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Abstract

It is shown that there is a universal gravitational memory effect measurable by inertial
detectors in even spacetime dimensions d > 4. The effect falls off at large radius r as P,
Moreover this memory effect sits at one corner of an infrared triangle with the other two
corners occupied by Weinberg’s soft graviton theorem and infinite-dimensional asymptotic

symmetries.
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1 Introduction

In four spacetime dimensions, a triangular equivalence has been established between Wein-
berg’s soft graviton theorem, a subgroup of past and future BMS symmetries, and the grav-
itational memory effect [1-4], indicating a rich universality in the deep infrared (IR). Many
manifestations of this universal IR triangle have been found in a variety of systems. In this
paper we address gravitating systems and construct an IR triangle in even dimensions greater
than four.

A puzzle immediately arises. In a number of papers, it has been claimed that there is
no gravitational memory or BMS symmetry above d = 4 [5-12]. On the other hand, the soft
graviton theorem holds in any number of dimensions, and the associated infinity of conservation
laws /symmetries should follow from matching conditions near spatial infinity. The full triangle
including symmetries and memories should be traceable starting from the soft theorem corner.
Indeed the memory effect is just a Fourier transform with respect to time of the soft theorem.

In this paper we resolve this puzzle. Metric components contain both radiative and Coulom-
bic terms which fall off like 7'~ % and 73~ respectively. These fall offs are the same only in

d = 4. We will find a memory effect for any even dimension d which falls off as 374 like



the Coulombic components. This does not in any way contradict the results of [11,12] which
consider memory effects only at order 7“1_%. Moreover we show that the memory effect exhibits
universal behavior, meaning that for any even d, it sits at a corner of a triangle that includes
both the soft graviton theorem and asymptotic symmetries/conservation laws.

A number of interesting phenomena arise along the way. In particular, the Goldstone boson
of the associated symmetry breaking on the boundary of Z is hidden in a subradiative component
of the metric appearing at the order of Coulombic terms in the form of an undetermined integra-
tion constant in the perturbative large-r solution. The leading soft graviton theorem in higher
dimensions is not related to IR divergences and has a structure which resembles subleading soft
theorems in d = 4 [13,14], for which this analysis may contain some lessons.

Overlapping results were independently obtained by Mao and Ouyang in [15] and Campiglia
and Coito in [16].

This paper is organized as follows. In section 2, we present relevant formulas of linearized
gravity in harmonic gauge, impose boundary conditions on the metric perturbations and deter-
mine the resulting residual gauge symmetry. In section 3, we focus on gravity in six dimensions
for which we show that the residual gauge symmetry found in the previous section generates
a gravitational memory effect, thereby establishing these residual diffeomorphisms as physical
asymptotic symmetries. In section 4, we show that Weinberg’s soft theorem in d = 6 computes
the shift in the transverse metric component associated with the gravitational memory effect.
Moreover, we reinterpret the soft theorem as a conservation law resulting from a matching con-
dition of a component of the Weyl tensor at Z, and 7. In section 5, we generalize our analysis

from d = 6 to all higher even-dimensional spacetimes.

2 General relativity in d =2m +2 >4

This section presents some basic formulas for asymptotically flat spacetimes in d = 2m + 2

dimensions for m > 2! and integral.

2.1 Linearized gravity in harmonic gauge

Consider perturbations g, = gfg,) +h,,, around a flat background in d = 2+-2m dimensions,

(0)

m > 2. Here g,;) denotes the higher-dimensional flat metric in retarded coordinates,

nv
ds® = gfﬁ)dw“dw" = —du® — 2dudr + r*y  gdz"dz" (2.1)
where zA, A=1,---,2m are coordinates on the asymptotic s2m, Defining the trace-reversed
perturbation
7 L © 0
h,ul/ = h,uu - §g;(w)h’ h = g( )W}huw (2.2)

and imposing the harmonic gauge condition

v“ﬁw/ =0, (2.3)

'A similar harmonic gauge analysis is possible in d = 4, m = 1, but a separate analysis is needed as some of

the equations degenerate.



the linearized Einstein equation becomes

Oh,, = —16xGT,,,  Oh,, =V’V,h (2.4)

In an asymptotic analysis near null infinity we may include in 7}, all forms of radiative stress-
energy including gravity waves. In components

Ohy, = (a,? — 28,0, — sz (8, — 0,) + r2D2> s

7 - 2m - - 2 _ 2 _
Oy = (02 — 20,0, + 12D hy + 2 (g — Fray) — Tm(au Oy — =DM,
r r
Z 7 4 ag 2 > . dm - 2 on-
Dhrr - <83 Qauar Tr 2D2) hrr B _3DAhAT - _m (8uh7’7’ - 8rhrr) + _T;L (hur — hrr) + —4'YCB}LCB,
T r r
h 2 2m — 2 ; 2. & 1—2m.
Ohyg = (83 — 20,0, +r 2D2) By — (O — 0 )hys — =04 (hyy — o) + #hm’
T r r
< 2m — 2 _

_ _ _ _ 2 _ 2 _
DhrA = 67% - 2auar +r 2D2) hrA - (au - ar) hrA - _3DChCA - ;aA(hru - hrr)
T

2m + 2 - - 1- 2m -
2 (hAu - hAr) + phrA - FhrA’

.
= _ - 2 - _ 2 _ _
Uhyap = <8f —20,0, +r 2D2) hap — ;DA (hup — hyp) — ;DB (hua — hpa)
4 —4m - 4 — 2 _ 4 — 2 - _ _ _
+ 2 mhAB - marhAB + mauhAB + 2’7/AB (huu - 2hru + hrr) )
.

