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Abstract—Aerial communication using directional antennas
(ACDA) is a promising solution to enable long-distance and broad-
band unmanned aerial vehicle (UAV)-to-UAV networking. The au-
tomatic alignment of directional antennas allows the transmission
energy to focus in certain direction and significantly extends the
communication range and rejects interference. Robust automatic
alignment of directional antennas is not easy to achieve, considering
practical issues such as the limited on-board sensing devices due
to the physical constraints of UAV payload and power supplies,
uncertain and varying UAV movement patterns, and unstable GPS
and unknown communication environments. In this paper, we
develop reinforcement learning (RL)-based online antenna con-
trol solutions for the ACDA system to conquer these challenges.
The control solution adopts an uncertain UAV mobility modeling
and intention estimation framework to capture and predict the
uncertain intentions of UAV maneuvers and hence permit robust
tracking. To account for an unstable GPS environment, the control
solution features a learning of communication channel models to
provide additional measurement signals in GPS-denied settings.
A novel stochastic optimal control solution for nonlinear random
switching dynamics is developed that integrates RL, an effective
uncertainty evaluation method called multivariate probabilistic
collocation method (MPCM), and unscented Kalman Filter (UKF).
Simulation studies are conducted to illustrate and validate the
proposed solutions.

Index Terms—Learning control, random switching systems,
uncertainty quantification, UAV communication, directional
antennas.

1. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) have been widely
used in civilian and commercial applications including
emergency response, connectivity service, intelligent transporta-
tion, precision agriculture, among others [2]-[4]. Aerial commu-
nication among UAVs is expected to play an indispensable role
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Fig. 1. Illustration of the broadband long-distance communication infrastruc-
ture using controllable UAV-carried directional antennas [10].

in these applications when multiple UAVs are involved [5]-[7].
In applications such as emergency response and remote infras-
tructure health monitoring, the long-distance and broad-band
UAV-to-UAV communication capability is desired.

To enable long-distance and broad-band UAV-to-UAV com-
munication, the aerial communication using directional antennas
(ACDA) has been developed as a promising solution [8]-[13].
Through using directional antennas that focus the transmission
energy in certain direction, ACDA significantly extends the
communication distance and rejects interference, compared to
omni-drectional antenna based solutions. With ACDA, UAVs-
carried communication infrastructures can be quickly deployed
to deliver Wi-Fi services from the air, through which high-rate
data such as monitoring streams from remote locations can
be transmitted in real-time (see Fig. 1). The detailed design
prototype and hardware components of this ACDA system are
described in [10].

A critical component of the ACDA system is the automatic
alignment of directional antennas to maximize the communi-
cation performance. Each UAV in the ACDA system carries a
rotational plate mounted with a directional antenna [11], which
is controlled to align with the directional antenna carried by the
other UAV. Robust automatic alignment of directional antennas
is not easy to achieve, considering practical issues such as the
limited on-board sensing devices due to the physical constraints
of UAV payload and power supplies, uncertain and varying
UAYV mobility, and unstable GPS and unknown communication
environments.

There are two general design configurations of the ACDA
system, depending on whether the communication channel used
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for antenna control is omni or not. The first configuration
uses a directional antenna-equipped broad-band channel for
the transmission of application-oriented data (e.g., real-time
video streams), and an additional low-rate omni-directional
communication channel for control and command data. In [11],
omni-directional antennas are used to transmit the GPS infor-
mation of the remote UAV for the alignment of antennas. This
configuration simplifies the antennas controller design, as the
control channel still functions even if the directional antennas are
not in alignment. However, the omni-directional control channel
suffers from practical issues such as interference and dissipation
over a long communication distance [14], [15]. As such, in this
paper, we aim to design the ACDA system using the second
configuration where the high-rate application data and low-rate
control and command data share the same channel equipped with
directional antennas.

Although more practical, this solution that removes the addi-
tional control and command channel introduces more challenges
to the robustness of antennas control. As control and command
data cannot be transmitted if the directional communication
channel fails, the antenna control system needs to robustly lock
and track the other directional antennas, once the communi-
cation channel is established initially. To do that, we develop
an uncertain UAV mobility modeling and intention estimation
framework to capture and predict the uncertain intentions of the
remote UAV’s maneuvers. Predictive intentions for robot-robot
and human-robot collaborations have been studied ine.g., [16]—
[18]. Most of these studies assume that an agent’s intention can
be described and modeled in a deterministic and predictable
form [16]-{18]. This is not suitable for UAVs considering
their highly flexible and random movement patterns. Proba-
bilistic intentions and their estimation have also been studied in
e.g., [19], [20], using stochastic models such as Markov chain
and Baysien networks. In this paper, we use random mobility
models (RMMs) [21]-[23], and in particular, the smooth turn
(ST) UAV RMM [24], [25] to more realistically capture the
uncertain mobility intentions of UAVs. RMMs are a class of
random switching models that capture the statistics of random
moving objects. The intelligence on RMMs is exploited in this
paper to facilitate robust tracking.

In indoor and many emergency scenarios, GPS signals may be
unstable considering environmental disturbances and blockages.
In GPS unstable or denied environment, we need additional mea-
surement signals for antenna control. Received Signal Strength
Indicator (RSSI), a communication performance indicator, is a
promising measurement signal for ACDA, as it can be measured
from ACDA self-equipped directional antennas, and does not
require additional localization sensors to be carried by UAVs.
In [26], we adopted the RSSI of directional antennas, to com-
pensate unstable GPS signals, under the assumption that the
communication environment is perfect. In particular, GPS and
directional Wi-Fi RSSI based fusion algorithms were developed
to estimate the other UAV’s location, which is used to align
the headings of directional antennas. However, in an imperfect
communication environment, the effects of reflection, refraction
and absorption by buildings, obstacles, and interference sources
can distort the strongest signal directions. In this case, simply
aligning directional antennas using their GPS locations may not

lead to the best communication performance (see experimental
studies in [10], [27]). In this paper, we develop a distributed
antenna control solution for the goal of maximizing the commu-
nication performance, instead of using location-based antenna
heading alignment. The solution learns directional Wi-Fi chan-
nel models online and provides RSSI as not only alternative
measurement signals, but also the goal function for antenna
control, in GPS-denied settings.

Our antenna control adopts a novel stochastic optimal control
approach that integrates Reinforcement Learning (RL) for online
optimal control, Multivariate Probabilistic Collocation Method
(MPCM) for effective uncertainty evaluation, and Unscented
Kalman Filter (UKF) for nonlinear state estimation. On the
aspect of optimal control, RL has been developed in [28],
[29] for deterministic system dynamics. Paper [30] developed
the stochastic optimal control solution that integrates MPCM
and RL for systems modulated by uncertain parameters, and
paper [31] applied this solution for an air traffic management
problem subject to uncertain weather conditions. In this paper,
we study the stochastic optimal control problem for broad ran-
dom switching systems. On the aspect of estimation, nonlinear
system estimation methods such as Extended Kalman Filter
(EKF) and UKF have been widely used typically for known
and deterministic systems corrupted with additive noises, but
not random switching RMMs. In this paper we develop a new
stochastic optimal control solution for systems that involve
nonlinear random switching RMMs and limited measurements,
by integrating UKF, RL and MPCM.

The contributions of this paper are summarized as follows.

1) The design configuration of the ACDA system using pure
directional antennas. In this ACDA system, the high-rate
application data and low-rate control and command data
share the same communication channel equipped with di-
rectional antennas. This design is more practical compared
to the previously developed ACDA systems, which use
both directional and omni-directional antennas.

