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Abstract— The two-player zero-sum differential game has
been extensively studied, partially because its solution implies
the H∞ optimality. Existing studies on zero-sum differential
games either assume deterministic dynamics or the dynamics
corrupted by additive noise. In realistic environments, high-
dimensional environmental uncertainties often modulate system
dynamics in a more complicated fashion. In this paper, we
study the stochastic two-player zero-sum differential game
governed by more general uncertain linear dynamics. We show
that the optimal control policies for this game can be found
by solving the Hamilton-Jacobi-Bellman (HJB) equation. We
prove that with the derived optimal control policies, the system
is asymptotically stable in the mean, and reaches the Nash
equilibrium. To solve the stochastic two-player zero-sum game
online, we design a new policy iteration (PI) algorithm that
integrates the integral reinforcement learning (IRL) and an
efficient uncertainty evaluation method—multivariate proba-
bilistic collocation method (MPCM). This algorithm provides
a fast online solution for the stochastic two-player zero-sum
differential game subject to multiple uncertainties in the system
dynamics.

I. INTRODUCTION

Game theory has been widely used in multi-player systems
to obtain decisions that optimize individual payoffs [1]–
[6]. In the standard game theory, a player finds the best
strategy to minimize a static and immediate cost [1]–[3].
Recently, differential games were combined with control
theory to study dynamical systems that involve the evolution
of players’ payoff functions [4]–[6]. The two-player zero-
sum differential game has received much attention since it
provides the H∞ optimal solution [6]. The Nash equilibrium
solution of the two-player zero-sum differential game relies
on solving the Hamilton-Jacobi-Bellman (HJB) equation for
nonlinear systems or the game algebraic Riccati equation
(GARE) for linear systems. However, solving these equa-
tions is generally extremely difficult or even impossible
[5]. Moreover, solving the differential game from HJB or
GARE equations requires the full knowledge of the system
dynamics, and is an offline process.

Reinforcement learning (RL), a subarea of machine learn-
ing, was developed based on the idea that successful deci-
sions should be remembered as a reinforcement signal, such
that they are more likely to be used in future decisions [7].
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Bridging between optimal control and adaptive control, RL-
based on-line solutions have been designed for a range of
system types, including linear continuous-time systems [8],
linear discrete-time systems [9], [10], nonlinear continuous-
time systems [11], [12], and nonlinear discrete-time systems
[13].

Of interest to this paper, the RL method has been used
to find the Nash equilibrium solutions online for two-
player zero-sum differential games [14]–[19]. For discrete-
time systems, paper [14] presented an adaptive dynamic
programming (ADP)-based RL algorithm to solve the H∞
control problem. The solution requires the knowledge of
system dynamics. To deal with unknown system dynamics,
a model-free Q-learning iteration algorithm was introduced
in [15], [16]. For continuous-time systems, paper [17] in-
troduced the idea of integral RL (IRL) to solve the two-
player zero-sum differential game, and presented an ADP-
based learning algorithm. This algorithm has two iterative
loops and hence is time-consuming: one player first learns
to optimize its control policy with the other player’s policy
fixed, and then when the first player’s policy converges, the
second player also begins to find its optimal control policy.
To improve the learning efficiency, paper [18] proposed an
single-loop iteration algorithm which updates the control
policies of the two players simultaneously. In addition, to
deal with unknown system dynamics, paper [19] presented
a model-free IRL algorithm using the Q-learning method.
All these aforementioned studies assume a time-invariant and
deterministic system dynamics.

Modern dynamic systems often operate in uncertain en-
vironments. Their dynamics can be modulated by high-
dimensional uncertainties, which complicate the decision
process. Such stochastic optimal control problems have been
studied in e.g., [9], [20]–[22]. For a linear system with addi-
tive noise and quadratic cost, the optimal control solution that
minimizes the expected cost function can be found analyti-
cally [20]. However, for general stochastic systems with mul-
tiple uncertainties, simulation-based uncertainty evaluation
methods need to be utilized. In addition, the uncertainties, if
exploited, can benefit the optimal decision-making [23]–[25].
For instance, unmanned aircraft vehicle (UAV) dynamics
are modulated by uncertain weather, and the optimal path
planning can benefit from exploring probabilistic weather
forecasts, which can be modeled as stochastic processes with
known statistical information [26].

