quality of the
prompts used to query the existence of a relation
(§ 3). Specifically, as shown in Figure 1, these are
mining-based methods inspired by previous rela-
tion extraction methods (Ravichandran and Hovy,
2002), and paraphrasing-based methods that take
a seed prompt (either manually created or automat-
ically mined), and paraphrase it into several other
semantically similar expressions. Further, because
different prompts may work better when querying
for different subject-object pairs, we also investi-
gate lightweight ensemble methods to combine the
answers from different prompts together (§ 4).

We experiment on the LAMA benchmark
(Petroni et al., 2019), which is an English-language
benchmark devised to test the ability of LMs to
retrieve relations between entities (§ 5). We first
demonstrate that improved prompts significantly
improve accuracy on this task, with the one-best
prompt extracted by our method raising accuracy
from 31.1% to 34.1% on BERT-base (Devlin et al.,
2019), with similar gains being obtained with
BERT-large as well. We further demonstrate that

using a diversity of prompts through ensembling
further improves accuracy to 39.6%. We perform
extensive analysis and ablations, gleaning insights
both about how to best query the knowledge stored
in LMs and about potential directions for incorpo-
rating knowledge into LMs themselves. Finally, we
have released the resulting LM Prompt And Query
Archive (LPAQA) to facilitate future experiments
on probing knowledge contained in LMs.

2 Knowledge Retrieval from LMs

Retrieving factual knowledge from LMs is quite
different from querying standard declarative knowl-
edge bases (KB). In standard KBs, users formu-
late their information needs as a structured query
defined by the KB schema and query language.
For example, SELECT ?y WHERE {wd:Q76
wdt :P19 2y} is a SPARQL query to search the
birth place of Barack_Obama. In contrast, LMs
must be queried by natural language prompts, such
as “Barack Obama was born in _”, and the word
assigned the highest probability in the blank will
be returned as the answer. Unlike deterministic
queries on KBs, this provides no guarantees of cor-
rectness or success.

While the idea of prompts is common to meth-
ods for extracting many varieties of knowledge
from LMs, in this paper we specifically follow the
formulation of Petroni et al. (2019), where factual
knowledge is in the form of triples (x, r, y). Here =
indicates the subject, y indicates the object, and r is
their corresponding relation. To query the LM, r is
associated with a cloze-style prompt ¢, consisting
of a sequence of tokens, two of which are place-
holders for subjects and objects (e.g., “x plays at y
position”). The existence of the fact in the LM is
assessed by replacing = with the surface form of the
subject, and letting the model predict the missing
object (e.g., “LeBron James plays at __ position”):?

§ = argmax Pov (v |z, ),
y' ey

where V is the vocabulary, and PLv(y'|z, t,) is the
LM probability of predicting 3’ in the blank condi-
tioned on the other tokens (i.e., the subject and the

2We can also go the other way around by filling in the
objects and predicting the missing subjects. Since our focus
is on improving prompts, we choose to be consistent with
Petroni et al. (2019) to make a fair comparison, and leave
exploring other settings to future work. Also notably, Petroni
et al. (2019) only use objects consisting of a single token, so
we only need to predict one word for the missing slot.



prompt).’> We say that an LM has knowledge of a
fact if ¢ is the same as the ground-truth y. Because
we would like our prompts to most effectively elicit
any knowledge contained in the LM itself, a “good”
prompt should trigger the LM to predict the ground-
truth objects as often as possible.

In previous work (McCann et al., 2018; Radford
et al., 2019; Petroni et al., 2019), ¢,- has been a sin-
gle manually defined prompt based on the intuition
of the experimenter. As noted in the introduction,
this method has no guarantee of being optimal,
and thus we propose methods that learn effective
prompts from a small set of training data consisting
of gold subject-object pairs for each relation.

3 Prompt Generation

First, we tackle prompt generation: the task of gen-
erating a set of prompts {t,.;}2_; for each relation
r, where at least some of the prompts effectively
trigger LMs to predict ground-truth objects. We em-
ploy two practical methods to either mine prompt
candidates from a large corpus (§ 3.1) or diversify
a seed prompt through paraphrasing (§ 3.2).

3.1 Mining-based Generation

Our first method is inspired by template-based re-
lation extraction methods (Agichtein and Gravano,
2000; Ravichandran and Hovy, 2002), which are
based on the observation that words in the vicinity
of the subject z and object y in a large corpus often
describe the relation r. Based on this intuition, we
first identify all the Wikipedia sentences that con-
tain both subjects and objects of a specific relation
r using the assumption of distant supervision, then
propose two methods to extract prompts.