2) RL-based antenna control. This solution learns directional
channel models online and provides RSSI as not only
alternative measurement signals, but also the goal function
for antenna control, in GPS-denied settings. In addition,
this solution does not require a known and perfect com-
munication channel, which was assumed in the previously
developed ACDA systems.

3) Stochastic UAV intention modeling. We use RMMs to
capture the highly flexible and random movement patterns
of UAVs, and develop an online model estimation frame-
work to capture and predict the uncertain intentions of the
remote UAV’s maneuvers.

4) Real-time state estimation for random switching systems.
Agents’ states in general random switching systems are
usually regarded as unpredictable. This solution makes
the best prediction out of the agents’ intentions coded in
the statistics of the agents’ random maneuvers to analyze
and further predict the agents’ future behaviors.

5) Real-time distributed optimal control for random switch-
ing systems. This solution integrates RL. and MPCM to
provide an effective online optimal control solution for
agents moving with random switching system models.
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Fig.2. Illustration of the ST RMM: (a) UAV trajectory ensemble (red curve).
Green spots are the randomly chosen turning centers [24]; (b) maneuver selection
and switching.

The remainder of this paper is organized as follows. In
Section II, we describe the ACDA system shown in Fig. 1,
including both system and measurement models. The antenna
control problem is also formulated. In Section III, we develop
the RL based stochastic optimal control solutions. In Section IV,
an uncertain intention estimation method is provided to estimate
the random variables of the remote UAV’s uncertain maneuvers.
In Section V, simulation studies are conducted, and Section VI
concludes this paper.

II. MODELING AND PROBLEM FORMULATION

In this section, we first describe the ACDA system model,
including the UAV RMM and directional antenna dynamics.
‘We then describe the GPS and RSSI measurement models. The
antenna control problems are then formulated.

A. System Models

We consider two UAVs independently fly in a low-altitude
airspace at approximately the same height to fulfill their mis-
sions such as search and rescue (see Fig. 1). The same altitude
assumption is reasonable because that 1) the range of flight
altitudes for small UAVs is very limited [32]; and 2) the op-
timal flight altitudes to maximize coverage are proved to be the
same for UAVs of the same type [33]-[35]. On each UAV, a
tunable plate attached with a directional antenna is installed and
driven by a gear motor [11]. To establish a long-range air-to-air
communication channel to transmit both application data (e.g.,
surveillance videos) and control and command data, the channel
performance needs to be maximized.

1) UAV Random Mobility Model: We use the smooth turn
(ST) mobility model ([24], [25]) to capture the uncertain inten-
tions of UAVs executing surveillance-like missions (see Fig. 2).
The random maneuvers described by a ST mobility model work
as follows. At randomly selected time points T}, T}, T%,. ..,
where 0 = T¢f < T} < ---, UAV i selects a point in the airspace
along the line perpendicular to its current heading direction,
and then circles around it until the UAV chooses another turn-
ing center. The perpendicularity guarantees smooth trajecto-
ries [24]. The time duration for UAV i to maintain its current
maneuver 7; [T;] — J‘ i Tj‘ follows a memoryless exponen-
tial distribution [36].

Fr(nilT}]) = hae M7, M

where 1/1; is the mean of 7;[T7;]. The velocity v;[T}] follows a
uniform distribution with the minimum and maximum velocity
constraints v min < vi[1}] < Vi maz.

1

v%[T}]) = ——. 2
fv( 1[ J]) Vi,max — Vi,min
The inverse of the turning radius r_[ng] follows the zero-mean
L |
Gaussian distribution with variance o2,
1 Qe
~ - = e A (3
f (Ti[T;]) oV 2T )

Denote the position of UAV i along = and y axes at time instant
k as x;[k] and y; [k] respectively. The dynamics of UAV 7 (denote
as f;(.)) following the ST uncertain maneuvering intentions are
described as

zilk + 1] = z;[k] + vi[k] cos(;:[k])8,

yilk + 1] = yi[k] + vi[k] sin(¢:[K]),

¢ilk + 1] = pu[k] + wiK]5, )
where 4 is the sampling period, ¢;[k] and w;[k] are the heading

angle and angular velocity at time instant k&, and

1 vilK]
wilk] = vl

(5)

Note that the ST RMM is a random switching model com-
posed of two types of random variables [37]. Type 1 random
variables, v;[k] and r;[k], describe the characteristics for each
maneuver.

i< { WL EFHED L) k=T
wilk—1], ifVj=0,1,2,. . k#T;

Tg[k] o 'f'i[!I;'L lf-Elj E [01 112:")}k :!I;I (?)
rilk—1], ifVj=0,1,2,.,k#T;

The maneuvers’ random switching behavior is governed by the
type 2 random variable, 7;[T], which describes how often the
switching of type 1 random variables occurs.

The two groups of uncertain maneuvers for the UAVs
([T}],m[T}],n[T}]) and (v2[T71,72[T}], 72[T}]) are inde-
pendent, as UAV mobility is application-specific, and is not
constrained from the communication mission.

2) Directional Antennas Dynamics: The directional antenna
installed on each UAV autonomously adjusts its heading angle
to establish a robust communication channel between the two
UAVs. For UAV 1, the heading angle dynamics of its directional
antennas is described as

0:[k + 1] = 6;[k] + (wi[k] + wi[k])S, (8)

where 6; is the heading angle of antennas 7, and ] is the angular
velocity of antennas : due to its heading control. Note that the
change of ¢; is caused by both the control of antenna 7, w, and
the movement of UAV ¢, w;.
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B. Measurement Models

We consider two measurement signals for the ACDA system,
GPS and RSSL

1) GPS Measurement: If GPS is available, the measured GPS
signal of UAV i is denoted as z¢ ; (k).

zg,i[k] = He(k)x;[k] + we (K], 9)

where Hg = [1,0,0,0;0,1,0,0] is the measurement matrix,
xi[k] = [zi[K], v[k], i[K], 0:[k]]T is the system state of UAV
1, and wg ; is the white Gaussian noise with zero mean and
covariance R ;. GPS signals can be transmitted through the
air-to-air communication channel to assist with the control of
directional antennas. Denote the relation between the GPS signal
and system state as h¢ ;. i.e., Zg i [k] = he i(Xi[k]).

2) RSSI Measurement: RSSI measures the signal power re-
ceived from the transmitting antenna [38], and hence is an
important indicator of communication channel performance. In
the ACDA system, RSSI is affected by the relative positions of
two UAVs that carry these directional antennas, headings, field
radiation patterns of these antennas, and also communication
environment. Denote the measured RSSI signal as zg[k], the
relation between the RSSI signal, zp[k], and the system states,
x[k] (x[k] = [x{ [K], X7 [K]]7),as hr(.), 1., zr[k] = hr(x[K]),
then zg[k] is given by the Friis free space equation [38]:

zg[k] = Pyagmlk] +20log,o(A) — 201og,(4)

— 201logyo(d[k]) + Gapilk] + wrl[k], (10)

where Py 35, k] is the transmitted signal power, A is the wave-
length, and d[k] is the distance between the two UAVs at time k,
i.e., d[k] = v/ (z1[k] — 2[K])> + (1 [k] — [k])>. Gyas:[k] is
the sum of gains at both the transmitting and receiving sides [39].
The Ubiquiti NanoStation loco M5 directional antennas [40] that
we use in the ACDA system is modeled based on the filed pattern
of the end-fire array antennas [41],

Gijapilk]
:(G]tlll&afﬁs_ ﬁg?i‘i)
s 2 503 hdleon(ll] —6) =1 = )
2n sin (3 (kada(cos (ve[k] — 6:[k])) — 1) — %)
+ (GriaB: — rm|zl;:9z)

m sin (3(kada(cos (v-[k] — 6-[K])) — 1) — %)
2n sin (3 (kada(cos (vr[k] — 6-[k])) — 1) — T)

(1)

X sin

min

min
+ Gyjapi + GriaBi:

where G;’ﬁ;’j“m, Gi?é%v and G;‘i;‘gl, G:Térjez are the maximum and
minimum gains of transrmttmg and receiving antennas. k, is the
wave number, and k, = l .n and d, are design parameters of
the directional antenna. 6; [k] and 6,.[k] are the heading angles of
the transmitting and receiving antennas at time k, respectively.
~¢|k] and . [k] are the heading angles of the transmitting and
receiving antennas corresponding to the maximal G; at time £,
respectively.