The most widely used uncertainty evaluation methods are
the Monte Carlo (MC) method and its variants including the
Makrov Chain MC and Sequential MC [27]–[29]. However,
the MC-based methods require a large number of simulations
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to estimate the expected cost function accurately, which
makes it unrealistic for online algorithms. To deal with this
challenge, paper [23] developed an efficient uncertainty eval-
uation method, named multivariate probabilistic collocation
method (MPCM), which accurately estimates the expected
output mean of a system mapping by smartly selecting a
small set of samples according to the uncertainties’ statistics
(e.g., probability density functions). Papers [24], [30] further
integrated the MPCM method with the discrete-time RL
to solve stochastic discrete-time optimal control problems
online. Here in this paper, we utilize the MPCM method
to solve the continuous-time stochastic two-player zero-sum
differential learning game. Per knowledge of the authors, this
is the first study in the field of multi-player differential games
that considers general uncertainties in the dynamics.

This paper brings together game theory, reinforcement
learning, and effective uncertainty evaluation to obtain fast
online solutions for the stochastic two-player zero-sum dif-
ferential game with general uncertain linear dynamics. The
main contributions of this paper are three-fold. The first con-
tribution lies in the introduction of the stochastic zero-sum
differential game formulation with more general uncertain
dynamics. This game formulation for the first time captures
broad uncertain impacts, such as stochastic environments and
random agent intentions [31], [32]. The second contribu-
tion lies in the analysis of game properties, including the
stability and Nash equilibrium. The third contribution is a
novel stochastic policy iteration (PI) algorithm that integrates
MPCM and IRL to provide an fast online solution for the
stochastic zero-sum game.

This paper is organized as follows. Section II introduces
the preliminaries to facilitate the analysis in the paper and
formulates the stochastic two-player zero-sum differential
game. Section III studies the properties of the stochastic two-
player zero-sum game, and proposes an online solution that
integrates MPCM and IRL to solve the game in real time.
Section IV presents the simulation studies, and Section V
concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first formulate the stochastic two-player
zero-sum game for systems of general linear dynamics.
Preliminaries are then introduced to facilitate the analysis
in the paper.

A. Problem Formulation

Consider a generic two-player linear system with a time-
varing uncertain vector a(t) of dimension m,

ẋ = A(a)x + Bu + Cd, (1)

where x = x(t) ∈ Rn is the system state vector, u = u(t) ∈
Rp is the control input, and d = d(t) ∈ Rq is the adversarial
control input. A(a), B, and C are the drift dynamics, input
dynamics, and adversarial input dynamics respectively. Each
element of a(t), ap(t) (p = 1, ...,m), changes independently
over time with pdf fAp

(ap(t)).

This game formulation can describe a wide range of
system dynamics modulated by uncertainties. One example
is the aircraft dynamics described as v̇(t) = −Kv(t) +
Fu(t)+Fd(t). Here v is the velocity, Fu(t) is the controlled
thrust force, Fd(t) is the disturbance force, and K is the air
resistance coefficient. The air resistance coefficient, related
to air density and air humidity, is an uncertain time-varying
parameter affected by uncertain weather conditions. The
statistics (e.g., pdfs) of such weather conditions can be
obtained from probabilistic weather forecasts.

The expected cost to optimize is

J(x(0),u,d) = E[

∫ ∞
0

r(x,u,d)dt]

= E[

∫ ∞
0

(xTQx + uTRu− γ2‖d‖2)dt],

(2)

where Q and R are positive semidefinite and positive definite
matrices, respectively. R is a symmetric matrix. γ is the
amount of attenuation from the disturbance input to the
defined performance.

The value function V (x(t)) corresponding to the perfor-
mance index is defined as

V (x(t)) = E[

∫ ∞
t

(xTQx + uTRu− γ2‖d‖2)dτ ]. (3)

Define the two-player zero-sum differential game as

V ∗(x(0)) = min
u

max
d

J(x(0),u,d), (4)

where V ∗(x(0)) is the optimal value function. In the two-
player zero-sum game, one player u seeks to minimize the
value function, and the other d seeks to maximize it.

Consider the problem of finding the optimal control policy
u∗ and d∗ such that

u∗ = argmin
u

J(x(0),u,d),

d∗ = argmax
d

J(x(0),u,d).