Middle-word Prompts Following the observa-
tion that words in the middle of the subject and
object are often indicative of the relation, we di-
rectly use those words as prompts. For example,
“Barack Obama was born in Hawaii” is converted
into a prompt “x was born in y” by replacing the
subject and the object with placeholders.

Dependency-based Prompts Toutanova et al.
(2015) note that in cases of templates where words
do not appear in the middle (e.g., “The capital
of France is Paris™), templates based on syntactic
analysis of the sentence can be more effective for
relation extraction. We follow this insight in our

3We restrict to masked LMs in this paper because the
missing slot might not be the last token in the sentence and
computing this probability in traditional left-to-right LMs
using Bayes’ theorem is not tractable.

second strategy for prompt creation, which parses
sentences with a dependency parser to identify the
shortest dependency path between the subject and
object, then uses the phrase spanning from the left-
most word to the rightmost word in the dependency
path as a prompt. For instance, the dependency

. . bj
path in the above example is “France &2 of &L

capital M is 2 Paris”, where the leftmost and
rightmost words are “capital” and “Paris”, giving
a prompt of “capital of x is y”.

Notably, these mining-based methods do not rely
on any manually-created prompts, and can thus
be flexibly applied to any relation where we can
obtain a set of subject-object pairs. This will result
in diverse prompts, covering a wide variety of ways
that the relation may be expressed in text. However,
it may also be prone to noise, as many prompts
acquired in this way may not be very indicative of
the relation (e.g. “x, y”), even if they are frequent.

3.2 Paraphrasing-based Generation

Our second method for generating prompts is more
targeted — it aims to improve lexical diversity while
remaining relatively faithful to the original prompt.
Specifically, we do so by performing paraphrasing
over the original prompt into other semantically
similar or identical expressions. For example, if
our original prompt is “x shares a border with y”,
it may be paraphrased into “x has a common bor-
der with y” and “z adjoins y”. This is conceptually
similar to query expansion techniques used in in-
formation retrieval that reformulate a given query
to improve retrieval performance (Carpineto and
Romano, 2012).

While many methods could be used for para-
phrasing (Romano et al., 2006; Bhagat and
Ravichandran, 2008), we follow the simple method
of using back-translation (Sennrich et al., 2016;
Mallinson et al., 2017) to first translate the initial
prompt into B candidates in another language, each
of which is then back-translated into B candidates
in the original language. We then rank B? can-
didates based on their round-trip probability (i.e.,
Prorward (t]t)  Poackward (t|F), where # is the initial
prompt, ¢ is the translated prompt in the other lan-
guage, and t is the final prompt), and keep the top
T prompts.

4 Prompt Selection and Ensembling

In the previous section, we described methods to
generate a set of candidate prompts {¢,;}._; for a
particular relation r. Each of these prompts may be



more or less effective at eliciting knowledge from
the LM, and thus it is necessary to decide how to
use these generated prompts at test time. In this
section, we describe three methods to do so.

4.1 Top-1 Prompt Selection

For each prompt, we can measure its accuracy of
predicting the ground-truth objects (on a training
dataset) using:

Dl = 0(y=argmax ; Pm(y'|z,tri))
A(tr;) = e R] . )

where R is a set of subject-object pairs with re-
lation 7, and 4(-) is Kronecker’s delta function,
returning 1 if the internal condition is true and O
otherwise. In the simplest method for querying
the LM, we choose the prompt with the highest
accuracy and query using only this prompt.

4.2 Rank-based Ensemble

Next we examine methods that use not only the top-
1 prompt, but combine together multiple prompts.
The advantage to this is that the LM may have
observed different entity pairs in different contexts
within its training data, and having a variety of
prompts may allow for elicitation of knowledge
that appeared in these different contexts.

Our first method for ensembling is a parameter-
free method that averages the predictions of the
top-ranked prompts. We rank all the prompts based
on their accuracy of predicting the objects on the
training set, and use the average log probabilities*
from the top K prompts to calculate the probability
of the object:

K

1
s(yle,r) = Z; = log Am(yle,trs), (D)
P(y|xz,r) = softmax(s(-|x, 7))y, 2

where ¢, ; is the prompt ranked at the i-th position.
Here, K is a hyper-parameter, where a small K
focuses on the few most accurate prompts, and a
large K increases diversity of the prompts.

4.3 Optimized Ensemble

The above method treats the top K prompts equally,
which is sub-optimal given some prompts are more
reliable than others. Thus, we also propose a

“Intuitively, because we are combining together scores in
the log space, this has the effect of penalizing objects that are
very unlikely given any certain prompt in the collection. We
also compare with linear combination in ablations in § 5.3.

