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Abstract

Four-dimensional (4D) flat Minkowski space admits a foliation by hyperbolic slices. Eu-
clidean AdS3 slices fill the past and future lightcones of the origin, while dS3 slices fill the region
outside the lightcone. The resulting link between 4D asymptotically flat quantum gravity and
AdS3/CFT2 is explored in this paper. The 4D superrotations in the extended BMS4 group are
found to act as the familiar conformal transformations on the 3D hyperbolic slices, mapping
each slice to itself. The associated 4D superrotation charge is constructed in the covariant phase
space formalism. The soft part gives the 2D stress tensor, which acts on the celestial sphere at
the boundary of the hyperbolic slices, and is shown to be an uplift to 4D of the familiar 3D holo-
graphic AdS3 stress tensor. Finally, we find that 4D quantum gravity contains an unexpected
second, conformally soft, dimension (2, 0) mode that is symplectically paired with the celestial
stress tensor.
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1 Introduction

The metric for flat 4D Minkowski space (M4) in hyperbolic coordinates is

ds2 = −dτ2 + τ2

(
dρ2

ρ2
+ ρ2dzdz̄

)
(1.1)

where τ is the Lorentz-invariant distance from the origin and labels the three-dimensional hyperbolic
slices in the parenthesis. In order to cover all of M4 we take τ positive in the future lightcone of the
origin, negative in the past lightcone and both τ and ρ imaginary outside the origin; see Figure 1.
Equation (1.1) represents M4 as a kind of non-compact compactification to AdS3. Hyperbolic
slicings have been studied for example in [1–4].1

In this paper, we take inspiration from the prescient paper of de Boer and Solodukhin [1].
These authors conjectured that the infinite-dimensional 2D conformal symmetry of AdS3 quan-
tum gravity should uplift to M4 quantum gravity, with separate symmetries for the past and the
future. Somewhat later, the existence of such conformal symmetries, coined superrotations, was
conjectured in [7–10] by relaxing an overly-restrictive assumption about the asymptotic behavior
of the gravitational field in the original papers of BMS [11–13]. More recently [14, 15], using the
subleading soft theorem of [16], the existence of a single conformal symmetry of quantum gravi-
tational scattering in M4 was proved. The past-future pair of conformal symmetries of [1, 7–10]
was reduced to a single conformal symmetry by a matching condition required for the consistency
of the scattering amplitudes. The reduced symmetry acts in the standard fashion on the celestial
sphere at null infinity. This suggests a holographic relation between quantum gravity on M4 and an
as-yet-to-be-understood “celestial conformal field theory” on the celestial sphere at the boundary.

1See e.g. [5,6] for an alternate approach to M4 holography as the flat space limit of AdS4 quantum gravity rather
than an uplift of AdS3 quantum gravity.
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Figure 1: Penrose diagram of hyperbolic slicing of Minkowski space. The slices correspond to
surfaces of constant τ . The slices in the past and future lightcones of the origin have the geometry
of H3, and the slices with spacelike separation from the origin have the geometry of dS3.

Despite the natural role played by the hyperbolic slicing (1.1), much of the work on superro-
tations has used retarded Bondi coordinates (see [3, 4, 17] for important exceptions). The main
reason for this is simply that research on asymptotic structure near null infinity over the last half
century primarily uses Bondi coordinates and many formulae are readily available; some references
are [7–10,18–20]. However, even the global SL(2,C)Lorentz subgroup is obscure in these coordinates
which are not well-suited for the study of superrotations. A central purpose of this paper is to
recast some of the recent results into hyperbolic coordinates and elucidate the connection between
M4 and AdS3 holography. One hopes that our detailed understanding of AdS holography can be
uplifted and applied to flat space holography.

