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ABSTRACT. We show that Spaltenstein varieties of classical groups are pure di-
mensional when the Jordan-type of the nilpotent element involved is an even
or odd partition. We further show that they are Lagrangian in the partial
resolutions of the associated nilpotent Slodowy slices, from which their dimen-
sions are known to be one half of the dimension of the partial resolution minus
the dimension of the nilpotent orbit. The results are then extended to the
o-quiver-variety setting.

1. INTRODUCTION

1.1. Spaltenstein varieties. Let G be a complex reductive group. Fix a parabolic
subgroup P of G and a nilpotent element z in Lie(G). The Spaltenstein variety of
the triple (G, P, x) is defined to be

XFP ={gP € G/P|lg " zg € npic(p) },

where ny.p) is the nilpotent radical of Lie(P). When P is a Borel subgroup, a
Spaltenstein variety is more commonly referred to as a Springer fiber [Spr76]. In
general, a Spaltenstein variety is neither smooth nor irreducible. So an immediate
question of substantial interest is if it is pure dimensional, that is, if the dimensions
of irreducible components of an X" are the same. It was answered in the affirmative
in the following two fundamental cases by Spaltenstein [Sp76,Sp77] in the 1970s,
and independently by Steinberg [St74] for case (a) when G is a general linear group:

(a) P is a Borel subgroup.
(b) G is a general linear group.

Spaltenstein further provided an example in [Sp82, 11.6] showing that the variety
XP is not always pure dimensional for a nilpotent element in sog of Jordan-type
(1,22,3). This example is recalled in Section 4, together with a few more in [Sp82]
where X can be described explicitly with fresh light casted upon it. Beyond
Steinberg and Spaltenstein’s results, little is known on the pure dimensionality of
XP.

In this paper, we shall prove the following.
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Theorem A. The Spaltenstein variety XE is pure dimensional if

(¢) G is classical and the Jordan-type of x is an even or odd partition, i.e., of
the form 1%W13Ws5Ws ... or 2QW24W46We ...

Our approach is to study Spaltenstein varieties in the context of symplectic
geometry.

1.2. Symplectic geometry and C*-action. As is generally known, complex sym-
plectic geometry provides a new and conceptual way to understand the pure dimen-
sionality of a complex variety. Precisely, there is the following remarkable result,
whose proof can be found in the proof of Proposition 5.4.7 in [G09]. Note that we
work in the setting of complex algebraic geometry.

Theorem B. Suppose that p : Y 5 Y isa proper morphism from a smooth
symplectic algebraic variety, with algebraic symplectic 2-form, to an affine vari-
ety. Suppose further that both varieties admit a C*-action, compatible with p. If
the following two conditions hold:

e the C*-action provides a contraction of Y to its fized point locus ye,
e the C*-action on'Y has weight 1 on the symplectic form w on Y i.e.,

t'w =tw, VteCr
then the fiber p~(Y'C"), or rather its associated reduced scheme, is Lagrangian in Y.

Being Lagrangian implies that p~!(Y®") is pure dimensional, provided that Y
is so, and moreover its dimension is one half of that of Y.

It is exactly the framework of Theorem B that Spaltenstein variety is put under
and that the proof of Theorem A falls out, which we shall discuss in more detail as
follows.

1.3. Slodowy slices and their partial resolutions. Retaining the setting in
Section 1.1, the cotangent bundle T*(G/P) of G/P yields a partial resolution of
singularities of the closure of a nilpotent orbit O, in Lie(G) for a Richardson ele-
ment e:
7 T*(G/P) — O..

Here the terminology “partial” refers to the fact that the restriction of m, to the
orbit O, is generically finite, but not isomorphic, in general. When P is a Borel,
the morphism 7 is the Springer resolution to the nilcone of G and a genuine
resolution of singularities. On the other hand, fixing an sly(C)-triple (z,y,h) in
Lie(G), one can consider the Slodowy slice S, := x + kerad(y) (see [S180]). We
set Ser = O, NS, and S’ve@ = (7)1 (Se,z) (so that S, is nonempty if and only
if z € O,). The above map 7/ restricts to a partial resolution of the nilpotent
Slodowy slice S :

(1) Tp ge,z — Sex  Wwith W;l(l') =2

Again when P is a Borel, the morphism 7 is a genuine resolution of singularities.
The cotangent bundle T*(G/P) carries a canonical symplectic structure, i.e., a
closed 2-form, and from which the variety S , inherits one, say w, as well. The

variety Se, is clearly an affine variety. Thanks to [BM83, Corollary 3.5 b)], it is
known that

(2) dim X < —dim S, ,.