Properties T-REx T-REx-UHN T-REx-train
#sub-obj pairs  830.2 661.1 948.7
#unique subject 767.8 600.8 880.1
#unique objects 150.9 120.5 354.6
object entropy 3.6 34 4.4

Table 1: Dataset statistics. All the values are averaged
across 41 relations.

method that directly optimizes prompt weights.
Formally, we re-define the score in Equation 1 as:

T
s(yle,r) = Po, (trilr) log Pom(ylz, trs),

i=1

3)
where Py, (t,;|r) = softmax(6,) is a distribution
over prompts parameterized by 6,., a T-sized real-
value vector. For every relation, we learn to score
a different set of 7" candidate prompts, so the total
number of parameters is 7' times the number of
relations. The parameter 6, is optimized to maxi-
mize the probability of the gold-standard objects
P(y|x,r) over training data.

5 Main Experiments

5.1 Experimental Settings

In this section, we assess the extent to which our
prompts can improve fact prediction performance,
raising the lower bound on the knowledge we dis-
cern is contained in LMs.

Dataset As data, we use the T-REx subset (ElSa-
har et al., 2018) of the LAMA benchmark (Petroni
et al., 2019), which has a broader set of 41 rela-
tions (compared to the Google-RE subset which
only covers 3). Each relation is associated with
at most 1000 subject-object pairs from Wikidata,
and a single manually designed prompt. To learn
to mine prompts (§ 3.1), rank prompts (§ 4.2), or
learn ensemble weights (§ 4.3), we create a sepa-
rate training set of subject-object pairs also from
Wikidata for each relation that has no overlap with
the T-REx dataset. We denote the training set as T-
REx-train. For consistency with the T-REx dataset
in LAMA, T-REx-train also is chosen to contain
only single-token objects. To investigate the gener-
ality of our method, we also report the performance
of our methods on the Google-RE subset’, which
takes a similar form to T-REx but is relatively small
and only covers 3 relations.

https://code.google.com/archive/p/
relation-extraction-corpus/
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Porner et al. (2019) note that some facts in
LAMA can be recalled solely based on surface
forms of entities, without memorizing facts. They
filter out those easy-to-guess facts and create a
more difficult benchmark, denoted as LAMA-UHN.
We also conduct experiments on the T-REx subset
of LAMA-UHN (i.e., T-REx-UHN) to investigate
whether our methods can still obtain improvements
on this harder benchmark. Dataset statistics are
summarized in Table 1.

Models As for the models to probe, in our main
experiments we use the standard BERT-base and
BERT-large models (Devlin et al., 2019). We also
perform some experiments with other pre-trained
models enhanced with external entity representa-
tions, i.e., ERNIE (Zhang et al., 2019) and Know-
Bert (Peters et al., 2019), which we believe may do
better on recall of entities.

Evaluation Metrics We use two metrics to eval-
uate the success of prompts in probing LMs. The
first evaluation metric, micro-averaged accuracy,
follows the LAMA benchmark® in calculating the
accuracy of all subject-object pairs for relation r:

where g is the prediction and y is the ground truth.
Then we average across all relations. However, we
found that the object distributions of some rela-
tions are extremely skewed, e.g. more than half
of the objects in relation native_language
are French. This can lead to deceptively high
scores, even for a majority-class baseline that picks
the most common object for each relation, which
achieves a score of 22.0%. To mitigate this prob-
lem, we also report macro-averaged accuracy,
which computes accuracy for each unique object
separately, then averages them together to get the
relation-level accuracy:

2 (wyery=y O = Y)
— ol ’

1
luni_obj(R)| | Z
y’ €uni_obj
where uni_obj(R) returns a set of unique objects
from relation . This is a much stricter metric, with
the majority-class baseline only achieving a score
of 2.2%.

In LAMA, it is called “P@1.” There might be multiple
correct answers for some cases, e.g. a person speaking mul-
tiple languages, but we only use one ground truth. We will
leave exploring more advanced evaluation methods to future
work.

Methods We attempted different methods for
prompt generation and selection/ensembling, and
compare them with the manually designed prompts
used in Petroni et al. (2019). Majority refers
to predicting the majority object for each rela-
tion, as mentioned above. Man is the baseline
from Petroni et al. (2019) that only uses the
manually designed prompts for retrieval. Mine
(§ 3.1) uses the prompts mined from Wikipedia
through both middle words and dependency paths,
and Mine+Man combines them with the man-
ual prompts. Mine+Para (§ 3.2) paraphrases the
highest-ranked mined prompt for each relation,
while Man+Para uses the manual one instead.
The prompts are combined either by averaging
the log probabilities from the TopK highest-ranked
prompts (§ 4.2) or the weights after optimization
(§ 4.3; Opti.). Oracle represents the upper bound
of the performance of the generated prompts, where
a fact is judged as correct if any one of the prompts
allows the LM to successfully predict the object.

