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Abstract. We show that Spaltenstein varieties of classical groups are pure di-
mensional when the Jordan-type of the nilpotent element involved is an even
or odd partition. We further show that they are Lagrangian in the partial
resolutions of the associated nilpotent Slodowy slices, from which their dimen-
sions are known to be one half of the dimension of the partial resolution minus
the dimension of the nilpotent orbit. The results are then extended to the
σ-quiver-variety setting.

1. Introduction

1.1. Spaltenstein varieties. Let G be a complex reductive group. Fix a parabolic
subgroup P of G and a nilpotent element x in Lie(G). The Spaltenstein variety of
the triple (G,P, x) is defined to be

XP
x = {gP ∈ G/P |g−1xg ∈ nLie(P )},

where nLie(P ) is the nilpotent radical of Lie(P ). When P is a Borel subgroup, a
Spaltenstein variety is more commonly referred to as a Springer fiber [Spr76]. In
general, a Spaltenstein variety is neither smooth nor irreducible. So an immediate
question of substantial interest is if it is pure dimensional, that is, if the dimensions
of irreducible components of anXP

x are the same. It was answered in the affirmative
in the following two fundamental cases by Spaltenstein [Sp76, Sp77] in the 1970s,
and independently by Steinberg [St74] for case (a) when G is a general linear group:

(a) P is a Borel subgroup.
(b) G is a general linear group.

Spaltenstein further provided an example in [Sp82, 11.6] showing that the variety
XP

x is not always pure dimensional for a nilpotent element in so8 of Jordan-type
(1, 22, 3). This example is recalled in Section 4, together with a few more in [Sp82]
where XP

x can be described explicitly with fresh light casted upon it. Beyond
Steinberg and Spaltenstein’s results, little is known on the pure dimensionality of
XP

x .
In this paper, we shall prove the following.
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Theorem A. The Spaltenstein variety XP
x is pure dimensional if

(c) G is classical and the Jordan-type of x is an even or odd partition, i.e., of
the form 1w13w35w5 · · · or 2w24w46w6 · · · .

Our approach is to study Spaltenstein varieties in the context of symplectic
geometry.

1.2. Symplectic geometry and C∗-action. As is generally known, complex sym-
plectic geometry provides a new and conceptual way to understand the pure dimen-
sionality of a complex variety. Precisely, there is the following remarkable result,
whose proof can be found in the proof of Proposition 5.4.7 in [G09]. Note that we
work in the setting of complex algebraic geometry.

Theorem B. Suppose that p : Ỹ → Y is a proper morphism from a smooth
symplectic algebraic variety, with algebraic symplectic 2-form, to an affine vari-
ety. Suppose further that both varieties admit a C∗-action, compatible with p. If
the following two conditions hold:

• the C
∗-action provides a contraction of Y to its fixed point locus Y C

∗
,

• the C∗-action on Ỹ has weight 1 on the symplectic form ω on Ỹ , i.e.,

t∗ω = tω, ∀t ∈ C
∗,

then the fiber p−1(Y C
∗
), or rather its associated reduced scheme, is Lagrangian in Ỹ .

Being Lagrangian implies that p−1(Y C
∗
) is pure dimensional, provided that Ỹ

is so, and moreover its dimension is one half of that of Ỹ .
It is exactly the framework of Theorem B that Spaltenstein variety is put under

and that the proof of Theorem A falls out, which we shall discuss in more detail as
follows.

1.3. Slodowy slices and their partial resolutions. Retaining the setting in
Section 1.1, the cotangent bundle T ∗(G/P ) of G/P yields a partial resolution of
singularities of the closure of a nilpotent orbit Oe in Lie(G) for a Richardson ele-
ment e:

π′
P : T ∗(G/P ) → Oe.