B. Preliminaries

Definition 1. [33] The equilibrium solution of a system is
said to be stable in the mean (norm) if for any ε > 0 there
exists a δ(t0, ε) > 0, such that for any initial condition
satisfying ‖x0‖ < δ(ε),

E{sup
t≥t0
‖x(t)‖} < ε.

It is assumed that the system described in Equation (1) is
stabilizable in the mean, that is, there exist control policies
u = −Kux and d = −Kdx such that the closed-loop system
ẋ = (A(a)−BKu −CKd)x is stable in the mean.

Definition 2. [33] The equilibrium solution is said to be
asymptotically stable in the mean (norm) if it is stable in the
mean and moreover, there exists a δ(t0) > 0 such that for
any initial condition satisfying ‖x0‖ < δ(t0),

lim
t→∞

E{‖x(t)‖} → 0.
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Definition 3. [34] The system (1) is said to have L2-gain less
than or equal to γ if the following disturbance attenuation
condition is satisfied for all d ∈ L2[0,∞) with x(0) = 0:∫∞

t
‖z(τ)‖2dτ∫∞

t
‖d(τ)‖2dτ

≤ γ2,

where ‖z(t)‖2 = xTQx + uTRu, d(t) is the disturbance
input, and γ is the amount of attenuation.

It is assumed that γ in Equation (2) satisfies γ > γ∗, where
γ∗ is the smallest γ that satisfies the disturbance attenuation
condition for all possible A(a), to make sure that the system
is stabilizable [4, Page 450].

Definition 4. [4, Page 445] Policies {u∗1,u∗2, ...u∗N} are said
to constitute a Nash equilibrium solution for the N -player
game if the following equation is satisfied for ∀ui, ∀i ∈ N .

J∗i (u∗1,u
∗
2, ...,u

∗
i , ...,u

∗
N ) ≤ Ji(u∗1,u∗2, ...,ui, ...,u

∗
N ).

The N -tuple {J∗1 , J∗2 , ..., J∗N} is known as a Nash equilib-
rium value set of the N -player game.

Lemma 1. [33, Theorem II] Consider a system ẋ =
f(x, a(t), t), where a(t) is a vector of time-varying random
parameters. If there exists a Lyapunov function Ṽ (x(t))
defined over the state space and satisfies the conditions listed
as follows (a−d), then the equilibrium solution of the system
is asymptotically stable in the mean.
a. Ṽ (0) = 0.
b. Ṽ (x(t)) is continuous with both x and t, and the first

partial derivatives in these variables exist.
c. Ṽ (x(t)) ≥ b‖x‖ for some b > 0.
d. E[ ˙̃V (x(t))] is negative definite.

III. STOCHASTIC TWO-PLAYER ZERO-SUM GAME

In this section, we study the properties and optimal solu-
tions of the stochastic two-player zero-sum game. Section
III-A studies the stability and Nash equilibrium of the
stochastic game, and section III-B develops an IRL-based
online solution to solve the differential game.

A. Stability and Nash Equilibrium for Stochastic Two-Player
Zero-Sum Game

With the value function defined in Equation (3), the
following Bellman equation can be derived by taking the
derivative of V (x(t)) with respect to time t.

r(x,u,d) + E[
∂V T

∂x
(A(a)x + Bu + Cd)] = 0. (5)

with the Hamiltonian function

H(x,u,d,
∂V

∂x
)

= r(x,u,d) + E[
∂V T

∂x
(A(a)x + Bu + Cd)].

(6)

The optimal control policies u∗ and d∗ can be derived
by employing the stationary conditions in the Hamiltonian

function [4, Page 447],

∂HT

∂u
= 0→ u∗ = −1

2
R−1BT ∂V

∗

∂x
,

∂HT

∂d
= 0→ d∗ =

1

2γ2
CT ∂V

∗

∂x
.

(7)

Substituting Equation (7) into the Bellman Equation (5),
the following Hamilton-Jacobi-Bellman (HJB) equation is
obtained.

H(x,u∗,d∗, V ∗X)

= xTQx + E[V ∗X
TA(a)− 1

4
V ∗X

TBR−1BTV ∗X

+
1

4γ2
V ∗X

TCCTV ∗X ] = 0, V (0) = 0,

(8)

where V ∗X = ∂V ∗

∂x .