Implementation Details We use 7" = 40 most
frequent prompts either generated through min-
ing or paraphrasing in all experiments, and the
number of candidates in back-translation is set to
B = 7. We remove prompts only containing stop-
words/punctuations or longer than 10 words to re-
duce noise. We use the round-trip English-German
neural machine translation models pre-trained on
WMT’19 (Ng et al., 2019) for back-translation,
as English-German is one of the most highly re-
sourced language pairs.” When optimizing ensem-
ble parameters, we use Adam (Kingma and Ba,
2015) with default parameters and batch size of 32.

5.2 Evaluation Results

Micro- and macro-averaged accuracy of different
methods are reported in Tables 2 and 3 respectively.

Single Prompt Experiments When only one
prompt is used (in the first Top1 column in both
tables), the best of the proposed prompt generation
methods increases micro-averaged accuracy from
31.1% to 34.1% on BERT-base, and from 32.3% to
39.4% on BERT-large. This demonstrates that the
manually created prompts are a somewhat weak
lower bound; there are other prompts that further
improve the ability to query knowledge from LMs.

Table 4 shows some of the mined prompts that
resulted in a large performance gain compared to

"Thttps://github.com/pytorch/
fairseg/tree/master/examples/wmnt19
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Prompts  Topl Top3 Top5 Opti. Oracle
BERT-base (Man=31.1)

Mine 314 342 347 389 50.7

Mine+Man 31.6 359 351 39.6 52.6

Mine+Para 32.7 34.0 345 36.2 48.1

Man+Para 34.1 358 36.6 373 479
BERT-large (Man=32.3)

Mine 37.0 37.0 364 437 544

Mine+Man 39.4 40.6 384 439 56.1

Mine+Para 37.8 38.6 38.6 40.1 51.8

Man+Para 359 373 38.0 38.8 50.0

Table 2: Micro-averaged accuracy of different methods
(%). Majority gives us 22.0%. Italic indicates best
single-prompt accuracy, and bold indicates the best non-
oracle accuracy overall.

Prompts  Topl Top3 Top5 Opti. Oracle
BERT-base (Man=22.8)

Mine 20.7 2277 239 257 362

Mine+Man 21.3 23.8 24.8 26.6 38.0

Mine+Para 21.2 224 23.0 236 34.1

Man+Para 22.8 23.8 24.6 250 349
BERT-large (Man=25.7)

Mine 264 263 259 30.1 407

Mine+Man 28.7 283 273 30.7 422

Mine+Para 262 27.1 27.0 27.1 38.3

Man+Para 259 27.8 283 28.0 393

Table 3: Macro-averaged accuracy of different meth-
ods (%). Majority gives us 2.2%. Italic indicates best
single-prompt accuracy, and bold indicates the best non-
oracle accuracy overall.

the manual ones. For the relation religion, “z
who converted to y” improved 60.0% over the man-
ually defined prompt of “z is affiliated with the
y religion”, and for the relation subclass_of,
“x is a type of y” raised the accuracy by 22.7%
over “z is a subclass of y”. It can be seen that the
largest gains from using mined prompts seem to oc-
cur in cases where the manually defined prompt is
more complicated syntactically (e.g. the former), or
when it uses less common wording (e.g. the latter)
than the mined prompt.

Prompt Ensembling Next we turn to experiments
that use multiple prompts to query the LM. Compar-
ing the single-prompt results in Column 1 to the en-
sembled results in the following three columns, we

40
38 | Mine+Man - -Xx- -

Mine —<— Mine+Para —&—
Man+Para --4--

36
344
32 %

micro-accuracy (%)

30

1 2 3 4 5 6 7 8 9 10
top K prompts

Figure 2: Performance for different top- K ensembles.

can see that ensembling multiple prompts almost
always leads to better performance. The simple
average used in Top3 and TopS outperforms Top1
across different prompt generation methods. The
optimized ensemble further raises micro-averaged
accuracy to 38.9% and 43.7% on BERT-base and
BERT-large respectively, outperforming the rank-
based ensemble by a large margin. These two sets
of results demonstrate that diverse prompts can in-
deed query the LM in different ways, and that the
optimization-based method is able to find weights
that effectively combine different prompts together.
We list the learned weights of top-3 mined
prompts and accuracy gain over only using the top-
1 prompt in Table 5. Weights tend to concentrate
on one particular prompt, and the other prompts
serve as complements. We also depict the perfor-
mance of the rank-based ensemble method with
respect to the number of prompts in Figure 2. For
mined prompts, top-2 or top-3 usually gives us the
best results, while for paraphrased prompts, top-
5 is the best. Incorporating more prompts does
not always improve accuracy, a finding consistent
with the rapidly decreasing weights learned by the
optimization-based method. The gap between Or-
acle and Opti. indicates that there is still space for
improvement using better ensemble methods.

