

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On canonical bases for the Letzter algebra $\mathbf{U}^{\imath}(\mathfrak{sl}_2)$

Yiqiang Li¹

244 Mathematics Building, University at Buffalo, the State University of New York Buffalo, NY 14260, USA

ARTICLE INFO

Article history: Received 28 March 2019 Received in revised form 29 August 2019 Available online 10 September 2019 Communicated by D. Nakano

MSC:

Primary: 17B37; secondary: 14L35

ABSTRACT

A canonical basis was constructed by Wang and the author in [6] inside Letzter's coideal subalgebra in quantum \mathfrak{sl}_2 . In this article, we provide an explicit description for the canonical bases and show that the bases coincide with the one defined algebraically by Bao-Wang in [1].

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Let $\mathbf{U}^i \equiv \mathbf{U}^i(\mathfrak{sl}_2)$ be Letzter's coideal subalgebra of quantum \mathfrak{sl}_2 corresponding to the symmetric pair $(\mathfrak{sl}_2(\mathbb{C}), \mathbb{C})$ ([5]). As a subalgebra of quantum \mathfrak{sl}_2 , \mathbf{U}^i is generated by the sum $\mathbf{E} + v\mathbf{KF} + \mathbf{K}$ of standard generators, and hence can be identified with the polynomial ring $\mathbb{Q}(v)[t]$. In [1] and [6], two distinguished bases, called i canonical bases, are constructed inside the modified form of \mathbf{U}^i via algebraic and geometric approaches respectively. The modified form of \mathbf{U}^i is isomorphic to a direct sum of two copies of $\mathbf{U}^i \cong \mathbb{Q}(v)[t]$ itself. Under this isomorphism, an explicit and elegant formula, as a polynomial in t, of algebraic basis elements is conjectured in [1] and proved in [3]. The purpose of this short paper is to show that the geometric basis in [6] admits the same description and, consequently, that the two bases coincide. Notice that the proofs are within the scope of [6] and [2], whose notations shall be adopted here.

2. The description

Set $[n] = (v^n - v^{-n})/(v - v^{-1})$ and $[n]! = \prod_{i=1}^n [i]$. Let $\mathbf{U}^j(\mathfrak{sl}_3)$ be an associative algebra over $\mathbb{Q}(v)$ generated by e, f, k, k^{-1} and subject to the following defining relations.

$$kk^{-1} = 1$$
, $ke = v^3 ek$, $kf = v^{-3} fk$.

E-mail address: yiqiang@buffalo.edu.

 $^{^{\}rm 1}$ Partially supported by the National Science Foundation grant DMS-1801915.

$$e^{2}f - [2]efe + fe^{2} = -[2]e(vk + v^{-1}k^{-1}),$$

$$f^{2}e - [2]fef + ef^{2} = -[2](vk + v^{-1}k^{-1})f.$$

Let $e^{(n)} = e^n/[n]!$ and $f^{(n)} = f^n/[n]!$. By an induction argument and making use the above inhomogeneous Serre relations, we have the following formula in $\mathbf{U}^{\jmath}(\mathfrak{sl}_3)$.

Lemma 1. We have $fe^{(n+1)} = e^{(n)}(fe - vef - [n](v^nk + v^{-n}k^{-1})) + v^{n+1}e^{(n+1)}f$.

Let $\mathbf{S}_{3,d}^{j}$ be \mathbf{S}^{j} in [2, 3.1] for n=1 and $\mathbf{e}, \mathbf{f}, \mathbf{k} = \mathbf{d}_{1}\mathbf{d}_{2}^{-1}$ its generators. The assignments $e \mapsto \mathbf{e}, f \mapsto \mathbf{f}$ and $k^{\pm 1} \mapsto \mathbf{k}^{\pm 1}$ define an algebra homomorphism $\mathbf{U}^{j}(\mathfrak{sl}_{3}) \to \mathbf{S}_{3,d}^{j}$. We set

$$A_{a,b} = \begin{bmatrix} a & 0 & b \\ 0 & 1 & 0 \\ b & 0 & a \end{bmatrix}, \quad a, b \in \mathbb{N} := \{0, 1, 2, \dots\}.$$

