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Abstract

Bamboo has been in the focus of attention as a re-discovery of an old and available material to solve environmental problems
in the construction industry. The use of full-culm bamboo in the built environment, however, depends on proper quality
control/assurance of its mechanical and physical properties. In this work, a quality assessment in terms of treatment control
and mechanical properties of a small production of Phyllostachys edulis bamboo poles treated with disodium octaborate
tetrahydrate (DOT) was performed. A comparison between two commercial preservatives used for exterior and interior
applications, chromated copper borate (CCB) and DOT respectively, in terms of the effect on the mechanical properties and
treatability behaviour was also investigated. Penetration and retention analyses showed satisfactory results for the samples
treated with CCB, with retention of 7.2 kg/m?, while lower values of retention for the samples treated with DOT by the
immersion method (2.2 kg/m?) was observed. Microstructural and EDS analyses revealed a much higher concentration of
chromium and copper from the CCB solution in the bamboo large vessels. The mechanical characterization performed by
compression, shear, tension, coupon three-point bending, and flat ring flexure tests showed that the difference between the
two treatment conditions was small and, in most cases, not statistically relevant. Low coefficients of variation were observed
in all the investigated mechanical tests, suggesting a uniform distribution of mechanical properties within the batch of P.
edulis bamboo used in this study. The full characterization schedule combined with digital image correlation analyses ena-
bled the calculation of the characteristic values of the mechanical properties, useful for structural design, complementing
the treatability and quality assessment.

1 Introduction

Bamboo as an engineered natural material is increasingly
being explored for structural uses in construction (e.g.,
Anuar and Krause 2016; Chow et al. 2019). Traditionally
used for centuries for (so-called) informal or vernacu-
lar building construction, furniture, and daily necessaries
(Zhang et al. 2018), bamboo today has expanded into modern
construction techniques. Extensive research on the generally
good mechanical properties of bamboo is presented in the
literature (e.g., Dixon and Gibson 2014; Jakovljevi¢ et al.
2017; Akinbade et al. 2019). Fast- growing and maturing
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bamboo species such as Phyllostachys edulis (Moso) pro-
duce material with promising structural properties.
Without suitable treatment, however, bamboo is prone
to biological degradation in a short period of time, reduc-
ing its utility as a structural material (Janssen 2000). The
“bamboo borer” or “powderpost” beetle (Dinoderus minu-
tus) is a primary destructive agent of bamboo (Watanabe
et al. 2015) and is present across the world’s tropical zones
(CABI 2019). Other xylophagous organisms, such as decay
fungi and termites, can also affect the structural integrity
of bamboo and consequently compromise the service life
of structures (Jayanetti and Follett 2008; Tiburtino et al.
2015b). Today, conventional wood treatment solutions used
in Brazil have good performance but are typically based
on heavy metals and other toxic elements, such as CCA
(chromated copper arsenate), pentachlorophenol and others
(Mohajerani et al. 2018). Whenever technically and eco-
nomically feasible, replacement of hazardous chemicals with
less hazardous substances is an essential objective in the
wood and bamboo industry. As a result, novel preservative
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formulations are being developed and used for interior and
exterior applications.

Less hazardous substances that have been investigated
and commercialized for the treatment of bamboo and wood
for interior application include low-cost soluble salts, such
as boron-based salts, specifically disodium octaborate tet-
rahydrate (DOT), boric acid and borax (Caldeira 2010; Kim
et al. 2011; Liese and Tang 2015; Tiburtino et al. 2015b).
Boron compounds are some of the most effective and ver-
satile preservative solutions used today since they combine
broad-spectrum efficacy, low mammalian toxicity, and are
odourless and colourless (Tondi et al. 2012; Donmez Cavdar
et al. 2015; Jit Kaur 2018; Zhou et al. 2018). Preservation
with boron compounds can even improve the quality of bam-
boo, improving some mechanical properties in comparison
with bamboo without preservatives in samples with high
retention levels (Prinindya and Ardiansyah 2014; Sulae-
man et al. 2018; Gauss et al. 2019a). Nevertheless, the use
of boron compounds presents restrictions for the treated
material because of the leaching of boron in the presence
of water, making it unsuitable for the use in exterior appli-
cations (Hidalgo-Lépez 2003; BIS IS1902 2006; Freeman
et al. 2009; Caldeira 2010). For the exterior use, CCB (chro-
mated copper borate) was developed as an alternative to
CCA, substituting arsenic with a boron source, reducing the
toxicity to humans and the environment (Vidal et al. 2015;
Beraldo 2016). Nonetheless, heavy metals are still used in its
composition and the disposal of CCB-treated wood/bamboo
continues to be a problem (Caldeira 2010).