Mining vs. Paraphrasing For the rank-based
ensembles (Topl, 3, 5), prompts generated by
paraphrasing usually perform better than mined
prompts, while for the optimization-based ensem-
ble (Opti.), mined prompts perform better. We con-
jecture this is because mined prompts exhibit more
variation compared to paraphrases, and proper
weighting is of central importance. This differ-
ence in the variation can be observed in the average
edit distance between the prompts of each class,
which is 3.27 and 2.73 for mined and paraphrased
prompts respectively. However, the improvement
led by ensembling paraphrases is still significant
over just using one prompt (Top1 vs. Opti.), rais-



ID Relations Manual Prompts Mined Prompts Acc. Gain
P140 religion z is affiliated with the y religion = who converted to y +60.0
P159 headquarters location The headquarter of x is in y x is based in y +4.9
P20  place of death z diedin y z died at his home in y +4.6
P264  record label x is represented by music label y  x recorded for y +17.2
P279  subclass of x is a subclass of y risatype of y +22.7
P39  position held x has the position of y x is elected y +7.9
Table 4: Micro-averaged accuracy gain (%) of the mined prompts over the manual prompts.
ID Relations Prompts and Weights Acc. Gain
P127 owned by x is owned by y 485 = was acquired by y 151 « division of y 151 +7.0
P140 religion x who converted to y .g15 ¥ tirthankara x 190 y dedicated to x 110 +12.2
P176 manufacturer y introduced the x 594 ¥ announced the x 2g¢ x attributed to the 111 +7.0

Table 5: Weights of top-3 mined prompts, and the micro-averaged accuracy gain (%) over using the top-1 prompt.

ID Modifications Acc. Gain
P413 x plays in—at y position +23.2
P495  z was created—made in y +10.8
P495 x was—is created in y +10.0
P361 zisapartofy +2.7
P413  z plays in y position +2.2
Table 6: Small modifications (update, , and delete)

in paraphrase lead to large accuracy gain (%).

Prompts Topl Top3 Top5 Opti. Oracle
Mid 30.7 327 312 369 45.1
Mid+Dep 314 342 347 389 50.7

Table 7: Ablation study of middle-word and
dependency-based prompts on BERT-base.

ing micro-averaged accuracy from 32.7% to 36.2%
on BERT-base, and from 37.8% to 40.1% on BERT-
large. This indicates that even small modifications
to prompts can result in relatively large changes
in predictions. Table 6 demonstrates cases where
modification of one word (either function or con-
tent word) leads to significant accuracy improve-
ments, indicating that large-scale LMs are still brit-
tle to small changes in the ways they are queried.

Middle-word vs. Dependency-based We com-
pare the performance of only using middle-word
prompts and concatenating them with dependency-
based prompts in Table 7. The improvements con-
firm our intuition that words belonging to the de-

Mine Mine Man

Model Man Mine +Man +Para +Para
BERT 31.1 389 396 362 373
ERNIE 32.1 423 43.8 40.1 41.1
KnowBert 26.2 34.1 346 319 32.1

Table 8: Micro-averaged accuracy (%) of various LMs

pendency path but not in the middle of the subject
and object are also indicative of the relation.

Micro vs. Macro Comparing Table 2 and Table 3,
we can see that macro-averaged accuracy is much
lower than micro-averaged accuracy, indicating
that macro-averaged accuracy is a more challeng-
ing metric that evaluates how many unique objects
LMs know. Our optimization-based method im-
proves macro-averaged accuracy from 22.8% to
25.7% on BERT-base, and from 25.7% to 30.1% on
BERT-base. This again confirms the effectiveness
of ensembling multiple prompts, but the gains are
somewhat smaller. Notably, in our optimization-
based methods, the ensemble weights are opti-
mized on each example in the training set, which is
more conducive to optimizing micro-averaged ac-
curacy. Optimization to improve macro-averaged
accuracy is potentially an interesting direction for
future work that may result in prompts more gener-
ally applicable to different types of objects.

Performance of Different LMs In Table 8, we
compare BERT with ERNIE and KnowBert, which
are enhanced with external knowledge by explicitly
incorporating entity embeddings. ERNIE outper-



Mine Mine Man

Model Man Mine +Man +Para +Para
BERT-base 21.3 28.7 294 268 27.0
BERT-large 24.2 345 345 31.6 29.8

Table 9: Micro-averaged accuracy (%) on LAMA-UHN.

