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Abstract— Aerial communication using directional antennas
(ACDA) is a promising solution to enable long-distance and
broad-band unmanned aerial vehicle (UAV)-to-UAV commu-
nication. The automatic alignment of directional antennas
allows transmission energy to focus in certain direction and
hence significantly extends communication range and rejects
interference. In this paper, we develop reinforcement learn-
ing (RL)-based on-line directional antennas control solutions
for the ACDA system. The novel stochastic optimal control
algorithm integrates RL, an effective uncertainty evaluation
method called multivariate probabilistic collocation method
(MPCM), and unscented Kalman Filter (UKF) for the nonlinear
random switching dynamics. Simulation studies are conducted
to illustrate and validate the proposed solutions.

I. INTRODUCTION

Aerial communication using directional antennas (ACDA)
(see Figure 1) is a promising solution to enable long-distance
and broad-band unmanned aerial vehicle (UAV)-to-UAV
communication [1]-[3]. Through using directional antennas
that focus the transmission energy in certain direction, ACDA
significantly extends communication distance and rejects
interference, compared to omni-drectional antenna based so-
lutions. The applications of such a system span remote large-
area surveillance, remote infrastructure health monitoring,
and the provision of on-demand emergency communication
services [1], [3], [4].

A critical component of the ACDA system is the automatic
alignment of directional antennas to maximize the communi-
cation performance. Each UAV in the ANDA system carries
a rotational plate mounted with a directional antenna [1],
which is controlled to align with the directional antenna
carried by the other UAV. Robust automatic alignment of
directional antennas is not easy to achieve, considering
practical issues such as the limited sensing devices due to
the physical constraints of UAV payload and power supplies,
uncertain and varying UAV mobility, and unstable GPS and
unknown communication environments.

In this paper, we develop a novel antenna control algo-
rithm that adopts reinforcement learning (RL) for online
optimal control, multivariate probabilistic collocation method
(MPCM) for effective uncertainty evaluation, and unscented
Kalman filter (UKF) for nonlinear state estimation. RL meth-
ods have been developed to solve optimal control problems
with deterministic system dynamics [5]. Paper [6] further
developed a stochastic optimal control solution that integrates
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Fig. 1. Tllustration of the broadband long-distance communication infras-
tructure using controllable UAV-carried directional antennas.

MPCM and RL methods for systems modulated by uncertain-
ties. In these papers, the uncertainties are relatively simple, as
compared to the more complicated random switching random
mobility models (RMMs) for the UAV dynamics considered
in this paper. With respect to estimation, nonlinear system
estimation methods such as Extended Kalman Filter (EKF)
and UKF have been used typically for known and deter-
ministic systems corrupted with additive noises, instead of
the random switching RMMs. To address these limitations,
in this paper we develop a new stochastic optimal control
solution for systems that involve nonlinear random switching
RMMs and limited measurements, by integrating UKF and
RL with MPCM.

II. MODELING AND PROBLEM FORMULATION

In this section, we describe the ACDA system models and
measurement models.

A. System Models

We consider two UAVs independently fly in a low-altitude
airspace at approximately the same height to fulfill their
missions such as search and rescue (see Figure 1). On each
UAV, a tunable plate attached with a directional antenna is
installed [1]. To establish a long-range air-to-air communica-
tion channel, the communication performance of this channel
needs to be maximized.

1) UAV Random Mobility Model: We here use the smooth
turn (ST) mobility model ( [7], [8]) to capture the uncertain
intentions of UAVs executing surveillance-like missions. The
random maneuvers described by a ST mobility model work
as follows. At randomly selected points T¢, 17, T4,---,
where 0 = T¢ < T} < ---, UAV i selects a point in the
airspace along the line perpendicular to its current heading
direction, and then circles around it until the UAV chooses
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another turning center. The perpendicularity guarantees the
smoothess of trajectories [7]. The time duration for UAV ¢
to maintain its current maneuver 7;[T}] = T}, — T} follows
an exponential distribution with the mean of 7; [TZ] The
velocity vs[T7] follows a umform distribution, and the inverse
of the turning radius ﬁ follows the zero-mean Gaussian

distribution with variance o2

Denote the positions of the UAV 1 along x and y axes at
time instant k as z;[k] and y;[k] respectively. The dynamics
of UAV ¢ (denote as f;(.)) following the ST uncertain
maneuvering intentions is described as

zilk+1] = a;[k] + v [k] cos(¢;[k])0,
yilk +1] = yilk] + vilk] sin(¢s[k])S, ey
¢ilk +1] i[k] + wilk]0

where § is the sampling period, ¢;[k] and w;[k] are the
heading angle and angular velocity at the time instant k,
and w;[k] = :H

Note that the ST RMM is a random switching model
composed of two types of random variables [9], [10]. Type
1 random variables includes v;[k], and r;[k]. They describe
the characteristics for each maneuver, and show a random

switching behavior.