Here the terminology “partial” refers to the fact that the restriction of π′
p to the

orbit Oe is generically finite, but not isomorphic, in general. When P is a Borel,
the morphism π′

P is the Springer resolution to the nilcone of G and a genuine
resolution of singularities. On the other hand, fixing an sl2(C)-triple (x, y, h) in
Lie(G), one can consider the Slodowy slice Sx := x + ker ad(y) (see [Sl80]). We

set Se,x = Oe ∩ Sx and S̃e,x = (π′
P )

−1(Se,x) (so that Se,x is nonempty if and only

if x ∈ Oe). The above map π′
P restricts to a partial resolution of the nilpotent

Slodowy slice Se,x:

πP : S̃e,x → Se,x with π−1
P (x) = XP

x .(1)

Again when P is a Borel, the morphism π is a genuine resolution of singularities.
The cotangent bundle T ∗(G/P ) carries a canonical symplectic structure, i.e., a

closed 2-form, and from which the variety S̃e,x inherits one, say ω, as well. The
variety Se,x is clearly an affine variety. Thanks to [BM83, Corollary 3.5 b)], it is
known that

dimXP
x ≤ 1

2
dim S̃e,x.(2)
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In the cases (a) and (b) in Section 1.1, the above inequality becomes an equality

and XP
x is Lagrangian in S̃e,x. We shall show that the same holds for the case (c) in

Theorem A. Moreover, S̃e,x is pure dimensional in general: it is a reduced complete
intersection in T ∗(G/P ) of dimension dimT ∗(G/P )− dimOx (see [G08, Corollary
1.3.8]). Therefore we actually have a stronger version of Theorem A.

Theorem C. If G is a classical group and the Jordan-type of x is an even or odd

partition, then the Spaltenstein variety XP
x is Lagrangian in S̃e,x in (9), and hence

of pure dimension 1
2 dimT ∗(G/P )− 1

2 dimOx.

With the above discussion, the proof of Theorem C (and hence Theorem A)

finally boils down to a search of the desired C∗-actions for S̃e,x and Se,x to apply
Theorem B.

Both varieties S̃e,x and Se,x admit a natural C∗-action induced from the sl2(C)-
triple (x, y, h) so that πP is C∗-equivariant. Moreover the C∗-action provides a
contraction of Se,x to {x}, its C∗-fixed point ([G08, 1.4]). However, the C∗-action
on the symplectic structure ω has weight 2 instead of weight 1, as required in
Theorem B. This defect is expected in light of Spaltenstein’s example: there is

no uniform C∗-action on S̃e,x and Se,x for all e and x satisfying all conditions in
Theorem B.

Instead we obtain the desired C∗-actions in the setting of Nakajima quiver vari-
eties [N94,N98] and their variants in [Li19], from which this paper grew.

1.4. C∗-action on Nakajima varieties. Thanks to the works of Nakajima [N94]
and Maffei [M05], the proper map πP for G being a general linear group has an
incarnation as Nakajima quiver varieties attached to a type-A quiver

πA : Mζ(v,w)A → M1(v,w)A.(3)

Here v and w are tuples of integers determined by the Jordan-types of the Richard-
son element e and x, respectively, and ζ is a generic parameter used for the stability
condition. The orientation induces intrinsically a C∗-action on the quiver varieties
Mζ(v,w)A and M1(v,w)A. This action satisfies all conditions in Theorem B and
hence provides a conceptual proof of the pure dimensionality of XP

x for G being a
general linear group, i.e., case 1.1(b).

If G is classical, i.e., an orthogonal or symplectic group, the map πP admits a

quiver description πσ,A, as a restriction of πA, in the recent work [Li19], with S̃e,x

and Se,x realized as the fixed-point loci Sζ(v,w)A (resp., S1(v,w)A) of Nakajima
varieties Mζ(v,w)A (resp., M1(v,w)A) under a specific involution σ:

πσ,A : Sζ(v,w)A → S1(v,w)A.(4)

The C∗-actions on Nakajima varieties cannot be compatible with the involution
in general, again due to Spaltenstein’s example. The crucial observation is that
the place where the C∗-action and the involution σ is compatible is where XP

x

is Lagrangian. To this end, we show that the tuple w under the conditions in
Theorem C are the compatible places for the C∗-action and the involution, hence
providing a proof of Theorems C and A finally.

The arguments are indeed not restricted to type-A graphs. We are able to
establish a result that is valid for all Dynkin graphs. We drop the subscript A in
(3) and (4) to denote the morphism between Nakajima varieties of a fixed Dynkin
graph.
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Theorem D. Assume that wiwj = 0 if there is an edge joining i and j. Then the
fiber of the C∗-fixed point under πσ is Lagrangian in Sζ(v,w).

The main content of the paper is the study of the compatibility of the C∗-action
and the automorphism σ in order to prove Theorem D. When the signature c0 of
the diagram isomorphism in the automorphism σ is −1, we can drop the assumption
on w in Theorem D and this more general result is stated in Theorem E.