From a structural engineering perspective, the challenge
is to prescribe a treatment having sufficient retention and
penetration in the culm to increase the bamboo service
life without sacrificing physical or mechanical properties.
Although chemical treatment is commonly used in the con-
struction industry, its impact on material properties is often
unclear. Recent investigations have demonstrated that the
treatment method selected affects the mechanical proper-
ties of laminated bamboo material (Shah et al. 2018). The
effects of preservative treatments such as steam, oil or dry
heat treatment have been found to have adverse effects on
both wettability and strength of the bamboo product (Wahab
et al. 2005, 2015; Sulaiman et al. 2006; Li et al. 2015; Bui
et al. 2017). Therefore, not only is a quality control assess-
ment of the final structural material necessary but also the
effects of chemical treatments on the mechanical properties
of treated materials require closer inspection.

Most structural projects utilising bamboo in Latin Amer-
ica and Asia use boron compounds (boric acid, borax or
DOT) for bamboo exposed to a protected environment (typi-
cally referred to as interior exposure) and CCB or CCA for
exterior exposure. Despite this dichotomy, there is no known
design practice that differentiates the structural design of dif-
ferently treated bamboo. Indeed, there are no known studies
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of the treatability, mechanical performance and durability
of differently treated bamboos. The present study aims to
investigate the effects of DOT and CCB treatments—as the
two most well-known commercially used preservatives—on
treatability and mechanical properties of P. edulis bamboo
(the most widely commercialized bamboo species). The
methods of treatment applied to each material follow the
same practical methods applied in the industry. Bamboo for
exterior exposure is treated using CCB in a vacuum pressure
process while bamboo for interior exposure is treated using
DOT in an immersion method.

2 Materials and methods
2.1 Material

Approximately 140 Phyllostachys edulis (Moso) bamboo
culms were obtained from a supplier near Sao Paulo, Brazil.
Culms between 3 and 5 years of age were harvested, from
which 4-4.5 m long poles (visually free of defects) were
extracted. The diameters ranged from 70 to 90 mm, wall
thickness from 6.5 to 10 mm and the oven-dry density prior
to treatment was 760 kg/m>.

The culms were divided into two batches (Fig. 1). Batch
A comprised 130 poles treated with DOT by immersion (see
below). From this large batch, twelve 1 m long samples were
extracted from randomly selected poles for the evaluation
of mechanical properties and boron penetration analysis.
An additional two samples were extracted to assess boron
retention following 7- and 10-days’ immersion. This series
of samples was intended as a means of quality assessment
of the entire batch of bamboo and is indicated in this paper
as “A-DOT”.

A second smaller batch B was used for direct comparison
of CCB and DOT treatment. Adjacent 0.8 m long samples
were extracted from untreated poles. The adjacent samples
were then treated using CCB or DOT. Using adjacent sam-
ples in this way was intended to minimize the variation in
the mechanical properties from different poles and along the
length of the same pole, permitting a direct comparison of
the effects of the treatment method. The samples intended
for comparison are indicated B-DOT and B-CCB in this

paper.
2.2 DOT treatment

Agricultural grade disodium octaborate tetrahydrate (DOT;
Na,B30,;3+4.H,0, molar weight of 412.5 g/mol) supplied
by Sulboro (Brazil) was used. A-DOT and B-DOT sam-
ples were treated by immersion in an 8% (weight/volume)
DOT aqueous solution. The 4.7 m long immersion tank is
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Fig. 1 Sampling and treatment methods

shown in Fig. 1. A small amount of tannin extract supplied
by Tanac (Brazil), was also added to the solution (0.5 kg
per 1000 L) in order to facilitate the cleaning (and thereby
reuse) of the solution and as an additional fungicide agent.
The solution was conditioned, and the concentration
adjusted after each treatment batch using a conductivity
meter (according to a standard concentration curve). The
A-DOT samples were kept in immersion between 7 and
10 days (depending on the batch) and the B-DOT samples
were immersed for 7 days.

2.3 CCB treatment

B-CCB samples were treated using commercially available
chromated copper borate (CCB), MOQ OX 50, supplied by
Montana Quimica Ltda (Brazil). The product is an oxide-
based CCB having approximately the following constitu-
ency of active ingredients: 32% CrOj; 13% CuO; and 5% B
(as trivalent boron); and 50% inert ingredients. The molar
weight of the three active constituents is 100, 79 and 10.8 g/
mol, respectively. A 3.5% (active ingredient weight/vol-
ume) aqueous solution was used in a pressure vessel using a
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full-cell process: — 600 mmHg (0.8 bar) vacuum for 30 min,
followed by 10 kgf/cm? (10 bar) pressure for 60 min, fol-
lowed by — 600 mmHg vacuum for 15 min. Treatment was
conducted in a pressure/vacuum tank shown in Fig. 1.