The parameters Gt|da§v thé}h, Gﬁgj‘m, and Gw‘|(linBz can be
obtained from the antenna’s datasheet. In ACDA, the two direc-

H - max
tional antennas are of the same type, and hence G377, = G0k,
min min

and G3j;5; = G|gp;- In an imperfect environment these param-
eters in Gjjqp: k] can be environment-specific.

Similarly, in a perfect communication environment, ~,[k] and
~r|k] are achieved when the two antennas are aligned [26].
Affected by the impact of imperfect environment, such as block-
ages, the desired heading angles can be captured as

~-|k] = arctan f: gﬂ : ir [[z]] +0r. s (12)
velk] = mm% +0s,s (13)

where (x¢[k], y¢[k]) and (z.[k], yr [k]) are the positions of UAVs
that carry the transmitting and receiving antennas respectively,
and #,_,, and 6;__, are environment-specific shift angles at the
receiver and transmitter sides. 6, and 6, are zeros in a
perfect environment.

C. Problem Formulation

We aim to design the angular Velocity of each direc-
tional antenna to maximize the expected RSSI performance
of ACDA over a look-ahead window. The RSSI model
(as described in Equations (10)—(13)) contains unknown
environment-specific parameters (thde’ G;‘l‘é},i, ;. ., and
Or,.,). and the UAV dynamics contain uncertain parameters
(1 [K], m1[K], 71 [T}]], w2 ], r2[k], 2[T7]).

Here we formulate the problem as stochastic optimal con-
trol. Mathematically, considering the random switching system
dynamics described in Equations (4)—(8), the optimal control
policy u[k] is sought to maximize the expected value function,
which is the summation of the predicted RSSI signals over a
look-ahead window, i.e.,

k+N

V(x[k]) = {Z ot~

where x[k] is the global state, x[k] = [xT [k],xJ [£]]T. u[k] is
the control input, ufk] = [u[k], ua[K]]T, ui[k] = [wi[K]]. 2&[]]
is the RSSI signal at time [, and a € (0, 1] is a discount factor.
Note that the control is decentralized, in the sense that each
antenna finds its own optimal control policy, with the assumption
that the other antenna adopts its optimal control policy. Each
UAV only needs to learn its own environment-specific parame-
ters (G 35> Gf}‘é‘;‘ﬁ, and 6;__, /6r..,) to find its optimal control
policy.

In the rest of this article, we develop the control solution for
the local UAV, or UAV 1. The control solution for the remote
UAV, or UAV 2 is designed in the same manner.

zr[l](x[1], uk]) } (14)

III. REINFORCEMENT LEARNING BASED STOCHASTIC
OPTIMAL CONTROL FOR ACDA

In this section, we develop new online solutions to solve
the stochastic optimal control problem for the ACDA system
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described in Section II-C. The solution integrates the uncertainty
sampling method MPCM, the adaptive optimal control method
RL, and the nonlinear estimation method UKF, to address the
challenges including nonlinear and random switching dynamics,
unknown RSSI model, limited measurements of system outputs,
and online time requirement to derive optimal solutions for
random switching systems.

In Section III-A, we describe the solution when GPS is avail-
able but the RSSI model is unknown. Online stochastic optimal
control solutions are derived and the environment-specific RSSI
model is learned. Section I1I-B further develops online solutions
in both GPS-available and GPS-denied environments, with the
learned environment-specific RSSI model.

A. Stochastic Optimal Control With Unknown RSSI

To develop a decentralized optimal control solution that max-
imizes the value function (Equation (14)) for the nonlinear
random switching ACDA dynamics with unknown RSSI model
and limited measurements, two main steps are involved: 1) state
estimation, and 2) adaptive optimal controller design.

1) State Estimation: The states of both local and remote
UAVs need to be estimated. For the local UAV, the trajectory-
specific maneuvers (v; [k], r1[k], and 7 [T}]) are known locally,
and hence, the local-system states (z;[k], v [k], @1[k]) can be
estimated utilizing UKF as described in [26, Section 3.1]. We
do not repeat the process here to save the space.

For the remote UAV that has random switching dynamics,
the RMM-related maneuvers (v2[k], r2[k], and 5[T7]) are un-
known to the local UAV, and hence the remote UAV’s states
(z2[K], y2[k], #2[k]) can not be directly estimated using the ex-
isting filtering type of methods. We design a new estimation
algorithm for the nonlinear and random switching dynamics.
Here, a subset of x;[k], i.e., [z2[K], y2[k], #2[k]] is needed for this
estimation, and we use X; [k] to represent this subset to simplify
presentation, when it does not cause confusion.

Denote the switching behavior of the remote UAV at time k
as s[k]. s[k] = 1 or O represent the current maneuver switches
at time k or not. Considering the two possible switching behav-
iors, the expected conditional current state of UAV 2 given the
previous state, x; [k — 1], can be derived as

E(xa[k]|x2[k —1])
= E(x,[K]|x2[k — 1], s[k — 1] = 0)P(s[k — 1] = 0)

+ E(q[k[xa[k — 1], s[k — 1] = 1) P(s[k — 1] = 1).
(15)

When s[k — 1] = 0, the remote UAV remains its previous
maneuvers vz [k — 1] and r [k — 1], and thus the expected system
state F(x;[k]|x2[k — 1], s[k — 1] = 0) can be estimated from
the system dynamics f(x[k — 1], v2[k — 1], m2[k — 1]). When
s[k — 1] = 1, UAV 2 selects new maneuvers from the two ran-
dom variables v;[T}] and r,[T7]. In this case, the estimation
of the system state E(x;[k]|x;[k — 1], s[k — 1] = 1) involves
uncertainty evaluation, which is typically solved by the Monte
Carlo method, too slow to be used for real-time control. Here
we use a multivariate probabilistic collocation method (MPCM)

[42] to effectively evaluate the uncertainty. MPCM accurately
evaluates the output mean of a system mapping subject to uncer-
tain input parameters, by smartly selecting a limited number of
sample points according to the Gaussian Quadrature rules. The
main property of MPCM is described in the following lemma.
Please refer to [42] for the detailed MPCM design procedure.
Lemma 1: [42, Theorem 2] Consider a system G modulated
by m independent uncertain parameters, a;, where i € {1,..m},

2ny—12ny—1 Mpn—1
Glay;oaam) = Z Z Z Pi,,.. !JmHa‘ (16)
=0 j:=0 Jm=0

where a; has a degree up to 2n; — 1. n; is a positive integer
for any 4. ;.. 4, € R are the coefficients. Each uncertain
parameter a; follows an independent pdf f4,(a;). The MPCM
approximates G(ay,...a,) with the following low-order

mapping
n—1n,—1 M —1
G’(al': it am) Z Z Z QJI ,Jm agi': (17)
=0 j2=0 Jm=0 =1
with E[G(ay,...,am)] = E[G'(a1,...,am)|, where Qj, ;..