1.5. Layout of the paper. In Section 2, we recall Nakajima varieties and their
σ variants. In Section 3, we study the compatibility of C∗-action with the various
isomorphisms in the definition of σ-quiver varieties. In Section 4, we reproduce
Spaltenstein’s examples in [Sp82, 11.6, 11.8] with new observations on being La-
grangian.

2. Preliminaries on quiver varieties

In the section, we recall briefly Nakajima varieties [N94,N98] and their σ variants
in [Li19]. Our treatment follows closely Sections 1-4 in [Li19].

2.1. Nakajima varieties. Let Γ be a Dynkin graph. Let I and H be the vertex
and arrow set, respectively. For each arrow h, let o(h) and i(h) be its outgoing and
incoming vertex. There is an involution on the arrow set¯: H → H, h �→ h̄ such
that o(h̄) = i(h) and i(h̄) = o(h). Let V =

⊕
i∈I Vi and W =

⊕
i∈I Wi be two finite

dimensional I-graded vector spaces over the complex field C of dimension vectors
v = (vi)i∈I and w = (wi)i∈I , respectively. The framed representation space of the
graph Γ in V ⊕W is

M(v,w) =
⊕
h∈H

Hom(Vo(h), Vi(h))⊕
⊕
i∈I

Hom(Wi, Vi)⊕Hom(Vi,Wi).(5)

When V and W shall be highlighted, we write M(V,W ) for M(v,w). An ele-
ment in M(v,w) is denoted by x ≡ (x, p, q) ≡ (xh, pi, qi)h∈H,i∈I where xh is in
Hom(Vo(h), Vi(h)), pi in Hom(Wi, Vi), and qi in Hom(Vi,Wi). Let ε0 : H → {±1}
be an orientation function such that ε0(h) + ε0(h̄) = 0 ∀h ∈ H. To a point
x ∈ M(v,w), we set

ai(x) = (qi, xh)h:o(h)=i and bi(x) = (pi, ε
0(h̄)xh)h:i(h)=i.(6)

The space M(v,w) admits a symplectic structure with respect to ε0 given by

ω(x,x′) = trace

(∑
i∈I

bi(x)ai(x
′)− qip

′
i

)
, ∀x,x′ ∈ M(v,w).(7)

Let Gv =
∏

i∈I GL(Vi) act onM(v,w) from the left as follows. For all g = (gi)i∈I ∈
Gv and x ∈ M(v,w), we define g.x = x′ ≡ (x′

h, p
′
i, q

′
i) where x′

h = gi(h)xhg
−1
o(h),

p′i = gipi, and q′i = qig
−1
i for all h ∈ H and i ∈ I. Let

μC : M(v,w) → Lie(Gv)
∗

be the moment map associated to the Gv-action on the symplectic space M(v,w).
After identifying Lie(Gv) =

⊕
i∈I gl(Vi) with its dual Lie(Gv)

∗ via the trace form,

the ith component of μC is given by μ
(i)
C
(x) = bi(x)ai(x).

Let [x] denote the Gv-orbit of x in M(v,w).
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Fix an embedding C
I → Lie(Gv) by (ζ

(i)
C

)i∈I �→ (ζ
(i)
C

IdVi
)i∈I for all ζC =

(ζ
(i)
C

)i∈I ∈ CI . Let ΛζC(v,w) be the fiber μ−1
C

(ζC). The group Gv acts on ΛζC(v,w).
Let ξ = (ξi)i∈I ∈ ZI . Fixing an element x = (xh)h∈H in the first component of

M(v,w) and an I-graded subspace S = (Si)i∈ of V , we say that S is x-invariant
if xh(So(h)) ⊆ Si(h) for all h ∈ H. A point x = (x, p, q) in M(v,w) is called ξ-
semistable if the following two stability conditions are satisfied. For any I-graded
subspaces S and T of V of dimension s and t, respectively,

if S is x-invariant and S ⊆ ker q, then ξ · s ≤ 0,(S1)

if T is x-invariant and T ⊇ im p, then ξ · t ≤ ξ · v.(S2)

Let Λξ-ss
ζC

(v,w) be the Gv-invariant set of all ξ-semistable points in ΛζC(v,w).

Let C = (cij)i,j∈I be the Cartan matrix of the graph Γ. We set

R+ = {γ ∈ N
I | tγCγ ≤ 2}\{0},

R+(v) = {γ ∈ R+|γi ≤ vi∀i ∈ I},
Dγ = {a ∈ C

I |a · γ = 0}.