Let $\mathbf{j}_d = [A_{d,0}]$, an idempotent in $\mathbf{S}_{3,d}^j$ ([2, 3.17]). We consider the subalgebra $\mathbf{S}_{2,d}^i = \mathbf{j}_d \mathbf{S}_{3,d}^j \mathbf{j}_d$ and its integral form ${}_{\mathcal{A}}\mathbf{S}_{2,d}^i$ with $\mathcal{A} = \mathbb{Z}[v,v^{-1}]$ ([6, 4.1]). Let

$$\mathbf{t}_d = \left(\mathbf{fe} + \frac{\mathbf{k} - \mathbf{k}^{-1}}{v - v^{-1}}\right)\mathbf{j}_d \in \mathbf{S}_{2,d}^i.$$

Lemma 2. In $\mathbf{S}_{2,d}^i$, one has $\mathbf{f}^{(n)}\mathbf{e}^{(n)}\mathbf{j}_d = (\mathbf{t}_d + [\![d-1]\!])(\mathbf{t}_d + [\![d-3]\!]) \cdots (\mathbf{t}_d + [\![d-2n+1]\!])/[\![n]\!]!$.

Proof. When n = 1, this is the defining relation for \mathbf{t}_d in [2, Remark 5.3]. Assume the statement holds for n. In light of the geometric feature of the generators in [2, 3.1], we have $\mathbf{f}\mathbf{j}_d = 0$ and $\mathbf{k}^{\pm 1}\mathbf{j}_d = v^{\pm(1-d)}$. Together with Lemma 1, we deduce that

$$\mathbf{f}^{(n+1)}\mathbf{e}^{(n+1)}\mathbf{j}_{d} = \frac{1}{[n+1]}\mathbf{f}^{(n)}\mathbf{f}\mathbf{e}^{(n+1)}\mathbf{j}_{d} = \frac{1}{[n+1]}\mathbf{f}^{(n)}\mathbf{e}^{(n)}(\mathbf{f}\mathbf{e} - [n](v^{n}v^{1-d} + v^{-n}v^{d-1}))\mathbf{j}_{d}$$

$$= \mathbf{f}^{(n)}\mathbf{e}^{(n)}(\mathbf{t}_{d} + [d-1] - [n](v^{n}v^{1-d} + v^{-n}v^{d-1}))\mathbf{j}_{d}/[n+1]$$

$$= \mathbf{f}^{(n)}\mathbf{e}^{(n)}(\mathbf{t}_{d} + [(d-1) - 2n])\mathbf{j}_{d}/[n+1]$$

$$= (\mathbf{t}_{d} + [d-1])(\mathbf{t}_{d} + [d-3]) \cdot \cdot \cdot \cdot (\mathbf{t}_{d} + [d-2n-1])/[n+1]!.$$

Lemma follows by induction. \Box

Lemma 2 provides a characterization of $\mathbf{S}_{2,d}^{i}$ as follows.

Proposition 3. The algebra $\mathbf{S}_{2,d}^i$ is isomorphic to the quotient algebra of $\mathbb{Q}(v)[t]$ by the ideal generated by the polynomial $(t + [d-1])(t + [d-3]) \cdots (t + [-d-1])$.

Proof. The map $t \mapsto \mathbf{t}_d$ defines a surjective algebra homomorphism $\phi_d^i : \mathbb{Q}(v)[t] \to \mathbf{S}_{2,d}^i$. Due to $\mathbf{f}^{(d+1)}\mathbf{e}^{(d+1)}\mathbf{j}_d = 0$ and Lemma 1, the polynomial above is zero in $\mathbf{S}_{2,d}^i$ for $t = \mathbf{t}_d$. So ϕ_d^i factors through the desired quotient. Clearly the dimensions of $\mathbf{S}_{2,d}^i$ and the quotient algebra are the same, so they must be isomorphic. The proposition is thus proved. \square