Lemma 2. For any admissible control policies u and d, let
V ≥ 0 be the corresponding solution to the Bellman equation
(5), then the following equation holds [4, Lemma 10.2-1].

H(x,u,d, VX) =H(x,u∗,d∗, VX) + (u− u∗)TR(u− u∗)

− γ2(d− d∗)T (d− d∗),
(9)

where u∗ and d∗ are described in Equation (7), and VX =
∂V
∂x .

Proof: Combining Equations (6) and (7), the Hamilto-
nian function can further be written as

H(x,u,d, VX)

= r(x,u,d) + E[V T
X (A(a)x + Bu + Cd)]

= xTQx + E[V T
X (A(a)x)] + V T

X (Bu + Cd)

+ uTRu− γ2‖d‖2

= xTQx + E[V T
X (A(a)x)]

+ (
1

2
V T
XBR−1 + uT )R(

1

2
R−1BTVX + u)

− γ2‖(d− 1

2γ2
CTVX)‖2

− 1

4
V T
XBR−1BTVX +

1

4γ2
V T
XCCTVX

= H(x,u∗,d∗, VX) + (u− u∗)TR(u− u∗)

− γ2(d− d∗)T (d− d∗).

(10)

Theorem 1. Let V be a smooth function satisfying the HJB
equation (8), then the following statements hold.

1). The system (1) is asymptotically stable in the mean
with the control policies u∗ and d∗ described in Equation
(7).

2). The pair of strategies (u∗ and d∗) derived in Equation
(7) provides a saddle point solution to the game, and the
system is in Nash equilibrium with this strategy pair.

Proof: 1) Stability. Choose the Lyapunov function
candidate as Ṽ =

∫∞
t

(xTQx + uTRu− γ2‖d‖2)dτ . Since
the attenuation condition is satisfied [34], one has

Ṽ =

∫ ∞
t

(xTQx+ uTRu− γ2‖d‖2)dτ > 0. (11)
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Denote the derivation of Ṽ with respect to time t as ˙̃V , then
the expectation of ˙̃V is

E[ ˙̃V ] = E[
∂Ṽ

∂x
ẋ]

= E[VX(A(a)x + Bu + Cd)]

= H(x,u,d, VX)− (xTQx + uTRu− γ2‖d‖2)

= H(x,u∗,d∗, VX) + (u− u∗)TR(u− u∗)

− γ2(d− d∗)T (d− d∗)

− (xTQx + uTRu− γ2‖d‖2).
(12)

The last equality is obtained from Lemma 2. Selecting u =
u∗ and d = d∗, one has

E[ ˙̃V ] = −(xTQx + uTRu− γ2‖d‖2) < 0. (13)

Therefore Ṽ is a Lyapunov function for x. According to
Lemma 1, the system described in Equation (1) is asymptot-
ically stable in the mean.

2) Nash Equilibrium. Since the system is asymptotically
stable in the mean, we have E{‖x(t)‖} = 0 holds when
t→∞. Therefore the cost function can be rewritten as

J(x(0),u,d)

= E[

∫ ∞
0

(xTQx + uTRu− γ2‖d‖2)dt] + V (x(0))

+

∫ ∞
0

V̇ dt

= E[

∫ ∞
0

r(x,u,d) + V T
X (A(a)x + Bu + Cd)]

+ V (x(0))

= E[

∫ ∞
0

(u− u∗)TR(u− u∗)− γ2(d− d∗)T (d− d∗)]

+ V (x(0)).
(14)

The last equality is obtained by combining Equation (6)
and Lemma 2.

It can be seen from Equation (14) that J(x(0),u∗,d) ≤
J(x(0),u∗,d∗) ≤ J(x(0),u,d∗), and thus, the Nash equi-
librium is obtained.

B. Online Learning Solution

To find the optimal control policies using Equation (7), a
smooth function that satisfies the HJB equation (Equation
(8)) needs to be found in closed-form. However, solving
Equation (8) analytically is extremely difficult or even impos-
sible. As such, we integrate IRL and an efficient uncertainty
sampling method called MPCM to provide an fast online
learning algorithm to approximate the solution to the HJB
equation.