(2.5)

where here and hereafter, D, denotes the covariant derivative with respect to the unit round
metric y4g on S5%™ and D? = VABDADB. Likewise, the components of the harmonic gauge

condition (2.3) are

_ _ _ _ 2 _ _ 1 _
vuhﬂu = _8uhm’ - 87’huu + arhur - _m(huu - hur) + _QDAhuA7
r T
- - - - 2m - - 1 - 1 -
Vﬂhm’ = _auhrr - arhur + arhrr - Tm(hur - hrr) + _QDAhrA - _37ABhAB’ (26)
T T

_ _ _ - 2m - = 1 B+
vuhpA = _8uhrA - 8rhuA + arhrA - T(huA - hrA) + T’_QD hpa-
The residual diffeomorphisms £/ that preserve the harmonic gauge condition (2.3) obey (" = 0,

or equivalently

2
(0F = 20,0, +77*D%) & — =-(0u6u — 0:6.) = 0.

_ 2 2 2
(63 - 2arau +r 2D2)£r - T_gDAgA - Tm (au - ar) gr + T_ZL (gu - 57") = 0, (27)

2m — 2 1—-2m

_ 2
(82 — 20,0, + r 2D*)¢, — (O — 0,)64 + 2 €a— 04 = &) =0.

r

2.2 Boundary conditions and solution space

In 2m + 2 dimensions, radiative solutions of the wave equation fall off like rim in a local

orthonormal frame, while Coulombic solutions have the faster (for m > 1) falloff . We
T



accordingly adopt the boundary conditions

huu ~ O(T72m+1)a hru ~ O( 72m) hrr ~ O(T7m72)’
huA ~ O(T72m+1)a hrA ~ O(Tim)’ hAB ~ O(Tim+2)’ (28)
h = g(O)MVh,ul/ ~ O(T_zm)’ WABhAB ~ O(T_m)'

Here the h,.,., h,.4 and h,p components comprise the radiative modes and appear accordingly
at O(r~™) in an orthonormal frame, while the Coulombic modes include h,,,,, h, 4, and h,,, and

appear at O(r~ 2"t

in an orthonormal frame.> Making this division requires application of
the residual gauge symmetry (2.7), details of which are spelled out in Appendix A. Moreover,
the metric components are not all independent but are related by the constraints (2.11) as well
as the harmonic gauge condition (2.3). We further impose the consistent fall-off conditions on

the Einstein tensor

Guu ~ O( —2m) Gur ~ O(T_(2m+2))a Grr ~ O(T_(2m+2))a

—2m —(2m+1) —(2m—1) (2.9)
G uA ™ O( ) GT‘A ~ O(T )7 GAB ~ O(T )7

and assume that the components of the energy-momentum tensor 7}, fall off at the same rate
as G,,. These boundary conditions allow the higher-dimensional generalization of Kerr [17] as
well as gravity waves. Allowing for the difference in gauge choice, they are consistent with the
falloffs employed in [11], but are stronger than those in [18].

In the large-r limit, we assume an asymptotic expansion in inverse powers of r of the metric

perturbations, starting at the the order given by (2.8)

() 0 (n) < (n)
Z huu hur = Z hrurg ) hrr = Z h;“:; )
n= n=2m n=m-+2 (210)
huA = Z Tn ) hrA = Tr—na hAB = Z N
n=2m—1 n=m n=m—2

We use these expansions to solve (2.3) and (2.4) order-by-order in r and find that the coefficients
of the expansions (2.10) are all determined in terms of the radiative data hg%ﬁ), up to poten-
tially significant u-independent integration constants. In particular, the Einstein equation (2.4)

together with the gauge condition (2.3) imply the following constraints when m <n <2m —1

_p) | ABp(n=2)

rr AB
= <D2 — (n—2m)* — n) hﬁ,jf) +2(m — n)WABh%;m —2(m —n+ 1)DAh(n71),
0= (D~ (@m —n—1)@m —n) +2(n — 1)) DL + 20— m) D* DR + 207K,
(2.11)

2Strictly speaking, these components are not all independent meaning that the Einstein equation together with
the harmonic gauge condition require some of the components to fall off faster than a radiative or Coulombic

mode in an orthonormal frame.



Using the above constraints together with the Einstein equation, one obtains a relation between

the radiative mode and components of the metric appearing at O(r_2m+1)
gm—1 A B, (m=3) _ ()™t D*(D* +2)+8—8m
! AB 2™ L m — 1)1 (D? = 2(2m — 3))(D? — (2m — 2))
2m—1 (2.12)
[T (p°-@n-0w-1) D" D"niH?,

{=m+1

where inverse powers of D? denote Green’s functions.

