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Integral Reinforcement Learning-Based
Multi-Robot Minimum Time-Energy Path
Planning Subject to Collision Avoidance and
Unknown Environmental Disturbances
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Abstraci—In this letter, we study the online multi-robot
minimum time-energy path planning problem subject to
collision avoidance and input constraints in an unknown
environment. We develop an online adaptive solution for
the problem using integral reinforcement learning (IRL).
This is achieved through transforming the finite-horizon
minimum time-energy problem with input constraints to
an approximate infinite-horizon optimal control problem.
To achieve collision avoidance, we incorporate artificial
potential fields into the approximate cost function. We
develop an IRL-based optimal control strategy and prove its
convergence. The theoretical results are verified through
simulation studies.

Index Terms—Robotics, optimal control, constrained
control, machine learning, uncertain systems.

. INTRODUCTION

HE ROBOT technology was developed rapidly during the

last decades, with applications that span manufacturing,
agriculture, disaster response, transportation and services. To
ensure a safe multi-robot system, the online path planning of
multiple robots subject to collision avoidance, input constraints
and unknown environmental disturbances is crucial.

The multi-robot path planning problem subject to collision
avoidance has been considerably studied in literature. The
problem can be broadly classified into offline versus online
planning, centralized versus decentralized planning, and coop-
erative versus non-cooperative planning [1]. The objective of
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multi-robot path planning can be the minimization of time,
energy, hybrid time-energy or risks [2]. Among them, mini-
mum time and time-energy problems are non-trivial to solve
because the final time to minimize is unknown and standard
optimal control solutions do not work [3].

Robots of practical applications often operate in a com-
plex environment, such as wind fields, ocean currents and
other weather conditions [4]. With known environmental
information, solutions to Dubins path and Zermelo-Markov-
Dubins types of problems have been developed [5]. These
offline methods are often not effective because precise environ-
mental information is usually unknown in practice. Therefore,
online adaptive solutions become valuable. Online multi-robot
path planning approaches include estimation-based, vision-
based, data-driven, and reinforcement learning (RL)-based
methods. In [6], weather conditions are estimated using ocean
circulation models and satellite measurements to facilitate path
planning. In [7], an omni-directional vision sensing system is
adopted to identify the positions and velocities of other robots.
In [8], a data-driven framework combines offline query from
historical wind scenarios and online tuning to facilitate fast
online path planning of multiple unmanned aerial vehicles
(UAV). All the above methods rely on additional on-board
devices or weather services. RL, on the other hand, allow
agents to learn the optimal control solutions adaptively without
extensive knowledge of the environment. Some studies have
applied RL to the multi-robot path planning problem with col-
lision avoidance in unknown environments [9], [10]. However,
these methods solve the problem in discrete state and control
input spaces and thus may lose precision.

In this letter, we study the online multi-robot minimum
time-energy path planning problem subject to collision avoid-
ance and input constraints in an unknown environment. The
minimum time-energy problem is challenging to solve using
RL because the final time is not a fixed value. The solu-
tions coming out of the Pontryagin’s minimum principle for
the problems are discontinuous. Different from existing min-
imum time-energy studies that are offline without unknown
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environmental conditions and in discrete time, state or control
input spaces [3], we here develop an online integral reinforce-
ment learning (IRL) solution in continuous time, state and
control input spaces to achieve improved precision subject to
unknown environmental conditions. IRL. was first developed
in [11] to address continuous time RL problems, and was fur-
ther enhanced in e.g., [12], [13]. The basic idea of IRL is
to minimize the integral temporal difference (TD) error for a
period of time. The implementation often relies on the least
squares and neural network approximation. The contributions
of this letter are summarized as follows.

« We develop an IRL-based online adaptive solution to
solve the multi-robot minimum time-energy problem sub-
ject to collision avoidance, input constraints and unknown
environmental disturbances. To the best of our knowl-
edge, this is the first online solution to this free final
time path planning problem in continuous time, contin-
uous state and control input spaces subject to unknowns
and constraints.

« We provide a novel approximate cost function that is
solvable by IRL for this minimum time-energy multi-
robot path planning problem. The cost function includes
a hyperbolic tangent function to transform the origi-
nal finite-horizon problem to an infinite-horizon problem
so that IRL can be readily applied. To deal with con-
trol input constraints and minimum energy consumption,
generalized nonquadratic functionals and their estimation
procedure are provided.