In Section 2 we present formulae and conventions for the hyperbolic foliation of M4. In Section
3 we show that superrotations have a simple description in terms of vector fields that are tangent to
the slices. In Section 4 we evaluate the boundary and bulk superrotation charges in the covariant
phase space formalism. For the bulk expressions, both the soft parts (which are linear in the
metric field) and the hard parts (which involve radiation flux) are evaluated as integrals over
hyperbolic slices which hug null infinity where the weak field expansion becomes exact. The soft
charges are constructed from uplifts of the holographic stress tensor of AdS3 quantum gravity [21],
providing a precise relation between M4 and AdS3 holography. In Section 5 we explicitly evaluate
the hard charge for matter sourced by point particles, and find that it reduces to an integral of
the subleading soft factor [16]. Section 6 demonstrates that the total charge conservation, which
involves contributions from two H3 slices and one dS3 slice, is equivalent to the subleading soft
theorem. In Section 7 we relate the soft covariant charges to the celestial stress tensor. Section 8
identifies a weight (2, 0) mode which is not pure gauge and has a canonical symplectic pairing with
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the superrotation Goldstone mode. This new (2, 0) mode is potentially related to new conformally
soft theorems and symmetries, but further investigations are left to future work. The appendix
gives details of the linearized Einstein equation in the hyperbolic slicing.

2 Preliminaries

In hyperbolic coordinates (τ, ρ, z, z̄) the Minkowski metric takes the form

ds2 = −dτ2 + τ2

(
dρ2

ρ2
+ ρ2dzdz̄

)
. (2.1)

These are related to the usual Cartesian coordinates

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 (2.2)

by

τ =
√

(X0)2 − (X1)2 − (X2)2 − (X3)2

z =
X1 + iX2

X0 +X3

ρ =
X0 +X3√

(X0)2 − (X1)2 − (X2)2 − (X3)2
, (2.3)

with inverse

X0 =
1

2
τρ(1 + zz̄ + ρ−2)

X1 =
1

2
τρ(z + z̄)

X2 = − i
2
τρ(z − z̄)

X3 =
1

2
τρ(1− zz̄ − ρ−2). (2.4)

The hyperbolic coordinates represent Minkowski spacetime as a foliation (labelled by τ) of 3D
constant curvature hyperbolic spaces. We label the spacelike slices in the future (past) lightcone of
the origin by τ > 0 (τ < 0). We are especially interested in the ±τ →∞ slices which approach I±.
We denote them by H±3 . The de Sitter slices at spacelike separations from the origin are labelled by
positive imaginary τ . The asymptotic τ → i∞ slice is denoted dS0

3. This is illustrated in Figure 1.
The ρ =∞ boundary of H+

3 will be referred to as the “future celestial sphere” and denoted CS+.
The analogously defined past celestial sphere will be denoted CS−.

The nonzero connection coefficients are

Γτρρ =
τ

ρ2
, Γτzz̄ =

ρ2τ

2
, Γρρτ =

1

τ
, Γρρρ = −1

ρ

Γρzz̄ = −ρ
3

2
, Γzzτ =

1

τ
, Γzzρ =

1

ρ
, Γz̄z̄τ =

1

τ
, Γz̄z̄ρ =

1

ρ
. (2.5)

3 Superrotation Vector Fields

3D Euclidean quantum gravity on an asymptotically hyperbolic space H3 has a conformal symmetry
which acts as [21,22]

ζY = Y z∂z −
1

2
∂zY

zρ∂ρ −
1

2ρ2
∂2
zY

z∂z̄, (3.1)

3



where Y z is a conformal Killing vector. This is the conformal symmetry of the holographically
dual CFT2 which lives on the S2 boundary [23, 24]. This 3D vector field lifts to 4D, where it
maps the hyperbolic slices to themselves and generates the superrotations of 4D quantum gravity
in asymptotically flat space [1, 8, 14, 16]. In hyperbolic coordinates only one component of the 4D
metric (2.1) is transformed:

LY gzz = −τ
2

2
∂3
zY

z. (3.2)

This term is independent of ρ and therefore sub-subleading in the large ρ expansion of the metric.
In the 3D case, this component of the metric is proportional to the holographic 2D stress tensor in
the Fefferman-Graham construction [21,25,26].

A special role will be played in the following by the choice of vector field

Y z =
1

w − z
. (3.3)

We define

ζw ≡ ζY= 1
w−z

=
1

w − z
∂z −

1

2(w − z)2
ρ∂ρ −

1

ρ2(w − z)3
∂z̄. (3.4)

Any more general superrotation vector field ζY can then easily be obtained from ζw via the relation

ζY (z) =
1

2πi

∮
dwY wζw(z). (3.5)

4 Covariant Phase Space Charge

In this section we compute the covariant phase space charge Q+(ζY ) as developed in a number of
references including [27–34].