Finally, the relation between the components of the metric and the flux of energy and
momentum which appears at leading order in the uwu component of the Einstein equation is
simply

— 167GT?™ = 2(m — 1)9,h2m Y. (2.13)

2.3 Residual symmetries

The harmonic gauge condition (2.3) and the falloffs (2.8) do not fully fix all of the gauge
symmetry. Residual symmetries remain of the form

(m—2)D*f
§f = 2m—2

D? +2(m —1)(2m — 5) D*f 8+DA((D2—4)m+4) f

9. —
“ 2(2m —1) p2m—2 (2m — 1) 2m=1

84, (2.14)

where f is any function on the sphere. Poincaré transformations are also allowed diffeomor-
phisms but are peripheral to our discussion and so are not explicitly included in (2.14). Under

this residual symmetry, hfg_g) transforms as

6, h Y = le_ - <2DADB ((D2 — Dm + 4) — yapD? (D2 +2(m —1)(2m — 5))) 1,

D*D"5 WGy~ = (8 + D*2+ D) — sm)D*f,
(2.15)

while for m > 2, the radiative mode h%?Q) is unaffected.

3 Gravitational memory in d =6

In this section we derive the higher-dimensional gravitational memory effect. For notational
simplicity, we focus on the d = 6 case which illustrates many of the features of the most general
case. The generalization to all even higher dimensions is discussed in section 5.

We begin by considering two inertial detectors near i moving along timelike geodesics3

with tangent vector
k= 0,, k:“k:“ =-1 (3.1)

The relative transverse displacement s of the detectors obeys
d*s?

du’

=R, psP. (3.2)

3There will be corrections to the tangent vectors in (3.1) subleading in 7 but these will not affect our analysis.



Using the metric perturbation boundary conditions (2.8), the linearized Riemann tensor is

AC
R*up = O +O(r™), (3.3)

Let us consider a scenario in which the system is in vacuum (i.e. stationary) at initial and
final times, u; and u; respectively, while during the interval u; < u < wuj there is a transit
of gravitational radiation. To leading order in the large-r expansion, (3.2) can be integrated

directly to find
AC

Ast = 727AhCBsZB + O™, (3.4)

where siA = sA(ui) is the separation of the detectors at some initial retarded time u = w;,

As? = SA(Uf) - SA(UZ-), and Ahgp = hap(uy) — hyp(u;). Expanding at large r,

Ah(l)
Ahyp=—H48 1 ... (3.5)
The would-be leading term vanishes because
AR = 0. (3.6)

One way to derive this is to note that the initial and final configurations are radiative vacua,
but according to (2.15), one can always choose h(j}g = 0 in the vacuum. Therefore the leading
term is ‘frozen’ and cannot be shifted by the passage of waves. This conclusion was arrived at
by a different method in [11], and is the basis of the statement that there is no gravitational
memory in higher dimensions. However it really only implies that the gravitational memory
effect does not appear at the radiative order of the large-r expansion, rather it appears at the
Coulombic order which is subleading above d = 4.
Using (2.15) to write Ahgj)g in terms of pure gauge configurations, one finds
AC
As? = 72? E (DBDC - i’yBcD2> (D - Z)AC} P+ o0, (3.7)

where C' is a component on the sphere of a vacuum metric which obeys
¢ fC =f (3.8)

and accordingly shall be referred to as the Goldstone mode. C' characterizes the vacuum con-
figuration at a given retarded time and AC = C|uf = Cy,-

Thus, we conclude that the large diffeomorphism (2.14) which distinguishes the late and
early vacua can be measured by gravitational memory experiments which are sensitive to the
r% Coulombic components of the metric near null infinity. Since they can be measured, (2.14)
are not trivial diffeomorphisms and occupy one corner of the IR triangle. The relation (3.7)
provides the side of the triangle which connects these large diffeomorphisms (i.e. asymptotic

symmetries) to the memory effect. We now proceed to complete the triangle with the third

corner.



4 Weinberg’s soft theorem in d =6

Continuing in d = 6, in this section we show that Weinberg’s soft graviton theorem is a

)

formula for the shift in precisely the same metric component Ah( One way to demonstrate

this is to Fourier transform the usual momentum space formulas for the soft theorem. This
relates the zero mode of the radiative piece (r% in an orthonormal frame) of the metric hff;_;,
which in turn is related to the shift in hg‘l])g via the u integral of (2.12) (or equation (4.18)
below) to the classical radiation field sourced by the scattering process. This Fourier relation
was worked out in [15]. Here we shall proceed via a different route, showing that the soft formula
can be expressed as a conservation law following from antipodal matching conditions at null

infinity, as in d = 4. This conservation law then readily yields a formula for the memory shift
ARG,

4.1 Soft theorem as Ward identity

We begin as in [18] by rewriting the soft theorem as a Ward identity. Consider fluctuations

of the d = 6 metric about a flat background, g,, = 7n,, + /-JLW, where 2 = 327G.* The

radiative degrees of freedom of the gravitational field have the mode expansion

d5q 1 " i —ig-
-y / R [er8aa(@e ™™ + e al (@] (4.1)
(e}

Wq

where w, = |g] and €}, (¢) are polarization tensors obeying
Yen (4) =0, 228 (D () = nFndt 4 7ndk — 57?”77“, 7 =69 — quq (4.2)