Define an equivalence relation on the set $\{A_{a,b}|a,b\in\mathbb{N}\}$ by $A_{a,b}\sim A_{a',b'}$ if $a\equiv a'\pmod{2}$ and b=b'. Let $\check{A}_{a,b}$ be the equivalence class of $A_{a,b}$. As a $\mathbb{Q}(v)$ -vector space, the modified form $\dot{\mathbf{U}}^i$ of \mathbf{U}^i is spanned by the canonical basis elements $b_{\check{A}_{0,d}}$ and $b_{\check{A}_{1,d}}$ for $d\in\mathbb{N}$. Let $\dot{\mathbf{U}}^i_0=\operatorname{Span}\{b_{\check{A}_{0,d}},b_{\check{A}_{1,d+1}}|d\text{ even}\}$ and $\dot{\mathbf{U}}^i_1=\operatorname{Span}\{b_{\check{A}_{0,d}},b_{\check{A}_{1,d-1}}|d\text{ odd}\}$. Then $\dot{\mathbf{U}}^i=\dot{\mathbf{U}}^i_0\oplus\dot{\mathbf{U}}^i_1$ as algebras. We have an isomorphism $\dot{\mathbf{U}}^i_0\to\mathbb{Q}(v)[t]$

(resp. $\dot{\mathbf{U}}_1^i \to \mathbb{Q}(v)[t]$) via $b_{\check{A}_{1,1}} \mapsto t$ (resp. $b_{\check{A}_{0,1}} \mapsto t$). The isomorphisms are compatible with ϕ_d^i . We have the following explicit description² of geometrically-defined canonical basis elements of $\dot{\mathbf{U}}^i$.

Theorem 4. The canonical basis elements of $\dot{\mathbf{U}}^i \equiv \dot{\mathbf{U}}^i(\mathfrak{sl}_2)$ in [6] are of the form

$$b_{\check{A}_{0,d}} = \frac{(t + [\![d-1]\!])(t + [\![d-3]\!]) \cdots (t + [\![-d+3]\!])(t + [\![-d+1]\!])}{[\![d]\!]!}, \ \forall d \in \mathbb{N};$$
 (1)

$$b_{\check{A}_{1,d+1}} = \frac{t \cdot (t + [d-1])(t + [d-3]) \cdots (t + [-d+3])(t + [-d+1])}{[d+1]!}, \ \forall d \in \mathbb{N}.$$
 (2)

Proof. Let us denote the polynomial in (1) by $P_{0,d}(t)$ and that in (2) by $P_{1,d+1}(t)$ in the proof. By Lemma 2, we have $\mathbf{f}^{(d)}\mathbf{e}^{(d)}\mathbf{j}_d = P_{0,d}(\mathbf{t}_d)$. Observe that the element $\mathbf{f}^{(d)}\mathbf{e}^{(d)}\mathbf{j}_d$ is a canonical basis element in $\mathbf{S}^i_{2,d}$, corresponding to the constant sheaf on the product of maximal isotropic Grassmannians. Indeed, by [2, Thm. 3.7(a)], we have $\mathbf{f}^{(d)}\mathbf{e}^{(d)}\mathbf{j}_d = \sum_{i=0}^d v^{-\binom{i}{2}}[A_{i,d-i}]$. By [6, Prop. 6.3], the canonical basis elements of $\dot{\mathbf{U}}^i$ get sent to canonical basis elements in $\mathbf{S}^i_{2,d}$ or zero via ϕ^i_d . So $b_{\check{A}_{0,d}} = P_{0,d}(t)$, and (1) holds.

Now consider the element $P_{1,d+1}(\mathbf{t}_{d+2})$ in $\mathbf{S}_{2,d+2}^i$. By rewriting the factor t in $P_{1,d+1}(t)$ as (t + [d+1]) - [d+1] and combining with the remaining terms, there is

$$P_{1,d+1}(\mathbf{t}_{d+2}) = \mathbf{f}^{(d+1)}\mathbf{e}^{(d+1)}\mathbf{j}_{d+2} - P_{0,d}(\mathbf{t}_{d+2}).$$

Hence $P_{1,d+1}(\mathbf{t}_{d+2})$ is in the integral form $_{\mathcal{A}}\mathbf{S}_{2,d}^{i}$. Further, the polynomial $P_{1,d+1}(\mathbf{t}_{d+2})$ can be rewritten as

$$P_{1,d+1}(\mathbf{t}_{d+2}) = P_{0,d}(\mathbf{t}_{d+2}) + \frac{(\mathbf{t}_{d+2} + [\![d-1]\!])(\mathbf{t}_{d+2} + [\![d-3]\!]) \cdots (\mathbf{t}_{d+2} + [\![-d-1]\!])}{[\![d+1]\!]!}.$$