€ R are coefficients. MPCM reduces the number of simulations
from 2" [T, n; to [T, na.

Define a system mapping subject to uncertain input pa-
rameters v;[T}] and 12[T7]: Ga(wa[T7], r2[T5], x2[k — 1]) =

f(x2[k — 1], UQ[TZ] TQ[TEJ) When s[k — 1] = 1, the expected
current state E(xz[k“x;[k —1],s[k—1]=1) can be es-
timated from the mean output of the system mapping
Ga(02[T7], ma[T}], 32k — 1]), ie., E(xa[k]jxelk — 1], s[k —
1] = 1) = E[Ga(v2[T}],m2[T}], x2[k — 1])], using MPCM ac-
cording to Lemma 1 and paper [42]. Under the assumption that
the two uncertain parameters v;[T] and r,[T7] have degrees up
to 2ny — 1 and 2n; — 1 respectively, Ga(va[T}], 72[T7], X2 [k —
1]) has the following form,

Ga(v2[T}], m2[T7}], %2 [k — 1])

2n;—1 2n,—1

=Y D buplxlk— )G TP

H1=0  j.=0

(18)

According to Lemma 1, the output mean of this
system mapping can be estimated from the output of a
reduced-order mapping G5(v[T}],2[T7], xa[k — 1)), ie.,

E[Gy(0[T}], m2[T7], x2[k — 1])] = E[G)(va[T7]], m2[T7], %2

[k — 1])], where the reduced mapping G (v [T} ], 72 [T} ], Xz [k —
1]) has the following form
GE(UZ[Tf]arz[T;]:Xz[k —1])
T — 1 na— 1
=2 . Yuslalk— M G (09
H=0 J,=
The coefficients €2, ;,(x2[k—1]) and output mean

E[Gy(w[T}],ma[T]],x2[k —1])] are obtained using the
evaluated outputs G (v2[T7/], 72[T7], x2[k — 1]) at each selected
simulation point accordmg to the procedures described in [42,
Section II-B].
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Theorem 1: Given the previous state x; [k — 1] of the remote
UAV 2, the expected current state E(x;[k]|x;[k — 1]) is esti-
mated by the local UAV 1 as

E(x2[k][x2[k — 1])
= BE[GY(0[T7], 72[T}], %[k — 1])]
+ (1 = B)f(x2[k — 1], v2[k — 1], m2[k — 1]),

where P, is the switching probability of the remote UAV’s
maneuver at each time instant, P, = A,4.

Proof: Let us first find the switching probability P;. Since
the time duration for UAV : to maintain its current maneuver
Ty [T;] follows exponential distribution as described in Equation
(1), P; can be approximated from its exponential distribution as

.P@ == ;\.176.

(20)

(21)

With the switching probability and the defined system map-
ping Ga(v2[T7],72[T}], %2 [k — 1]), Equation (15) can be further
written as

E(x2[k][x2[k — 1])
= PE[Gy(va[T}], m2[T7], %2k — 1])]
+ (1 = Po) f(x2[k — 1], va[k — 1], m2[k — 1]).

Since E[Gg (Ug [TJ‘Z], ™ [’I}Z], Xa [k = I])] :E[GE{Ug[T}], T2 [TJZ].,
X[k — 1])] according to Lemma 1 and Equations (18) and (19),
Theorem 1 is derived naturally by combining Equations (18),
(19), (22) and Lemma 1. [ |

Theorem 1 provides a general approach to estimate the ex-
pected system state of a random switching system with com-
putational efficiency, given the previous system state. Here we
use this state estimation approach with UKF to estimate the
state of the remote UAV from the measurement Zg [(k]. In
particular, we integrate MPCM and UKF for a 5-step state
estimation procedure. Steps I and 2 select initial conditions
and MPCM points to initialize Steps 3-5; Step 3 and 4 find
the state estimators when the switching behavior s[k — 1] =0
and 1 respectively; Sfep 5 finds the expected state by integrating
the two estimators found in Sfeps 3 and 4.

Step 1. Initialize: Select initial conditions X,[0] and P[0] to
initialize the system.

Step 2. Select MPCM points: nyn; MPCM simulation point
pairs are selected for the random variables v;[T}] and r;[T}]
according to the MPCM procedure [42, Section II]. Denote the
selected MPCM point pairs as (V;,[T}], Ry, [T7]). where j) €
{0,...,my — 1} and j» € {0,...,n, — 1}).

Step 3. Estimate system state when s[k — 1] = 0: When
s[k — 1] = 0, the remote UAV does not change its maneuver,
and hence the conditional expected current state E(x; [k]|Xa [k —
1], s[k — 1] = 0,2¢ 3[k]) can be estimated using UKF as de-
scribed in sub-steps (a)—(d).

(a) Select Sigma Points: 2n + 1 symmetric weighted sigma
points are selected from X[k — 1], the estimator of x;[k — 1].

Aok — 1] = %[k — 1],

(22)

and forz =1,2,...n,

X[k — 1] = %ok — 1]+ /(n+ )Pk —1],,

Xipnlk — 1] = %ok — 1] — /(n + 0)P[k —1],,

where P[k — 1]; is the 7th column of the error covariance
matrix of X,[k — 1], n is the states’ dimension, and n =3
here for the remote UAV system. The weights associated with
the selected sigma points are Wo = ==, W; = m, and
Wiin = m respectively. x is a scaling parameter usually
set to 0 in the general case or set to 3 — n in the Gaussian case
to capture the fourth-order moment correctly [43], [44].

(b) State Prediction: The system state can be predicted by in-
stantiating each of the sigma points through the system dynamics
f2(.) described in Equation (4).

Xi[klk — 1] = fo(X[k — 1], r2[k — 1], w2 [k — 1]).

Then the priori state estimation can be approximated as a
weighted sample mean

2n
olklk — 1] =) Wi(Xi[k|k — 1]).

=0
The corresponding covariance matrix is calculated as
2n

Plklk— 1] = > Wi(&i[klk — 1] — %o[k]k — 1))

=0

x (Xi[k|k — 1] — %a[k|k — 1)

(c) Measurement Prediction: 2n + 1 sigma points are selected
from %, [k|k — 1] with the error covariance P[k|k — 1].

Xolklk — 1] = %a[klk — 1,

X;[klk — 1] = %a[k|k — 1] + v/ (n + 5)P[k|k — 1],,

Xepnlkll — 1] = Solklk — 1] — /(n + ©)PIRE — 1,

with the weights Wy, W; and W;_,, respectively.

The GPS measurement is then predicted by instantiating each
of the prediction points through the measurement model hg 2
described in Equation (9),

Zi[klk — 1] = hea(Ai[k|k — 1]),

2n

zgalklk— 1] =) Wi(Zi[klk — 1]).

=0

Correspondingly, the measurement covariance matrix and
cross correlation matrix are determined by
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2n

Pyzlklk— 1= Y Wi(Zi[klk — 1] — 2¢ o [k|k — 1])
=0
x (Zi[k|k — 1]] — Zg2[k|k — 1]])" + Rep,
In
Pxzlklk— 1] =Y Wi(Xi[klk — 1] — X,[k|k — 1])
=0

x (Zi[klk — 1] — 2¢ 2[k|k — 1])T.