The modes a,, and aL obey the canonical commutation relations

a0 (D), ali(@)] = 2wyb05(27)°0° (5 — ). (4.3)

Note (4.2) directly implies that the mode expansion (4.1) obeys the harmonic gauge condition.
The utility of this gauge choice in the context of the IR triangle was originally suggested in [19].
Also see [20-22] for additional analyses employing harmonic gauge.
The free radiative data at Z is
hg?])g(u 2) =k lim 9 2" 0px” h J(u+rri(z)) (4.4)

r—00

and can be evaluated by taking a saddle point approximation at large r of (4.1). The result
s [18]

2
0 2T°K o in . _ o
Wiy =~ 504%'0p’ Z/dwqwq {ﬁf%(wqx) et el (wod)e (4.5)
(2m) -
* The ¢~ indicates that these graviton modes are normalized differently from the ones appearing in the rest

of the paper.



The frequency space expression is obtained by performing a Fourier transform

1) =~ 0ai'0n’ Y [ iy e g )00 = ) + e o+ (49
™ (6%
Hence,
w(0) —w(0) _
hE = —8—8Ax "o’ Zam A (W) hag ' = —8—8Ax "opd’ sta (w) (4.7

where w > 0. The zero frequency mode of h 45 is then defined in terms of a linear combination

of positive and negative zero-frequency Fourier modes
0 1. —w(0 0
/ duhy = 5 im (5 +15). (4.8)
The soft graviton theorem for an outgoing soft graviton can be expressed in terms of an

insertion of (4.8) into the n — m particle S-matrix

2

K ou
<zn+l,...y/duhfg(u, R IR R CENCHIRNL RN ()

where we have labelled the asymptotic particles by their four-momenta p}, = Ej, (1, #(2)) and
n+m

FSS (2 2,) _wBAuﬁiBBu%ng:ﬁ Z € PPk Z PPk
o j— Pr - q i—1 P-4

(4.10)

When acted upon by the following differential operator, (4.10) localizes to a sum over §-functions

n+m

ﬁ(Dz )DDFjg(zzk_34w [Z B0z — 2) ZEk z—zk]. (4.11)

k=n+1

Then acting with this differential operator on (4.9) and convolving against an arbitrary function

on the sphere D2f(z), one finds
1
e /d4zﬁD2f(z)(D2 —2)D*DP(z, .1, . /duhfg(z)syzl, )

1 ntm (4.12)
[ > ED*f(z) ZEkD f zk)] (Zpats +|S215-00).

k=n+1 k=1

Combined with the result of an analogous analysis near Z , (4.12) leads to the Ward identity

<Zn+17""Q+S_SQ_‘z17"'> = 07 (413)

where the charges can be decomposed into hard and soft pieces

Q" = Qn +Qs. (4.14)

The action of the hard charges on outgoing asymptotic states is reproduced by the action of
the leading order uu component of the energy-momentum

n+m

<Zn+17--"QIJ§_ n+17"' Z EkD f Zk) <n+17""/1_ dU’d Z\/_D fTui)7 (415)

k=n+1



while the soft charges, defined as

1
&= o / dud*zy7D*f(2)(D* — 2)D*DPnY),, (4.16)

add soft gravitons to the asymptotic state. Similar expressions can be determined for charges
()~ which act near Z .

We now show that Q;f is proportional to the shift AC' which appears in the memory for-
mula (3.7). The AB component of the linearized Einstein equations in d = 6 at O(r~2) (or
equivalently equation (2.12)) is

(D? = )r0) +20,040), =0, (4.17)
which implies
/ duD* DR — —DQLHDADBM(;}B. (4.18)
Recall that Ahfj}_; is pure gauge
DADPARY), = (D* - 2)(D* + 4)D*AC, (4.19)

where AC is the shift in the Goldstone mode across Z'. It follows that

Ot = -2 / A2 D f(2)(D? — 2)° D2 AC. (4.20)
3K

Substituting these expressions in (4.12), one finds that the soft theorem computes the ex-

pectation value of angular derivatives of AC' in the presence of a scattering event

3—; /d4zﬁD2f(z)(D2 —2)2D* (21, - |AC(2)S ]2, ...

[ (4.21)
[ > ED*f(z) ZEkD f@) | (zZngrs ISz, o)
k=nt1 k=1

As anticipated in section 3, we find that gravitational radiation emitted during generic scattering
1)

processes shifts the component of the metric hﬁl 5 where the precise shift is given by the gauge

transformation law (2.15) with f = AC as given in (4.21).

4.2 Conservation law

The soft theorem in the form (4.13) equates the outgoing integral Q" onZT to an incoming
integral = on Z . In this subsection we show that both of these are given by st boundary
integrals near spatial infinity, and their equality is implied by the antipodal matching conditions.
Moreover the conserved charges are arbitrary moments of the Weyl tensor component whose
zero mode is the Bondi mass.