4.1 Boundary Charge

Under suitable conditions, the charge Q+(ζY ) generates (via Dirac brackets or commutators) the
superrotations on spacelike surfaces ending at the future celestial sphere CS+. For simplicity we
will restrict to situations in which the Bondi news vanishes on CS+.2 The charge is given by the
formula in e.g. [30, 31]

Q+ = − 1

16π

∫
CS+

∗F = lim
ρ→∞

1

32π

∫
d2zρ3τFτρ, (4.1)

where

Fµν =
1

2
∇µζνh+∇µhνλζλ +∇λζµhνλ +∇λhµλζν +∇νhζµ − (µ↔ ν), (4.2)

with µ, ν = 0, 1, 2, 3. Here hµν denotes the linearized, on-shell metric perturbations

gµν = ηµν + hµν (4.3)

where ηµν is given in (2.1). Before proceeding further, in order to avoid long expressions, we make
the radial gauge choice

hτµ = 0, (4.4)

2A time translation can always be used to position the two-sphere CS+ at early times before any news has emerged
on I+. On the other hand, primaries in a conformal basis [35] typically have divergences in the radiation flux at
CS+ [36]. Our analysis would require modifcations to handle such cases, including additions to the charge as discussed
in [32].
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which can also be written Xµhµν = 0. Inserting the expression (3.1) for the superrotation vector
field and using radial gauge (4.4) we find

ρ3τFτρ = (τ∂τ − 2)
[
ρ3Y zhρz −

ρ

2
∂2
zY

zhρz̄ + 2∂zY
zhzz̄

]
. (4.5)

Under the integral we may integrate by parts with respect to z, yielding the expression

ρ3τFτρ = Y z(τ∂τ − 2)
[
ρ3hρz −

ρ

2
∂2
zhρz̄ − 2∂zhzz̄

]
. (4.6)

As in [3], the boundary conditions are chosen to ensure that the charge is τ -independent and finite
for ρ → ∞, so that it does not depend on a choice of slice. Finiteness of the charge requires that
the leading ρ behavior is hρz ∼ ρ−3, hzz̄ ∼ ρ0, which is compatible with the linearized analysis in
the appendix. Moreover we assume that the Bondi news vanishes at CS+. Otherwise, as mentioned
above, there are correction terms to the charge [32]. The finite and τ -independent final boundary
expression for the superrotation charge is

Q+(ζY ) = − 1

16π
lim
ρ→∞

∫
CS+

d2zY z

[
ρ3h(0)

ρz − 2∂zh
(0)
zz̄

]
, (4.7)

where the superscript (0) indicates the τ -independent piece of the given metric component.

4.2 Linearized Bulk Charge

Having found an expression for the charge Q+ as a surface integral over CS+, we now write a
bulk expression for the linearized charge as an integral over H+

3 . This involves integrating by
parts and using the linearized vacuum Einstein equations. We denote the linearized charge as
Q+
S (ζ) because, as we shall see, it is the same as the soft part of the full nonlinear charge. The

nonlinearities are incorporated in the next subsection, where we also discuss the validity of the
linearized approximation.

Starting with the boundary definition of the linearized charge Q+
S (ζ), the desired bulk expres-

sion follows from an application of Stokes’s theorem and the linearized constraint equations. By
construction the bulk charge is the symplectic product of the metric variation Lζgµν produced by
ζ with the linearized metric perturbation hµν ,

Q+
S (ζ) =

(
Lζg, h

)
Hτ

3
=

∫
Hτ

3

dΣµP νλγσLζgνλ
←→
∇ µhγσ, (4.8)

where
(
,
)
M3

is the symplectic product on a three-manifold M3, Hτ
3 is any hyperbolic slice of given

τ and the required components of P (given in full in [32]) are given below. Since the symplectic
product is conserved on-shell (assuming appropriate smoothness conditions at CS+) this expression
does not depend on the choice of hyperbolic slice τ . We will take τ →∞. In the quantum theory,
hµν then becomes a free field operator, and commutators with Q+