CfowlTi, i3 €(0,1,2,.),k =T}
vlh] = { [J 1, ifVj=0,1,2,. k7eT1 2
r[T,  if3j€[0,1,2,.),k =T}
rilk] = {r[k; 1, ifVj=0,1,2,.k#T) 3)

The maneuvers’ random switching behavior is governed by
the type 2 random variable, 7; [Tj’], which describes how often
the switching of type 1 random variables occurs.

The two groups of uncertain maneuvers for the UAVs
(01 [T}],71[T}], 7 [T}]) and (va[T7],7o[T7], 72[T7]) are in-
dependent, as UAV mobility is application-specific, and is
not constrained from the communication mission.

2) Directional Antennas Dynamics: For UAV 14, the dy-
namics of its directional antennas is described as

where 0; is the heading angle of antennas %, and w; is the
angular velocity of antennas ¢ due to its heading control.
Note that the change of 6; is caused by both the control of
antennas ¢, w;, and the movement of UAV ¢, w;.

B. Measurement Models

We consider two measurement signals for the ACDA
system, GPS and received signal strength indicator (RSSI).

1) GPS measurement: Denoted the measured GPS signal
for UAV i as Zg ;(k), then

ZG,i[k] = Hc;(k)Xl[k] + wG,i[k‘], &)

where Hi = [1,0,0,0;0,1,0,0] is the measurement matrix,
Xi[k] = [xi[k], yi[K], #i]k], 0:[k]]T is the system state of
UAV 4, and w ; is the white Gaussian noise with zero mean
and covariance R ;. Denote the relation between the GPS
signals and system states as hq ;, i.e., Zg,i[k] = ha,i(Xi[k]).

2) RSSI measurement: Denote the measured RSSI signal
as Zrlk], then according to Friis free space equation [11],
one has

Zplk] =Pyjapmk] +201log;o(A) — 20logo(47)

6
— 20logio(d[k) + Cuapslkt] + wrlk,

where Py 4pm, (k] is the transmitted signal power, A is the
wavelength, and d[k] is the distance between the two UAVs.
G)1apilk] is the sum of gains at both the transmitting and re-
ceiving sides. The Ubiquiti NanoStation loco M5 directional
antennas that we use in the ACDA system is modeled as

Gijasilk]

max
(Gt\dB'L

kada k
o sin (5 ( (cos (%[[

min
Gt\de)

2n sin (3 (kada(cos (v[k] — 6:[k])) — 1) — T)
+ ( ;rf(%z - :T(li%z)
o 5 5 Ckadac0s (3 K] — 00 K1) 1) — 2)
2n sin (5 (kada(cos (yr[k] — 6,[K])) — 1) — T)
+ G?ﬂ;}gz + Gr\dBm
@)

where G%’g o G;’I’jg ;» and Gﬁ(‘ilg o ﬁé% ; are the maximum
and minimum gains of transmitting and receiving antennas.
ko is the wave number. n and d, are design parameters
of the directional antenna. 6,[k] and 6,.[k] are the heading
angles of the transmitting and receiving antennas at time
k, respectively. ~;[k] and ~,.[k] are the heading angles of
the transmitting and receiving antennas corresponding to the
maximal G at time k, respectively.

In ACDA, the two directional antennas are of the same
type, and hence G%‘gz G;’f;};z, and G%%z G;’fzﬁgz
In an imperfect environment, the maximum and minimum
antenna gains can be environment-specific, and the desired
heading angles ~;[k] and ~,[k] can be captured as ~,.[k] =
arctaniﬁgiiz[{ﬁ—&—& and v [k] = arctaniyrm z*[[i]ﬁ— feme
respectively. (z:[k], y:[k]) and (x,.[k], y,-[k]) are the positions
of UAVs that carry the transmitting and receiving antennas
respectively, and 6, and 6., are environment-specific
shift angles at the receiver and transmitter sides. 6 and

0.,, are zeros in a perfect environment.
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C. Problem Formulation

We aim to design antennas’ angular velocities to max-
imize the expected RSSI performance of ACDA over
a look-ahead window. The RSSI model contains un-
known environment-specific parameters ( ;T;g, %gm, and
Ocnv), and the UAV dynamics contain uncertain parameters
((vi[k], r1[k], 71 [T}, va[ K], ra[k], 72 [T7])).