(d) Kalman Gain Update: The Kalman gain is then updated
using the covariance information,

K =Pzzlklk —1]Py, Kk —1].
The estimated state and covariance are thus derived as

E(xa[k]|%a[k — 1], 2 2[K], s[k — 1] = 0])

= X3[klk — 1] + K(z¢ 2[k] — Za 2[k|k — 1]),
E(PK||P[k — 1],z 2[K], s[k — 1] =

= Plk|k — 1] — KPzz[k|k — 1]KT.

Step 4. Estimate system state when s[k — 1] = 1: When
s[k — 1] = 1, the remote UAV changes its maneuvers according
to the random variables v;[T7] and r,[T7]. With the MPCM
points selected in Step 2, (V;,[T7],R;,[T}]), the expected
state E(xz[k]|Xz[k — 1], Z¢ 2[k], s[k — 1] = 1) and covariance
E(P[k]|P[k — 1], z¢ 2[k], s[k — 1] = 1) canbe estimated using
the following three sub-steps (a)-(c) that integrate MPCM and
UKE

(a) Estimate system state af each selected MPCM point:
The system state is estimated at each selected MPCM point
(V; [T}, R5,[T7]) by conducting the UKF procedures shown
in Step 3, (a)-(d). Denote the estimated state from UKF at each
MPCM point as X;, j, [k] with the covariance P, ;, [k].

(b) Find the reduced polynomial mappings: Define the sys-
tem mappings Gz (Xa[k — 1], v2[T7],r[T}]) and Gp(%[k —
1], va[T}], 2 [T}]) as the relationships between the expected sys-
tem state and covariance with the random variables v,[T7] and
r3[T7}] respectively. According to Lemma 1, the mean outputs
of the two system mappings can be estimated from the outputs
of the reduced-order mappings G (%2[k — 1], v[T7}], m2[T}])
and G'p(%2[k — 1],0[T7], m2[T7}]) respectively, following the
MPCM procedures [42, Section II].

I]: 'Ug[T_?]., TE[TJZD

1’1]—[712—1

= 3" 2 O, (alk — 0o [T,

71=0 j2=0
p(Xa[k — 1], v

ny—1 n,—1

=3 ) %, Galk— )l [T (T,

51=0 j2=0

Gy (%[k —

TJ'?]! T?.[T_‘,lz])

The coefficients QXJ - and Qpj 4 and mean outputs
can be obtained using the evaluated outputs G%(X[k —

1], »2[T7], m2[T}]) and G'p (Xa[k — 1], v2[T7], m[T7]) at each se-
lected MPCM point, according to the procedures in [42, Section
II-B].

(c) Find the expected system state and covariance: The ex-
pected state and covariance are then found from the system
mapping according to Lemma 1 and the MPCM design pro-
cedures [42] as

E(x2[K]|%2[k — 1], 2z 2[k], slk — 1] = 1)
= E[G,(ka[k — 1], v2[T7], r2[T}])],

E(P[K]|P[k — 1],2¢2[k], s[k — 1] = 1)
= E[G’p(ko[k — 1], va2[T7], m2[T7])].

Step 5. Estimate the expected system stafe: The estimated
state and covariance are derived according to Theorem 1.

E(x[k][%[k — 1], zg 2 [K])
= PgE(Xg[k“f(g[k Tt l],ZG g[k] S[R, — ]] = ]]

+ (1 — P)E(x[k]|X:2 [k — 1], 2 2 [K], s[k — 1] = 0]),
(23)

E(PHIP[k — 1], z6.2[K)
— REPKIP[k — 1],26.[k], sk — 1] = 1])

+ (1 — B)E(P[K]|P[k — 1], 25 2 [k], s[k — 1] = 0]).
(24)

As such, the estimate of x[k] is X,[k] = E(x[k]|%2[k —
1],2z¢2[k]), and the expected error covariance is P[k] =
E(PK|[P[k — 1],z 2[K]).

Remark 1: The above estimation procedure integrates UKF
and MPCM to provide a novel and efficient estimation method
for nonlinear random switching systems. Note that the ST RMM
involves three random variables: 7;[7], v[T7], and r[T7]. In the
UKF estimation procedure, 7; [T;] plays a role in determining
the switching probability P; as described in Equations (21),
(23), and (24). v[T}] and r; [T;] are random maneuvers, and
play roles in the random maneuver sampling procedure (i.e.,
Step 2) and future state prediction procedure when s[k — 1] = 1
(i.e., Step 4). Note that if the remote UAV’s previous maneuver
information (v;[k — 1] and wy[k — 1]) is unavailable, an addi-
tional estimation step is needed before processing Step 3. In
particular, vy[k — 1] and w;[k — 1] need to be estimated from
two consecutive previous states X[k — 1] and %;[k — 2] as

balk— 1] = |3, [k —
Dok — 1] = (G,[k — 1] - 62k — 2]) /5,

where @y, [k — 1] and 0;,[k — 1] are the estimated velocities
along the = and y axes respectively, t2.[k — 1] = (22[k — 1] —
Ea[k —2])/0. and Doy [k — 1] = (dalk — 1] — gk — 2]) /6.

2) Adaptive Optimal Control: An online adaptive optimal
controller is designed to maximize the expected value function
(14) with the estimated system state. The existence and unique-
ness of the optimal control policy is guaranteed here because of
properties of the RSSI model (10)-(13) (shown in [10, Fig. 17]).
In particular, to maximize z k], one needs to find ;[k] and 6. [k]
to maximize Gy|4p;[k| as described in Equation (10). Gyj4p; (K]

1] ‘f‘”zy[k —1],
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is maximized when the heading angles of the two directional
antennas are selected as 0;[k] = y:[k] and 6,.[k] = ~,[k] respec-
tively, where ~[k] and ~,[k] are uniquely determined by the
positions of two UAVs and environment-related shift angles as
shown in Equations (12) and (13).

Because the uncertain parameters are independent from the
system state at time k, the value function for UAV 1 can be
further rewritten as

k+N

Vi(x[k]) = E[Y o *zp[l)(x[l], w1 [k], u3[k])]

= E[zg[k](x[k], u1 [k], u[k])
E+N

-1—2&

I=k+1

zrll|(x[l], wi k], w3 [K])].  (25)

where u;[k] is the optimal control policy of UAV 2.

The above equation can be solved backward-in-time using
dynamic programming, or forward-in-time using RL [28], [29].
Here we use RL, in particular, the policy iteration method, to
find the optimal control policy by iteratively conducting two
steps: policy evaluation and policy improvement. The policy
evaluation step is designed to solve the value function V;(x[k])
using Equation (25), given the current control policy. The policy
improvement step is designed to find the best control policy
to maximize the value function. The two steps are conducted
iteratively until convergence.

Policy Evaluation
Vi j11(x[k]) = Elzr[k](x[k], w1 5[], u2[K])
kLN
+ D o pU(X(, w5 K], w3 [K])]
I=k+1
(26)
Policy Improvement
uj+1(x[k]) = afigr_ﬁc?xE[ZR[k](X[k],uu [k, wa[K])
k+N
+ D o Pz X[, w k], us kD))
I=k+1
27

where j is the iteration step index, and z; gll](x[l],u, ;
[k],us[k]) is the RSSI model with parameters learned in the
jth iteration step.