S formally generate linearized
superrotations of the metric on H+

3 .
In the case at hand, the only nonzero component of the metric variation is (3.2) and we need

only the component P zzz̄z̄ = 1
8πτ4ρ4 . The linearized charge reduces to the simple expression

Q+
S (ζY ) =

1

8π

∫
H+

3

d2zdρ

τ2ρ3
LY gzzh(0)

z̄z̄ = − 1

16π

∫
H+

3

d2zdρ

ρ3
∂3
zY

zh
(0)
z̄z̄ , (4.9)

where h
(0)
z̄z̄ is the τ -independent part of hz̄z̄.
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We note that LY gzz, as given in (3.2), involves only the order ρ0 metric perturbation,3 which
has been identified [21] as the holographic stress tensor in the context of AdS3 quantum gravity.
This gives a precise connection of the superrotation generators for M4 quantum gravity as an uplift
of the generator of conformal transformations for AdS3. More specifically, the soft part of the
charge which generates 4D superrotations in the causal domain of H+

3 is the symplectic product
on the 3D hyperbolic slice of the linearized 4D metric perturbation with the Y z-variation of the
3D holographic stress tensor.

4.3 Exact Bulk Charge

In the previous subsection, the surface chargeQ+(ζY ) on CS+ was reexpressed as a bulk integral over
H+

3 in the linearized approximation. For a generic slice in a generic asymptotically flat spacetime
ending on CS+, nonlinear corrections are important, and there is no useful bulk expression for the
charge. However, it is natural to take τ → ∞, in which case (assuming no stable black holes) the
slice hugs I+, the fields become weak, and corrections to the linearized approximation are easily
incorporated.

In order to obtain the bulk expression on H+
3 from the boundary expression on CS+ one inte-

grates by parts and uses the constraint equations Gτµ = 8πTτµ. In the linearized approximation,4

the nonlinear terms on the left hand side and the entire right hand side are set to zero. In the full
theory, the constraints reduce (for τ →∞) to

− 16πTτµ = −2Gτµ = �hτµ −∇τ∇αhµα −∇α∇µhτα +∇τ∇µh+ ητµ∇α∇βhαβ − ητµ�h, (4.10)

where the stress tensor is understood to contain both matter contributions and the quadratic
gravity wave stress tensor. Corrections which are cubic or higher in hµν vanish for τ → ∞. The
full expression for the charge is then

Q+(ζ) = Q+
S (ζ) +Q+

H(ζ), (4.11)

where Q+
S (ζ) is given in (4.8) and the hard charge is

Q+
H(ζ) =

∫
H+

3

dΣµζνTµν

= −1

2

∫
H+

3

d2z dρ ρ τ3Tτµζ
µ. (4.12)

For ζY as in (3.1), (4.12) becomes

Q+
H(ζY ) = −1

2

∫
H+

3

d2z dρ ρ τ3

[
TτzY

z − ρ

2
Tτρ∂zY

z − 1

2ρ2
Tτ z̄∂

2
zY

z

]
= −1

2

∫
H+

3

d2z dρ ρ τ3Y z

[
Tτz +

ρ

2
∂zTτρ −

1

2ρ2
∂2
zTτ z̄

]
. (4.13)

Since the matter stress tensor generates diffeomorphisms on the matter fields, this manifestly
generates the hard action of the superrotations.

3In Section 5, to facilitate the connection to the soft theorem, a physically equivalent vector field ζ′w =

ζw
(

1 + O
(

1
ρ2

))
which differs at further subleading orders is introduced.

4The linearized vacuum equations in hyperbolic coordinates are given in Appendix A.
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5 Massive Point Particles

In this section we compute the hard charge for a collection of N massive point particles with inertial
trajectories, which are given in Cartesian coordinates by

xµk(λ) =
pµk
mk

λ+ bµk , (5.1)

where k = 1, . . . , N and p2
k = −m2

k. We follow the analogous treatment of massless point particles
presented in [37]. The massive point particle trajectories asymptote at late times to a fixed point
(ρk, zk, z̄k) on H+

3 with λ = τ . In the coordinates (2.3) this point is determined by

lim
τ→∞

1

τ
xµk(τ) =

pµk
mk

=
ρk
2


1 + zkz̄k + ρ−2

k

zk + z̄k
−i(zk − z̄k)