1
2 )
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In the cases (a) and (b) in Section 1.1, the above inequality becomes an equality
and X7 is Lagrangian in ge@. We shall show that the same holds for the case (c) in
Theorem A. Moreover, S’vew is pure dimensional in general: it is a reduced complete
intersection in T*(G/P) of dimension dim T*(G/P) — dim O, (see [G0O8, Corollary

1.3.8]). Therefore we actually have a stronger version of Theorem A.

Theorem C. If G is a classical group and the Jordan-type of x is an even or odd
partition, then the Spaltenstein variety X is Lagrangian in Se.z i (9), and hence
of pure dimension % dimT*(G/P) — 1 dim O,.

With the above discussion, the proof of Theorem C (and hence Theorem A)
finally boils down to a search of the desired C*-actions for ge,x and S, to apply
Theorem B. B

Both varieties S, and S, admit a natural C*-action induced from the sly(C)-
triple (z,y,h) so that mp is C*-equivariant. Moreover the C*-action provides a
contraction of S, , to {z}, its C*-fixed point ([G08, 1.4]). However, the C*-action
on the symplectic structure w has weight 2 instead of weight 1, as required in
Theorem B. This defect is expected in light of Spaltenstein’s example: there is
no uniform C*-action on §e’m and S, , for all e and x satisfying all conditions in
Theorem B.

Instead we obtain the desired C*-actions in the setting of Nakajima quiver vari-
eties [N94,N98] and their variants in [Li19], from which this paper grew.

1.4. C*-action on Nakajima varieties. Thanks to the works of Nakajima [N94]
and Maffei [M05], the proper map 7p for G being a general linear group has an
incarnation as Nakajima quiver varieties attached to a type-A quiver

(3) w4 Me(V,W)a — My (v, w)a4.

Here v and w are tuples of integers determined by the Jordan-types of the Richard-
son element e and z, respectively, and ( is a generic parameter used for the stability
condition. The orientation induces intrinsically a C*-action on the quiver varieties
Mc(v,w)a and My (v, w) 4. This action satisfies all conditions in Theorem B and
hence provides a conceptual proof of the pure dimensionality of X for G being a
general linear group, i.e., case 1.1(b).

If G is classical, i.e., an orthogonal or symplectic group, the map 7p admits a
quiver description 7, 4, as a restriction of 74, in the recent work [Lil9], with S, ,
and S, , realized as the fixed-point loci &¢(v, w)4 (resp., &1(v,w)4) of Nakajima
varieties M¢ (v, w)a (resp., M (v, w)4) under a specific involution o:

(4) oAt Sc(v,W)a = G1(v,W)a4.

The C*-actions on Nakajima varieties cannot be compatible with the involution
in general, again due to Spaltenstein’s example. The crucial observation is that
the place where the C*-action and the involution o is compatible is where X
is Lagrangian. To this end, we show that the tuple w under the conditions in
Theorem C are the compatible places for the C*-action and the involution, hence
providing a proof of Theorems C and A finally.

The arguments are indeed not restricted to type-A graphs. We are able to
establish a result that is valid for all Dynkin graphs. We drop the subscript A in
(3) and (4) to denote the morphism between Nakajima varieties of a fixed Dynkin
graph.
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Theorem D. Assume that w;w; = 0 if there is an edge joining i and j. Then the
fiber of the C*-fized point under m, is Lagrangian in S¢(v,w).

The main content of the paper is the study of the compatibility of the C*-action
and the automorphism ¢ in order to prove Theorem D. When the signature ¢® of
the diagram isomorphism in the automorphism o is —1, we can drop the assumption
on w in Theorem D and this more general result is stated in Theorem E.

1.5. Layout of the paper. In Section 2, we recall Nakajima varieties and their
o variants. In Section 3, we study the compatibility of C*-action with the various
isomorphisms in the definition of o-quiver varieties. In Section 4, we reproduce
Spaltenstein’s examples in [Sp82, 11.6, 11.8] with new observations on being La-
grangian.

2. PRELIMINARIES ON QUIVER VARIETIES

In the section, we recall briefly Nakajima varieties [N94,N98] and their o variants
in [Li19]. Our treatment follows closely Sections 1-4 in [Lil9].