2.4 Treatment characterization
2.4.1 Retention and penetration analysis

Following treatment, samples were subjected to boron (in
case of DOT) and chromium, copper and boron (in case of
CCB) retention analyses conducted according to Brazilian
standard ABNT NBR 6232:2013 (2013) (Penetration and
retention of preservatives in pressure treated wood) and
Indian standard BIS 1902 (2006) (Preservation of bamboo
and cane for non-structural purposes). For the chemical
analyses, samples extracted from the middle part of each
pole were subjected to (sulphuric) acid digestion, diluted
and analysed by atomic absorption spectroscopy. The sam-
ples treated with DOT were analysed at IPT (Technological
Research Institute, Sdo Paulo) and the samples treated with
CCB at Montana Quimica (Sao Paulo).

Penetration analysis was also performed in accordance
with ABNT NBR 6232:2013 (2013) to observe the pres-
ence of boron (for DOT treated samples) and copper (for
CCB treated samples). The cross-sectional area of samples
extracted from the central region of the treated poles was
reacted with the etching solutions:

For boron penetration analysis, a solution composed of
curcumin (earth turmeric) and ethyl alcohol (10% wt/vol
alcohol) was applied to the treated bamboo section and per-
mitted to dry. Then, a saturated salicylic acid alcoholic solu-
tion (13 g per 100 mL solution) and 20 mL of concentrated
hydrochloric acid were applied. The observation of red col-
our indicates the presence of boron. For copper penetration
analysis, a solution with 0.5 g of chrome azurol S and 5.0 g
of sodium acetate in 300 mL of water is applied; a dark blue
colour indicates the presence of copper.

2.4.2 Optical and scanning electron microscopy

The transverse section of the treated bamboo samples was
analysed in a ZEISS Smartzoom 5 optical microscope in
order to evaluate observable effects of the different treatment
conditions. For the analysis, small samples were cut with a
diamond disc and subjected to fine grinding and polishing
with (sequentially) 15, 3 and 1 um diamond polishing paste.
After polishing the samples were cleaned with isopropyl
alcohol and dried at room temperature.

Clean cuts of the longitudinal section of the bamboo
samples (parallel to the fibres), obtained using a sharp
chisel and subjected to no further surface preparation, were
used for microstructural and chemical characterization in a
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FEI Apreo scanning electron microscope (SEM) equipped
with a field-emission gun. This procedure was performed
in order to preserve the chemicals within the bamboo
structure for chemical analysis. Prior to the analysis, the
samples were coated with palladium in a Cressington
Sputter Coater. Elemental mapping was performed using
energy-dispersive X-ray spectroscopy (EDS) operated at
20 kV.

2.4.3 Mechanical characterization

Mechanical characterization of the samples treated with
DOT and CCB was performed according to procedures
described below. Full culm specimens were used for com-
pression, shear and flat ring flexure tests, while machined
coupon specimens were used for tension and bending tests.
All required specimen dimensions were obtained using a
digital calliper having a precision of 0.01 mm. Digital
image correlation (DIC) techniques were used in all tests to
determine strain fields and thereby modulus. DIC is a well-
established contact-free means of obtaining full-field surface
deformations (and therefore strains). Specimens are painted
with a speckle pattern prior to testing (photocopier toner
broadcast onto wet white spray paint, the result is seen in
Fig. 2). During the test, consecutive high-resolution images
(2448 x 2049 pixels) are taken every 0.5 s. and deforma-
tion patterns (based on sampling of the speckle pattern) are
recorded. Post-processing allows relative displacements and
specified strain fields to be obtained in three dimensions.
The system used in this study is a VIC-3D dual camera sys-
tem resulting in a resolution better than 1 microstrain on
the surface of the specimens. All the obtained data was pro-
cessed and analysed using the VIC-3D 2012 Digital Image
Correlation software (Correlated Solutions). Sample was
weighed prior to testing and afterward dried at 100 °C +2 for
at least 48 h to establish moisture content (MC) in accord-
ance with ISO 22157:2019 2019. Additional description and
commentary on the mechanical test protocols are reported
in Gauss et al. (2019b).

2.4.4 Compression parallel to fibres

Full-culm compression tests (Fig. 2a) were conducted
according to ISO 22157:2019 2019. Specimens had a height
equal to their nominal diameter (i.e., L=D). A sulphur cap-
ping compound was used in order to ensure a flat loading
surface and reduce the friction between the sample and
the compression platen. Tests were performed in a 600 kN
capacity universal testing machine; load was applied at a
crosshead displacement rate of 1.0 mm min~'. Compression
modulus, E_, is determined from DIC analysis.
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Fig.2 Mechanical test methods

2.4.5 Shear parallel to fibres

Full-culm shear tests (so-called “bowtie” tests) were con-
ducted according to ISO 22157:2019 2019; also with speci-
mens having a height equal to their nominal diameter (i.e.,
L=D). In this test (Fig. 2b), the full culm specimen is sup-
ported at its lower end over two opposing quadrants and
loaded at its upper end over the other two opposing quad-
rants. In this manner, loading the specimen results in four
shear areas. The test is controlled by the first shear plane to
fail and therefore the shear strength, f,, is interpreted as the
lower bound shear strength. Tests were performed in a 600
kN capacity universal testing machine; load was applied at a
crosshead displacement rate of 1.0 mm min~'. Shear modu-
lus, G, is determined from DIC analysis.