To see this explicitly, recall the charge Q7 given by its decomposition into hard (4.15) and
soft (4.16) parts

2 D?
3/-;21) 14

Q" = /I dud*2\/5D* f <T<4 - 2pp¥y h%) (4.22)



Using (2.13) and performing the u integral, one finds

3) 1D D=2 ,4,8,0
Q" 167TG/ Z\FDf<2h 50744 h)

This combination of gauge fields is proportional to the leading contribution to the asymptotic

+
Iy

(4.23)

Tzt

expansion of the following component of the Weyl tensor evaluated in a radiative vacuum near
the boundaries of 7

1 1 (l: ’ 2) A B (1) (3) -6
Crvru =% | —5—=—"D" D hyy5—3hy, | +O(r 7). 4.24
7 ( 2 (D2 +4) ( ) ( )

Note the expression is non-local in the gauge field only because we chose to express it in terms
of h(l)
Natural boundary conditions on the Weyl tensor manifestly lead to sufficiently fast fall off

behavior of the C,.,,, component at err for the charges to be written as local expressions at 7 6

1 D?
+ A B, (1)
= D%t [ 218 D D”h
? 16wG/ AP ( w DT AB)
0 1 (4.25)
= li °p?
itrg i [ D C
In particular, if we replace D? f by 1, then we recover the total mass
2
+ _ 4 4 _ 2D ()
= dud Toid — D DP Oyhy 4.26
@ ‘DQfﬂl /ﬁ ! Zﬁ<w 3k2 D° + 4 ) 20

where notice that the second term is a total derivative on S* and thus vanishes upon integration.

Antipodal matching of this Weyl tensor component on Z to that on Z% then implies directly
Qt=qQ". (4.27)

In summary there is a complete IR triangle in d = 6 with the leading soft graviton theorem
in one corner, < gravitational memory effect at the second corner and asymptotic symme-
T

tries/conservation laws at the third.

5 Higher dimensional generalization

In this section, we generalize the analysis in sections 3 and 4 to all even dimensions d > 4.

5Equivalent local expressions can be obtained for example by substituting hi‘% for hg.
®We have not verified that this charge in any sense generates via the Dirac bracket the large diffeomorphisms
of section 2.3. Such a demonstration would have to carefully account for all our subsidiary gauge fixing as well

as the mismatching powers of r found in Appendix C.

10



5.1 Geodesic deviation in higher dimensions

In general dimensions, the relative transverse displacement s of the detectors due to the

transit of gravitational radiation is given by (3.2). To linear order in the metric perturbations

AC
5a

RAuuB = ; P) <812zhCB - DBauhuC - DCauhuB + DBDChuu> -2

T

5 (20, = Oy = D).
(5.1)

Using the fall-off conditions (2.8), one finds this component is given by an asymptotic expansion

of the form
AC 2m—3 0 h( )

RAuuB = 7—2 + O(T72m)' (52)
2r =, r

Integrating (3.2) twice, one finds

Ah(Qm—?))
02073_18@3 + 0(7”72m)7 (5.3)
-

2m

Ast = 44

where just like in the six-dimensional case, we assume the system is in vacuum at initial and
final times. This means that the modes hg% up to n = 2m — 3 do not contribute since their
vacuum configurations do not undergo a relative displacement between early and late times or
equivalently, they do not change under (2.14).

Finally, the displacement As” can be expressed directly in terms of the change in the vacuum

configuration

(2DADB <(D2 —Ym+ 4) — §pD? <D2 +2(m — 1)(2m — 5))) AC

As? = 5T
2(2m — 1)r=™

s+ O™,
(5.4)

where C is a function on S*™ that parameterizes the space of inequivalent vacuum configura-
tions.

We conclude that gravitational memory experiments sensitive to the Tgm% Coulombic com-
ponents of the metric near null infinity can measure the shift between early and late vacua
generated by (2.14).

5.2 Soft theorem as Ward identity

From a stationary phase approximation of the standard mode expansion in higher dimen-

sions, we find

m—2 ﬂana &’ m— 1 a AN —iw, U m_«a AN WU
h;B )(u,z): o 2mB Z/dwqwq ao(Wet)e " 4 (1) EUGT (wg)e q}

_ 8;71—1 ’L IiaACU an Z/dw )e—iwqu _ 8('){‘0,&(&) @)eiwqu} )

4 ( 2m

The finite frequency modes are given by the Fourier transform

w(m—2 —i)"x XY m— e A m_a
R ( ) _ ((2;)771 02" 0pd’ Z/dwqwq 1 {gij Ao (wy2)o(w — w,) + (—1) €UaT (w,2)8(w + w )} 7

(5.6)

11



or equivalently

w(m—2) (_Z‘)m’% ~in ~j m—1 N
hys = 2@ 042 0’ w ;5 ay (W),

-m
_ _92 1 R ~1 ~J -1 7
" = gy Oa O S el )

with w > 0. The soft theorem can be written as

m 2
0(m—2) —1)"kK ou
O L B T[T CHTAN L P R X
8(2m)™
with F§5(z;2,) given in (4.10) where A, B now run over the coordinates of S°™ and the zero
mode hg(; 2 is defined as
m 1 . —m w(m— m; —w(m—
rp Y = 5 lim )™ (A5G + ()M, (5.9)

Although we just obtained an expression for the soft graviton mode starting from the mode
expansion of the radiative component of the metric, as in six dimensions, the zero frequency
graviton is more naturally related to the shift in a Coulombic component of the metric. In
particular, by comparing the mode expansion (5.5) with the expression (2.12), we obtain an
expression for the frequency mode expansion of the component of the metric associated to the
memory

2" (m — 1)
(-ym!