The IRL Bellman equation can be written as

V (x(t)) = E[

∫ t+T

t

r(x(τ),u(τ),d(τ))dτ+V (x(t+T ))], (15)

where T is the time interval.

It is assumed that there exists a neural network weight W
such that the value function is approximated as

V (x) = WTφ(x), (16)

where φ(x) is the polynomial basis function vector.
With the value function approximation (VFA), one can

find the optimal control policies from the policy iteration
(PI) algorithm by iteratively conducting two steps: policy
evaluation and policy improvement [4, Page 474]. The policy
evaluation step is designed to evaluate the value function
V (x) using Equation (15), given the current control policies.
The policy improvement step is to find the optimal control
policy based on the current approximated value function
using Equation (7). For the stochastic system, the policy
evaluation step involves the uncertainty evaluation, which
is typically solved using the Monte Carlo method and its
variants. However, the Monte Carlo methods are not compu-
tationally effective to be used for online solutions.

Here we utilize an efficient uncertainty sampling method,
called multivariate probabilistic collocation method (MPCM)
[35]. Rooted in quadrature rules, MPCM is designed to
smartly select a limited number of samples to evaluate the
output mean for a system mapping subject to uncertain
input parameters. Simulations are then run at these samples
to produce a reduced-order mapping, which has the same
expected value of the original system. The properties of the
MPCM are briefly described in the following lemma. For the
detailed MPCM design procedure, please refer to [35].

Lemma 3. [35, Theorem 2] Consider a system mapping
modulated by m independent uncertain parameters:

G(a1, ..., am) =

2n1−1∑
q1=0

2n2−1∑
q2=0

...

2nm−1∑
qm=0

ψq1,...,qm

m∏
p=1

aqpp ,

where ap is an uncertain parameter with the degree up to
2np − 1. np is a positive integer for any p ∈ 1, 2, ...,m,
and ψq1,...,qm ∈ R are the coefficients. Each uncertain
parameter ap follows an independent pdf fAp

(ap). The M-
PCM approximates G(a1, ...am) with the following low-
order mapping

G′(a1, ..., am) =

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

Ωq1,...,qm

m∏
p=1

aqpp ,

with E[G(a1, ..., am)] = E[G′(a1, ..., am)], where
Ωq1,...,qm ∈ R are coefficients. The MPCM reduces
the number of simulations from 2m

∏m
p=1 np to

∏m
p=1 np.

Define GV (t)(x,u,d, a) =
∫ t+T

t
r(x(τ),u(τ),d(τ))dτ+

V (x(t + T )). Given an admissible state x(t) and control
policies u(t) and d(t), the value function described in
Equation (15) can be represented as the output mean of
the system mapping GV (t)(x,u,d, a) subject to uncertain
input parameters a (i.e., V (x) = E[GV (t)(x,u,d, a)]). The
mapping can be approximated using MPCM. In particular,
we select a set of samples based on the pdfs of uncertain
parameters, fAp

(ap), and run simulations at these samples
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to estimate E[GV (t)(x,u,d, a)]. Under the assumption that
each uncertain parameter ap has a degree up to 2np − 1,
GV (t)(x,u,d, a) has the following form,

GV (t)(x,u,d, a)

=

2n1−1∑
q1=0

2n2−1∑
q2=0

...

2nm−1∑
qm=0

ψq1,...,qm(x,u,d)
m∏

p=1

aqpp .
(17)

The value function can be estimated from the mean output
of a reduced-order mapping according to Lemma 3 as

V (x(t)) = E[GV (t)(x,u,d, a)] = E[G′V (t)(x,u,d, a)],
(18)

where G′V (t)(x,u,d, a) is the reduced-order mapping de-
rived from the MPCM procedure [35],

G′V (t)(x,u,d, a)

=

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

Ωq1,...,qm(x,u,d)
m∏

p=1

aqpp .
(19)

The PI algorithm that integrates IRL and MPCM for
the stochastic two-player zero-sum game is described in
Algorithm 1.

Algorithm 1 Policy iteration algorithm for stochastic
two-player zero-sum game

1: Initialize the players with admissible control policies
u(0) and d(0).

2: Select
∏m

p=1 np MPCM sample points according to the
pdfs fAp

(ap) and the MPCM procedure [35, Section II].
Denote each selected MPCM sample as Al, where l =
1, ...,

∏m
p=1 np.