2.1. Nakajima varieties. Let I' be a Dynkin graph. Let I and H be the vertex
and arrow set, respectively. For each arrow h, let o(h) and i(h) be its outgoing and
incoming vertex. There is an involution on the arrow set ": H — H, h — h such

that o(h) = i(h) and i(h) = o(h). Let V = @,.; Vi and W = @, ; W; be two finite
dimensional I-graded vector spaces over the complex field C of dimension vectors
v = (v4)ier and w = (w;);er, respectively. The framed representation space of the
graph I'in V @ W is

(5)  M(v,w) = @ Hom(Vo(n), Vin)) ® @D Hom(W;, Vi) @ Hom(V;, Wy).

heH i€l
When V' and W shall be highlighted, we write M(V, W) for M(v,w). An ele-
ment in M(v,w) is denoted by x = (z,p,q) = (%, i, ¢i)hen, icr where xp, is in
Hom(Vy(ny, Vi(ny), pi in Hom(W;, V;), and ¢; in Hom(V;, Wy). Let e H — {£1}
be an orientation function such that €°(h) + ¢°(h) = 0 Vh € H. To a point
x € M(v,w), we set
(6) ai(x) = (g, n)noy=i  and  b;(x) = (pi, €”(R)TR) pii(hy=i-

The space M(v, w) admits a symplectic structure with respect to ¥ given by

(7) w(x,x') = trace (Z bi(x)ai(x") — ql-p’i> , Vx,x' € M(v,w).
icl
Let Gy = [[;c; GL(V;) act on M(v, w) from the left as follows. For all g = (g;)ier €
Gy and x € M(v,w), we define g.x = x’' = (z},,p},q;) where z}, = gi(h)xhg;é),
pi = gipi, and ¢} = q;g; ' for all h € H and i € I. Let
uc : M(v,w) — Lie(Gy)*
be the moment map associated to the Gy-action on the symplectic space M(v, w).
After identifying Lie(Gy) = @, ; gl(V;) with its dual Lie(Gy)* via the trace form,

the ith component of ¢ is given by ug) (x) = bi(x)a;(x).
Let [x] denote the Gy-orbit of x in M(v, w).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Fix an embedding C! — Lie(Gy) by (C([(:Z))iel — (Cél)ldw)iej for all (¢ =
(C([(:Z))iej € CL. Let A¢. (v, w) be the fiber ug' (¢c). The group Gy acts on A¢. (v, w).

Let £ = (&)ser € Z'. Fixing an element 2 = (z,)neq in the first component of
M(v,w) and an I-graded subspace S = (5;);c of V, we say that S is z-invariant
if 21,(So(n)) C Sin) for all h € H. A point x = (z,p,q) in M(v,w) is called &-
semistable if the following two stability conditions are satisfied. For any I-graded
subspaces S and T of V' of dimension s and t, respectively,

(S1) if S is z-invariant and S C ker ¢, then £ -s < 0,
(52) if T is z-invariant and 7' D im p, then £ -t < - v.

Let Ag;s(v, w) be the Gy-invariant set of all {-semistable points in A, (v, w).
Let C = (c¢;j)i jer be the Cartan matrix of the graph I'. We set

Ry = {y € N'| '/Cy < 2}\{0},
Ri(v)= {’}/ S R+"Yi <v;Vi e I},
D,={aecCa-v=0}.

A parameter ¢ = (£, {c) € Z! xCl is called generic if it satisfies ¢ € Z1\ User, v) Dv
or (¢ € CI\U,YGR+(V) D,. From now on, we assume that ¢ is generic. When ( is
generic, the group G, acts freely on AE&SS(V,W). Following Nakajima [N94, N98],
we define the quiver-variety attached to the data (I',°,v, w, () to be

(8) M (v, w) = A5 (v, w)/Gy, (= (€ (c) € Z! x C! generic.

Let My(v, w) be the affinization of M (v, w), with which is equipped a projective
morphism 7 : M¢(v,w) — Mo(v,w). Let My (v, w) be the image of M, (v, w)
under 7 so that 7 factors through a proper map under the same notation, which is
(3) in type A:

(9) T M (v, w) = Dy (v, w).
The variety M. (v,w) is smooth and symplectic with the latter induced from
M(v,w).

2.2. o-quiver varieties. In this section, we recall o-quiver varieties from [Lil19].