2m—1 .40 4 (5.10)
ARB A B —iwqu o f AN TWou
< H Dg) D"D [ Tri(2n)” g /dw g)e 1 —ggian(w T )e™ )] ,

l=m+1

H(u,z) =

where
D, = D* — (2m — 0)(¢ — 1) (5.11)
and H (u,z) contains the memory metric component
(D* —2(2m — 3))(D* — (2m — 2
D*(D* +2) +8—8m

Equation (5.10) can now be inverted to express the creation and annihilation operators in terms

H(u,z) = ) DADPRET). (5.12)

of H(u,z). Extracting the zero-mode, we find that

/du(zn+1,...\3uH(u, 2)S|z1,..) =
2m—1
: G A B | K043 Opd
}jlg%]m H Dz DD WZQW&Z] w( n+1,. |CL (W,I)S|Zl,>
{=m+1
(5.13)
Using the action of the differential operators D, on soft factor F,p derived in [18], the soft
theorem (5.8) can equivalently be written as follows
(D? —2(2m — 3))(D* — (2m — 2))D*(z,, 1, ...| ACS| 2y, ...)
2m —1) n+m (5.14)
[ > B (2 - z) ZEk (z = 2) | (Zn415-IS215 ),

k=n+1
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where we have used (2.15) to express the difference between the early and late vacua across
77 in terms of the shift AC in the Goldstone mode across Z. We note that the form of the
large diffeomorphism (2.14) ensures the Green’s function appearing in (5.12) cancels when the
change in hfg_g) across 21 is pure gauge.

Integrating (5.14) against an arbitrary function D? f on 5% we find

/dezﬁDZf(z)(DQ —2(2m — 3))(D* — (2m — 2))D* (241, .| ACS]z, ...)

(2m . 1)1%2 n+m ) n ) (5.15)
= S BD () — Y0 BD* ()| g IS,
k=n+1 k=1
The higher dimensional analog of the soft charge (4.20) is then
2
Qf = e / d*" 24D f(2)(D? — 2(2m — 3))(D* — (2m — 2))D*AC.  (5.16)
m— 1)k

Combined with the corresponding formula for Z— as well as the higher dimensional generaliza-

tions of the hard charges (4.15), we deduce that the Ward identity

Zpgt1s QTS —SQ 7 |21,...) =0 (5.17)

computes the shift in hfgﬁs) along Z induced by a flux of gravitational radiation. This shift is

given by the gauge transformation (2.15) with f = AC as in (5.15).

5.3 Conservation law

In this subsection, we generalize the conclusions of section 4.2 to arbitrary higher even
dimensions. We first show that the conserved charges can be expressed in terms of arbitrary
moments of the Weyl tensor component whose zero mode is the Bondi mass. From (5.15) we

find that the full charge Q" takes the following form

2 2
2 (W2 )0 2m ) iy en

Q= / _ dud®" 2D f <T53’”> -
A

(2m — 1)K> D*(D* +2) — 8m +38
(5.18)
Using (2.13) and performing the u integral, this becomes
1
+ 2m 2
= d D
@ =T /Szm VAD S
I+
1 (DP2m )P -2@m=3) A oms)|
—2(m — 1)Am Y — s DADPR
2m —1 D*(D” +2)—8m+38 I+
(5.19)

In direct analogy with the discussion of section 4.2, we find that the leading term in the 1/r
expansion of the C,,,.,, component of the Weyl tensor evaluated in a radiative vacuum near the

boundary of Z7 is

1(D* —2(m—1))(D* — 2(2m — 3))

C(2m+1) _
2 D*(D*+2) — 8m + 8

rUrY - _(2m - 1)(m - 1)hSL2um71) -

A By (2m-3
DADPREIS),

(5.20)
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Assuming that C,,,,, vanishes sufficiently fast at I]rL, the total charge on Z" can be written as

QM =— 4>z /yD* fCZmHD. (5.21)

2
(2m — 1)167G /
The antipodal matching condition of the Weyl tensor at 7' and 7, then naturally leads to

the interpretation of the memory effect as the direct consequence of conservation law

Q" =Q (5.22)

along 7.

In conclusion, this shows that the soft theorem in higher dimensions is a consequence of the
symmetry associated with the diffeomorphism (2.14). Moreover, (2.14) generates the higher-
dimensional analog of the 4d gravitational memory effect. It is a ‘large’ gauge transformation
in the sense that it computes the leading shift in the metric due to gravitational flux which
is measured by the geodesic deviation equation discussed in section 5.1. This completes the
triangular equivalence between soft theorems, asymptotic symmetries and gravitational memory

in higher even-dimensional asymptotically flat spacetimes.
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A Asymptotic expansions

Assuming a 1/r asymptotic expansion of the metric perturbation and using the notation

F™ to denote the coefficient of r~ ", the Einstein equation components are

(D] ™ = 2(n —m — 1)0,A0 + [DZ —(m-2)2m—n+ 1)] pn=2),
(DR ]™ = 20 — m — 1)9, R0 + [DQ —(n—1)@m—n+ 2)] R 4 omp(=Y — o pARnT),