Here we formulate the problem as a stochastic optimal
control problem. Mathematically, considering the random
switching system dynamics described in Equations (1) and
(4), the optimal control policy Ulk] is sought to maximize
the expected value function

k+N

V(XIK]) = E{Y o/ ZI(XUL UKD}, (®)

=k
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where X[k] is the global state, X[k] = [X{[k], XT[k]]T.
U[k] is the control input, Ulk] = [Uy[k], Uz[k]]T, U;[k] =
[wr[k]]. Zg[l] is the RSSI signal at time [, and a € (0, 1]
is a discount factor. Note that the control is decentralized,
in the sense that each antenna finds its own optimal control
policy, with the assumption that the other antenna adopts its
optimal control policy. In the rest of this article, we develop
the control solution for one of the UAVs, and denote this
UAV as the local UAV, or UAV 1, and the other UAV as the
remote UAV, or UAV 2. The control solution for the other
UAV is designed in the same manner.

III. REINFORCEMENT LEARNING BASED STOCHASTIC
OPTIMAL CONTROL FOR ACDA

In this section, we develop new on-line solutions to solve
the stochastic optimal control problem for the ACDA system
described in Section II-C.

A. Stochastic optimal control with unknown RSSI

The stochastic optimal control solution includes two main
steps: 1) state estimation, and 2) adaptive optimal controller
design. GPS signal is needed in this solution to learn the
environment-specific RSSI model.

1) State Estimation: The states of both local and remote
UAVs need to be estimated. For the remote UAV that has
random switching dynamics, the RMM-related maneuvers
(va[K], r2[k], and 72[T7]) are unknown to the local UAV, and
hence the remote UAV’s states (z2[k], y2[k], p2[k]) can not be
estimated directly using existing filtering types of methods.
We design a new estimation algorithm for the nonlinear and
random switching dynamics.

A critical step in the state estimation of a random switch-
ing system is to estimate the expected system state under
random switching behaviors. This involves uncertainty eval-
uation that is typically solved by the Monte Carlo method,
which is too slow to be used for on-line solutions. Here,
we adopt an efficient uncertainty sampling method, called
multivariate probabilistic collocation method (MPCM) [12].
MPCM permits using a very limited number of smartly
selected samples to estimate the output mean for a system of
input-output mapping subject to uncertain input parameters
as described in the following lemma.

Lemma 1. [12, Theorem 2] Consider a system G modulated
by m independent uncertain parameters, a;, where i €

{1,..m},

2n1—12n9—1 2N —1

SIS ,gmHa ©)

J1=0 j2=0 Jm=0

G(al,...,

where a; is an uncertain parameter with the degree up to
2n; — 1. m; is a positive integer for any i. ;. ;. €
R are the coefficients. Each uncertain parameter a; fol-
lows an independent pdf f,,(a;). The MPCM approximates

G(ay,...am,) with the following low-order mapping
ni—1lng—1 N —1
Gar,oam) = > > > Ha (10)

J1=0 j2=0 Jm=0

with E[G(a1,...,an)] = E[G'(a1,...,an)], where
Q... € R are coefficients. MPCM reduces the
number of simulations from 2™ [[", n; to []i~, ni.

Denote the switching behavior of the remote UAV at time
k as s[k]. s[k] = 1 or O represent the current maneuver
switches at time k£ or not. With the two possible switching
behaviors, the expected conditional current state can be
derived as

E(X[k]| Xa[k —1])
=E(X3[k][Xa[k — 1],
+ E(Xo[k]| Xo[k — 1],

sk —1] =0)P(s[k — 1] =0)
slk—1]=1)P(s[k—1] =1)
(1D

Here we integrate MPCM and UKF for a 5-step state
estimation procedure to estimate the remove UAV’s state
from the measurement Z¢ o[k].

Step I: Initialize. Select initial conditions X[0] and P|0]
to initialize the system.

Step 2: Select MPCM points. nin, MPCM simulation
point pairs are selected according to the pdfs of VJI[TQ]
and R;,[T7] and the MPCM procedure [12, Section IIJ,
where n; and ny are the selected degree of V;, [T} 2] and
R, [T] | respectively. Denote the selected MPCM p01nt pairs

s (Vi [T7], Ry, [T7]), where ji € {0,...,n1 — 1} and jp €
{O, ey Ny — 1})

Step 3: Estimate the state when sk — 1] = 0. When
sk — 1] = 0, the remote UAV does not change its ma-
neuver, and hence the conditional expected current state
E(X3[k]| Xo[k — 1], s[k — 1] = 0, Za 2[k]) can be estimated
using UKF. Denote the expected state and covariance found
by UKF as E(X3[k]|Xa[k — 1], Zgo[k],s[k — 1] = 0)
E(P[E])|P[k — 1], Zg 2[K], s[k — 1] = 0) respectively. Please
refer to [13] for the detailed UKF procedure.