Note that Equation (26) involves three unknown parameters
for the environment-specific RSSI model (G;‘llggi, Gﬁ‘é‘gg,
and 6;_, ), which need to be learned. In particular, for each
iteration j, three time steps (k, k4 1 and k + 2) are needed
to come up with three equations to iteratively solve for
the three parameters. To solve the nonlinear equations, the
Newton’s method [45] is utilized here. Newton’s method
is a root-finding algorithm that iteratively finds better
approximations to the roots of a real-valued function. To
calculate the value function Vi ;i(x[k]) at each time step
(Equation (26)), the uncertainty evaluation method needs to

be utilized. To reduce the computational cost, we use the
MPCM method here. In particular, define a system mapping
Gv, (x[k], w1 [K], u3[k], va[T7],m2[T7]) as the relationship
between the value function and the random variables v,[T7]
and 112}, i.e., G, (<[], s K], w3 K], 02 (T3], 72 [TF]) = zpfk]
(x[k], w1 [k], w5 [Rk]) + Yopiyy o 2Rl (e[l e [K], w3 [R).
Then the value function Vj(x[k]) can be estimated by
evaluating the mean output of the system mapping using
MPCM: Vi (x[k]) = E|[Gv, (x[k], i [k], w3 [k], v2[T7], ra[T7])].
According to Lemma 1, the output mean of this system mapping
can be obtained using the evaluated outputs of a reduced-order
mapping GY,, (x[k], w1 [k], u3[k], v2[T}], 72[T7]) at each selected
MPCM point, according to the procedures described in [42,
Section II-B].

Theorem 2: Consider the random switching system shown
in Equation (4), with the value function given by Equation (14).
Given the current system state x[k], the optimal control policy
is the solution found by applying the policy iteration of RL
and approximating the value function using MPCM as shown in
Equations (26) and (27).

Proof: Denote the optimal policies derived by eval-
uating the mean outputs of the reduced order mapping
Gy, (x[K], w1 [k], u3[K], v2[T7],72[T7]) and the original value
function G\, (x[k],w [k], us[k], va2[T}],m2[T7]) as wf and
uj respectively, ie., uf = argmax, E[GY, (x[k],u[k],
w3 k], v2[T7], r2[T7])], and uj = argmax,, E[Gv; (x[k], ui[K],
wj[k], v2[T}],72[T}])]. To prove this theorem, we need to
prove that ui" = uj, ie., argmax, E[GY, (x[k], u[k], u5[k],
va[T7], r2[T7])] = argmax,, E[Gv; (x[k], i [k], u3[K], v2[T7],

[T7])]. This is equwalent to proving the followmg two
statements: a) Pul’ # uj such that E[GY, (x[k], uf*[k], u3[K],
wlT2,rlT2)] > ElGy, e[k, uilb, wslk], vz[T’] rz[T}])],
and b) Fu}* # uj such that E[G}, (x[k], uf'[K], uﬁ[k], w[T7],
ra[T2))] < E[Gy, (x[], wj K], w3[k], vo[T2], o [T2])]. Here we
use a contradiction approach to prove the above two statements.
To prove the first statement, we assume there exists u}* # u}
such that E[GY, (x[k],u [k], u3[k], v2[T7], 72 [T7])] > E[Gv,
(x[K], ui[K], u3[K], v2[T7], m,[T7])]. According to Lemma 1, we
have

E[GY, (x[k], uy'[k], u3[k], v2[T7], m2[T}])]
= E[Gv; (x[K], u}'[], w3 [k], v2[T7], r2[T7])]
> E[Gv, (x[k], ui k], u3[K], va[T7], m2[T{])],

which violates the assumption that u] = argmax,,
E[GVJ (X[k]u uy [k]: u; [k] » V2 [T?] T2 [T_;z])] SlIl'l.llElI'ly, to
prove that the second statement, we assume there exists
uf # uj such that E[GY, (x[k], uy [K], w3[k], va[ T}, m2[T7])] <
E[GV] (X [k]': U‘T [k] u; [’l“] ;U2 [ﬁ]: T2 [TJZ] )] ACCOI’dil'lg to
Lemma 1, we have

E[Gv; (x[K], uj[k], u[k], va[T?], r2[T?])]
= E[GY, (x[k], w}[k], us[k], v2[T2), r2[T2)]
> E[GY, (x[k], u} [k], wh[k], v2[T?], 2[T2])],
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which violates the assumption that uf{* = argmax,
E[GY, (x[k], wi[k], u3[k], v2[T}],72[T])]. As such, both
statements a) and b) are true, and the result u}* = u] is derived
naturally. |

Theorem 3: Consider the random switching system de-
scribed in Equation (4). Given the current system state x[k],
the optimal policy found by the decentralized control algorithm
(shown in Section ITI-A2) maximizes the global value function
described in Equation (14).

Proof: Denote the global optimal control policy that max-
imizes the value function described in Equation (14) as
(uj 4kl u3 4[K]). We need to show that uj[k] =uj [k] and
w3 (k] = u3 ,[k]. According to Theorem 2, uj[k] is the optimal
solution to Equation (14) under the assumption that u;[k] =
u3[k]. The global optimal control policy u] ,[k] can be regarded
as the decentralized optimal solution with the assumption that
up[k] = uj 4[k]. We show that for each time k, the optimal
solution of UAV 1 is unique for any given u[k].

Note that given any heading angle of the transmitting antenna
6;[k], the optimal heading angle of the receiving antenna is . [k]
to maximize G)j;p;[k] in Equation (11). The desired heading
angle ~,[k], which is described in Equation (12), is decided
uniquely by the positions of the two UAVs and the environment,
instead of the transmitting antennas’ heading angle. In
such cases, we have argmax,, ) zr[k](x[k], ui[k], u3[k]) =
argmax,, x| zR[k](X[k]a uj [k]v u;,g [k])’ and argmax,, x] R [k]
(X[k] Ju] ['1"] ! ug[k]) = argmax,, g zR[k] (X[k], uT,g [k] s U2 [k])’
which lead to the result that uj[k] = uj ,[k] and u5[k] = u3 ,[k].
The proof is completed. 2

B. Using the Learned RSSI Model in Both GPS-Available and
GPS-Denied Environments

With the learned RSSI model, the optimal solution can then be
obtained in both GPS-available and GPS-denied environments.
In a GPS-denied environment, the RSSIis the only measurement
signal. In this case, the optimal control solution can be found
following a similar procedure as shown in Section III-A, by
replacing zg »[k] and hg, with zg[k] and hg. In the GPS-
available environment, GPS and RSSI measurements can be
fused to estimate the system states, using a fuzzy-logic based
fusion algorithm [26] to improve the reliability. The details are
not repeated here.

Remark 2: Note that RSSIis often calibrated for localization,
in order to correct the environmental effects [46], [47]. This
calibration can be captured by a calibrated propagation con-
stant [46], which is environment-related and is usually found by
conducting experiments in the testing area prior to implementing
the localization algorithm. In our study, this calibrated propaga-
tion constant is captured by the environment-related parameters
in the RSSImodel, i.e., G7%,, G;_‘llé‘gi, and @, /0r...,.Inother
words, the learning process we proposed in this paper, which
learns the environment-related parameters, can be regarded as
an RSSI calibration process in the literature. With the learned
parameters, the RSSI model is calibrated and then used in the
antenna alignment algorithm.

Remark 3: The above distributed antenna control solution
assumes a pair of UAVs in the ACDA system. When multiple
UAVs are involved, the communications among UAVs can be
realized using controllable multi-sector directional antennas or
phased array antennas [48], [49]. In such cases, the communi-
cation network can be regarded as a collection of UAV pairs.
As such, the study on the communication link between a pair of
UAVs developed in this paper is an important building block for
a network of more than two UAVs.

