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1. Introduction

Let U* = U'(sly) be Letzter’s coideal subalgebra of quantum sly corresponding to the symmetric pair
(s12(C),C) ([5]). As a subalgebra of quantum sly, U* is generated by the sum E + vKF + K of standard
generators, and hence can be identified with the polynomial ring Q(v)[¢]. In [1] and [6], two distinguished
bases, called 2 canonical bases, are constructed inside the modified form of U* via algebraic and geometric
approaches respectively. The modified form of U” is isomorphic to a direct sum of two copies of U* = Q(v)][¢]
itself. Under this isomorphism, an explicit and elegant formula, as a polynomial in ¢, of algebraic basis
elements is conjectured in [1] and proved in [3]. The purpose of this short paper is to show that the
geometric basis in [6] admits the same description and, consequently, that the two bases coincide. Notice
that the proofs are within the scope of [6] and [2], whose notations shall be adopted here.

2. The description

Set [n] = (v —v™™)/(v — v~ 1) and [n]! = [T/, [{]. Let U’(sl3) be an associative algebra over Q(v)
generated by e, f, k,k~! and subject to the following defining relations.

-1 3 -3
kk™ =1, ke =vek, kf =v °fk,
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ef —[2]efe+ fe? = —[2]e(vk +v k™),
fPe—[2lfef +ef? = —[2)(vk +v k) f.

Let e(™ = ¢ /[n]! and £ = f"/[n]!. By an induction argument and making use the above inhomogeneous
Serre relations, we have the following formula in U7(sl3).

Lemma 1. We have fe"t1) = e (fe —vef — [n](v"k 4+ v~ k™)) + v le D f,

Let Sé,d be S7 in [2, 3.1] for n = 1 and e,f, k = dld;1 its generators. The assignments e — e, f +— f
and k*! +— k*! define an algebra homomorphism U’(sl3) — S3.4- We set

a 0 b
Aa,b: 0 1 0 ; G/,bGN::{O71,2,"'}'
b 0 a

Let jq = [Ad,0], an idempotent in Sg,),d ([2, 3.17]). We consider the subalgebra S} ; = jdsé,djd and its integral
form 4S5 ; with A = Zlv,v~Y ([6, 4.1]). Let

—1

k — . .
tg = (fe + m) Ja € SQ»d'
Lemma 2. In S ;, one has fMe™j, = (tqg+[d—1])(ta + [d—3]) - (ta + [d — 2n + 1])/[n]".

Proof. When n = 1, this is the defining relation for t4 in [2, Remark 5.3]. Assume the statement holds

for n. In light of the geometric feature of the generators in [2, 3.1], we have fj; = 0 and k*'j; = v+(1=9),

Together with Lemma 1, we deduce that

1 1

pn) go(nt1); £ e (fe — [n] (v" 0"~ + v 0% 1))
TR R e B
= £™e™(tg + [d - 1] = [n) ("' + o7 ) )ja/ [0 + 1]

=£Me™ (ty+ [(d—1) — 2n])ja/[n + 1]

=g+ [d—1])(ta+[d=3]) - (ta+[d—2n —1])/[n+ 1]

f(n+1)e(n+1)jd —

Lemma follows by induction. O
Lemma 2 provides a characterization of S5 4 as follows.

Proposition 3. The algebra S, ; is isomorphic to the quotient algebra of Q(v)[t] by the ideal generated by
the polynomial (t + [d —1])(t + [d—3])--- (¢t + [—d — 1]).

Proof. The map ¢ ~— t4 defines a surjective algebra homomorphism ¢y : Q(v)[t] — S5 ;. Due to
fld+Deld+1)j, = 0 and Lemma 1, the polynomial above is zero in S5 4 for t = t4. So ¢y factors through the
desired quotient. Clearly the dimensions of S ; and the quotient algebra are the same, so they must be
isomorphic. The proposition is thus proved. O

Define an equivalence relation on the set {A,pla,b € N} by Ay p ~ Agp if a =a’ (mod 2) and b =1,
Let Aa,b be the equivalence class of A, ;. As a Q(v)-vector space, the modified form U of U is spanned
by the canonical basis elements by ~and by  for d € N. Let Uy = Span{b;, .bj, d+l|d even} and

U, = Spaun{bAM7 bi, , ,ld odd}. Then U' = U, @ U? as algebras. We have an isomorphism U} — Q(v)][t]
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(resp. U} — Q(v)[t]) via bi, , >t (resp. by = t). The isomorphisms are compatible with ¢. We have

the following explicit description? of geometrically-defined canonical basis elements of U*.
Theorem 4. The canonical basis elements of U* = U*(sly) in [6] are of the form

t+[d—1])E+[d—3])---(t+[-d+3])(t+ [-d+1])

by, = ] , Vd € N; (1)
by . = t-(t+[d—1])(t+ [d— 3]][[)d.; S]'Jr [-d+3])(t+[-d+ 1]]), vieN. @)

Proof. Let us denote the polynomial in (1) by Py 4(¢) and that in (2) by Pj g4+1(¢) in the proof. By Lemma 2,
we have f(d)e(d)jd = Py q(tq). Observe that the element f(d)e(d)jd is a canonical basis element in Sé,d,
corresponding to the constant sheaf on the product of maximal isotropic Grassmannians. Indeed, by [2,
Thm. 3.7(a)], we have f(¥e(®j,; = Z?:o v=)[A; 4_;]. By [6, Prop. 6.3], the canonical basis elements of U*
get sent to canonical basis elements in Sj ; or zero via ¢y. So b = Poq(t), and (1) holds.

Now consider the element P g41(ta+2) in Sh 4, 5. By rewriting the factor ¢ in Py a41(¢) as (¢t +[d+1]) —
[d+ 1] and combining with the remaining terms, there is

) = £ld+HDe(d+D);

Pray1(taye Ja+2 — Po,a(tas2)-

Hence P; 4+1(tg+2) is in the integral form AS} 4. Further, the polynomial P g+1(tg42) can be rewritten as

(tatz + [d — 1)) (tas2 + [d = 3]) - - (tar2 + [-d — 1])
[d+ 1!

Prati(tare) = Poa(tarz) +

With the above expression, Proposition 3 and the property of the transfer map ¢y, ; in [6, (6.6)] and [4],
we must have

bata,a(Prat1(tar2)) = Po,a(ta)- (3)
By the definition of Py g11(t), there is Py g11(tgy2) = [[dil]] tayo * {A24} and so, in light of the positivity

property in [6, Theorem 6.12], it leads to

P ayi1(tagre) ={Ar1a+1} + ZCi{Ai,d+2—i}, ¢; € N[v,v™ 1.

i>1

The positivity of ¢; together with (3) and loc. cit. (6.6) implies that ¢; = 0 and so

Prai(tare) = {Arar1} €85 400

Therefore, we have b ; = P; 441(t) and (2) holds. The proof is finished. O

Al d+1

We conclude the paper with a remark.

Remark 5. (1) The canonical basis of S; ; is {b; _ (ta);bs, , , (t4)|0 < i < |d/2]} where by  are
regarded as a polynomial under the identifications (1)-(2).

(2) Clearly by %by  =[d+1]bs, . bg  *bg . =[d+2]by ,  +[d+1]bs .

2 We thank Weiqiang Wang for pointing out a gap in an early draft, and helpful comments.
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(3) The U* in [1] and [6] differs by an involution (E,F,K) — (F,E,K~!) on quantum sly. Hence the
canonical bases constructed therein coincide.
(4) A presentation of S} ; for v + 1, similar to Proposition 3, is first observed in [7].
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