« To achieve collision avoidance, an artificial potential field
is incorporated into the approximate cost function. A spe-
cial weight matrix is designed to counteract the non-zero
tail such that a finite approximate cost function can be
obtained.

« We provide a convergence proof for the proposed IRL-
based minimum time-energy solution under constraints
using a Lyapunov approach.

The reminder of this letter is organized as follows. Section II
formulates the multi-robot path planning problem subject to
collision avoidance. In Section III, we introduce the approxi-
mate cost function and develop an IRL-based policy iteration
(PI) solution. Section IV provides a convergence proof.
Section V verifies the proposed approach using a simulation
study. Section VI concludes this letter.

Il. PROBLEM FORMULATION

We consider the problem of navigating N robots from
their initial locations (xj,yip) to destinations (x,y;r), i €
{1,2,...,N}, in a 2-D plane. Denote the position and veloc-
ity of robot i along the X and Y axes at timTc instant f as
Li(t) = [xi(f), yi(D] and Vi(t) = [vix(£), viy(£)] respectively,
where T denotes the matrix tragspose. The initial concTIitions
are Li(0) = Lo = [xo.yo]l and Vi(0) = [0,0]. Let
X;(t) = [Li(t) ,Vi(f) 1 represent the system state of robot
i, Ui(t) = [ui(t), uiy(®]" and Wi(t) = wix(), wiy(]" denote
the control inputs and unknown environmental disturbances
along the X and Y axes for robot i respectively. We here

consider a generic second-order linear dynamics for the robots,

. [Lo] _ [AsVi®) + EsWi(0)
X0 = [ff,-(r)] _[ B.Ui(1) ]
= AXi(t) + BU(t) + EW(), |U:i(D] < U, (1)

where
022 As 022 E,
A= , B= T E= ;2
[Ozxz Ozxz] [ By ] [02x2] @

The control inputs are bounded by Uy = [Uim, U@M]T,
and instantaneous changes are allowed if they are within the
bounds. O, «, is a zero matrix of size m x n. (A, B) is control-
lable. To avoid collision, the distance d;(f) = |Li(t) — L;j(0)|
between any two robots i and j at time ¢ should be larger than a
safety distance rs, where ||-|| denotes the Euclidean norm. Our
goal is to find the minimum time-energy trajectory with colli-
sion avoidance and the corresponding optTimal c?ntrol for the
N robots such that Li(T) = Ly = [xj, yir] and Li(T) = Oa«
forall i e {1,2,...,N}. We assume that robots are well sep-
arated at their destinations, i.e., | Ly — Ly|| >> r; is satisfied
for all i # j.

Problem 1: Given the initial positions Ly = [Lyp, Loo, ...,
Lyol' and destinations Ly = [Lis, Ly, ..., Lys] of the N
robots, find the optimal control laws U = [Uj, Us, ..., U;\.r]T
such that the total travel time and energy for the robots
to arrive at their destinations under unknown disturbances
W = [W, Wg,...,WN]T are minimized, and the safety dis-
tance constraint ry is met for all robot pairs at all times.
Mathematically,

T
min J = f (p + U PU)dt
u 0

X)) = Iy @AX(H) + Iy @ BU(D) + Iy ® EW (D),

U] < Un,
sit.: { L) =Ly, V(0) = Oax1, 3)
LT =Lr, L{T)=0wx1,

dij >rs Vi,je{l,2,... N} and i # j,

where X(1) = [Xi(), X2(0), XN, L) =
(L@, L2(D), ... . Ly(D], V(@) = [Vi(D),V2(), ..., VN(DT .
Uy = [Uim. U, ..., Unml , p is a positive constant to
account for the importance of travel time, P is a positive
diagonal matrix, Iy is an identity matrix of size N, and ® is
a Kronecker product.