IV. REMOTE UAV UNCERTAIN INTENTION ESTIMATION

In this section, we provide an online uncertain intention
estimation method to estimate the characteristics of the remote
UAV’s uncertain maneuver intentions. The estimation procedure
includes two major steps adopted from [50]: 1) estimation
of the trajectory-specific maneuvers at each time instant, and
2) estimation of the pdfs of uncertain variables: f,(v2[T7]),
fr(r2[T}]), and fr(m2[T}]). The uncertain intention estimation
solution provided in [50] is offline. We here enhance it to an
online process to reduce computational costs.

A. Estimation of Trajectory-Specific Maneuvers

We develop two estimation procedures to estimate the two
types of random variables in the ST RMM respectively.

1) Estimation of type 1 Random Variables: Type 1 random
variables (i.e., velocity v,[T;] and turn radius r;[T7]) describe
the movement characteristics of each maneuver, and can be
estimated from the system states. Given two consecutive sys-
tem states (xa[k — 1] = (z2[k — 1], 2]k — 1], 62[k — 1]) and
X3[k] = (z2[k], y2[K], 62[K])), the type 1 random variables in the
remote UAV system are estimated as

: D[]

)

where w;[k] is the estimated angular velocity, and w;[k] =
(62[k] — 62[k — 1]) /3. Dy, [k] and 55, [K] are the estimated veloc-
ities in x and y axes respectively, 02, [k] = (x[k] — z[k — 1])/6
and b, [K] = (y[K] — ylk — 11)/5.

2) Estimation of type 2 Random Variable: The type 2 ran-
dom variable (i.e., travel time 7,[T’;]) describes how often the
maneuvers are switched, and thus is estimated from the change
of type 1 random variables. Different from [50] which uses the
change of turn radius to find the length of each travel time, we
here use the change of the angular velocity w;[T}], which is
affected by velocity v;[T7] and turn radius r»[T7]. Therefore,
to estimate 7,[77], we scan the angular velocity w,[k] from
k =T at each time instant, until the change of w;[k] exceeds
a threshold w5"™. The travel time interval at T is estimated as

P [ﬁrf] =k — T7. The determination of wj"* has a significant
impact on the estimation performance. In general, a smaller
threshold improves the estimation accuracy but decreases the
predictability of the underlining model. Please refer to [50] for
the detailed discussion about the threshold selection.
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B. Estimation of Pdfs of Uncertain Intention Variables

The pdfs of uncertain intention variables in the remote UAV
system can be estimated from the trajectory-specific maneuvers.
In particular, assuming that the random variables v, [T7]. Wlﬂ’
and 7,[T7] follow the uniform, Gaussian, and Poisson distribu-
tions respectively, then the parameters in the distributions: vamin
and vomax (minimum and maximum velocity constraints), fp

and o, (mean and variance of ﬁ), and X, (expected value of
AN

72[T7}]), can be estimated from the following three steps.

Step 1. Estimate the velocity pdf: Denote the expectation and
variance of velocity as 1, and o2 respectively. y,, and o2 can be
estimated recursively as

g3~

Ead
|

a[4] + D2[k]

?r*l

J

= % ((k — 1ay[k — 1] + 82[K])

=L 1)+ 2oalbl, @8)
2 = 3 (ol
52[K] = —— 3 (2l] —
k—lj_; 2
1 k—
ZEZ'XDWI fio[K])? + (82[k] — o K])?
-
= ((k~2)82k — 1] + (@l — i [K])?)
=?4%M1H%1N%M—mmﬂ )

Remark 4: Note that the sample mean of a random variable
(ie., ¢ Z;.; , D2[4]) is the minimum variance unbiased estimator
(MVUE), and also, is the maximum likelihood estimator to
Ity [51]. To estimate o2, here we use the unbiased estimator
(= Z;f:l(ﬁg[j] — fip[k])?). The performance of the online
estimation algorithm is as good as the offline solution proposed
in [50] in terms of estimation accuracy. The equivalence of
the two algorithms is shown in Equations (28) and (29). Here
we enhance the offline method to an online process to reduce
the computational costs. The offline method needs to reuse
all previous data in the UAV uncertain intention estimation
whenever new data arrives, while the online method only utilizes
the newest data.

From the relation between vamin, V2max and fiy, ar%, the
parameters in the velocity’s pdf (vamin, Y2max) can be estimated
as

tomin[k] = fiu[k] — V36, [K]
_ %ﬁv[k ] éﬁg[k]
s+ (ol -,
(30)

Intention

Estimation fualtip W_. UKF )_.

State Estimation

Stochastic Optimal Control

Reinforcement
Learning
Palicy Evaluation
Palicy Improvement

MPOM
G(w[77]nfr7])
= E[zplk]

Fuzzy Logie-

based Fusion

]

System/
ulk]
—* Environment

]

i
+: }4' i :lr_”xjjll‘j]

t

Fig. 3. Illustration of the proposed algorithm.
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Step 2. Estimate the radius pdf: The parameters in the radius
pdf (12 and o3) are estimated recursively using 7 [k] following
a similar procedure as described in Equations (28) and (29)

@Emax [k]

u+%mm

o3k — 1]+ 7

s Bl o 1
k 2. 1 1 . 2
3k = 1otk = 1)+ = (Z - al) - @)

Step 3. Estimate the travel time pdf: A, is the only parameter in
the Poisson distribution, and can be estimated recursively from
the mean of 7,[T7] as

jhalj — 1]
=1+ k- 1#[T?]

Remark 5: The uncertain intention estimation procedure can
be implemented together with the stochastic optimal control pro-
cedure described in Section III. The overall algorithm structure
is described in Fig. 3 . We also note that because the uncertain in-
tention is estimated from the system states, which are estimated
from the measurements, it is suggested to conduct the uncertain
intention estimation procedure in a GPS-available environment,
which helps to improve the reliability of the estimated system
states.

Aafj] =

(34)

V. SIMULATION STUDIES

In this section, we conduct simulation studies to illustrate
and validate the results and algorithms developed in this paper.
Two UAVs move in a 2-D airspace following the ST RMM
independently. Two directional antennas of the same type are
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Fig. 4. (a) Trajectories of UAV 1, and (b) Trajectories of UAV 2. The blue
solid curves are real trajectories, red dotted curves are estimated trajectories,
and green dots are GPS measurements.
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Fig. 5. Learned environment-specific (a) maximum directional antenna gain

(Gﬁ‘c‘}‘gm), and (b) shift angle (ferny) in the RSSI model. The blue solid lines
and red dotted curves represent the real and learned parameters respectively.

mounted on the two UAVs respectively. The design parameters
of the directional antennas are selected asn = 8, and d, = 1“—0.

We first simulate the case when the GPS is available but the
RSSI model is unknown. Gaussian noises are added to the GPS
measurements. Estimation for UAV 1 is based on UKF with
known maneuver (v, [k] and r [k]), while the estimation for UAV
2 is based on the integration of UKF and MPCM as described
in Section III-A with unknown v;[k] and r;[k]. Figs. 4(a) and
4(b) show the trajectories of UAV 1 and UAV 2 respectively in
one realization with the simulation time 7" = 45 s and sampling
period § = 1 s. To find the statistics of the estimation perfor-
mance, 10 realizations with randomly generated trajectories are
conducted. The mean estimation distance errors for the two
UAVs are calculated over all realizations as e; = 0.84 m and
e; = 0.89 m respectively. It can be seen from the simulations
that the estimated trajectories for UAVs 1 and 2 are both close
to their real trajectories, indicating that the proposed state es-
timation algorithm performs well in both known and unknown
Mmaneuver cases.