Mine Mine Man

Model Man Mine +Man +Para +Para
BERT-base 9.8 10.0 104 9.6 10.0
BERT-large 10.5 10.6 113 104 10.7

Table 10: Micro-averaged accuracy (%) on Google-RE.

forms BERT by 1 point even with the manually de-
fined prompts, but our prompt generation methods
further emphasize the difference between the two
methods, with the highest accuracy numbers dif-
fering by 4.2 points using the Mine+Man method.
This indicates that if LMs are queried effectively,
the differences between highly performant models
may become more clear. KnowBert underperforms
BERT on LAMA, which is opposite to the observa-
tion made in Peters et al. (2019). This is probably
because that multi-token subjects/objects are used
to evaluate KnowBert in Peters et al. (2019), while
LAMA contains only single-token objects.

LAMA-UHN Evaluation The performances on
LAMA-UHN benchmark are reported in Table 9.
Although the overall performances drop dramati-
cally compared to the performances on the original
LAMA benchmark (Table 2), optimized ensembles
can still outperform manual prompts by a large
margin, indicating that our methods are effective in
retrieving knowledge that cannot be inferred based
on surface forms.

Performance on Google-RE We also report
the performance of optimized ensemble on the
Google-RE subset in Table 10. Again, ensembling
diverse prompts improves accuracies for both the
BERT-base and BERT-large models. The gains are
somewhat smaller than those on the T-REx subset,
which might be caused by the fact that there are
only 3 relations and one of them (predicting the

0.8
0.7
0.6
0.54
0.4
0.34

prediction divergence

0.2
0.1
0.0

[0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
bucketed normalized edit distance between mined prompts

Figure 3: Correlation of edit distance between prompts
and their prediction divergence.

for facilitating retrieval of
knowledge from LMs.

Prediction Consistency by Prompt We
first analyze the conditions
under which prompts will yield
different predictions. We

define the divergence between
predictions of two prompts {,; and
t.; using the following equation:

Z(xy eRé(C( Y tTZ)7éC( z,Y, tTJ))
[R] ’

Div(tyi, trj) =

where C(z,y,t,;) = 1 if prompt t,;
can successfully predict y and 0
otherwise, and 6(-) is Kronecker’s
delta. For each relation, we
normalize the edit distance

of two prompts into [0,1] and
bucket the normalized distance
into 5 bins with intervals

of 0.2. We plot a box chart

for each bin to visualize the
distribution of prediction

with

the green triangles representing
mean values and the green bars

in the box representing median

As the edit distance
becomes larger,

divergence in Figure 3,

values.
the divergence
which confirms our
different

increases,
intuition that very

birthgateof aperson)2spartzcularlyhardtotheex%?é%é@ly%%@rgwpég@é%snggf ferent

zeroaccuracy.

5.3 Analysis

Next, we perform further analysis
to better understand what type

of prompts proved most suitable

The Pearson
correlation coefficient is 0.25,
which shows that there is a weak
correlation between these two
quantities.

prediction results.



xlyVyle | xlyVPylx | xzlyVW*Pylx

V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

Table 11: Three part-of-speech-based regular expres-
sions used in ReVerb to identify relational phrases.
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POS-based patterns

Figure 4: Ranking position distribution of prompts with
different patterns. Lower is better.

POS-based Analysis Next, we try
to examine which types of

prompts tend to be effective in
the abstract by examining the
part-of-speech (POS) patterns of
prompts that successfully extract
knowledge from LMs. In open
information extraction systems
(Banko et al., 2007),
defined patterns are often
leveraged to filter out noisy
relational phrases. For example,
ReVerb (Fader et al., 2011)
incorporates three syntactic
constraints listed in Table 11

to improve the coherence and
informativeness of the mined
relational phrases. To test
whether these patterns are also
indicative of the ability of a
prompt to retrieve knowledge from
LMs, we use these three patterns
to group prompts generated by our
methods into four clusters,
the “other”
prompts that do not match any
pattern. We then calculate the
rank of each prompt within the

manually

where
cluster contains

extracted prompts, and plot the
distribution of rank using box
plots in Figure 5.8
that the average rank of prompts
matching these patterns is better
than those in the “other” group,
confirming our intuitions that
good prompts should conform with
those patterns. Some of the

best performing prompts’ POS
signatures are “x VBD VBN IN y”
(e.g., “x was born in y”) and “x
VBZ DT NN IN y” (e.g., “x 1is the
capital of y”).