Problem 1 optimizes both travel time and energy in its
quadratic form. We note that the upper limit of the inte-
gral T, the travel time to minimize is not known and hence
the problem is different from the fixed time problem com-
monly studied in the RL literature. In addition, the unknown
environment condition and the existence of control input and
collision avoidance constraints further complicate the problem.
The problem can not be solved using traditional optimal con-
trol methods such as the Pontryagin’s minimum principle or
the Hamilton—Jacobi—Bellman (HJB) equation.
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[1l. MuLTI-ROBOT PATH PLANNING UNDER UNKNOWN
ENVIRONMENTAL DISTURBANCES USING IRL METHOD

In this section, we develop an online solution to adaptively
learn the unknown disturbance and solve the minimum time-
energy path planning problem subject to collision avoidance in
continuous time, continuous state and control input spaces. To
do that, we introduce an approximate cost function to trans-
form the problem to a problem that is solvable by IRL and
then develop a PI solution.

A. The Approximate Cost Function

We introduce a novel approximate cost function V(X, 0) as
follows,

Va0 = [ (prann(wo — 1" @wn - )
0
+ OWW) + O D) )dr. &)

The first term under the integral is a hyperbolic tangent func-
tion that transforms the finite-horizon minimum time-energy
optimal control problem to an infinite-horizon problem. The
second term is a generalized nonquadratic functional that deals
with the constrained control inputs and energy consumption.
The third term under the integral captures the collision avoid-
ance constraint using the concept of artificial potential field.
We introduce in details each of these terms and compare them
with the terms in (3) to show that V (X, 0) well approximates
J in the original Problem 1. Hence, the solution to (4) also
well approximates the solution to (3).

1) A Hyperbolic Tangent Function toTApproximate Minimum
Time: The first term p tanh((L(f) — Ly) (L(f) — Ly)) under the
integral in (4) is a hyperbolic tangent function to approximate
the minimum time objective [14]. When L(f) is far away from
Ly, ptanh((L() — Ly) (L(t) L)) is equal to p in (3). When
L(t) approaches Ly, tanh((L(f) — L) (L(f)—Ly)) decreases and
approaches 0. Because the tanh function is odd and monotonic,
the integral of this term is minimized only when L(f) = Ly.
The upper limit of the integral is thus extended from T in (3)
to oo, and the state at the fixed final time at oo is now incor-
porated in V instead of the state at an unknown finite time 7.
The tanh function is also continuous and differentiable. This
approximate minimum time problem is thus a form solvable
by IRL.

2) Generalized Nonquadratic Functionals to Capture
Constrained Inputs and Energy Consumption: The second term
@ (U(t)) under the integral of V is a generalized nonquadratic
functional [15] to approximate the minimum energy cost
and also capture the input constraints. We first show its
expression, then discuss its properties, and in the end show
the approximation procedure.

®(U(r)) is defined as

uin
oW =2 | ¢~ (¢)Rd, Q)

where R is a positive diagonal matrix, and ¢(§) =

[D(E1x), @ (Ery). @ (E2n)s ..., @ (Enn), d(Eny)] is a monotonic

Fig 1. (a) An lllustration of I(ujx)Rjx to approximate o2 with Rijx =0.83.
(b) An illustration of the Gaussian repulsor function ’fg(d,j(f)) between
two robots jand j.

odd function with bounded first derivative. ¢(&;;) is specif-
ically constructed using fanh() [16],
&ix
I 6
U (6)

ixM

O (Gix) = Uiemt iaﬂh(

¢ (&) is constructed in a similar way. Note that d€ is a column
vector consisting of d§;, and d¢;,, where i € {1,2, ..., N}, and
hence ®(U(t)) is a scalar.

®(U(r)) is a smooth real-valued positive definite
performance integrand. Now we show that ®(U(r)) is a
symmetric function with minimum value O by examining
each of its element. Let l(uzx) = 2 [o=?¢=1(g,)dk;.
oU() = Z?F:](I(uix)R;-x + I(uiy)Riy), where R and R;,
are the diagonal elements in R corresponding to u; and u;y
respectively. The element [(u;,)R;, is calculated as

[(uix)Ri_x = ZUIIIXMRixu;'x(‘) tanh_l (I;;x(t))

Ui (1)
+ UiMRixln(l— U&u)' (7

Because [/(uiy)Rix is a symmetric function with minimum
value 0, ®(U()) is also a symmetric function with minimum
value 0. ®(U(1)) is equal to O if and only if U(f) = Oanxi.
To best approximate the energy consumption UTPU in (3),
we calculate the parameters R;; and R; based on the mean
squared error (MSE) such that the difference between the
approximate energy and original energy is minimized.
U.
e _ P Joo ug i) du
== Ugi
2 f U:M E(ui)duix