A parameter ζ = (ξ, ζC) ∈ Z
I×C

I is called generic if it satisfies ξ ∈ Z
I\

⋃
γ∈R+(v) Dγ

or ζC ∈ CI\
⋃

γ∈R+(v) Dγ . From now on, we assume that ζ is generic. When ζ is

generic, the group Gv acts freely on Λξ-ss
ζC

(v,w). Following Nakajima [N94,N98],

we define the quiver-variety attached to the data (Γ, ε0,v,w, ζ) to be

Mζ(v,w) = Λξ-ss
ζC

(v,w)/Gv, ζ ≡ (ξ, ζC) ∈ Z
I × C

I generic.(8)

Let M0(v,w) be the affinization of Mζ(v,w), with which is equipped a projective
morphism π : Mζ(v,w) → M0(v,w). Let M1(v,w) be the image of Mζ(v,w)
under π so that π factors through a proper map under the same notation, which is
(3) in type A:

π : Mζ(v,w) → M1(v,w).(9)

The variety Mζ(v,w) is smooth and symplectic with the latter induced from
M(v,w).

2.2. σ-quiver varieties. In this section, we recall σ-quiver varieties from [Li19].

2.2.1. Reflection functors. Recall the Cartan matrix C = (cij). For each i ∈ I, we
define a bijection si : ZI → Z

I by si(ξ) = ξ′ where ξ′j = ξj − cjiξi, ξ = (ξj)j∈I ,

ξ′ = (ξ′j)j∈I ∈ ZI . Let W be the Weyl group generated by si for all i ∈ I.
Let si ∗w v denote the vector whose j-component is vj if j 
= i and whose ith

component is wi +
∑

h:o(h)=i vi(h) − vi.

The reflection functor Si of Nakajima, Lusztig, and Maffei [L00,M02,N03] asso-
ciated to the simple reflection si is defined to be

Si : Mζ(v,w) → Msi(ζ)(si ∗w v,w), [x] �→ [x′] if ξi < 0 or ζ
(i)
C


= 0,

where the pair ([x], [x′]) satisfies the conditions (R1)-(R4) as follows. Let V ′ be
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a vector space of dimension si ∗w v such that V ′
j = Vj if j 
= i and Ui = Wi ⊕⊕

h∈H:o(h)=i Vi(h)

0 −−−−→ V ′
i

ai(x
′)−−−−→ Ui

bi(x)−−−−→ Vi −−−−→ 0 is exact,(R1)

ai(x)bi(x)− ai(x
′)bi(x

′) = ζ
′(i)
C

, ζ ′C = si(ζC),(R2)

xh = x′
h, pj = p′j , qj = q′j if o(h) 
= i, i(h) 
= i and j 
= i,(R3)

μj(x) = ζ
(j)
C

, μj(x
′) = ζ

′(j)
C

if j 
= i.(R4)

Since (si(ξ))i > 0 if ξi < 0, we can define the reflection Si when ξi > 0 by
switching the roles of x and x′. So if ω = si1si2 · · · sil ∈ W and ζ is generic, the
reflection functor Sω is defined to be the composition of the Si’s:

Sω = Si1Si2 · · ·Sil : Mζ(v,w) → Mω(ζ)(ω ∗w v,w),(10)

where ω ∗w v is a composition of sij ∗w v’s.

2.2.2. The transpose τ . To any linear transformation T : E → E′ between two vec-
tor spaces, each equipped with a nondegenerate bilinear form (−,−)E and (−,−)E′ ,
we define its right adjoint T ∗ : E′ → E by the rule

(T (e), e′)E′ = (e, T ∗(e′))E ∀e ∈ E, e′ ∈ E′.