Step 4: Estimate the state when sk — 1] = 1. When
sk —1] =1, the remote UAV changes its maneuver ac-
cording to the random variables vo[T7] and ro[T7]. With
the MPCM points selected in Step 2, the expected state
E(X3[k]| Xo[k — 1], Zg 2[k], s|k — 1] = 1) and covariance
E(PIlk]|P[k — 1], Zg 2[k], s[k — 1] = 1) can be estimated
using the following two sub-steps.

(a). Estimate system state at each selected MPCM point.
The system state is estimated at each selected MPCM
point (V;, [T7], R;,[T7]) by conducting the UKF procedures
shown in Step 3. Denote the estimated state from UKF at
each MPCM point as X, ;,[klk — 1, Zg 2[k], s[k — 1] = 1]
with the covariance P;, ;,[k|k — 1, Zg o[k], s[k — 1] = 1].

(b). Estimate the expected state using MPCM. Define
Gx (v2[T7],m2[T7]) and Gp(v2[T7], r2[T7]) as the relation-
ship between the system state and covariance with the
uncertain parameters respectively. With the selected MPCM
points and the derived system states and covariance at
these points, reduced polynomial mappings from uncertain
parameters to the system state and covariance (denoted as
Gl (02[T7],m2[T7]) and (G'p(va[T7],72[T7]) respectively)
can be obtained according to Lemma 1.
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With the polynomial mappings, the expected state and
covariance are F(Xy[k]|Xa[k — 1], Zgo[k], slk —1] = 1) =
E[Gy (0a[T?), 7o[T?))). and E(P[k)|Plk—1], Zco[k], 5[}~
1] = 1) = E[Gp(v2[T7],m2[T7])], according to MPCM’s
mean calculation procedure [12].

Step 5: Estimate the expected system state. The estimated
state and covariance are derived as

E(Xa[k]| Xalk — 1], Zg 2[k])
=P E(X,[k]| Xalk — 1], Za o[k], s[k — 1] = 1))
+ (1 — Po) E(Xo[k]| Xa[k — 1], Z o[k], s[k — 1] = 0]),
E(P[k]|P[k — 1], Zg 2[k])
=P, E(P[K]|P[k — 1], Za 2[K], s[k — 1] = 1])
+ (1 = R)E(P[k]|Plk — 1], Zg 2[k], s[k — 1] = 0]).

As such, the estimate of X[k] is Xa[k] = E(Xo[k]| Xa[k —
1], Z¢ 2]k]), and the expected error covariance is Plk] =
E(PK|Plk - 1], Zg.2[k).

2) Adaptive optimal control: An on-line adaptive optimal
controller is designed to maximize the expected value func-

tion (8) with the estimated system state.
As the uncertain parameters are independent from the
states, the value function can be further re-written as

k+N
V(X[K]) = E[ > o' *Zr[l)(X[I], U[k])]
1=k N (11)
=E[Zpk)(X[K], UKD + > o Za[l)(X[1], U[K])].
I=k+1

The above equation can be solved forward-in-time using
RL [5]. In particular, we use the policy iteration (PI) method
to find the optimal control policy by iteratively conducting
the two steps: policy evaluation and policy improvement. The
policy evaluation step is designed to solve the value function
V(X[k]) using Equation (11), given the current control
policy. The policy improvement step is designed to find the
best control policy to minimize the value function [5]. The
two steps are conducted iteratively until convergence.

Policy Evaluation

Vigr(X[k]) =E[Zg[K|(X[K], U[K])

k+N

3l (X, UK
I=k+1

12)

Policy Improvement
Uj1(X[k]) = arg max E[Zg[k](X[k], U[k])
U;[k]
k+N
+ 3 a2 mIDX, UIK)
I=k+1

13)

where j is the iteration step index, and Z; g[l](X[l], U[k]) is
the RSSI model with parameters learned in the jth iteration
step.