Uy
Piy [~ Oy 431 tiy)dtiy

-
2 [0y P (tiy) iy

= @®)

where P;, and P;, are the diagonal element in P corresponding
to u;; and u;, respectively. An illustration of the approxi-
mation is shown in Figure 1(a). We see that @ (U(r)) well
approximates U' PU. In addition to approximating energy con-
sumption, the tanh function in ¢ (-) also guarantees that the
control inputs u;; and uj, are constrained by Uy and Upy
respectively. This will be explained later in (15) where the
explicit form of U(Y) is derived.
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3) Artificial Potential Fields to Capture the Collision
Avoidance Constraint: The main idea is to emanate a repul-
sive potential field among the robots to force them avoid
each other. A two-dimensional Gaussian repulsor function [17]
between any two robots i and j at time ¢ is defined as

20,
fr(dij(t)) = 8—0.5(—52—) , where ¢ determines the steepness of
the repulsor function and o determines the repulsive range. In
particular, a large c leads to a steep shape, and a large o leads
to a wide repulsive range as shown in Figure 1(b). To capture
the safety distance constraint r; in Problem 1, we compute o
and c by setting the repulsor function value at r; and r;+ A as

IR(rs) = k1, fRirs+A)=K2, 0 <2 <k <1, (9)

where A is a small positive scalar, «; is close to 1 and k2
is close to 0. fr(dj;) increases dramatically when the distance
djj decreases to ry. Solving (9), we obtain a steep repulsor
function to avoid collision with parameters,

In(log_, x2) In(—2Inky)
C:L‘a* J:eh“‘s—TL_ (10)
2In(1 + E)

To account for collision avoidance between any pair of robots,
we incorporate their Gaussian repulsor functions into the
approximate cost function V as shown in the third term under
the integral in (4). We deﬁTne a distance matrix D(f) =
[di2(8), d13(1), ..., dyv_1 n()] and a correspondil%g weight
matrix Qgr() = [Q2(0), Q13(0), ..., Qn_1.n(#)] for the
repulsor functions. The Gaussian repulsor function is always
larger than 0. In order to have a finite V, we design a spe-
cial weight matrix €2;(f) to counteract the non-zero tail of the
repulsor functions as

@;(t) = Btanh (| L) — Ly |* + | L0 — Ly|*). D)

where B is a positive constant accounting for the importance
of collision avoidance. By choosing an appropriately large 8,
the collision avoidance can be achieved. When robots are far
away from their destinations, €; = B. When they become
closer to their destinations, the value of ; decreases. When
both robots i and j arrive at their destinations, 2;; = 0. Because
€2 > 0 except at the destinations, the only way to make V =0
is when all the robots arrive at their destinations. There is no
local minima issue from the potential field.

B. IRL-Based Policy lteration Algorithm

In this section, we show the reformulated problem ready to
be solved using IRL and also provide a PI solution.

Section IM-A transforms Problem 1 to an infinite-time
horizon optimization problem (4) with robot dynamics

X(1) = Iy ® AX(1) + Iy ® BU(1) + Iy ® EW(1).

The control and the safety distance constraints are not
further imposed as they have been incgrporated in V
in (4). Let r(X,U.1) = ptanh((L(t) — Ly) (L(1) — Ly)) +
@ (U(D) +Qg(r)TfR(D(r)). The minimum of the cost function
is denoted by

(12)

o0
V"‘:mjnf r(X, U, tdt. (13)
U Jo

The HIB equation becomes

T
av*
(HX) (In@AX+Iy@BU+Iy@EW)+r(X,U, 1) =0. (14)

The corresponding optimal control strategy is solved according
to the stationary condition

Ut = —¢(1R—1(r ® B)“"‘V*) as)
= ax )’

Equation (15) shows that U is always bounded by Uy accord-

ing to the properties of ¢(-), and hence the control input

constraint is satisfied.

Because of the unknown environmental disturbance, the
HIB equation can not be solved directly. Therefore, we uti-
lize the Bellman’s optimality principle, adopt a value function
approximation (VFA), and develop a Pl-based IRL method
to learn the unknown environment online. The value function
written in the IRL form is

t+T;
Vi = f r(X, U, t)dt + V(t 4+ T;). (16)
t

According to the Weierstrass approximation theorem [18], a
continuous function on a bounded interval can be approxi-
mated usin]g polynomials. Hence we can find a VFA such that
V(1) = Zy¥rm(X), where Yy (X) denotes a dense basis set
and Xy denotes the weights.