[Oh,,]™ = 2(n — m — 1)9,A0 + [DZ —(n—2)@m—n+ 1)] A2 4 g, (m‘z) _ Bﬁ?‘”)
— 4Dl + 2R

)

[, ] ™ = 2(n — m)a, A" + [D2 —(n—1)2m—n) - 1] A2 209, 429, AY),

In)
=

ol = 2(n = m)a, R Y + [DZ —n@m—n+1) - 3} AP — 20,0V 4 20, A0
— 2R + 2m+ 2R,
[Ohap] ) _ 2(n —m+ 1)(9JL%§1> + [Dz —24+n—2mn+ n2] B%;m
—2 (k" = DAl + DR = Dbl ) + 2vap (R - 20 + R,
(A1)
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while the components of the harmonic gauge condition are

(V'] ™ = =0, — (2m — n+ D)(RETY — R0y + DARI?),
(V7)™ = —0,8 — 2m —n+ 1RO — R0y 4 DARNT _AABRRS L (A2)
[V*hyua) ™ = =000 — @m —n+ DR~ BY) + DR,

The expansion of the harmonic gauge condition on residual diffeomorphisms (2.7) is

06 = 20— m = 1)9,&0" "V + [D* = (1 + 2m = m)(n — 2)| ",

06]® =2(n —m — 10, + [D? = 2+ 2m —n)(n = 1)] €2 + 2me 2 — 204,

D4l = 2(n = m)9, 57" + [D7 + (<14 m)(=2m +m) = 1] €57 — 20,60 — &"7V).
(A.3)

B Residual gauge-fixing

In this appendix, we provide the details of a consistent gauge-fixing procedure by which we
arrive at the boundary conditions for the metric perturbation employed in this paper (2.8).

We start with the following weak boundary conditions on the metric

Buu ~ O(r_m)7 Bru ~ O(T_m)v Brr ~ O(T_m)v

7 1 7 1 7 2 (B'l)
huA ~ O(T_m—‘r )7 hrA ~ O(T_m—‘r )7 hAB ~ O(T_m+ )

These were selected such that the leading order terms are allowed (by the Einstein equation) to
be free functions of (u, zA). In particular, they can be determined by looking for the order at
which the coefficient of the @JLW term in (A.1) vanishes. If one works with weaker boundary
conditions than these, then a consistent asymptotic expansion must include logarithmic terms
in 7. Finally, note these imply g“th, ~Or™).

Combining the gauge constraints (A.2) with the components of the Einstein equation (A.1)
at orders in the asymptotic expansion when the Einstein tensor vanishes, we obtain the following

constraints
2 7(n A7 (n—1
=(D* = (2m —n —1)2m — n))h —22m —n — 1)(n — M)A + 2(n — m)D*R"Y,

0
0 (D2 — (n—2m)* — n) Bﬁ?) +2m—-02m—-n—1)(n— m))ﬁgg) +2(m — n)WABB(XE;Z)

—2(m—n+ 1)DAB5,Z;1),
0=(D*— (2m —n —1)2m —n) + 2(n — 1)) DBV 4+ 2(m — n)(2m — n) DR
+2(n —m)D*DPRTS? 4 2D (Rl — B,

(B.2)
where all three apply when m < n <2m — 1.
Evaluated at leading order n = m these constraints imply
n =™ =i =o. (B.3)
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The residual gauge transformations that preserve the boundary conditions’ (B.1) are given

to leading order by

1 u(m 1 r(m 1 m
§:T_m§( )0u+r_m§( )5r+W§A( oy 4 (B.4)

where £u(m), fr(m), and £A(m+1) are free functions of (u, ZA). Under these diffeomorphisms, the

leading order fields transform in the following way

oh) =20, - 0,6, oh{iTV =00V, o™ = 20,6,
OR D = vapd, ™, oRGY = sh(Y = 6hT Y = 0. B
We use the u-dependent part of the free functions §u(m), §T(m), and {A(mH) to set
i) = ptm) = plm=1 — o, (B.6)
Since "™ and A™ are zero, '™ = 0 implies
FYABRTD — o, (B.7)

Upon performing this gauge-fixing we are left with residual gauge transformations, which at
leading order are given by u-independent £u(m), £r(m), and £A(m+1).

Now suppose one has gauge-fixed

®s

The remaining residual gauge transformations that preserve (B.8) are given to leading order by

1 un 1 r(n 1 n
§=mé ( )0u+7~_"§ ( )5r+m§A( oyt (B.9)

u(n)’ gr(n)’ and £A(n+1)

where £ are u-independent free functions on the sphere 5% Note with

this gauge-fixing, the constraints (B.2) imply that
() — 0, n' <n. (B.10)

ur

Then, at this order, the following components of the Einstein equation significantly simplify

9, hm D — o, n<2m-—3,
a,h" =0, n<2m -2, (B.11)
o,h" Y = 0, n<2m-—2,

(n+1) B(n) d h(n+1)

implying that A, ~, uA an are u-independent.