Note that Equation (12) involves three unknown pa-

rameters for the environment-specific RSSI model (GZZ?E’

Gmgm, and 0.,,), which need to be learned. In par-
ticular, for each iteration j, three time steps (k, k + 1
and k + 2) are needed to come up with three equa-
tions to iteratively solve for the three parameters. To
calculate the value function Vjq1(X[k]) at each time
step, E[Zfi,ﬁ_l o=k Z; p[l|(X[1],U[k])] is approximated
by the output mean of a system mapping using MPCM,
Gy (va[T2], ma[T2)) = B[S, ol=52; pll)(X[1), UIK)).
MPCM can accurately calculate the expected value function
using a limited number of sampling points. The convergence
and optimality of the proposed control algorithm are dis-
cussed in [10].

B. Using the learned RSSI model in both GPS-available and
GPS-denied environments

With the learned RSSI model, the optimal solution can
then be obtained in both GPS-available and GPS-denied
environments. In a GPS-denied environment, the RSSI is the
only measurement. In this case, the optimal control solution
can be found following a similar procedure as shown in
Section III-A, by replacing Z¢ o[k] and hgo with Zg[k]
and hg. In the GPS-available environment, GPS and RSSI
measurements can be fused to estimate the system states [14]
to improve the reliability. The details are omitted here due
to the limited space.

IV. SIMULATION STUDIES

Simulation studies are conducted to validate the results
and algorithms. Two UAVs move in a 2-D airspace following
the ST RMM independently. Two directional antennas of the
same type are mounted on the two UAVs respectively. The
total simulation time is 7' = 45s, with the sampling period
0 =1s.

We first simulate the case when the GPS is available but
the RSSI model is unknown. Gaussian noise is added to the
GPS measurements. Estimation for UAV 1 is based on UKF
with known maneuver (v [k] and r1 [k]), while the estimation
for UAV 2 is based on the integration of UKF and MPCM
as described in Section III-A. Figures 2(a) and 2(b) show the
trajectories of UAV 1 and UAV 2 respectively. It can be seen
from the figures that 1) the estimated trajectories for UAVs
1 and 2 are both close to their real trajectories, indicating
that the proposed state estimation algorithm performs well
in both known and unknown maneuver cases; 2) compared
with UAV 2, the estimated trajectory of UAV 1 is closer
to its real trajectory as expected, indicating that the state
estimation algorithm with known maneuver guarantees a
better performance.

With the estimated states, we simulate the RL-based
stochastic optimal control algorithm. Figures 3(a) and 3(b)
show the learned environment-specific antennas’ maximum
gain (G;’fjgi) and the shift angle caused by the environment
( 0:,,,) respectively. As shown in the figures, the learned
parameters are very close to their true values, which indicates
the effectiveness of the learning algorithm.

With the learned RSSI model, we simulate the proposed
stochastic optimal control algorithm in GPS-denied and GPS-
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Fig. 2. (a) Trajectories of UAV 1, and (b) Trajectories of UAV 2. The blue

solid curves are real trajectories, red dotted curves are estimated trajectories,
and green dots are GPS measurements.
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Fig. 3. Learned environment-specific (a) maximum directional antenna
gain (G?ﬁ%m)’ and (b) shift angle (feny) in the RSSI model.

available environments respectively. Figures 4 and 5 show
the estimation and control performances in the GPS-denied
and GPS-available cases respectively. It can be seen from
the figures that: 1) the estimated trajectories and derived
heading angles are very close to their true trajectories and
real optimal heading angles in both cases, indicating that
the proposed solutions work well in both GPS-available and
GPS-denied environments; 2) the angle errors in the GPS-
available case are much smaller than those in the GPS-denied
case, indicating that the fusion of the GPS and RSSI promises
a better performance.
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Fig. 4. Performances of the developed (a) estimation algorithm, and (b)

controller algorithm, in a GPS-denied environment.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we developed an RL-based on-line di-
rectional antenna control solution for the ACDA system.
In particular, to capture the uncertain intentions of UAVs,
we adopted a UAV ST RMM. With this nonlinear random
switching mobility model, a new state estimation algorithm
that integrates MPCM and UKF was developed. To account
for an unstable GPS environment and provide online optimal

12 n 2
==Real trajectory —
10 ~-—- J— Estimated trajectory g 15
_e N s,
Eg 2IN %
> > © 0.5
4 £
3
2 3 0/ [—Real desired angle
I N "
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Fig. 5. Performances of the developed (a) estimation algorithm, and (b)

controller algorithm, in a GPS-available environment.

control solution, we developed a novel stochastic optimal
controller by integrating RL and MPCM. The algorithm also
features the learning of communication RSSI models and the
use of RSSI to inform controller design.
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