2.4.6 Tension parallel to fibres

Tension tests were performed in accordance with ISO
22157:2019 2019, with some modifications of the speci-
men design. Radially oriented bamboo strips, 200 mm in
length, were extracted from sample poles. The samples
were sanded to obtain uniform dimensions with a breadth
(b) less than half of the culm wall thickness (t). Softwood
tabs were glued on the specimen ends in order to facili-
tate gripping by the testing machine. Flat samples often
exhibited failures associated with grip inconsistencies and/
or stress raising effects; for an accurate comparison of the
treatment methods, these failures must be mitigated (in
practice, grip failures are neglected—this is not possible
in this study due to the limited number of samples avail-
able). A modified “dog bone” specimen was produced with
a region of reduced breadth in the middle of the specimen.

(d) flat ring flexure (e) small coupon three-
test (Virgo et al. point bending test
2017) (ASTM D7264)

The tensile modulus of elasticity of the dog bone samples
was validated comparing modulus values obtained from
flat samples using both a mechanical extensometer and
DIC (Fig. 2c). Only specimens without nodes are con-
sidered in this paper. Tests were conducted in a 600 kN
capacity universal test machine at a displacement rate of
1.0 mm/min.

2.4.7 Three-point small coupon bending test

The bending test perpendicular to the fibres for bamboo
described by ISO 22157:2019 2019 requires specimens
having a length L > 30D. This test is intended as a com-
ponent capacity test, not a materials evaluation test. Since
the main objective of this work is to evaluate the influence
of the preservative treatments on the mechanical proper-
ties of bamboo, reduced size specimens in prismatic form
with 200 mm long X 10 mm wide x culm wall thickness
depth were used (Fig. 2e). Only specimens without nodes
are considered in this paper. A span of 160 mm was used
for all the tests, which resulted in an average shear span
to depth ratio exceeding 10 in every test. The three point
bending tests were conducted following Procedure A of
ASTM D7264 (2015) using a 10 kN capacity electrome-
chanical testing machine. A displacement rate of 2.5 mm/
min was used for all the tests. Tests reported in this study
were conducted with the sample orientated such that the
outer culm wall was in compression (OC) (see Gauss et al.
2019b for additional discussion of specimen orientation).
Modulus of rupture (MOR) and modulus of elasticity
(MOE) were calculated according to ASTM D7264.
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2.4.8 Flatring flexure test

In order to evaluate the mode I fracture behaviour of treated
bamboo samples and better understand the splitting behav-
iour, a flat ring flexure test was performed (Virgo et al. 2017;
Akinbade et al. 2019).

Samples with 0.18D <L <0.22D were cut from the 0.8 m
bamboo poles and the dimensions were measured using a
digital calliper at four quadrants of the specimen. The flat-
ring flexure test was conducted in a four-point bending setup
(Fig. 2d) using a displacement rate of 0.76 mm/min (0.03
in/min) in a 45 kN mechanically driven testing machine
equipped with a load cell having a precision of +0.4 N. In
the symmetric specimen, only circumferential stresses are
present and the modulus of rupture is calculated only for
samples that fail in the constant moment region (dimension
“c” in Fig. 2d) (Virgo et al. 2017).

2.4.9 Statistical analyses

The averages of each test are presented with the correspond-
ing coefficient of variation (COV) and number of samples.
The differences between the treatment conditions in the
mechanical properties were checked by a Tukey’s test and
analysis of variance (ANOVA) for significant (p <0.05) dif-
ferences. All analyses were performed using MINITAB®
Release 18 Statistical Software.

Table 1 Summary of treatment methods and assessment

3 Results and discussion
3.1 Treatment characterization

Active ingredient penetration and retention analysis results
are summarized in Table 1 and discussed in the follow-
ing sections. Samples for treatment characterization were
extracted from the middle part of the treated bamboo poles
(away from the cut ends), which represents the region most
susceptible to lower retentions.