3: For each iteration j, find the value function V l
j(t) at each

sample Al, using the following Bellman equation given
the current control policy uj and dj .

V l
j(t) =WT

j−1φ(x
l(t+T ))+

∫ t+T

t

rl(x(τ),uj(τ),dj(τ))dτ.

(20)
4: Find the reduced polynomial mapping from ap to the

value function according to Lemma 3.

G′Vj(t)
(x,uj ,dj ,a)

=

n1−1∑
q1=0

n2−1∑
q2=0

...

nm−1∑
qm=0

ΩVq1,...,qm
(x,uj ,dj)

m∏
p=1

aqpp .

where ap and G′Vj(t)
(x,uj ,dj ,a) take the value

of Al and V l
j(t) respectively. The coefficients

ΩV q1,...,qm(x,uj ,dj) can be determined using the
least-squares method.

5: Find the value function Vj(x(t)) from the mean output
of the reduced-order mapping according to the MPCM
procedure [35, Section II].

Vj(x(t)) = E[G′Vj(t)
(x,uj ,dj ,a)]. (21)

6: Update the value function coefficients Wj according to
the estimated Vj(x(t)) using the least-squares method.

WT
j φ(x(t)) = Vj(x(t)). (22)

7: Update the control policy uj+1 and dj+1 as

uj+1 = −1

2
R−1BT

∂V ∗j
∂x

,

dj+1 =
1

2γ2
CT

∂V ∗j
∂x

.

(23)

8: Repeat procedures 3− 7.

Theorem 2. Consider a stochastic zero-sum game shown
in Equations (1)-(4), the uncertainty in the system dynamics
ap following a time-invariant pdf fAp

(ap), then the optimal
control policy u and d derived from Algorithm 1 is the
optimal control policy.

Proof: To prove this theorem, we need to show that the
two optimal control policies, which are found by evaluating
the reduced-order mapping G′V (t)(x,u,d, a) and the original
value function mapping GV (t)(x,u,d, a), are the same.
Since Lemma 3 has proved that E[G′V (t)(x,u,d, a)] =
E[GV (t)(x,u,d, a)], the equivalence of the two optimal
policies can be proved from a contradiction method following
a similar argument as described in [24, Theorem 1].

IV. ILLUSTRATIVE EXAMPLES

In this section we conduct a simulation study to illustrate
and verify the algorithm and results developed in this paper.

Consider the two-player uncertain system with the follow-
ing dynamics:

ẋ =

[
a1 a2
a3 a4

]
x +

[
1
0

]
u +

[
1
0

]
d, (24)

where a1, a2, a3, and a4 are four uncertain parameters, with
their values changing over time. The distributions of the four
uncertain parameters are: f(a1) = 1

2 , 0 < a1 < 2; f(a2) =
2, 0 < a2 < 0.5; f(a3) = 1, 0.5 < a3 < 1.5; and f(a4) = 1

2 ,
−1 < a4 < 1 respectively. The parameters in the value
function are selected as Q = [ 1 0

0 1 ], R = 1, and γ = 5.
Figures 1(a) and 1(b) show the evolution of the system state
and the learned value function weights respectively, using
the designed PI algorithm presented in Algorithm 1.

It can be seen that the system state converges to 0 in the
limit of large time, which validates the stability of the system.
In addition, the value function weights converge quickly with
time, indicating the effectiveness of the proposed algorithm.
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Fig. 1. Stochastic two-player zero-sum game. (a) The evolution of the
system state, and (b) the learned value function weights.

1042

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 25,2020 at 16:41:21 UTC from IEEE Xplore.  Restrictions apply. 



V. CONCLUSION

This paper studies the stochastic two-player zero-sum
differential game with a general uncertain linear dynamics.
Optimal control policies are obtained from the Hamiltonian
function. The system properties, including the stability and
Nash equilibrium, are analyzed with the derived optimal poli-
cies. In addition, an online PI-based learning algorithm that
solves the stochastic two-player zero-sum differential game is
designed by integrating the IRL and an efficient uncertainty
sampling method named MPCM. This algorithm permits
finding the online solution of the stochastic two-player zero-
sum differential game in highly uncertain environments.
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