1− zkz̄k − ρ−2
k

 . (5.2)

The stress tensor of the kth particle is

Tµνk (X) =

∫
dλ
pµkp

ν
k

mk
δ(4)(X − xk(λ)). (5.3)

Substituting into the first line of (4.12) we find the simple expression

Q+
H(ζ) = − lim

λ→∞

∑
k

(pk · ζ)|xµk (λ). (5.4)

To easily connect to the soft theorem, we use the vector field [36,38]

ζ ′µ;w =
1

4
∂3
w[Xν(qν∂w̄qµ − qµ∂w̄qν) log(−q ·X)], (5.5)

where q is the null vector that points towards w on CS+,

qµ = (1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄). (5.6)

This vector field satisfies

ζ ′w = ζw

(
1 +O

(
1

ρ2

))
(5.7)

near CS+ and hence gives the same total charge as ζw. Since Q±(ζ ′w) = Q±(ζw), the two vector
fields have the same Ward identity and conservation law.5 The vector field ζ ′w arises naturally in
the study of conformal primary wavefunctions [35,36] as well as in the study of massive matter [3].
The utility of ζ ′w over ζw in the present context is its simple relation to the momentum space version
of the subleading soft factor [3, 16]. We further define polarization tensors

εµνww = εµwε
ν
w, εµνw̄w̄ = εµw̄ε

ν
w̄, εµw(w, w̄) =

1√
2

(w̄, 1,−i,−w̄), εµw̄(w, w̄) =
1√
2

(w, 1, i,−w). (5.8)

One then finds that (5.4) becomes, after significant algebra,

Q+
H(ζ ′w) =

1

2

∑
k

∫
d2z

1

w − z
∂3
z

[
pµkεµν;z̄z̄J

να
k qα

pk · q

]
, (5.9)

5Their soft and hard parts, however, are not separately equal. We find it curious that, even though their difference
is trivial, some computations are easier with ζ′w while others are easier with ζw.

7



where the tensors
Jµνk = xµkp

ν
k − xνkp

µ
k (5.10)

are the boost and angular momentum charges of the kth particle. The quantity in square brackets
in (5.9) is immediately recognizable as the soft factor in the subleading soft graviton theorem.

6 Subleading Soft Theorem

In this section we argue that the Ward identity of our charge implies the subleading soft graviton
theorem [3,16]. In [14] the classical conservation law associated to superrotations is expressed as a
sum of integrals over I± in Bondi coordinates,

QS(Y ) +QH(Y ) = 0, (6.1)

with

QS(Y ) =
1

16π

∫
I+

d2zduY zu∂3
zN

z
z̄ −

1

16π

∫
I−
d2zdvY zv∂3

zN
z
z̄

QH(Y ) =

∫
I+

d2zdu r2Yz̄

(
Tuz −

1

2
u∂zTuu

)
−
∫
I−
d2zdv r2Yz̄

(
Tvz −

1

2
v∂zTvv

)
, (6.2)

where we take Y z̄ = 0, Nzz is the Bondi news, and we raise and lower sphere indices using the round
metric on the unit sphere S2. It was shown in [14] that the quantum version of this conservation law
is equivalent to the subleading soft graviton theorem [16]. This conservation law can be expressed
as the equality of two total charges, one incoming and one outgoing.

In the present paper, in contrast, we have three hard and three soft charges associated to the
three slices H+

3 , dS0
3, and H−3 , depicted in Figure 1. We accordingly decompose

QS(ζ ′w) = Q+
S (ζ ′w) +Q0

S(ζ ′w) +Q−S (ζ ′w)

QH(ζ ′w) = Q+
H(ζ ′w) +Q0

H(ζ ′w) +Q−H(ζ ′w).
(6.3)

Here we show QS(ζ ′w) = QS( 1
w−z ) and QH(ζ ′w) = QH( 1

w−z ), and therefore that the subleading soft
graviton theorem is equivalent to the conservation law on hyperbolic slices

QS +QH = 0. (6.4)

First, we show that

QH(ζ ′w) = QH

(
1

w − z

)
. (6.5)

We can consider the hard charge for massive or massless matter. Massive particles cannot reach
the asymptotic dS0