3.1.1 Active ingredient penetration

Penetration analysis provides a qualitative measure of the
efficacy of the treatment process and enables visualization
of where the chemicals used in the treatment are located
within the culm wall thickness. Depending on the degree of
active ingredient penetration across the wall thickness (i.e.,
area reacting with the etching solutions), a grade between 0
and 4 can be assigned to each sample: 0 = no penetration;
1 = 0-25% penetration; 2 = 25-50%; 3 = 50-75%; and,
4 = greater than 75% penetration (Kim et al. 2011). Exam-
ples of penetration grades for boron are shown in Fig. 3.
Table 1 presents a summary of treatment parameters and
penetration grade of each condition. For the A-DOT samples
used for quality assessment, samples from 10 different poles

A-DOT B-DOT B-CCB
Sample size, n 12 10 10
Treatment method 7- or 10-day immersion 7-day immersion vacuum/pressure

Active ingredient and nominal concentration

Moisture content before treatment (%) 30.0

Weight gain following treatment (%)—(COV in -
parentheses)

Retention of active ingredient (kg/m3) 2.2

Penetration grade

8% DOT solution

Range from 2 to 4 (10 samples)

8% DOT solution
14.1
17.0 (0.31)

22
3 (single sample)

3.5% CCB solution
17.0
30.2 (0.10)

7.2
4 (single sample)

Grade 4

Fig. 3 Boron penetration analysis of samples treated with DOT (untreated reference sample at left). Grade 4 (>75% penetration); Grade 3 (50—

75% penetration); Grade 2 (25-50% penetration)
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were analysed resulting in penetration grades ranging from 2
to 4 (average =3). For the B-DOT and B-CCB treatments, a
single sample per condition was used resulting in penetration
grades of 3 and 4, respectively.

3.1.2 Active ingredient retention

Active ingredient retention is assessed as mass retention of
the chemical components of the treatment as given by Egs. 1
and 2.

For DOT Total retention (kg/m?)

1
= Na,BgO,; - 4 - H,0 (kg/m?) M

For CCB Total retention (kg/m’)

= CrO, (kg/m3) + CuO (kg/m3) + B (kg/m3) @

The samples treated with DOT exhibited lower retention
levels (2.2 kg/m?) mainly because this treatment is by “pas-
sive” immersion, rather than by “active” vacuum or pres-
sure. Using pressure treatment for boron-based (BB: Boric
acid + Borax) solutions, Kim et al. (2011) also observed
lower retention levels in comparison with CCB for B. stenos-
tachya, T. siamensis and D. asper bamboos. Values between
2.5 and 15.5 kg/m? were observed for BB proportional to the
applied pressure (2.5-8.5 bar) and greater when the bamboo
epidermal layer had been removed (an advantage for solu-
tion absorption). As reference values, the Indian standard
BIS IS9096 (2006) recommends 6 kg/m® of active ingredi-
ent (borax + boric acid treatment, with the same proportion
used for the formation of DOT) for indoor applications. A
retention of 2.7 kg/m® of B,O;, equivalent to 4.0 kg/m® of
DOT, is recommended by the American Wood Preservers’s
Association (AWPA) for boron-based treatments (Caldeira
2010). Although boron-based treatments are widely used
for structural use of bamboo, information regarding reten-
tions values is scarce and affected by treatment methods and
bamboo species (Tiburtino et al. 2015a; Kim et al. 2011).

The A-DOT and B-DOT samples presented similar
DOT retention values. Although the A-DOT samples were
extracted from 4.5 m poles (about 2 m to a cut end), and
B-DOT samples were extracted from 0.8 m poles (no more
than 0.4 m to a cut end), the length of the bamboo poles did
not affect the retention of DOT. Furthermore, no difference
was noticed for A-DOT samples from poles treated for 7 and
10 days in terms of retention or penetration.

The CCB-treated samples exhibited retention of 7.2 kg/
m?, higher than that observed by Tiburtino et al. (2015a) in
D. asper and B. vulgaris bamboo samples treated by immer-
sion and by modified Boucherie methods (Tiburtino et al.
2015a). For CCB treatments, the Indian standard BIS IS401
(BIS 2001) recommends retentions values of 10-16 kg/m3

for applications exposed to weather and in contact with the
ground, 6-10 kg/m? for applications exposed to weather but
without ground contact, and 6 kg/m? for applications under-
cover. Kim et al. (2011) reported values between 11.3 and
16.3 kg/m? retention of CCB in samples treated with simi-
lar pressure (8.5 bar) to that used in this work. However, in
their work they used a 6% CCB solution and no informa-
tion regarding the density of the material is reported (which
can also greatly influence the treatability of bamboo). Baysal
et al. (2016) reported that bamboo (P. bambusoides) presented
lower retention values of several preservatives (CCB, boron,
and other copper-based products) than those observed in wood
(Scots pine), which was attributed to the anatomical charac-
teristics of bamboo. The same behaviour was observed in the
work by Lee et al. (2001), using the same bamboo species as
in the present work, but treated with CCA instead of CCB.

3.2 Microstructural characterization and chemical
analysis

Optical and scanning electron microscopy (SEM) were used
to analyse the microstructure of the treated bamboo sam-
ples and investigate any differences between CCB and DOT
treatments.