2.2.1. Reflection functors. Recall the Cartan matrix C = (¢;;). For each i € I, we
define a bijection s; : Z! — Z! by s;(¢) = ¢ where & =& — cjilis &= (&)jers
§'=(&)jer € Z'. Let W be the Weyl group generated by s; for all i € I.

Let s; *y v denote the vector whose j-component is v; if j # ¢ and whose ith
component is Wi + 3, )i Vi(h) — Vi-

The reflection functor S; of Nakajima, Lusztig, and Maffei [L.O0, M02,N03] asso-
ciated to the simple reflection s; is defined to be

Si i M(v, W) = My () (5 5w v, W), [x] = [x] i & < 0 or ¢ #0,

where the pair ([x], [x']) satisfies the conditions (R1)-(R4) as follows. Let V' be
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a vector space of dimension s; *yw v such that Vj’ =Viifj#iand Uy = W; @
@heH:o(h):i Viw)

(R1) 0 v/ a: () U; b:(x) V; 0 is exact,

R2)  a(obi(x) —ai(x)hi(x) =, = sille),

(R3) Ty =Ty, p; = D), ¢ = q; if o(h) # i,i(h) # i and j # 1,
RY) ) = ¢ ) = ¢ if j # .

Since (s;(£)); > 0 if & < 0, we can define the reflection S; when & > 0 by
switching the roles of x and x’. So if ® = s;,8;, ---s;, € W and ( is generic, the
reflection functor S, is defined to be the composition of the S;’s:

(10) S(,) = Silsig s Sil : mc(v,w) — mm(()(ﬂ) *w V,W),

where ® *yw v is a composition of s;; *w V’s.

2.2.2. The transpose 7. To any linear transformation T': E — E’ between two vec-
tor spaces, each equipped with a nondegenerate bilinear form (—, —) g and (—, —) g,
we define its right adjoint 7% : E/ — E by the rule

(T(e),e)gr = (e,T*(e'))r Vee€ E,e' € E'.

There is an isomorphism Hom(F, E') 2 Hom(E’, E) defined by T + T*.
Assume that the ith components V; and W, of V and W are equipped with
nondegenerate bilinear forms for all ¢ € I. We define an automorphism

T M(va) — M(V,W), X = (xhvp’hqi) = Tx = (Txthpiqui);

where "z = e(h)z}, "p; = —q;, and T¢q; = pj for all h € H and i € I. This
automorphism induces an isomorphism:

(11) T:Me(v,w) = M_¢ (v, w).

2.2.3. Diagram isomorphism a. Let a be an automorphism of I'; i.e., there are
automorphisms of vertex and arrow sets, both denoted by a, such that a(o(h)) =

o(a(h)), a(i(h)) = i(a(h)), and a(h) = a(h) for all h € H. Assume that a is
compatible with the function € in the following sense. There exists a constant
& = ¢, 0 € {£1} such that

(12) (a(h)) = ¢ - °(h) Vh € H.

Let a(V') be the I-graded vector space whose ith component is Va-1(i)- The dimen-
sion vector of a(V') is a(v) whose i-entry is v,-1¢;). Given any point x = (x,p,q) €
M(V, W), we definie a point a(x) = (a(z), a(p), a(g)) € M(a(V),a(W)) by

1-¢0

a(p)i = Pa-1(1)> a(@)i = qa-1(3), a(@)n =e°(h) B To-1py Vi€ h€H.

It induces a diagram isomorphism on Nakajima varieties:

(13) a:Me(v,w) — Sma(o(a(v), a(w)).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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2.2.4. o-Quiver varieties. Consider
(14) 0 1= aSeT : M (v, W) = M_40(¢) (a(® *w V), a(w)),

where 7, S, and a are in (11), (10), and (13), respectively. The o-quiver variety is
defined by

GC(VvW) = (WC(V’W))U’ 61(V7W) = W(GC(V’W))

(15) if w=a(w),( =—-a0((),v=a(®*y V).

The proper map 7 restricts to a proper morphism which is (4) in type A:
(16) T (v, w) = &1(v,w).

S¢(v,w) has a symplectic structure inherited from that of M. (v, w) and &Sy (v, w)
is an affine variety as a closed subvariety of 1, (v, w).