3 and therefore contribute only to the Q±H charges. As computed in the previous
section, the left hand side is

1

2

∫
d2z

1

w − z
∂3
z

∑
k

pµkεµν;z̄z̄J
να
k qα

pk · q
−
∑
j

pµj εµν;z̄z̄J
να
j qα

pj · q

 , (6.6)

where pk are outgoing and pj are incoming momenta. One finds that the same expression holds
when we act with the hard charge on massless particles, with the momenta pk taken to be null.
This agrees with QH in (6.2) (see [14]) and shows that the hard charges are the same.
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Next, we wish to verify agreement between the soft terms evaluated in Bondi and hyperbolic
coordinates, i.e.

QS = Q+
S (ζ ′w) +Q0

S(ζ ′w) +Q−S (ζ ′w). (6.7)

In order to do so, we rewrite the first line in the Bondi expression (6.2) as

QS =

∫
I+

∗J +

∫
I−
∗J, (6.8)

with
J = P νλγσLζ′wgνλ∇µhγσdx

µ. (6.9)

Note the use here of∇µ rather than
←→
∇ µ, which appears in the gravitational symplectic pairing (4.8).

Since
∫
duuNz̄z̄ is the subleading soft graviton insertion, and the Bondi news, up to superrotations,

falls off faster than 1
u (or 1

v ) at the boundaries of I [14,39], we do not expect new soft contributions
from “capping” I± at past and future timelike infinity i±. The soft charge (6.8) then becomes

QS =

∫
H+

3 ∪dS0
3∪H

−
3

∗J. (6.10)

Now that we are integrating over a surface without boundary, we are free to switch from ∇µ to
1
2

←→
∇ µ because they differ by an exact form. The resulting integrand is the same one defining our

soft charges, so we have
QS = Q+

S (ζ ′w) +Q0
S(ζ ′w) +Q−S (ζ ′w). (6.11)

Since it has already been shown that the quantum version of (6.1) is the subleading soft graviton
theorem, we have demonstrated the desired equivalence of the quantum matrix elements of QS(ζ ′w)+
QH(ζ ′w) = 0 to the subleading soft graviton theorem.

7 Celestial Stress Tensor

So far we have not explicitly shown that the action of the charge QS(ζ ′w), as suggested by the form
of (3.2), corresponds to conformal transformations on the celestial sphere. A fast way to do this
is to expand the Bondi news in asymptotic graviton creation and annihilation operators and then
use the results of [15]. One finds

iQS(ζ ′w) = T KMRS
ww , (7.1)

where T KMRS
ww is the subleading soft graviton mode [15]

T KMRS
ww ≡ 3

π
√

32πG
lim
ω→0

(1 + ω∂ω)

∫
d2z

(w − z)4

(
a−(ωq)− a†+(ωq)

)
, (7.2)

and a− and a†+ are asymptotic graviton annihilation and creation operators. As shown in [15],
by reverse-engineering the subleading soft theorem of [16], normal-ordered insertions of T KMRS

ww in
the 4D S-matrix obey the Ward identities of a 2D stress tensor, and therefore generate conformal
transformations of the celestial sphere. In particular, if we pick a contour C and integrate

1

2πi

∮
C
dwY wT KMRS

ww (7.3)

for an arbitrary Y w(w), the corresponding S-matrix insertions generate conformal transformations
on the celestial sphere associated to the holomorphic extension of Y w into the interior of C. Thus
iQS(ζ ′w) is the celestial stress tensor.
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8 Dual Stress Tensor

In U(1) gauge theory, large electric gauge transformations δε on the celestial sphere are generated by
a current Jw with left/right conformal dimensions (1, 0) [36,40,41]. This current can be constructed
from the symplectic product of the Goldstone mode wavefunction δεAµ with the linearized gauge
field operator at null infinity. The Goldstone wavefunction has a symplectic partner which is not
pure gauge and leads to a second, symplectically conjugate (1, 0) current Sw [41]. Sw is related to
large magnetic gauge transformations [42].