A typical microstructure obtained by optical micros-
copy of the bamboo used in this study is shown in Fig. 4,
in which its structure composed of parenchyma (P), fibre
bundles (F), phloem (Ph) and vessels (V) is shown in detail.
Using Imagel] analysis software (Rasband 2018), the fibre
volume ratio of the P. edulis samples was determined. Six-
teen images extracted from four randomly chosen culms
resulted in determining a fibre volume content, V;=28.8%
(COV =0.07). This value is similar to that reported in a
number of other studies (Akinbade et al. 2019).

Optical microscope images of CCB- and DOT-treated
samples (Fig. 5) show that there is no visual difference
in terms of microstructure between treatments, especially
around the vessels, where an effect might be expected.

Using SEM for the evaluation of a section parallel to the
fibres it is also possible to identify the main bamboo micro-
structural elements, i.e. parenchyma, vessels and fibre bun-
dles, as shown in Fig. 6. In this image, the structure of the
vessel, including the pit openings on the inner surface of the
vessel, can be clearly observed. The SEM images of CCB-
and DOT-treated samples also do not show any visual dif-
ference in the parenchyma cells close to the vessel (Fig. 6).

Elemental analysis using energy dispersive spectroscopy
(EDS) was performed to evaluate the distribution of the
active ingredients through bamboo’s microstructure. This
technique has some limitations and is unable to detect light
elements such as boron and sodium. Therefore, only the
samples treated with CCB could be characterized. Figure 7
shows an elemental map and the corresponding tables of the
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Fig.5 Optical microscopy images of the B-DOT and B-CCB samples

semi-quantitative analysis of regions composed of paren-
chyma, vessels and fibres. It can be seen that most of the
chromium and copper, in the form of CrO5 and CuO, is con-
centrated in the large vessels (point 1 in the upper image).
The entire analysed area of this image showed atomic
weights of chromium and copper of 1.56% and 1.89%,
respectively, whereas for the large vessel much higher values
(Cr=12.47% and Cu=17.86%) were observed. Only traces
of the elements were found in the fibres and parenchyma
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(points 2 and 3). The same effect can be observed in the
lower image of Fig. 7. Although the atomic weights of chro-
mium and copper in the entire area are 3.49% and 4.05%,
respectively, the two large vessels (points 1 and 2) presented
significantly higher values of these elements. In this image,
the phloem (point 3) presented similar values of chromium
and copper in comparison with the entire area, but signifi-
cantly lower than the large vessels. The phloem consists of
large thin-walled sieve tubes with small cells and it is used
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Fig.6 SEM image of the
longitudinal section parallel to
the fibres of P. edulis bamboo
showing its main constituents
(upper image) and the paren-
chyma region of DOT- and
CCB-treated samples (lower
images)

i
173 pm 101158 mm_ETD_SE

for the conduction of carbohydrates (instead of water that is
conducted in the large vessels) (Liese 1987). It is assumed
that the presence of carbohydrates can affect the penetration
of the active ingredients in the phloem.

Although satisfactory retention levels were obtained in
the CCB-treated samples, there is a heterogeneous distri-
bution of the active ingredients that cannot be detected by
the penetration or retention tests. This poor distribution is
explained by the low mobility of large and heavy elements
such as chromium and copper in the bamboo microstructure.
Additionally, there are no pathways for radial penetration in
bamboo, like the rays in wood. The metaxylem vessels of
the vascular bundles are the main path for penetration and
access to the parenchyma is difficult (Liese 2004; Liese and
Tang 2015).

The bamboo borer beetle (Dinoderus minutus), one of the
main insects responsible for bamboo deterioration, lays its
eggs on metaxylem vessels (Garcia and Morrell 2009; Wata-
nabe et al. 2015). Because the active ingredients are concen-
trated in the vessels, larval growth of the beetle is expected
to be affected by the copper and chromium elements found
in these regions and hence, prevent further insect infestation
or new attacks. However, this assumption still needs to be
validated in a controlled experiment to determine whether

the concentration of active ingredients in the vessels pre-
vents larval growth.

3.3 Mechanical characterization

Results of the mechanical characterization tests are pre-
sented in Table 2 and summarized in Fig. 8. In addition
to strength (f) and modulus (E and G), the limit of propor-
tionality (LOP) is reported. This value describes the stress
at which the material ceases to behave in a linear manner
having the modulus shown.

