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A canonical basis was constructed by Wang and the author in [6] inside Letzter’s 
coideal subalgebra in quantum sl2. In this article, we provide an explicit description 
for the canonical bases and show that the bases coincide with the one defined 
algebraically by Bao-Wang in [1].
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1. Introduction

Let Uı ≡ Uı(sl2) be Letzter’s coideal subalgebra of quantum sl2 corresponding to the symmetric pair 
(sl2(C), C) ([5]). As a subalgebra of quantum sl2, Uı is generated by the sum E + vKF + K of standard 
generators, and hence can be identified with the polynomial ring Q(v)[t]. In [1] and [6], two distinguished 
bases, called ı canonical bases, are constructed inside the modified form of Uı via algebraic and geometric 
approaches respectively. The modified form of Uı is isomorphic to a direct sum of two copies of Uı ∼= Q(v)[t]
itself. Under this isomorphism, an explicit and elegant formula, as a polynomial in t, of algebraic basis 
elements is conjectured in [1] and proved in [3]. The purpose of this short paper is to show that the 
geometric basis in [6] admits the same description and, consequently, that the two bases coincide. Notice 
that the proofs are within the scope of [6] and [2], whose notations shall be adopted here.

2. The description

Set �n� = (vn − v−n)/(v − v−1) and �n�! =
∏n

i=1�i�. Let Uj(sl3) be an associative algebra over Q(v)
generated by e, f, k, k−1 and subject to the following defining relations.

kk−1 = 1, ke = v3ek, kf = v−3fk,
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e2f − �2�efe + fe2 = −�2�e(vk + v−1k−1),

f2e− �2�fef + ef2 = −�2�(vk + v−1k−1)f.

Let e(n) = en/�n�! and f (n) = fn/�n�!. By an induction argument and making use the above inhomogeneous 
Serre relations, we have the following formula in Uj(sl3).

Lemma 1. We have fe(n+1) = e(n)(fe − vef − �n�(vnk + v−nk−1)) + vn+1e(n+1)f .

Let Sj
3,d be Sj in [2, 3.1] for n = 1 and e, f , k = d1d−1

2 its generators. The assignments e �→ e, f �→ f
and k±1 �→ k±1 define an algebra homomorphism Uj(sl3) → Sj

3,d. We set

Aa,b =
[
a 0 b
0 1 0
b 0 a

]
, a, b ∈ N := {0, 1, 2, · · · }.

Let jd = [Ad,0], an idempotent in Sj
3,d ([2, 3.17]). We consider the subalgebra Sı

2,d = jdSj
3,djd and its integral 

form ASı
2,d with A = Z[v, v−1] ([6, 4.1]). Let

td =
(
fe + k − k−1

v − v−1

)
jd ∈ Sı

2,d.

Lemma 2. In Sı
2,d, one has f (n)e(n)jd = (td + �d − 1�)(td + �d − 3�) · · · (td + �d − 2n + 1�)/�n�!.

Proof. When n = 1, this is the defining relation for td in [2, Remark 5.3]. Assume the statement holds 
for n. In light of the geometric feature of the generators in [2, 3.1], we have fjd = 0 and k±1jd = v±(1−d). 
Together with Lemma 1, we deduce that

f (n+1)e(n+1)jd = 1
�n + 1�

f (n)fe(n+1)jd = 1
�n + 1�

f (n)e(n)(fe − �n�(vnv1−d + v−nvd−1))jd

= f (n)e(n)(td + �d− 1� − �n�(vnv1−d + v−nvd−1))jd/�n + 1�

= f (n)e(n)(td + �(d− 1) − 2n�)jd/�n + 1�

= (td + �d− 1�)(td + �d− 3�) · · · (td + �d− 2n− 1�)/�n + 1�!.

Lemma follows by induction. �
Lemma 2 provides a characterization of Sı

2,d as follows.

Proposition 3. The algebra Sı
2,d is isomorphic to the quotient algebra of Q(v)[t] by the ideal generated by 

the polynomial (t + �d − 1�)(t + �d − 3�) · · · (t + �−d − 1�).

Proof. The map t �→ td defines a surjective algebra homomorphism φı
d : Q(v)[t] → Sı

2,d. Due to 
f (d+1)e(d+1)jd = 0 and Lemma 1, the polynomial above is zero in Sı

2,d for t = td. So φı
d factors through the 

desired quotient. Clearly the dimensions of Sı
2,d and the quotient algebra are the same, so they must be 

isomorphic. The proposition is thus proved. �
Define an equivalence relation on the set {Aa,b|a, b ∈ N} by Aa,b ∼ Aa′,b′ if a ≡ a′ (mod 2) and b = b′. 