"Tn particular, residual diffeomorphisms with weaker fall off conditions are ruled out by the fact that a
consistent asymptotic expansion for such diffeomorphisms must include logarithmic terms in r, which would in

turn necessitate the addition of such terms in the asymptotic expansion of the metric.
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The transformation of these components under the residual gauge symmetry (B.9) is

ohm ) = 26u£”“>+2uz—2nw<5“-—sﬁh-+2DA§%*”,

6%?1:wswm—aﬁm”+< —2m)(e” — &™) + DALY, (B.12)
on") = 9,60 + 9,6l

where using (A.3), O £Tn+1 0 £(n+1 and 0, fA can be written in terms of £u ) ,(, ") and fgﬁl).

These transformations are linearly independent and thus can be used to set
7 (n+1 +1 7
A R A} (B.13)

leaving the remaining residual gauge symmetry with leading order terms now given by wu-

Hence, we can iterate this process until n surpasses the limits in (B.11) and thus we can set

R — pM) — g, m<n<2m-—2, (B.14)
B.14
hELA D _ h(n): m<n<2m-—1.

Upon performing this residual gauge-fixing, the first constraint in (B.2) is identically zero for

n < 2m — 2 and sets Bf,,m*” = 0 when n = 2m — 1. Moreover, note the vanishing of the trace

—2m+1

up to and including order r will allow us henceforth to work with the original metric

perturbations h,,, instead of the trace-reversed metric perturbations B;w

%
The vanishing trace condition together with the second two constraints in (B.2) simplify for

m < n < 2m — 1 to the three constraints appearing in (2.11). When n < 2m — 1, we can use

(n)

(2.11) to solve for the other components in terms of h,.,

AB=2) _ (o)

rr oo

| <D2 —(2m —n)(1 +2m — n))

DAh(nfl _ (n)
ra 2(m —n+1) "
DADBL=2) _ (D* = (2m —n—1)2m —n) + 1) +4(m —n)(2m —n)(2m —n + 1) — 1h(").
AB 4(m —n)(m —n+1) "
(B.15)
Note, this gauge fixing procedure sets
A = p{mt) = g (B.16)

so the last two equations hold provided n > m + 1.

Nonetheless, we can explicitly solve the Einstein equations at the leading orders and we find
Do, n"™ = pADPR?) 9 WD = pAplm) (B.17)
Together these imply

02n{m*? = pApPp(n-2). (B.18)
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Then, for m + 2 < n < 2m — 1, using (B.15), the asymptotic expansion of the r component of

the gauge constraint (A.2) becomes

D? — (n—2)(2m —n+1)

a,hiY = h. B.19
u'rr 2(m —-n + 1) rr ( )
Taking multiple derivatives and using (B.18), this becomes
m+n—2 2
D® — (€ — 1)(2m — 5) -2
ny (m+n) _ DADBRM=2) B.2
au hrr Z:];IJFI 2(m — 6) hAB : ( : 0)

The memory term lies at

(D*(D* 4 2) — 8m + 8)
4(m —2)(m —1)

DADERGIY) pi2m=1), (B.21)
Using (B.20), we find

D* — (t—1)(2m —0)
2(m — 1)

2m—1
u AB -

DADBRm=2),
(D* —4m +6)(D* —2m +2) 11| AB

(B.22)

C Canonical charges

Using a canonical covariant formalism [23,24], one can construct charges that are associated
to the symmetries of the theory. In gravity, the charge associated to a generic diffeomorphism

¢ is given by

1
+ 2m 2m
Qs = g | " e (1)
where
1 A A A A
Fuy =5 (Vb = V&) b+ (Vuh L —V.h M) £y + <VA£Mh N M) o)
- <v)\h)\1/£u - vAhAué-V) - (Vuhgu - vuhgu) .
The relevant term for our analysis in retarded Bondi coordinates (2.1) is
Fru = é-u (arﬁuu - auﬁur) + 57" (arﬁur - auﬁrr) - Buuargr + Bur [aréu - augr + argr]

(C.3)

_ 1 /- _ 2\ - _
e 0u6a = 0,60+ 75 (D6 — e D6,) 46 (8= 2 ) ity = Bufin|.
T

In d = 2m + 2 dimensions, F,,, evaluated on the large diffeomorphism (2.14) in the absence of

radiation is given to leading order by

2 2 2
£, = -2 DDT o ) g DA RO Z2m A2y o
r (2m — 1)(D*(D* +2) — 8m + 8)
_|_ O(T_4m+1)

(C.4)

18



up to a total derivative term which vanishes in (C.1) upon integration over s2m, Then, substi-
tuting this expression in (C.1), one finds in the large-r limit that the canonical charge associated
to the large diffeomorphism (2.14) is proportional to the conserved charge derived from the soft
theorem (5.21)

Qb= 25220 (€5)

The idea that components of the charge which fall off as some power of 1/r could generate
non-trivial symmetries was put forward in [25,26]. In particular, [25] showed that the 4d
subleading soft graviton theorem can be recovered from a conservation law associated with a
subleading component of the supertranslation charges in a large-r expansion. We leave the
interpretation of charges with a large-r falloff as well as a possible relation between leading
soft theorems in higher dimensions and subleading soft theorems in lower dimensions to future

investigation.
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