As seen in Table 2, there is little difference between
A-DOT and B-DOT beyond the normal variation expected
in bamboo material properties. An ANOVA analysis of
the results of B-DOT and B-CCB indicates no signifi-
cant (defined at 95% confidence) difference between the
DOT- and CCB-treated samples in most mechanical prop-
erties. Only in compression (f, and LOP) and shear (f,) a
p value <0.05 was observed. These differences, however,
are more a reflection of the relatively small coefficients of
variation seen in this study than a real difference in material
strength; this is seen in Fig. 8. In fact, analysing the LOP
in compression, shear and bending, the values obtained for
B-DOT and B-CCB are practically the same.
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Element Entire area 1 large vessel (LV) | 2 parenchyma 3 fibre bundle
Weight | Atomic | Weight | Atomic | Weight | Atomic | Weight | Atomic
(%) (%) (%) (%) (%) (%) (%) (%)
C 55.25 | 63.53 | 45.26 04.8 60.79 | 67.85 | 60.97 | 67.65
0 41.29 | 35.64 | 2441 26.24 38.00 | 31.84 | 38.76 | 32.28
Cr 1.56 0.41 12.47 4.13 1.22 0.31 0.15 0.04
Cu 1.89 0.41 17.86 4.83 - - 0.12 0.03

S

50 ym

Element Entire area 1 large vessel (LV) | 2 large vessel 3 phloem (PH)
Weight | Atomic | Weight | Atomic | Weight | Atomic | Weight | Atomic
(%) (%) (%0) (%) (%) (%) (%) (%)
C 52.85 | 62.80 | 34.93 57.03 21.77 | 49.59 | 57.24 | 66.66
@) 39.61 | 3534 | 23.52 28.82 10.90 | 18.63 | 36.35 | 31.78
Cr 3.49 0.96 19.33 7.29 29.21 | 15.37 2.99 0.80
Cu 4.05 0.91 22.22 6.86 38.13 | 16.42 3.42 0.75

Fig.7 EDS mapping of a sample treated with CCB showing the higher concentration of chromium-Cr (dots in right image) and copper-Cu (dots)

in the large vessels (LV) and phloem (PH) of the bamboo structure

@ Springer




European Journal of Wood and Wood Products

Table 2 Summary of experimentally determined material properties (COV in parentheses)

Standard/Properties A-DOT B-DOT B-CCB B-DOT A-DOT + Charac-
B-CCB B-DOT + teristic
p-value B-CCB value

Density (kg/m?) 0.80 0.80 - 0.79 0.80 -

Compression//fiber ISO 22157:2019 2019) n 24 15 16 - 55 -

MC (%) 9.9 (0.04) 10.2 (0.02) 10.4 (0.03) - - -
f. (MPa) 59.8 (0.10) 54.9 (0.06) 58.1(0.07) 0.030 57.9 (0.08) 49.5
E. (MPa) ,070 (0.11) 21, (0.09) 21, (0.08) 0. R (0. 18,
. 19,070 (0.11) 21,220 (0.09) 21,480 (0.08) 0.690 20,380 (0.10) 18,040
LOP (MPa) 50.9 (0.12) 49.1 (0.06) 52.9 (0.08) 0.039 50.7 (0.10) 415
Shear//fiber (ISO 22157:2019 2019) n 25 9 15 - 49 -
MC (%) 10.6 (0.03) 9.7 (0.01) 9.9 (0.02) - - -
f. (MPa) 17.5 (0.08) 19.6 (0.05) 18.1 (0.06) 0.003 18.0 (0.08) 154
G (MPa) 2710(0.10) 2990 (0.10) 2970 (0.06)  0.550 2850 (0.10) 2520
LOP (MPa) 12.2(0.09) 12.1 (0.08) 12.6 (0.11) 0.703 12.2 (0.09) 10.0
Tensile//fiber ISO 22517:2019 2019) n 20 19 - 57 -
MC (%) 6.8 6.9 6.8 - - -
Jr (MPa) 247 (0.08) 283 (0.07) 292 (0.06) 0.466 275 (0.11) 220
E; (MPa) 15,830 (0.08) 18,310 (0.04) 18,420 (0.05) 0.894 17,470 (0.09) 15,660
Three-point bending (ASTM D7264) n 18 18 18 - 54 -
MC (%) 6.8 6.8 (0.07) 7.6 (0.08) - - -
f, (MPa) 202 (0.07) 208 (0.06) 203 (0.03) 0.165 205 (0.06) 183
E, (MPa) 16,210 (0.07) 16,550 (0.05) 16,210 (0.03) 0.584 16,320 (0.06) 15,190
LOP (MPa) 123 (0.07) 125 (0.06) 125 (0.06) 0.750 124 (0.06) 110
Flat-ring flexure (Virgo et al. 2017) n 13 7 8 - 28 -
MC % 9.5 (0.05) 9.7 (0.04) 9.7 (0.08) - - -
f. (MPa) 10.7 (0.27) 13.3 (0.10) 13.3(0.21) 0.989 12.1 (0.23) 6.9
MC moisture content
350
B-CCB B-CCB
- Charac. val. ] i[:i?? \—-arac.va.
_ 77 = 0‘0/
S 20000 B £ 250 %
< d9%0% @ bo%s /
g o % 200 - < 77
=) X < A
3 oo 2 1504 oy / 0% /
: 5 : N i
210000 :3:3:/ =R 3:3/ 3:3:/
Z 23231/ 2 5 1004 333/ 3:3:/
= 0% 9% 9% 0%
b2 2% ’0‘4/ ’0‘4/
5000 0:0%/ o % B
XS XA 504 A A
q d A ]
LB . A o 1B 27 W
Ec G Et fc fv ft fb fr
Moduli Strength