For the rest of this section, we consider the Dynkin graph of type 4,: 1 S
25 ... S Set €%h) =i —jif his an arrow from i to j and ¢® = 1. The
automorphism a is the identity automorphism. The Weyl group element ® is the
longest Weyl group element. Let ¢ = (£,0) where all components in £ are 1. For
any pair (v, w), we define a new pair (V= (V;)1<i<n, W = (W;)1<i<n) where

(17) v, =v; + Z (j—i)Wj, vA\}i:&J Z JwW; Vl<i<n.
j>it1 1<j<n
Now set = (Vo—V1,V1—Va, -+ ,Vp_1—Vp, Vy). Let P, be a parabolic subgroup of

a classical group G whose levi has size indexed by p. In other words, the isotropic
flag variety G/P, is the collection of all isotropic flags such that the dimension
difference of the ith step flag and (i + 1)th step flag is v;_1 — v;. Note that P, may
be empty. Let ep, be the associated Richardson element. Let

A =1"12%2 ...

We write S’epl = in Section 1.3 as Sie(ci) when the Jordan-type of x is A. The
L “1

following result is obtained in [Lil9, Corollary 8.3.4].

Proposition 2.3. (1) If W; is equipped with a symmetric (resp., skew-sym-
metric) form fori even (resp., odd), then Gg(v,w)%S:P‘;’1 y\ and & (v, w)=
s

0%y . . .
SepM,A' If forms on W; are skew-symmetric (resp., symmetric) for i even

(resp., odd), then

(2) &¢(v,w) = S:iwf)\ and &1(v,w) =S

SPG
ep, AT

3. C*-ACTION AND THE AUTOMORPHISM o

In this section we assume that ¢ is generic and (¢ = 0. We study the compatibil-
ity of a modified version of a C*-action in [N94, Section 5] with the automorphism
o. By using these analyses, we then provide proofs for Theorems A-D.

3.1. Compatibility. To an orientation ¢ of H, not necessarily the same as €% in

the definition of Nakajima varieties, we can define two C*-actions on M(v,w) in
(5). The first one is given by (t,x) — ¢ o. x where

14e(h)

(18) tOEX: (t 2 :L.h7pi7tqi)‘

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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The second one is given by (¢,x) — t x. x where
14e(h)
(19) txex=(t" 2 xp,tpi,qi)-
It is clear that each C*-action induces a C*-action on M (v, w) in (8), in light of
the assumption that (¢ = 0, but the induced ones on M. (v, w) coincide as follows
so that we do not have to distinguish the two actions on M (v, w).

Lemma 3.2. We have t o, [X] =t *. [x] for all [x] € M (v, w).
Proof. Let g = (t.idy; )icr. Then g.(t oo x) = t %, X, as required. |

It is clear that the weight of the symplectic form on (v, w) with respect to
this C*-action is 1, i.e., w(to. [x], to. [x']) = tw([x], [x']). Since the graph is Dynkin,
the C*-action provides a contraction from 9My(v, w), and hence M (v, w), to its
C*-fixed point [0].

The following lemma is the compatibility of the transpose 7 in Subsection 2.2.2
and the C*-action.

Lemma 3.3. We have 7(to. [x]) =to_. 7([x]) for allt € C* and [x] € M¢(v,w).

Proof. We write t o, x = (to. xp,to. pi,to. Qi)hEH,iel and 7(to. [x]) = [(xlhap/ia ;)]
We have

2y = e(h)(tos 23)" = e(h).(t 7 a)" = 5 1 (an),
Py =—(toeqi)" = —(tq:)" = t7(pi),
¢ = (toepi)* =p; = 7(q).

This shows that (x},, p}, ¢;) =t*_.7(x), and the lemma follows readily by Lemma 3.2.
(Il

Let a be an automorphism of I'. We assume that the pair (a,¢) is compatible
with signature ¢ € {£1}; see (12). We have the following compatibility of the
automorphism @ and the C*-action.

Lemma 3.4. Let (a,e) be a compatible pair with signature c. Then a(t o, [X]) =
toce a([x]) for allt € C* and [x] € M (v, w).

Proof. We write t 0. x = (t 0. @, t o2 pi,  0- gi)nemicr and a(t oo x) = (z, 7, ).
‘We have

1—c 1+4e(a—1(n) 14ce(h)
2 2

x), = E(h)%t oc To-1(p) = e(h) 7t Ta-1(p) = a(z)p,
Pi =t 0 Pa-1(i) = Pa-1(1) = a(p)i,
4 =t oc qa—1(s) = t-qa—1(;) = t-a(q);.
So (x},,p5,q;) =t x_c a(x). The lemma follows. O

The following lemma is the compatibility of the reflection functor S; and the
C*-action.