Two iterative steps are included in the PI algorithm, i.e.,
policy evaluation and policy improvement. In policy evalua-
tion, we solve V(f) using (17) based on the current control
strategy. In policy improvement, the optimal control strategy
is updated according to (18). The two steps iterate until a
predefined convergence rate is achieved.

Policy Evaluation:

) T, , .
V(1) :-f rX, U, v)de + V(t + Ty). (17)
t
Policy Improvement:
: 1 TaV/
Ut = —¢( =R 'y ®B) — ). 18
¢'(2 Un®B) — (18)

Combining the VFA, we then write (17) as

14T,

(S M X (®) — Y (Xt + Te))] = [ "rX, U, )de. (19)

The control policy is updated as

T
H _¢(%R_1(IN ®B) (73'!’“;?“})) E{u). (20)

IV. CONVERGENCE ANALYSIS

In this section, we prove the convergence of the proposed
IRL-based path planning solution. We show that if starting
with an admissible control, the updated control policy at the
next iteration is still admissible. In addition, V is a Lyapunov
function that decreases over time. Here, a control U is admis-
sible means that it can drive the robot dynamics (12) from the
initial positions Xp to the destinations Xy subject to input and
safety constraints and the approximate cost function V in (4)
is finite.
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Theorem 1: Given an initial admissible control U°, the pol-
icy iteration (17) and (18) converge to the optimal control
solution for (4) under an unknown environmental distance
WY Xp and Xf.

Proof: Given an admissible U/, we show that U7+ is also
admissible and V* < V/*! < V/. Taking the derivative of V/
along the X = Iy ® AX + Iy ® BU*! + Iy ® EW trajectory,
we have

o T
VigK, Uity — (%) (Iy ®AX + Iy ® BU + Iy @ EW). (21)

According to (14),

avi\ aviy
(ﬁ) Iy ® EW) = —(ﬁ) Iy ® AX)
aviy : :
B (ﬁ) (v ® BU) —r(X. U).  (22)

Combining (21) and (22), we have

P &
Vix, ity = (Z—;J) Iy ® BY(U! — U — r(X, UF). (23)

According to (18), we have

I
(ﬂ) (Iy ® B) = —2¢~ " ("t HR. (24)

oX
Substituting (24) into (23), we obtain

Vi(x, U )
i

= —2(¢—'(Uf+')R(Uf+' —Uh+ f ¢—1(.5)Rde)
0

— Qfa(D) — pranh((L—Lp)" (L~ Ly))

i+l

=_2(¢"(Uf+')R(Uf+' —Lﬂ)—f_ ¢~ (6)Rds
i

! ; r .
+ [} ¢ (a)Rdg) — Qufie(D) — pranh((L— L) L—Lp)).  (25)

Since ¢! is monotonic and odd, and R is a positive diagonal
matrix, we have

i+l
¢~ (R — ) — fU @R >0,

it
f 6~ (©)RdE = 0. (26)
0

Therefore, Vi(X, Ui+!) < 0 is always satisfied. Because
VI(X, Uit1) is positive definite, continuous and differentiable,
we conclude that V/(X, U7+!) is a Lyapunov function for U7+!
and U7*! is an admissible control.

The system trajectory of (Iy ® AX + Iy ® BU/H! Iv®
EW)Y Xp and Xy is shown as follows.

VIt (Xo, 0) — VI (Xo, 0)

T

o ( /gyt aviy' :
:_f ((_ax ) _(ﬁ) )(IN®AX+IN®BU’+'
0

+ Iy @ EW)dt. 27

987
1
X 30
N ¥ 0.95
.U:=
“EE- 0.5
X315
¥ 0.0001753 |
oL tie . e
0 20 40
dy(m)

Fig. 2. The repulsor function with ¢ = 52.5 and o = 30.7.