With the estimated states, we simulate the RL-based stochas-
tic optimal control algorithm. To simulate the long-distance
communication scenario, the minimum received signal strength
is assumed to be 0, and in this case, the directional antennas’
minimum gain (G;T!}%i) can be calculated accordingly. Figs. 5(a)
and 5(b) show the learned environment-specific antennas’ maxi-
mum gain ( G?ll;; ;) and the shift angle caused by the environment
(f,,,) respectively. Gaussian noises are added to the RSSI
measurements. To avoid unnecessary divergence, we limit the
maximum values of the two parameters. In particular, we assume
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3 5 =Derived optimal control angle =

‘: . g 0.2

=3 g

& B 0.1
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Fig. 6. (a) Obtained optimal heading angles with GPS signals and unknown

RSSI model. The blue solid curve is the real optimal angles, and the red dotted
curve is the obtained optimal angles. (b) Heading angle errors between the
derived heading angles and the real optimal heading angles.
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Fig. 7. (a) Trajectories of UAV 2 in (a) GPS-denied, and (b) GPS-available

environments. The blue solid curves are the real trajectories, and the red dotted
curves are the estimated trajectories.
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available environments. The blue solid and red dotted curves are the real optimal
heading angles and derived heading angels respectively.

the directional antenna’s maximum gain is no more than the max-
imum gain given in the data sheet, and the environment-specific
shift angle is no more than 20 degrees. As shown in the figures,
the learned parameters are very close to their true values, which
indicates the effectiveness of the learning algorithm. Figs. 6(a)
and 6(b) show the derived optimal heading angles of the local
directional antenna and the heading angle errors between the
derived and real optimal heading angles in one realization. The
small angle errors indicate the good performance of the proposed
RL-based stochastic optimal control algorithm.

With the learned RSSI model, we simulate the proposed
stochastic optimal control algorithms in both GPS-denied and
GPS-available environments. Note that in the GPS-denied envi-
ronment, RSSI s the only measurement signal, while in the GPS-
available case, both GPS and RSSI signals are fused. Figs. 7 and
8 show the performance of state estimation and optimal control
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TABLE I
ESTIMATION PERFORMANCE

UKF-based .
GPS | RSST | Fusion | Cr> signals
Mean distance error (m) | 0.89 5.13 0.56 1.25
} I Fusion 1 I Fusion

08 [l Only GPS 0.8 [l Only RSSI
@ [lonly Rssi 3 CIGPS alignment
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Fig. 9. Barplots of (a) Estimation errors, and (b) Heading angle errors.
TABLE IT
CONTROL PERFORMANCE
RL-based .
RSST T Fusion GPS alignment-based
Mean RSSI (dBm) -31 -29 -47
Mean angle error (rad) | 0.09 0.07 0.3

algorithms respectively, in both GPS-denied and GPS-available
environments. We have simulated 10 realizations with randomly
generated UAV trajectories, and calculated the mean estimation
errors, RSSI signals, and heading angle errors over all 10 re-
alizations. The system state estimation performance is shown
in Table I and Fig. 9(a), where "GPS,” "RSSI,” and “Fusion”
represent the UKF-based state estimation using only GPS, only
RSSI, and both GPS and RSSI signals respectively. The column
“GPS signals” shows the raw GPS measurements. The optimal
control performance is shown in Table II and Fig. 9(b), where
“RSSI” and “Fusion™ represent the control algorithms based on
only RSSI, and both RSSI and GPS respectively. It can be seen
from the tables and plots that: 1) the estimated system states
and derived heading angles are very close to their real states and
optimal heading angles in both GPS-denied and GPS-available
cases, indicating that the proposed algorithms work well in both
GPS-available and GPS-denied environments; 2) the estimation
errors and heading angle errors in the GPS-available case are
much smaller than that in the GPS-denied case, indicating that
the fusion of the GPS and RSSI promises a better performance.

To provide comparative studies, we also simulate the GPS
alignment-based directional antenna control algorithm devel-
oped in [11]. In this algorithm, each directional antenna points
towards the GPS location of the other UAV to align the di-
rectional antennas, and RSSI is not used as a measurement
signal nor value function. The control performance of this
GPS alignment-based algorithm is also shown in Table II. The
barplots of the controlled heading angle errors are shown in
Fig. 9(b). It can be seen from the tables and plots that the
optimal control algorithm developed in our paper performs much
better than the GPS alignment-based algorithm, with larger RSSI
signals and less heading angle errors.
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00
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(b)
Fig. 10. Trajectories of (a) UAV 1, and (b) Trajectories of UAV 2. The blue

solid curves are real trajectories, red dotted curves are estimated trajectories,
and green dots are GPS measurements.

TABLE III
PERFORMANCE OF ONLINE INTENTION ESTIMATION

Random variables vg[T?] ﬁ 72[T2]
Parameters to be estimated o o2 o o3 Ao
Estimated value 127 | 63 | 1077 | 1073 2.07
Real value 125 | 2.1 0 10—% 2

Finally we simulate the remote UAV uncertain intention esti-
mation algorithm. The total simulation time in this part is set as
T = 10 minutes, with the sampling period § = 1 s. The system
states are estimated from the GPS measurements by adopting
the moving average method. Figs. 10(a) and 10(b) show trajec-
tories of the two UAVs respectively. The performance of the
uncertain intention estimation algorithm is shown in Table III.
Note that v,[T?], WI-ET’ and 75[T?] follow uniform, Gaussian,
and Possion distributions respectively. As such, the parameters
to be estimated in their pdfs are: s, and o, for v [T?], 2 and o,
for 5 IIT}] , and A, for 7, [T7] respectively. It can be seen from the
table that the estimated means of v, [T7], m_[IT-’T’ and 7»[T??] match
with their real mean values perfectly, indicatfng the effectiveness
of the proposed estimation algorithm. The estimated variance of
v2[T?] and 17,[T?] show small biases to their real values, caused

by Gaussian GPS noises.

VI. ConNcLUSIONS AND FUTURE WORKS

In this paper, we developed a RL-based online directional
antenna control solution for the ACDA system to establish a
robust long-distance air-to-air communication channel using
pure directional antennas. In particular, to capture the uncertain
intentions of UAVs executing surveillance-like missions for
better tracking, we adopted a UAV ST RMM. With this non-
linear random switching mobility model, a new state estimation
algorithm that integrates MPCM and UKF was developed. To
account for an unstable GPS environment, we developed a new
RL-based stochastic optimal control solution, which features
a learning of communication RSSI models to provide an addi-
tional measurement that compensates GPS signals. This solution
also features an integration of RL and MPCM to learn the
environment-specific RSSI model and to provide online optimal
control solutions. With the learned RSSI model, the optimal
solutions in both GPS-available and GPS-denied environments
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were developed. The learning and uncertainty-exploited deci-
sion framework is generally applicable to distributed decision-
making of nonlinear multi-agent systems that are governed by
random intentions in an uncertain environment. In the future
work, we will further investigate the ACDA system in 3-D UAV
RMMs. In addition, we will expand the two-UAV aerial com-
munication link study to multi-UAV communication networks
equipped with multi-sector directional antennas. We will also
pursue implementation of the entire ACDA solution in hardware
platforms.
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