There is an isomorphism Hom(E,E′) ∼= Hom(E′, E) defined by T �→ T ∗.
Assume that the ith components Vi and Wi of V and W are equipped with

nondegenerate bilinear forms for all i ∈ I. We define an automorphism

τ : M(v,w) → M(v,w), x = (xh, pi, qi) �→ τx = (τxh,
τpi,

τqi),

where τxh = ε(h)x∗
h̄
, τpi = −q∗i , and

τqi = p∗i for all h ∈ H and i ∈ I. This
automorphism induces an isomorphism:

τ : Mζ(v,w) → M−ζ(v,w).(11)

2.2.3. Diagram isomorphism a. Let a be an automorphism of Γ, i.e., there are
automorphisms of vertex and arrow sets, both denoted by a, such that a(o(h)) =

o(a(h)), a(i(h)) = i(a(h)), and a(h̄) = a(h) for all h ∈ H. Assume that a is
compatible with the function ε0 in the following sense. There exists a constant
c0 ≡ ca,ε0 ∈ {±1} such that

ε0(a(h)) = c0 · ε0(h) ∀h ∈ H.(12)

Let a(V ) be the I-graded vector space whose ith component is Va−1(i). The dimen-
sion vector of a(V ) is a(v) whose i-entry is va−1(i). Given any point x = (x, p, q) ∈
M(V,W ), we define a point a(x) = (a(x), a(p), a(q)) ∈ M(a(V ), a(W )) by

a(p)i = pa−1(i), a(q)i = qa−1(i), a(x)h = ε0(h)
1−c0

2 xa−1(h) ∀i ∈ I, h ∈ H.

It induces a diagram isomorphism on Nakajima varieties:

a : Mζ(v,w) → Ma(ζ)(a(v), a(w)).(13)
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2.2.4. σ-Quiver varieties. Consider

σ := aSωτ : Mζ(v,w) → M−aω(ζ)(a(ω ∗w v), a(w)),(14)

where τ , Sω and a are in (11), (10), and (13), respectively. The σ-quiver variety is
defined by

Sζ(v,w) = (Mζ(v,w))σ, S1(v,w) = π(Sζ(v,w))

if w = a(w), ζ = −aω(ζ),v = a(ω ∗w v).
(15)

The proper map π restricts to a proper morphism which is (4) in type A:

πσ : Sζ(v,w) → S1(v,w).(16)

Sζ(v,w) has a symplectic structure inherited from that of Mζ(v,w) and S1(v,w)
is an affine variety as a closed subvariety of M1(v,w).

For the rest of this section, we consider the Dynkin graph of type An: 1 �
2 � · · · � n. Set ε0(h) = i − j if h is an arrow from i to j and c0 = 1. The
automorphism a is the identity automorphism. The Weyl group element ω is the
longest Weyl group element. Let ζ = (ξ, 0) where all components in ξ are 1. For
any pair (v,w), we define a new pair (ṽ = (ṽi)1≤i≤n, w̃ = (w̃i)1≤i≤n) where

ṽi = vi +
∑

j≥i+1

(j − i)wj , w̃i = δi,1
∑

1≤j≤n

jwj ∀1 ≤ i ≤ n.(17)

Now set μ = (ṽ0−ṽ1, ṽ1−ṽ2, · · · , ṽn−1−ṽn, ṽn). Let Pμ be a parabolic subgroup of
a classical group G whose levi has size indexed by μ. In other words, the isotropic
flag variety G/Pμ is the collection of all isotropic flags such that the dimension
difference of the ith step flag and (i+1)th step flag is ṽi−1− ṽi. Note that Pμ may
be empty. Let ePμ

be the associated Richardson element. Let

λ = 1w12w2 · · · .

We write S̃ePμ ,x in Section 1.3 as S̃
Lie(G)
ePμ ,λ when the Jordan-type of x is λ. The

following result is obtained in [Li19, Corollary 8.3.4].

Proposition 2.3. (1) If Wi is equipped with a symmetric (resp., skew-sym-

metric) form for i even (resp., odd), then Sζ(v,w)∼= S̃ow̃1

ePμ ,λ and S1(v,w)∼=
Sow̃1

ePμ ,λ. If forms on Wi are skew-symmetric (resp., symmetric) for i even

(resp., odd), then

(2) Sζ(v,w) ∼= S̃spw̃1

ePμ ,λ and S1(v,w) ∼= Sspw̃1

ePμ ,λ.

3. C∗
-action and the automorphism σ

In this section we assume that ζ is generic and ζC = 0. We study the compatibil-
ity of a modified version of a C∗-action in [N94, Section 5] with the automorphism
σ. By using these analyses, we then provide proofs for Theorems A-D.