We can see

Cross-model Consistency Finally,
it is of interest to know

whether the prompts that we

are extracting are highly
tailored to a specific model,

or whether they can generalize
across models. To do so, we

use two settings: one compares
BERT-base and BERT-large, the
same model architecture with
different sizes; the other
compares BERT-base and ERNIE,
different model architectures
with a comparable size.
setting, we compare when the
optimization-based ensembles
are trained on the same model,
or when they are trained on
one model and tested on the
other. As shown in Table 12
and Table 13,
general there is usually some
drop in performance in the
cross—-model scenario (third
and fifth columns), but the
losses tend to be small,
the highest performance when
querying BERT-base is actually
achieved by the weights optimized
on BERT-large. Notably, the

best accuracies of 40.1% and

42 .2% (Table 12) and 39.5% and
40.5% (Table 13) with the weights

In each

we found that in

and

8We use the ranking position of a prompt to represent its
quality instead of its accuracy because accuracy distributions
of different relations might span different ranges, making
accuracy not directly comparable across relations.



Test BERT-base | BERT-large
Train base large | large base
Mine 389 38.7 | 4377 422
Mine+Man | 39.6 40.1 | 439 422
Mine+Para | 36.2 35.6 | 40.1 39.0
Man+Para | 37.3 35.6 | 388 37.5

Table 12: Cross-model micro-averaged accuracy (%).

The first row is the model to test, and the second row is
the model on which prompt weights are learned.

Test BERT ERNIE
Train BERT ERNIE | ERNIE BERT
Mine 38.9 38.0 423  38.7
Mine+Man | 39.6 39.5 43.8 40.5
Mine+Para | 36.2 342 40.1  39.0
Man+Para 373 352 41.1 403

Table 13: Cross-model micro-averaged accuracy (%).

The first row is the model to test, and the second row is
the model on which prompt weights are learned.

optimized on the other model are
still much higher than those
obtained by the manual prompts,
indicating that optimized prompts
still afford large gains across
models. Another interesting
observation is that the drop in
performance on ERNIE (last two
columns in Table 13) is larger
than that on BERT-large (last
two columns in Table 12) using
weights optimized on BERT-base,
indicating that models sharing
the same architecture benefit
more from the same prompts.

Linear VvS. Log-linear Combination
As mentioned in § 4.2, we

use log-linear combination

of probabilities in our main
experiments. it is
also possible to calculate
probabilities through regular

linear interpolation:
5
P(yle,r) = wPulylets) @)
i=1
We compare these two ways
to combine predictions from
multiple mined prompts in

However,

Prompts Topl Top3 Top5 Opti. Oracle

319 345 338 381 479
30.2 325 347 375 508

before
after

Table 14: Micro-averaged accuracy (%) before and after
LM-aware prompt fine-tuning.

Figure 5 (§ 4.2). We assume
that log-linear combination
outperforms linear combination
because log probabilities make
it possible to penalize objects
that are very unlikely given any

certain prompt.

6 Omitted Design Elements

Finally, in addition to the
elements of our main proposed
methodology in § 3 and § 4,

we experimented with a few
additional methods that did

not prove highly effective, and
thus were omitted from our final
design. We briefly describe
these below, along with cursory
experimental results.

6.1 LM-aware Prompt Generation

We examined methods to
generate prompts by solving
an optimization problem that
maximizes the probability of
producing the ground-truth
objects with respect to the
prompts:

ity = arg max Pry(ylz, tr),

where Piy(y|z,t,) is parameterized
with a pre-trained LM. In other
this method directly
searches for a prompt that causes
the LM to assign ground-truth
objects the highest probability.

words,

Solving this problem of finding
text sequences that optimize some
continuous objective has been
studied both in the context of
end-to-end sequence generation
2017), and in
the context of making small
changes to an existing input for

(Hoang et al.,



adversarial attacks
et al., 2018; Wallace et al.,
2019). However, we found that
directly optimizing prompts
guided by gradients was unstable
and often yielded prompts

in unnatural English in our
Thus,
we instead resorted to a more
straightforward hill-climbing
method that starts with an
initial prompt, then masks out
one token at a time and replaces
it with the most probable token
conditioned on the other tokens,
inspired by the mask-predict
decoding algorithm used in
non-autoregressive machine

(Ebrahimi

preliminary experiments.

translation (Ghazvininejad
et al., 2019):°

Z(x,y>e72 Pry(wilz, t\ i,y)

PLM(wi‘t'r \ 1) = |'R| )

where w; is the i-th token in the
prompt and ¢, \ 1 is the prompt
with the i-th token masked out.
We followed a simple rule that
modifies a prompt from left to
right, and this is repeated until
convergence.