Let Ǎa,b be the equivalence class of Aa,b. As a Q(v)-vector space, the modified form U̇ı of Uı is spanned 
by the canonical basis elements bǍ0,d

and bǍ1,d
for d ∈ N. Let U̇ı

0 = Span{bǍ0,d
, bǍ1,d+1

|d even} and 

U̇ı
1 = Span{b ˇ , b ˇ |d odd}. Then U̇ı = U̇ı

0 ⊕ U̇ı
1 as algebras. We have an isomorphism U̇ı

0 → Q(v)[t]
A0,d A1,d−1
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(resp. U̇ı
1 → Q(v)[t]) via bǍ1,1

�→ t (resp. bǍ0,1
�→ t). The isomorphisms are compatible with φı

d. We have 

the following explicit description2 of geometrically-defined canonical basis elements of U̇ı.

Theorem 4. The canonical basis elements of U̇ı ≡ U̇ı(sl2) in [6] are of the form

bǍ0,d
= (t + �d− 1�)(t + �d− 3�) · · · (t + �−d + 3�)(t + �−d + 1�)

�d�! , ∀d ∈ N; (1)

bǍ1,d+1
= t · (t + �d− 1�)(t + �d− 3�) · · · (t + �−d + 3�)(t + �−d + 1�)

�d + 1�! , ∀d ∈ N. (2)

Proof. Let us denote the polynomial in (1) by P0,d(t) and that in (2) by P1,d+1(t) in the proof. By Lemma 2, 
we have f (d)e(d)jd = P0,d(td). Observe that the element f (d)e(d)jd is a canonical basis element in Sı

2,d, 
corresponding to the constant sheaf on the product of maximal isotropic Grassmannians. Indeed, by [2, 
Thm. 3.7(a)], we have f (d)e(d)jd =

∑d
i=0 v

−
(i
2
)
[Ai,d−i]. By [6, Prop. 6.3], the canonical basis elements of U̇ı

get sent to canonical basis elements in Sı
2,d or zero via φı

d. So bǍ0,d
= P0,d(t), and (1) holds.

Now consider the element P1,d+1(td+2) in Sı
2,d+2. By rewriting the factor t in P1,d+1(t) as (t + �d + 1�) −

�d + 1� and combining with the remaining terms, there is

P1,d+1(td+2) = f (d+1)e(d+1)jd+2 − P0,d(td+2).

Hence P1,d+1(td+2) is in the integral form ASı
2,d. Further, the polynomial P1,d+1(td+2) can be rewritten as

P1,d+1(td+2) = P0,d(td+2) + (td+2 + �d− 1�)(td+2 + �d− 3�) · · · (td+2 + �−d− 1�)
�d + 1�! .

With the above expression, Proposition 3 and the property of the transfer map φı
d+2,d in [6, (6.6)] and [4], 

we must have

φı
d+2,d(P1,d+1(td+2)) = P0,d(td). (3)

By the definition of P1,d+1(t), there is P1,d+1(td+2) = 1
�d+1� td+2 ∗ {A2,d} and so, in light of the positivity 

property in [6, Theorem 6.12], it leads to

P1,d+1(td+2) = {A1,d+1} +
∑
i>1

ci{Ai,d+2−i}, ci ∈ N[v, v−1].

The positivity of ci together with (3) and loc. cit. (6.6) implies that ci = 0 and so

P1,d+1(td+2) = {A1,d+1} ∈ Sı
2,d+2.

Therefore, we have bǍ1,d+1
= P1,d+1(t) and (2) holds. The proof is finished. �

We conclude the paper with a remark.

Remark 5. (1) The canonical basis of Sı
2,d is {bǍ0,d−2i

(td), bǍ1,d−2i−1
(td)|0 ≤ i ≤ �d/2�} where bǍa,b

are 
regarded as a polynomial under the identifications (1)-(2).

(2) Clearly bǍ0,1
∗ bǍ0,d

= �d + 1�bǍ1,d+1
, bǍ0,1

∗ bǍ1,d+1
= �d + 2�bǍ0,d+2

+ �d + 1�bǍ0,d
.

2 We thank Weiqiang Wang for pointing out a gap in an early draft, and helpful comments.
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(3) The Uı in [1] and [6] differs by an involution (E, F, K) �→ (F, E, K−1) on quantum sl2. Hence the 
canonical bases constructed therein coincide.

(4) A presentation of Sı
2,d for v �→ 1, similar to Proposition 3, is first observed in [7].
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