3.1. Compatibility. To an orientation ε of H, not necessarily the same as ε0 in
the definition of Nakajima varieties, we can define two C

∗-actions on M(v,w) in
(5). The first one is given by (t,x) �→ t ◦ε x where

t ◦ε x = (t
1+ε(h)

2 xh, pi, tqi).(18)
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The second one is given by (t,x) �→ t �ε x where

t �ε x = (t
1+ε(h)

2 xh, tpi, qi).(19)

It is clear that each C∗-action induces a C∗-action on Mζ(v,w) in (8), in light of
the assumption that ζC = 0, but the induced ones on Mζ(v,w) coincide as follows
so that we do not have to distinguish the two actions on Mζ(v,w).

Lemma 3.2. We have t ◦ε [x] = t �ε [x] for all [x] ∈ Mζ(v,w).

Proof. Let g = (t.idVi
)i∈I . Then g.(t ◦ε x) = t �ε x, as required. �

It is clear that the weight of the symplectic form on Mζ(v,w) with respect to
this C∗-action is 1, i.e., ω(t◦ε [x], t◦ε [x′]) = tω([x], [x′]). Since the graph is Dynkin,
the C∗-action provides a contraction from M0(v,w), and hence M1(v,w), to its
C∗-fixed point [0].

The following lemma is the compatibility of the transpose τ in Subsection 2.2.2
and the C

∗-action.

Lemma 3.3. We have τ (t ◦ε [x]) = t ◦−ε τ ([x]) for all t ∈ C∗ and [x] ∈ Mζ(v,w).

Proof. We write t ◦ε x = (t ◦ε xh, t ◦ε pi, t ◦ε qi)h∈H,i∈I and τ (t ◦ε [x]) = [(x′
h, p

′
i, q

′
i)].

We have

x′
h = ε(h)(t ◦ε xh̄)

∗ = ε(h).(t
1+ε(h̄)

2 xh̄)
∗ = t

1+ε(h̄)
2 τ (xh),

p′i = −(t ◦ε qi)∗ = −(tqi)
∗ = tτ (pi),

q′i = (t ◦ε pi)∗ = p∗i = τ (qi).

This shows that (x′
h, p

′
i, q

′
i)= t�−ετ (x), and the lemma follows readily by Lemma 3.2.

�
Let a be an automorphism of Γ. We assume that the pair (a, ε) is compatible

with signature c ∈ {±1}; see (12). We have the following compatibility of the
automorphism a and the C∗-action.

Lemma 3.4. Let (a, ε) be a compatible pair with signature c. Then a(t ◦ε [x]) =
t ◦cε a([x]) for all t ∈ C∗ and [x] ∈ Mζ(v,w).

Proof. We write t ◦ε x = (t ◦ε xh, t ◦ε pi, t ◦ε qi)h∈H,i∈I and a(t ◦ε x) = (x′
h, p

′
i, q

′
i).

We have

x′
h = ε(h)

1−c
2 t ◦ε xa−1(h) = ε(h)

1−c
2 t

1+ε(a−1(h))
2 xa−1(h) = t

1+cε(h)
2 a(x)h,

p′i = t ◦ε pa−1(i) = pa−1(i) = a(p)i,

q′i = t ◦ε qa−1(i) = t.qa−1(i) = t.a(q)i.

So (x′
h, p

′
i, q

′
i) = t �−ε a(x). The lemma follows. �

The following lemma is the compatibility of the reflection functor Si and the
C∗-action.

Lemma 3.5. We have Si(t ◦ε [x]) = t ◦ε Si([x]) for all t ∈ C∗ and [x] ∈ Mζ(v,w).

Proof. Let Si([x]) = [x′]. It suffices to show that the pair (t ◦ε x, t ◦ε x′) satisfies
the conditions (R1)-(R4) in the definition of reflection functors. Recall ai(x) and
bi(x) from (6). There is

ai(t ◦ε x) = (tqi, t
1+ε(h)

2 xh)h:o(h)=i, bi(t ◦ε x) = (pi, t
1+ε(h)

2 ε0(h̄)xh)h:i(h)=i.
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Thus we must have

bi(t ◦ε x)ai(t ◦ε x′) = tbi(x)ai(x
′) = 0,

Clearly, bi(t◦εx) is surjective since bi(x) is so and ai(t◦εx′) is injective since ai(x
′)

is so. Hence (R1) holds for the pair (t ◦ε x, t ◦ε x′). Similarly, there is

ai(t ◦ε x)bi(t ◦ε x)− ai(t ◦ε x′)bi(t ◦ε x′) = t (ai(x)bi(x)− ai(x
′)bi(x

′)) = 0.