We note briefly here that a similar structure exists for the stress tensor T KMRS
ww , which, like Jw,

is constructed from the symplectic product with a (2, 0) Goldstone mode wavefunction δY gµν . In
the normalization conventions of [36], to which we refer the reader for details, the (2, 0) Goldstone
mode is6

hGoldstone
µν;ww = −1

6

[
∇µζ ′ν;w +∇νζ ′µ;w

]
. (8.1)

This wavefunction has a (2, 0) symplectic partner that is not pure gauge. The symplectic partner
is the ∆ = 2 conformal primary wavefunction [36], where for general ∆

h∆,±
µν;ww(Xµ;w, w̄) =

1

2

[(−q ·X)∂wqµ + (∂µq ·X)qµ][(−q ·X)∂wqν + (∂wq ·X)qν ]

(−q ·X ∓ iε)∆+2
. (8.2)

These solutions are labelled by ± for ingoing versus outgoing, the complex parameter w for the
point where the radiation flux crosses the celestial sphere, and ∆ for the SL(2,C) conformal weight.
In hyperbolic coordinates (τ, ρ, z, z̄)7

h∆,±
µν;ww =

τ2−∆

2(|w − z|2 + ρ−2 ∓ iε)∆+2


0 0 0 0

0 4(w̄−z̄)2

ρ∆+4
2(w̄−z̄)3

ρ∆+1
−2(w̄−z̄)
ρ∆+3

0 2(w̄−z̄)3

ρ∆+1
(w̄−z̄)4

ρ∆−2
−(w̄−z̄)2

ρ∆

0 −2(w̄−z̄)
ρ∆+3

−(w̄−z̄)2

ρ∆
1

ρ∆+2

 . (8.3)

For ∆ = 2 one finds the simple result [36,38]

h2
µν;ww =

1

τ2
hGoldstone
µν;ww , (8.4)

which is not a pure diffeomorphism. The symplectic product (4.8) of these two modes on H+
3 is8(

hGoldstone
ww , h2+iε

vv

)
H+

3
=

π

48(w − v)4
δ(ε). (8.5)

This resembles an off-diagonal central charge. The symplectic product over a complete spacelike
Cauchy slice Σ3 is (

hGoldstone
ww , h2+iε

vv

)
Σ3

= −ε iπ2

6(w − v)4
δ(ε). (8.6)

Näıvely, the right hand side vanishes due to the factor of the imaginary part of the conformal weight
ε. However, we leave it in this form as in some contexts there may be compensating conformally
soft poles in ε. A second conformal weight (2,0) operator on the celestial sphere (in addition to
T KMRS
ww ) can be constructed explicitly from the mode (8.4). Potential implications of two weight

(2,0) operators for the structure of the soft gravitational S-matrix are left to future work.

6In [36] this mode is denoted h̃∆=0
µν;ww, where the tilde indicates the fact that it is the shadow of a mode with

conformal weight 0 in the basis (8.2).
7We note that these modes generically have radiation flux though CS+ [36] and so do not obey the boundary

conditions for the charge defined on that surface.
8Useful formulae for evaluating these integrals can be found in [38,43,44].
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A Linearized Einstein Equations

In radial gauge, hτµ = 0, the Einstein equations take the form

Gττ =
ρ2

τ4

(
τ∂τ + ρ∂ρ + 3− 2

ρ2
∂z∂z̄

)
hρρ +

2

ρτ4
(ρ∂ρ + 2)(∂z̄hρz + ∂zhρz̄)

+
2

ρ4τ4
(∂2
z̄hzz + ∂2

zhz̄z̄) +
2

ρ2τ4

(
2τ∂τ − ρ2∂2

ρ −
2

ρ2
∂z∂z̄ − 2

)
hzz̄

Gτρ = (τ∂τ − 2)

[
ρ

τ3
hρρ +

1

ρ2τ3
(∂z̄hρz + ∂zhρz̄) +

2

ρ3τ3
(1− ρ∂ρ)hzz̄

]
Gρρ = − 1

τ2
hρρ −

2

ρ3τ2
(∂z̄hρz + ∂zhρz̄)−

2

ρ6τ2
(∂2
z̄hzz + ∂2

zhz̄z̄)

− 2

ρ4τ2

(
τ2∂2

τ − τ∂τ − ρ∂ρ + 2− 2

ρ2
∂z∂z̄

)
hzz̄

Gτz = (τ∂τ − 2)