Lemma 3.5. We have S;(t o, [x]) = to. S;([x]) for allt € C* and [x] € Mc(v, w).

Proof. Let S;([x]) = [x/]. It suffices to show that the pair (¢ o, x,¢ o, x') satisfies
the conditions (R1)-(R4) in the definition of reflection functors. Recall a;(x) and
b;(x) from (6). There is

1+e(h) 1+e(h) 0/1

a;i(toc X) = (tqi,t™ 2 Th)no(h)=i» bi(t 0c X) = (pi,t™ 2 & (h)xn) pii(h)=i-
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Thus we must have
bi(t 0. x)a;(t oo x") = th;(x)a;(x') = 0,

Clearly, b;(t o x) is surjective since b;(x) is so and a;(t o, x’) is injective since a;(x’)
is so. Hence (R1) holds for the pair (¢ o x,t o, x’). Similarly, there is

a;(t oc x)b;(t o x) — a;(t o X' )b;(t oo x') =t (a;(x)b;(x) — a;(x")b;i(x")) = 0.

This shows that the pair (¢ o, x,t o, x') satisfies (R2). The condition (R3) for
(to.x,to.x') is clearly followed from definition. The condition (R4) for (to.x, to.x’)
can be proved in a similar way as that of (R2). The lemma thus follows. O

By combining Lemmas 3.3, 3.4, and 3.5, we have the following proposition.
Proposition 3.6. Let (a,e) be a compatible pair with signature c. Then we have
o(tog [x]) =to_ o([x])Vt € C*, [x] € M (v, w).

From Proposition 3.6 and the above analysis, we readily have the following.

Proposition 3.7. (1) Iftoe [x] = to_¢e [x] for all t € C* and for all [x] €
M (v, w), then the C*-action in (18) on M (v, w) induces a C*-action on
S¢(v,w) such that the weight of the symplectic form w on S¢(v,w) is 1
with respect to this C*-action.

(2) Ifto. [x] =to_ce [x] for allt € C* and [x] € M (v, w), then the C*-action
provides a contraction of &1(v,w) to its fized point &, (v, w)C  consisting
of a single point [0].

The following proposition provides compatible cases sufficient to prove our the-
orems.

Proposition 3.8. (1) If c= —1, then to. [x] = to_. [x] Vt € C* and [x] €
Me (v, w).
(2) Assumec =1 and w;w; = 0ifi and j are joined by an edge. Let I = I'LI°
be a partition satisfying the following conditions:
o For allie I°, we have w; = 0.
e For all h € e71(1), we have o(h) € I' and i(h) € I°.
Then to. [x] =to_. [x] for allt € C* and [x] € M (v, w).

Proof. The first statement is obvious. Let ¢ = 1. It is enough to show that
g-(t oe X) = t *x_ x. Let k; be the parity of 4, i.e., k; = 1if i € I' and x; = 0 if
i € I° Let g, = (t"iidy, )ies € Gy. Then we have the following computations:

gr-(tozap) =t to. xp) = xp if h e e (1),
Gi-(toe xp) = t(toc xp) = tap if h e t(-1),
Gi-(t0e pi) = t(t oc pi) = tp; ifiel!,
gr-(tocqi) =t7 (toc q;) = i ifi eI

Since p; = 0,¢; = 0 for all i € I°, the above computation shows that g,.(t o, x) =
t x_.- x. The proof is thus finished. O
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3.9. The proof of Theorems A, C, and D. Since I is a Dynkin graph, hence
bipartite, so we can find a partition of I such that the first condition in Propo-
sition 3.8 holds. Now set € to be the unique orientation such that the second
condition in Proposition 3.8 is valid. Since ¢ = 1, we see that the automorphism a
is compatible with the orientation . In this case, the results in Proposition 3.7 are
true and so Theorem B is applicable and from which Theorem D follows.

In light of Proposition 2.3, Theorem C, and hence Theorem A, follows from The-
orem D. Note that we must show that all parabolic subgroups, up to conjugations,
appear in the setting of Proposition 2.3. But this is already observed in Maffei’s
work [MO05, Theorem 8].

The proof of Theorems A, C, and D is finished.