We used this method to refine
all the mined and manual
prompts on the T-REx-train
and display their
performance on the T-REx dataset
in Table 14.
the oracle performance increased
significantly, while the ensemble
(both rank-based
and optimization-based) dropped
slightly. This indicates that
LM-aware fine-tuning has the
potential to discover better
prompts, but some portion of the
refined prompts may have over—-fit

dataset,

After fine-tuning,

performances

°In theory, this algorithm can be applied to both masked
LMs like BERT and traditional left-to-right LMs, since the
masked probability can be computed using Bayes’ theorem
for traditional LMs. However, in practice, due to the large size
of vocabulary, it can only be approximated with beam search,
or computed with more complicated continuous optimization
algorithms (Hoang et al., 2017).

linear - -4--

log-linear —x—

micro-accuracy (%)

1 2 3 4 5 6 7 8 9 10
top K prompts

Figure 5: Performance of two interpolation methods.

Features Mine Paraphrase
macro micro macro micro
forward 38.1 252 373 250

+backward 382 255 374 252

Table 15: Performance (%) of using forward and back-
ward features with BERT-base.

to the training set upon which
they were optimized.

6.2 Forward and Backward Probabilities

Finally, given class imbalance
and the propensity of the model
to over—-predict the majority
object,
encourage the model to predict
subject-object pairs that are
Inspired
by the maximum mutual information

we examine a method to

more strongly aligned.

objective used in Li et al.
(2016a), we add the backward log
probability log Pou(z|y,t,;) of each
prompt to our optimization-based
scoring function in Equation 3.
Due to the large search space
for objects, we turn to an
approximation approach that only
computes backward probability
for the most probable B objects
given by the forward probability
at both training and test

time. As shown in Table 15,

the improvement resulting

from backward probability

is small, indicating that a
diversity-promoting scoring
function might not be necessary
for knowledge retrieval from LMs.

7 Related Work

Much work has focused on
understanding the internal



representations in neural NLP
models (Belinkov and Glass,
2019), either by using extrinsic
probing tasks to examine whether
certain linguistic properties
can be predicted from those

representations (Shi et al.,
2016; Linzen et al., 2016;
Belinkov et al., 2017), or

by ablations to the models to
investigate how behavior wvaries
(Li et al., 2016b; Smith et al.,
2017) . For contextualized
representations in particular, a
broad suite of NLP tasks are used
to analyze both syntactic and
semantic properties, providing
evidence that contextualized
representations encode linguistic
knowledge in different layers
(Hewitt and Manning, 2019; Tenney
et al., 2019a,b; Jawahar et al.,
2019; Goldberg, 2019).

Different from analyses
probing the representations
themselves, our work follows

(2019) ;
in probing for
factual knowledge. They use
manually defined prompts, which
may be under-estimating the
true performance obtainable by
LMs. Concurrently to this work,
Bouraoui et al. (2020) made a
similar observation that using
different prompts can help better
extract relational knowledge
from LMs, but they use models
explicitly trained for relation
extraction whereas our methods
examine the knowledge included
in LMs without any additional
training.

Petroni et al. PdOrner

et al. (2019)

Orthogonally,
works integrate external
knowledge bases so that the
language generation process
is explicitly conditioned on
symbolic knowledge (Ahn et al.,
2016; Yang et al., 2017; IV
et al., 2019; Hayashi et al.,

some previous

2020) . Similar extensions have
been applied to pre-trained LMs
like BERT,
representations are enhanced with
entity embeddings (Zhang et al.,
2019; Peters et al., 2019;
et al., 2019). In contrast,
we focus on better knowledge
retrieval through prompts from
LMs as-is, without modifying
them.

where contextualized

Porner

8 Conclusion

In this paper, we examined

the importance of the prompts
used in retrieving factual
knowledge from language models.
We propose mining-based and
paraphrasing-based methods to
systematically generate diverse
prompts to query specific pieces
of relational knowledge. Those
prompts, when combined together,
improve factual knowledge
retrieval accuracy by 8%,
outperforming manually designed
prompts by a large margin. Our
analysis indicates that LMs are
indeed more knowledgeable than
initially indicated by previous
results, but they are also quite
sensitive to how we query them.
This indicates potential future
directions such as (1)
robust LMs that can be queried in
different ways but still return
similar results, (2) methods to
incorporate factual knowledge in
LMs, and (3) further improvements
in optimizing methods to query
LMs for knowledge. Finally, we
have released all our learned
prompts to the community as

the LM Prompt and Query Archive
(LPAQA), available at: https:
//github.com/jzbjyb/LPAQA.

more
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