This shows that the pair (t ◦ε x, t ◦ε x′) satisfies (R2). The condition (R3) for
(t◦εx, t◦εx′) is clearly followed from definition. The condition (R4) for (t◦εx, t◦εx′)
can be proved in a similar way as that of (R2). The lemma thus follows. �

By combining Lemmas 3.3, 3.4, and 3.5, we have the following proposition.

Proposition 3.6. Let (a, ε) be a compatible pair with signature c. Then we have

σ(t ◦ε [x]) = t ◦−cε σ([x])∀t ∈ C
∗, [x] ∈ Mζ(v,w).

From Proposition 3.6 and the above analysis, we readily have the following.

Proposition 3.7. (1) If t ◦ε [x] = t ◦−cε [x] for all t ∈ C∗ and for all [x] ∈
Mζ(v,w), then the C∗-action in (18) on Mζ(v,w) induces a C∗-action on
Sζ(v,w) such that the weight of the symplectic form ω on Sζ(v,w) is 1
with respect to this C∗-action.

(2) If t ◦ε [x] = t ◦−cε [x] for all t ∈ C∗ and [x] ∈ Mζ(v,w), then the C∗-action

provides a contraction of S1(v,w) to its fixed point S1(v,w)C
∗
consisting

of a single point [0].

The following proposition provides compatible cases sufficient to prove our the-
orems.

Proposition 3.8. (1) If c = −1, then t ◦ε [x] = t ◦−cε [x] ∀t ∈ C∗ and [x] ∈
Mζ(v,w).

(2) Assume c = 1 and wiwj = 0 if i and j are joined by an edge. Let I = I1�I0
be a partition satisfying the following conditions:

• For all i ∈ I0, we have wi = 0.
• For all h ∈ ε−1(1), we have o(h) ∈ I1 and i(h) ∈ I0.

Then t ◦ε [x] = t ◦−cε [x] for all t ∈ C
∗ and [x] ∈ Mζ(v,w).

Proof. The first statement is obvious. Let c = 1. It is enough to show that
g.(t ◦ε x) = t �−cε x. Let κi be the parity of i, i.e., κi = 1 if i ∈ I1 and κi = 0 if
i ∈ I0. Let gκ = (tκi idVi

)i∈I ∈ Gv. Then we have the following computations:

gκ.(t ◦ε xh) = t−1(t ◦ε xh) = xh if h ∈ ε−1(1),

gκ.(t ◦ε xh) = t(t ◦ε xh) = txh if h ∈ ε−1(−1),

gκ.(t ◦ε pi) = t(t ◦ε pi) = tpi if i ∈ I1,

gκ.(t ◦ε qi) = t−1(t ◦ε qi) = qi if i ∈ I1.

Since pi = 0, qi = 0 for all i ∈ I0, the above computation shows that gκ.(t ◦ε x) =
t �−cε x. The proof is thus finished. �
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3.9. The proof of Theorems A, C, and D. Since Γ is a Dynkin graph, hence
bipartite, so we can find a partition of I such that the first condition in Propo-
sition 3.8 holds. Now set ε to be the unique orientation such that the second
condition in Proposition 3.8 is valid. Since c = 1, we see that the automorphism a
is compatible with the orientation ε. In this case, the results in Proposition 3.7 are
true and so Theorem B is applicable and from which Theorem D follows.

In light of Proposition 2.3, Theorem C, and hence Theorem A, follows from The-
orem D. Note that we must show that all parabolic subgroups, up to conjugations,
appear in the setting of Proposition 2.3. But this is already observed in Maffei’s
work [M05, Theorem 8].

The proof of Theorems A, C, and D is finished.

3.10. A generalization of Theorem D. In Proposition 3.8, there is no assump-
tion on w when c = −1, which is not stated in Theorem D, and the above argument
works in this more general case as well. Let us record this more general result here.

Theorem E. Let (a, ε0) be a compatible pair of signature c = −1. Then the fiber
(πσ)

−1([0]) is Lagrangian in Sζ(v,w).

4. Spaltenstein’s examples

In this section, we discuss examples in [Sp82, 11.6, 11.8], except 11.8 c). We
show that XP

x is Lagrangian in all these examples, except the counterexample
in [Sp82, 11.6].