According to (14),

",
awvi
(ﬁ) Iy ® EW)

a1 A
avi avi : ;
e = iy — i
(ax) (Iy ® AX) ( X) (Iy ® BUYy — r(X, UY),

T

) Iy ® EW)

ayi+!
( aX

Jyi+l
=_( ax

T

JVi+l! ¥ s
) UN@AX)—(W) (Iy @ BUFY) — r(x, U, (28)

Combining (28) and (27), we have

Vi* (X0, 0) — V/ (X0, 0) = —2 fﬂ (¢‘1(Uf+ HRUH — U)
i+l

_fw_

According to (26), V/*!(Xo, 0) < V/(Xp, 0). By contradiction,
we have V* < Vit1(Xg, 0) < VI(X, 0). [

¢! (s)Rdg)d:. (29)

V. SIMULATION STUDY

We simulate and demonstrate the performance of the
proposed multi-robot path planning algorithm in an unknown
environment. Consider three robots with initial positions
at (x10,yvi0) = (185,160)m, (x20,y20) = (0, 160)m, and
(x30, y30) = (90, 150)m respectively. Their destinations are
(x17, y17) = (0,0)m, (xz7, y2r) = (185, 0)m, and (x3f, y3) =
(0, 60)ym. Here we consider unknown constant environmen-
tal disturbances on the X and Y axes as W, = W, = 2m/s.
In the future, we will extend the analysis to spatiotempo-
ral environmental disturbances. Control input constraints are
UM = UjyM = Im;‘sz, where i € {1, 2, 3}. In addition, p =1,

F) 0 1 0" F) 0" F 0“

0 0 0 1 0 0 0 1

p=Lid=ly o ¢ 0B85 plE5le ol
0 0 0 0 0 1J |_0 0

P = Ig. Safety distance constraint is set as ry, = 30m, A = 1m.

We first solve an appropriate repulsor function by setting
Jr(rs) = 0.95 and fr(rs + A) = 0.2, and obtain ¢ = 52.5 and
o = 30.7. The steep repulsor function is shown in Figure 2.
Then we solve R = 0.83]¢ according to (8). We use a VFA to
approximate the cost function V for the three-robot path plan-
ning problem. The IRL time interval and the stopping criteria
for PI algorithm are set as Ty = 0.15s and 1073 respectively.
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Fig. 3. Simulation results for the proposed IRL-based algorithm of

three robots with collision avoidance under unknown environmental dis-
turbances. (a) The system states of robot 1, (b) The system states of
robot 2, (c) The robot trajectories, (d) Control inputs.

The simulation results are shown in Figure 3. Figures 3(a)
and 3(b) show the states of robots 1 and 2 respectively. They
reach their destinations at T = 40s. Robot 3’s state is omit-
ted here due to space limitation. As shown in Figure 3(c),
at time f = 14.5s, the distance between the robots 1 and 2
becomes less than r; and triggers the repulsor function. In
particular, it forces robots 1 and 2 to change their directions
to avoid collision. When their distance becomes larger than
rs, the repulsor function becomes small and has an infinitesi-
mal effect on the robot directions. Figure 3(d) shows that the
control inputs remain within the bounds —1 and 1. The ini-
tial admissible controls are required according to Theorem 1.
Applying the controls back to the costs in (3) and (4), we
find that J = 190.5 and V(X,0) = 196.4 for the approxi-
mate time-energy consumption. The total approximation gap
is less than 3%. The comparison shows that (4) well approx-
imates (3) and our IRL-based path planning solution allows
all the robots to reach their destinations with minimum time-
energy subject to collision avoidance, control input constraints
and unknown environmental disturbances. The total computa-
tion time is 3155, using a Dell XPS 13 laptop with CPU clock
time up to 4.9 GHz.

VI]. CONCLUSION

In this letter, we developed an IRL-based online multi-
robot minimum time-energy path planning algorithm subject
to input constraints and collision avoidance subject to con-
stant or slowly varying unknown disturbances. We introduced
an approximate cost function that transforms the problem
to a problem solvable using IRL and developed a PI solu-
tion in continuous time, state and control input spaces. The
approximate cost function contains three items, a hyperbolic
tangent function to approximate minimum time, generalized
nonquadratic functionals to capture the control constraints and

approximate the minimum energy objective, and an artificial
potential field for collision avoidance. We proved the conver-
gence for the proposed algorithm and verified its effectiveness
using simulation studies. In the future work, we will study
algorithms that remove the need of initial admissible controls
and extend the algorithms to more complex 3D UAV dynam-
ics and spatiotemporal environmental disturbances. We will
also study implementation of the proposed algorithm on a real
platform.
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