Fig.8 Comparison between DOT and CCB

treated

samples,

where Charac-val-characteristic values, Ecmodulus of elasticity
in compression, Gshear modulus, Efmodulus of elasticity in ten-
sion, Ebmodulus of elasticity in bending, fccompression strength,

fvshear strength, frtensile strength, fbmodulus of rupture in bend-
ing, fr=transversal tensile strength. (Error bars represent + 1 standard
deviation)
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Saikia et al. (2015) investigated the tension and bend-
ing strength of three different bamboo species (B. tulda,
D. giganteus and B. balcoa) treated with CCB and a new
bio-chemical treatment. Although no information regard-
ing retention and penetration of the active ingredients is
reported, it was found that CCB-treated and untreated
samples had similar values of ultimate tensile and flexural
strength in samples exposed to environmental conditions
for 6 months (Saikia et al. 2015). The treatment with DOT
also does not negatively affect the mechanical properties of
bamboo. In fact, a small increase in flexural and compression
strengths was observed in D. asper bamboo samples with
high retentions of DOT (Gauss et al. 2019a).

To the best of the authors™ knowledge, no paper was
found addressing all the mechanical characterizations used
in this work. Nevertheless, some mechanical properties of P.
edulis bamboo available in the open literature are consistent
with the results shown in Table 2 (considering the average of
all the samples). For compression and shear strength parallel
to the fibres, values of f. between 46.0 and 48.1 MPa and f,
between 11.2 and 15.9 MPa are reported (in this work, the
average f, and f, are 57.9 and 18.0 MPa, respectively) (Xu
et al. 2014; Huang et al. 2015; Deng et al. 2016; Akinbade
et al. 2019). Dixon et al. (2015), using P. edulis samples of
density similar to this work, reported modulus of rupture
and modulus of elasticity in bending of f, =215 MPa and
E,=16,680 MPa, respectively.

3.3.1 Characteristic properties

Since no difference was found in properties of DOT-
and CCB-treated bamboo, taking all data together
(A-DOT +B-DOT + B-CCB), a sufficiently large sample
(taken from 17 randomly selected culms of the original batch
of 140 culms) is available to assess characteristic material
properties suitable for design.

For strength, the characteristic value is defined as the
5th percentile value determined with 75% confidence (ISO
22156:2004 2004) and for modulus, the mean value estab-
lished with 75% confidence is used (ISO CD 22156:2019
2019). The calculated characteristic values are shown in
Table 2 and graphically compared with the mechanical prop-
erties of B-DOT and B-CCB samples in Fig. 8.

4 Conclusion

The treatment and mechanical properties of P. edulis bam-
boo treated with DOT and CCB were assessed. Penetration
and retention assessment and microstructural analyses were
conducted to investigate the efficacy of the treatment pro-
cesses. Mechanical testing of treated samples was used to

@ Springer

compare the resulting bamboo material properties after treat-
ment. The following conclusions were drawn:

e The bamboo treated with CCB by a full-cell process
exhibited higher retention values than the bamboo treated
with DOT by immersion: 7.2 kg/m> and 2.2 kg/m?,
respectively. Good penetration (between 50 and 100%)
was observed in both cases.

e Microstructural analysis using optical and scanning elec-
tron microscopy showed no visual differences in the ves-
sels and parenchyma cells between treatment conditions.
Elemental analysis using EDS revealed a higher concen-
tration of copper and chromium elements in the conduct-
ing vessels of the bamboo treated with CCB. Only traces
of these elements were found in the parenchyma cells and
fibre bundles.

e Compression, tension (parallel and transverse to fibres),
bending, and shear properties were not affected by the
treatment procedures. The quality assessment of sam-
ples treated with DOT demonstrated low variation in all
the investigated mechanical tests, suggesting a uniform
mechanical properties distribution within the batch of P.
edulis bamboo used in this study.

e Combining all the investigated conditions, characteristic
values of compression, tension, shear and bending were
calculated according to ISO 22157-19: f,=49.5 MPa;
E,=18,040 MPa; f,=15.4 MPa; G=2520 MPa;
;=220 MPa; E,=15,660 MPa; f, =183 MPa;
E,=15,190 MPa.

Today, bamboo remains primarily an “informal” struc-
tural material. Although standards are available for structural
design, in comparison with other conventional materials,
there is little or no guidance available regarding quality
control of commercially treated bamboo poles. It is recom-
mended that bamboo poles used for structural applications
should be subject to a quality control protocol based on treat-
ment evaluation (retention and penetration) and mechanical
properties in order to reduce risks and improve the efficient
use of bamboo as a load-bearing structural material.
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