4.1 [Sp82, 11.6]. Let us fix a basis {ei}1≤i≤8 of C8. Let B(−,−) be the bilinear
form defined by B(ei, ej) = δi,9−j for all 1 ≤ i, j ≤ 8, so that the associated
symmetric matrix is the anti-diagonal identity matrix. Let G = SO8(C) be the
special orthogonal group of B(−,−) and let so8(C) be its Lie algebra. Let x be an
element of the form

x =

⎡⎣x1 0 0
0 x2 0
0 0 −x1

⎤⎦ , x1 =

[
0 1
0 0

]
, x2 =

⎡⎢⎢⎣
0 1 1 0
0 0 0 −1
0 0 0 −1
0 0 0 0

⎤⎥⎥⎦ .

Then it is clear that x is of Jordan-type (1, 22, 3) and is a nilpotent element in
so8(C). Let G/P be the isotropic flag variety of isotropic subspaces F2 ⊆ F3 in C8

such that dimF2 = 2 and dimF3 = 3. Then the Spaltenstein variety XP
x of the

triple (SO8(C), P, x) is the subvariety of G/P consisting of elements (F2 ⊂ F3) such
that x(F2) = 0, x(F3) ⊆ F2, x(F

⊥
3 ) ⊆ F3. There is a partition of XP

x = X3 � X2

where

X3 = {(F2 ⊆ F3) ∈ XP
x |e3 ∈ F2}, X2 = {(F2 ⊆ F3) ∈ XP

x |e3 
∈ F2}.

One can check that X3 and X2 are irreducible of dimension 3 and 2, respectively.
Indeed, for a fixed flag F2 in X3, the freedom of F3 is OGr(1, 4), the Grassmannian
of isotropic lines in C4. The dimension of OGr(1, 4) is 2, hence the dimension of
X3 is 3. For a fixed flag F2 in X2, there is a unique flag F3, i.e., F3 = 〈F2, e3〉.
Thus the dimension of X2 is 2.

So the irreducible components of XP
x are X3 of dimension 3 and the closure of

X2 in XP
x of dimension 2. Hence XP

x is not pure dimensional.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SPALTENSTEIN VARIETIES OF PURE DIMENSION 143

Let Q be a parabolic subgroup such that G/Q is the isotropic flag varieties of
all flags F1 ⊂ F2 ⊂ F4 such that dimFi = i. From [Sp82, 11.6], XQ

x is irreducible
and of dimension 3. Let eQ be the Richardson element associated to Q. Then it

can be shown that dim S̃eQ,x = 6, hence XQ
x is Lagrangian in S̃eQ,x. This example

is not in the cases (a)-(c) in the introduction.

4.2 [Sp82, 11.8. a)]. If G is of type An (resp., Dn; E6; E7; E8), dimXB
x = 2,

with B a Borel, and P is minimal, then XP
x is a union of projective lines in a

configuration of type An−2 (resp., A1 or Dn−2, the last is only possible if n ≥ 5;
A5; D6; E7). The condition dimXB

x = 2 implies that dimOx = dimT ∗G/B − 4
and P is minimal implies that dimT ∗G/P = dimT ∗G/B − 2. So the dimension of

S̃eP ,x is 2, and thus XP
x is Lagrangian in S̃eP ,x.

4.3 [Sp82, 11.8. b)]. Let G = SO7(C), with x of type (3, 14) and G/P a maximal
isotropic Grassmannian. Then XP

x is a disjoint union of two projective lines. By

Theorem C, XP
x is Lagrangian in S̃eP ,x.

4.4 [Sp82, 11.8. d)]. Let G = Sp4n+2(C) and let G/P be a partial flag variety
obtained from the complete flag by dropping the (2i+ 1)th step for all 0 ≤ i ≤ n,
and let x be a nilpotent of type ((2n)2, 21). Then XP

x is a union of 2n+1 projective

lines subject to certain conditions. From Theorem C, XP
x is Lagrangian in S̃eP ,x.

4.5. By the rectangular symmetry in [Li19], one can produce more examples from
previous subsections. For example, the corresponding case in Section 4.1 for (G,P, x)
is G′ = Sp12(C), P

′ is chosen such that G′/P ′ is isomorphic to the isotropic flag
varieties of (F2 ⊂ F5) with dimFi = i, and x′ is of Jordan-type (2, 32, 4). Then

XP ′

x′ ∼= XP
x is not pure dimensional.
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