With the above expression, Proposition 3 and the property of the transfer map $\phi_{d+2,d}^i$ in [6, (6.6)] and [4], we must have

$$\phi_{d+2,d}^{i}(P_{1,d+1}(\mathbf{t}_{d+2})) = P_{0,d}(\mathbf{t}_{d}). \tag{3}$$

By the definition of $P_{1,d+1}(t)$, there is $P_{1,d+1}(\mathbf{t}_{d+2}) = \frac{1}{[d+1]} \mathbf{t}_{d+2} * \{A_{2,d}\}$ and so, in light of the positivity property in [6, Theorem 6.12], it leads to

$$P_{1,d+1}(\mathbf{t}_{d+2}) = \{A_{1,d+1}\} + \sum_{i>1} c_i \{A_{i,d+2-i}\}, \quad c_i \in \mathbb{N}[v, v^{-1}].$$

The positivity of c_i together with (3) and loc. cit. (6.6) implies that $c_i = 0$ and so

$$P_{1,d+1}(\mathbf{t}_{d+2}) = \{A_{1,d+1}\} \in \mathbf{S}_{2,d+2}^i.$$

Therefore, we have $b_{\check{A}_{1,d+1}} = P_{1,d+1}(t)$ and (2) holds. The proof is finished. \square

We conclude the paper with a remark.

Remark 5. (1) The canonical basis of $\mathbf{S}_{2,d}^i$ is $\{b_{\check{A}_{0,d-2i}}(\mathbf{t}_d), b_{\check{A}_{1,d-2i-1}}(\mathbf{t}_d)|0 \leq i \leq \lfloor d/2 \rfloor\}$ where $b_{\check{A}_{a,b}}$ are regarded as a polynomial under the identifications (1)-(2).

$$(2) \text{ Clearly } b_{\check{A}_{0,1}}*b_{\check{A}_{0,d}} = [\![d+1]\!]b_{\check{A}_{1,d+1}}, b_{\check{A}_{0,1}}*b_{\check{A}_{1,d+1}} = [\![d+2]\!]b_{\check{A}_{0,d+2}} + [\![d+1]\!]b_{\check{A}_{0,d}}.$$

² We thank Weiqiang Wang for pointing out a gap in an early draft, and helpful comments.

- (3) The U^i in [1] and [6] differs by an involution $(\mathbf{E}, \mathbf{F}, \mathbf{K}) \mapsto (\mathbf{F}, \mathbf{E}, \mathbf{K}^{-1})$ on quantum \mathfrak{sl}_2 . Hence the canonical bases constructed therein coincide.
 - (4) A presentation of $\mathbf{S}_{2,d}^i$ for $v \mapsto 1$, similar to Proposition 3, is first observed in [7].

References

- [1] H. Bao, W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, Astérisque 402 (2018).
- [2] H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical type, Transform. Groups 23 (2) (2018) 329–389, available at arXiv:1404.4000.
- [3] C. Berman, W. Wang, Formulae of i-divided powers in $U_q(\mathfrak{sl}_2)$, J. Pure Appl. Algebra 222 (9) (2018) 2667–2702.
- [4] Z. Fan, Y. Li, Positivity of canonical bases under comultiplication, IMRN, https://doi.org/10.1093/imrn/rnz047. Available at arXiv:1511.02434.
- [5] G. Letzter, Coideal subalgebras and quantum symmetric pairs, in: New Directions in Hopf Algebras, in: MSRI Publications, vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–166.
- [6] Y. Li, W. Wang, Positivity vs negativity of canonical bases, Bull. Inst. Math. Acad. Sin. (N.S.) 13 (2) (2018) 143–198, available at arXiv:1501.00688.
- [7] Y. Li, J. Zhu, Quasi-split symmetric pairs of $U(\mathfrak{gl}_N)$ and their Schur algebras, arXiv:1909.01240.