3.10. A generalization of Theorem D. In Proposition 3.8, there is no assump-
tion on w when ¢ = —1, which is not stated in Theorem D, and the above argument
works in this more general case as well. Let us record this more general result here.

Theorem E. Let (a,c°) be a compatible pair of signature ¢ = —1. Then the fiber
(7o) ~1([0]) is Lagrangian in &S¢(v,w).

4. SPALTENSTEIN’S EXAMPLES

In this section, we discuss examples in [Sp82, 11.6, 11.8], except 11.8 ¢). We
show that X! is Lagrangian in all these examples, except the counterexample
in [Sp82, 11.6].

4.1 [Sp82, 11.6]. Let us fix a basis {e;}1<i<s of C8. Let B(—,—) be the bilinear
form defined by B(e;,e;) = 0;9—; for all 1 < i,j < 8, so that the associated
symmetric matrix is the anti-diagonal identity matrix. Let G = SOg(C) be the
special orthogonal group of B(—, —) and let s0g(C) be its Lie algebra. Let x be an
element of the form

z=10 @ 0 |, z;=|) (|5 22=
0 0 —x1

0
-1
-1

0

o O oo
S O o
o O o

Then it is clear that z is of Jordan-type (1,22,3) and is a nilpotent element in
503(C). Let G/P be the isotropic flag variety of isotropic subspaces Fy C Fy in C®
such that dim F5 = 2 and dim F3 = 3. Then the Spaltenstein variety Xf of the
triple (SOg(C), P, x) is the subvariety of G/P consisting of elements (F» C F3) such
that z(Fy) = 0,2(F3) C Fy,z(F3) C F3. There is a partition of X = X3 U Xy
where

Xs={(FCR)cX|lesc R}, Xo={(F, C F3) € X'|es ¢ ).

One can check that X3 and X5 are irreducible of dimension 3 and 2, respectively.
Indeed, for a fixed flag F in X3, the freedom of F5 is OGr(1,4), the Grassmannian
of isotropic lines in C*. The dimension of OGr(1,4) is 2, hence the dimension of
X3 is 3. For a fixed flag Fy in X, there is a unique flag F3, i.e., F3 = (Fy,e3).
Thus the dimension of X5 is 2.

So the irreducible components of X are X3 of dimension 3 and the closure of
X, in XP of dimension 2. Hence X! is not pure dimensional.
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Let @ be a parabolic subgroup such that G/Q is the isotropic flag varieties of
all flags [}, C I, C Fy such that dim F; = i. From [Sp82, 11.6], X¢ is irreducible
and of dimension 3. Let eg be the Richardson element associated to (). Then it
can be shown that dim Serz =6, hence X@ is Lagrangian in Serz. This example
is not in the cases (a)-(c) in the introduction.

4.2 [Sp82, 11.8. a)]. If G is of type A, (resp., D,; E¢; Er; Eg), dim X2 = 2,
with B a Borel, and P is minimal, then X is a union of projective lines in a
configuration of type A,_o (resp., Ay or D,_o, the last is only possible if n > 5;
As; Dg; E;). The condition dim XZ = 2 implies that dim O, = dimT*G/B — 4
and P is minimal implies that dim T*G/P = dim T*G/B — 2. So the dimension of

Sep x is 2, and thus X7 is Lagrangian in S, ,

4.3 [Sp82, 11.8. b)]. Let G = SO7(C), with z of type (3,1%) and G/P a maximal
isotropic Grassmannian. Then X7Z is a disjoint union of two projective lines. By
Theorem C, X7 is Lagrangian in S, ..

4.4 [Sp82, 11.8. d)]. Let G = Spy,,,2(C) and let G/P be a partial flag variety
obtained from the complete flag by dropping the (2i + 1)th step for all 0 < i < n,
and let x be a nilpotent of type ((2n)2,2%). Then X7 is a union of 2n+ 1 projective
lines subject to certain conditions. From Theorem C, X! is Lagrangian in S, P

4.5. By the rectangular symmetry in [Lil9], one can produce more examples from
previous subsections. For example, the corresponding case in Section 4.1 for (G, P, x)
is G’ = Sp;5(C), P’ is chosen such that G'/P’ is isomorphic to the isotropic flag
varieties of (Fy C Fj) with dim F; = 4, and 2’ is of Jordan-type (2,32%,4). Then
Xaf:' =~ X is not pure dimensional.
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