[
− ρ2

2τ3
∂zhρρ +

ρ

2τ3
(ρ∂ρ + 3)hρz +

1

ρ2τ3
(∂z̄hzz − ∂zhzz̄)

]
Gρz =

ρ

2τ2
∂zhρρ +

1

2τ2

(
τ2∂2

τ − τ∂τ −
2

ρ2
∂z∂z̄

)
hρz +

1

ρ2τ2
∂2
zhρz̄

+
1

ρ3τ2
(ρ∂ρ − 2)(∂z̄hzz − ∂zhzz̄)

Gzz = − ρ2

2τ2
∂2
zhρρ +

ρ

τ2
(ρ∂ρ + 1)∂zhρz +

1

2τ2
(τ2∂2

τ − τ∂τ − ρ2∂2
ρ + ρ∂ρ)hzz

Gzz̄ =
ρ4

4τ2

(
−τ2∂2

τ + τ∂τ − ρ∂ρ − 4 +
2

ρ2
∂z∂z̄

)
hρρ +

1

2τ2
(−τ2∂2

τ + τ∂τ + ρ2∂2
ρ − ρ∂ρ)hzz̄

− ρ

2τ2
(ρ∂ρ + 1)(∂z̄hρz + ∂zhρz̄). (A.1)

Note that the Einstein equations completely decouple under different τ scalings, so it is natural to

decompose the metric in a τ expansion as hµν =
∑

n τ
−nh

(n)
µν (ρ, z, z̄).

Working in “on-shell gauge” of the free Einstein equations we arrived at an equation for h
(0)
zz

by itself. The gauge assumes that
Xµhµν = 0 (A.2)

∇µhµν = 0 (A.3)

gµνhµν = 0, (A.4)

where Xµ are Cartesian coordinates. Note that in hyperbolic coordinates (A.2) is equivalent to
hτµ = 0. The Gτµ equations all follow from these gauge conditions, and Gρρ and Gzz̄ are equivalent

in this gauge. The Gzz equation can be used to eliminate h
(0)
ρz in favor of h

(0)
zz (up to integration

constants). Plugging into Gρz gives

0 = ρ4(ρ∂ρ + 4)(ρ∂ρ + 2)(ρ∂ρ − 2)ρ∂ρh
(0)
zz + 8ρ2(ρ∂ρ + 2)(ρ∂ρ − 2)∂z∂z̄h

(0)
zz + 16(∂z∂z̄)

2h(0)
zz . (A.5)

Given a solution of (A.5), the other metric components in the gauge (A.2) are constrained.
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Linearized metric perturbations along a vector field ξµ∂µ are given by

δgττ =
2

τ
τ∂τξτ

δgτρ = ∂ρξτ +
1

τ
(τ∂τ − 2)ξρ

δgρρ = 2(∂ρ +
1

ρ
)ξρ −

2τ

ρ2
ξτ

δgτz =
1

τ
(τ∂τ − 2)ξz + ∂zξτ

δgρz = (∂ρ −
2

ρ
)ξz + ∂zξρ

δgzz = 2∂zξz
δgzz̄ = ∂zξz̄ + ∂z̄ξz + ρ3ξρ − ρ2τξτ . (A.6)

Setting δgτµ = 0, we must have ∂τξτ = 0. We can satisfy the conditions with ξτ = 0 and ξρ, ξz, ξz̄ ∝
τ2, but this is not completely general. We can also let ξτ (ρ, z, z̄) be a generic function and choose
the O(τ) pieces of the other components accordingly. The general solution, using τ weight notation

ξ
(n)
µ , is

ξτ = ξ(0)
τ (ρ, z, z̄)

ξρ = τ2ξ(−2)
ρ (ρ, z, z̄) + τ∂ρξ

(0)
τ

ξz = τ2ξ(−2)
z (ρ, z, z̄) + τ∂zξ

(0)
τ

ξz̄ = τ2ξ
(−2)
z̄ (ρ, z, z̄) + τ∂z̄ξ

(0)
τ . (A.7)

Here we treat the τ dependence as not included in ξ
(n)
µ . We see the free data for these residual

diffeomorphisms are four free functions of three variables, and that these free functions only affect

the h
(−1)
µν and h

(−2)
µν pieces of the metric in hyperbolic coordinates.
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